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Abstract

In this thesis we give a brief review of Kohn-Sham density functional theory
and different exchange-correlation functionals. The BaZrO3 lattice constant is
obtained and the ground state considered. We examine the electronic structure
using PBE and PBE0. PBE0 provides a greatly improved density of states.
We consider the use of H2O as a reference molecule for µO which reduces er-
ror due to PBE’s description of O2 binding energy by 40%. We compare the
local environment around an oxygen vacancy in BaZrO3 to that in SrTiO3

and examine the expansion due to dopant atoms and hydration in BaZrO3.
Then follows a comparative study between the PBE and PBE0 description of
oxidation and hydration in BaZrO3. We calculate the reaction enthalpies, equi-
librium rate constants and defect concentration profiles most relevant for the
reactions. The PBE0 and PBE oxidation enthalpy are positive and negative
respectively which leads to very different rate constants and concentration pro-
files. However, neither one of the enthalpies seem to contradict experimental
evidence of increased electrical conductivity at elevated temperature.

Keywords: Barium Zirconate, DFT, PBE, PBE0, Hydration, Oxidation, Defect
Concentration, Lattice Expansion.
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1 Introduction
Learning how to manipulate materials and developing new materials has been an
important part of human history. Developments such as metallurgy, plastics, glass
and many more are a large part of modern society and material science is truly one
of the frontiers of modern technological advancement.

With the discovery of the atom and the development of quantum mechanics
mankind has deepened its understanding of the structure of matter. With this
knowledge dawned the possibility of predicting new materials with certain prop-
erties from calculations. For state of the art technology it is then possible to tailor
make materials with appropriate properties, at least theoretically. This is important
for developing electronic devices that require very specific properties.

Proton conducting metal oxides have many prospective technical applications
such as electrolytes in fuel cells, gas sensors, batteries and hydrogen pumps. Per-
ovskite materials have gained a lot of interest of late as proton conductors[1] and
the emphasis of this thesis will be on the perovskite structured metal oxide BaZrO3.
BaZrO3 shows very promising properties for a variety of possible applications such
as wireless communications, a thin film substrate[2] a high chemical stability in CO2

rich atmospheres[1][3][4], mechanical stability and high proton conductivity when
doped[1][5]. In fact, BaZrO3 has one of the highest bulk conductivity amongst the
proton conducting perovskites[6] The mechanical and chemical stability of BaZrO3

make it an attractive material as a solid oxide fuel cell (SOFC) electrolyte.
The theoretical tools to accurately predict the necessary properties of a given ma-

terial have been readily available for decades but they have not been really practical
without great computing power. Over the last thirty years computing capabilities
have increased considerably and the development of computational tools to tackle
this problem has moved forward. Even with these advances, computational burden
remains an obstacle but one of the method that is more accessible to less powerful
computers is density functional theory (DFT). DFT uses a self-consistent algorithm
to converge on a electron density for an atomic system and is sufficiently accurate
for many applications.

1.1 BaZrO3

BaZrO3 is a metal oxide with a fairly large band gap of 5.3 eV [7]. With one of
the highest bulk conductivity compared with other proton conducting perovskites
it makes a promising material for intermediate temperature electrolytes. BaZrO3

possesses more enticing properties such as a mechanical and chemical stability that

1



(a) The perfectly cubic perovskite structure.

(b) In this figure we can see the ZrO8 octahedra tilted
slightly

Figure 1: The ground state perovskite structure of BaZrO3, Barium: Green, Zirco-
nium: Cyan, Oxygen: Red. Whether the ground state is perfectly cubic (figure 1a)
or if the ZrO6 octahedra are tilted (figure1b) is debated.
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are convenient for any electrolyte meant for small vehicles.
Despite the promises of BaZrO3, it has it’s drawbacks. High impedance at the

grain boundaries poses a problem[4][8] and some fundamental aspects are not fully
known.

The ground state structure is fairly debated. Most experimental reports assign
BaZrO3 a perfectly cubic structure (figure 1a) while the bulk of ab-initio DFT studies
report the cubic structure unstable with regard to an octahedral tilt([9] and within)
as in figure 1b. These tilts could be present without showing up in experiments since
the mean positions of the oxygens are the same for the cubic and theoretically tilted
system.

Conductivity in BaZrO3 is related to the concentration of hydrogen within the
system. The material is hydrated by filling oxygen vacancies. To increase conduc-
tivity the material is usually doped by substituting some of the Zr4+ with a trivalent
dopant M3+. This results in an increased number of oxygen vacancies compensating
for the charge difference. For every two dopant atoms included one oxygen vacancy
is formed which allows for increased hydrogen concentration. During this process the
material expands and care must be taken so that it does not crack. This is important
as protons can not diffuse across cracks. Results from a recent study by Yamazaki
et al.[10] show that there is evidence for oxidation reaction occurring along side the
hydration process which creates unwanted electron holes within the material.

1.2 Thesis outline

First we give a description on the theoretical tools applied in the thesis. In section
2 we give a short review of Khon-Sham DFT and different exchange-correlation
approximations as well as the practical methods used to solve the theoretical problem
using a computer. Section 3 introduces models used to investigate the properties of
BaZrO3 in the results section of this thesis.

Some different approximation are applied to examine some ground state proper-
ties of BaZrO3, stability phases, electronic structure and crystal structure. The the-
oretical models from section 3 are then applied to investigate the effects of dopants
and hydration on the structure of BaZrO3 using DFT. We examine the local en-
vironment surrounding oxygen vacancies in BaZrO3 more closely and consider the
relationship between the local environment effects on the large scale structure. Fi-
nally we consider the efficiency of the hydration process with respect to other possible
processes.
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2 DFT

2.1 The adiabatic approximation

With DFT one makes use of the adiabatic approximation by Born and Oppenheimer
[11]. In an atomic system electronic forces govern and as the nuclei are massive
in comparison to the electrons they respond to the forces with greater inertia. We
can then safely assume that the electrons manage to remain in their ground state
configuration relative to the nuclei positions while the nuclei move according to
the forces. This is convenient for computer simulations where we are constricted
to discrete time. At each point in time we keep the nuclei positions fixed while
we derive the electron density of the system with the static potential created by
the nuclei. From this we calculate the forces acting on each nuclei and move them
accordingly. This is iterated until the forces on the nuclei are vanishing and we arrive
at a ground state configuration for the system. This effectively reduces the problem
of finding the ground state of the whole system to just looking at the electronic
system.

2.2 Hohenberg and Kohn

Even with the nuclei out of the picture solving the electronic system is a formidable
task. The base for a solution was built by Hohenberg and Kohn in 1964 [12] when
they demonstrated that an external potential v(r) of a system of electrons is a unique
functional of the ground state electron density n(r). Since the system hamiltonian
is a functional of v(r) the ground state wave function Ψ is uniquely determined by
n(r) and so are all ground state electronic properties.

They went on to show that the functional

Ev[n] =

∫
v(r)n(r)dr + F [n]

is minimized by the ground state density n(r) and the resulting minimum value
equals the ground state energy. The universal functional F [n] = 〈Ψ| T̂ + Û |Ψ〉 is the
kinetic and electron-electron interaction part of the energy independent of v(r).

2.3 Kohn and Sham

Kohn and Sham [13] brought the Hohenberg-Kohn DFT to practicality by realizing
a connection between the system of interacting electrons to a non-interacting one.
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They replaced the problem of the interacting system of v(r) with a non-interacting
system of v(r) with an error term. They wrote

EKS[n] =

∫
v(r)n(r)dr + Ts[n] + Eh[n] + Exc[n]

with Ts[n] as the kinetic energy of the non-interacting electron system and Eh[n]
as the electrostatic Hartree term. The last term is where Kohn and Sham have
gathered the difficult exchange and correlation parts of the energy. If Exc[n] =∫
n(r)εxc[n(r)]dr, we arrive at the so called Kohn-Sham equations by minimizing

with respect to the density: [
−1

2
∇2 + VKS

]
ψi = εiψi

From the solutions of these equations we construct an electron density

n =
N∑
i

|ψi|2

where N is the number of electrons in the system and i goes up from the lowest
eigenvalue orbital ψi. We now have a solution for EKS. From an initial guess for
the density we calculate VKS = v(r) + Vh + Vxc which we use to find the KS-orbitals
ψi and construct a new density. This process is then iterated until a self-consistent
density is reached.

So what has effectively been done is to change the problem of solving an in-
teracting electron system to a problem of solving non-interacting electrons moving
in an effective potential. The Vxc is then the part of the potential that covers the
many-body effects but even with this progress we still have no explicit expression for
Vxc.

2.4 Exchange correlation functionals

In order to be able to do the iteration process described above we need an approxi-
mation for Exc. Many such exist but here we will discuss only the most simple one
and then the two that are applied in the thesis.

The simplest functional, presented by [13], is the local density approximation
(LDA) where the xc-functional at each point in space is only dependent on the
electron density at that precise point.
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ELSD
xc [n] =

∫
d3r n(r)εhomxc (n(r))

More accurately the exchange-correlation energy per electron is approximated by
the that of homogeneous electron gas which has a known simple analytical form
for the exchange part. The high and low density limits of the correlation part are
known analytically. Data from ref. [14] for the density can be interpolated in order
to construct a description for the intermediate values of the density. Theoretically
this approximation should be appropriate for systems with a near to homogeneous
electron density such as certain solids and naturally worse for isolated molecules and
atoms where the density is not as uniform.

2.4.1 PBE, a GGA

To better describe a system with a varying density it seems natural to include infor-
mation about the gradient of the density at each point in space as well the density it
self. A class of such functionals are the Generalized gradient approximations (GGA).
Usually only the first derivatives are included since any higher terms do not neces-
sarily refine the approximation but on the contrary some times make it worse.

EGGA
xc [n] =

∫
d3rf(n,∇n)

There exists an abundance of different GGA’s, empirical, semi-empirical [15][16][17].
The one used in this thesis is named PBE after Perdew, Burke and Ernzerhof intro-
duced in 1996[18] and is one of the most widely used GGA amongst physicists.[19][20]

The correlation part is the same as in LDA plus a correction term that includes
the gradient of the density

EGGA
c [n] =

∫
d3r n

[
εhomc (rs) +H(rs, t)

]
and the exchange part is written in the same manner as all GGA’s

EGGA
x [n] =

∫
d3r nεhomx (n)Fx(s)

Here the variables t and s are two different dimensionless density gradients∼ |∇n| /n.
The correction term H and the factor F are chosen such that certain limiting con-
ditions on the exchange and correlation energy densities are fulfilled. The explicit
forms of these are not very illuminating but the main idea behind PBE is to con-
struct them with all parameters as fundamental constants and not fitted to empirical
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data. The conditions on the densities were chosen in such a way that the resulting
functional reproduces the correct behavior of LDA and the most relevant features
from numerical GGA calculations.[18][21]

A common fault of GGA’s and specifically of PBE is that it systematically under-
estimates the band gap[22][23][24] and the atomization energies of multiply bonded
molecules[25] which can be improved upon as we see in the next section.

2.4.2 PBE0, a hybrid functional

It is possible to calculate the exact Hartree exchange energy from Kohn-Sham orbitals[13]
and in 1993(1992) Becke[26] argued why it would be proper to use a part of the exact
energy in mixture with the DFT approximated energy. It can be shown [26][27] that
the exchange energy can be written

Exc =

∫ 1

0

Uλ
xcdλ

This is the adiabatic connection formula which connects the fully interacting elec-
tronic system (λ = 1) to the non-interacting one (λ = 0) through a continuous
set of partially interacting systems with a coupling strength parameter λ. A nat-
ural first-approximation of the integral would be the mean value of the end points
Exc ≈ 0.5(U1

xc + U0
xc), the so called half and half functional. As U0

xc is just the exact
Hartree exchange which can be evaluated without approximation it seems proper to
do so. Taking this idea further Becke constructed the following functional

Exc = ELDA
xc + a0

(
Eexact
x − ELDA

x

)
+ ax

(
EGGA
xc − ELDA

x

)
+ ac

(
EGGA
c − ELDA

c

)
where he fitted the coefficients a0, ax and ac to experimental data. This functional
greatly improved upon the accuracy of prior DFT methods (LDA and GGA) and
rivaled more accurate contemporary quantum thermochemistry methods. Later he
[28] presented a simplified functional with ax = 1− a0 and ac = 1 resulting in

Exc = EDFT
xc + a0

(
Eexact
x − EDFT

x

)
This provided even better results than the three parameter hybrid.

In the spirit of the PBE GGA, Perdew, Burke and Ernzerhof provided a value for
a0 through qualitative physical reasoning rather than fitting to experimental data.[29]
They showed that a0 = 0.25 which was close to the fitted value 0.28 found in [28]
and this functional is shown to perform remarkably well compared to more heavily
fitted methods.[30][20] This functional is called PBE0.
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2.5 Solution in practice

In order to solve the Kohn-Sham equations in practice we expand the single particle
wave functions, ψi’s, in some basis. This transforms the problematic differential
equations into a linear eigenvalue problem. This method provides an easy way to
tune the precision of calculations as a large basis set is able to describe the wave
function more accurately than a small one. The computational effort also increases
with the size of the basis set so one would optimally want to use the smallest possible
basis set to reach the desired accuracy.

There exists a variety of different basis sets to choose from. The linear combina-
tion of atomic orbitals (LCAO) consists of localized functions most often centered on
the atomic positions. Subcategories of this method would be the slater-type orbitals
(STO) and Gaussian-type orbitals (GTO) basis sets which respectively use slater
orbitals and gaussians as basis functions as the names indicate. Although the GTO
requires a larger set of functions, all but the exchange-correlation matrix elements
can be obtained analytically which makes it faster than the STO.

It is important to choose a suitable basis for the problem at hand. The LCAO’s
are more naturally applied to localized systems of atoms or molecules than to bulk
materials. In systems with periodic boundary conditions like bulk systems it is
usually more appropriate to apply Bloch’s theorem[31] to expand the ψi’s in a plane
wave basis

ψj(r) =
∑
k

cj(k)eikr

The size of the plane wave basis is controlled by an energy cut off kmax which denotes
the highest wave vector included in the basis set.

Many atomic potentials cause the wave function to fluctuate rapidly near the
nuclei and the inner electrons. Describing these fluctuations in with a plane wave
basis requires an enormous plane wave basis which makes the calculations rather time
consuming. This is why a plane wave basis is usually applied in addition to so called
pseudo potentials (PP) in stead of real atomic potentials. The idea of PP’s is based
on the observation that the innermost electrons rarely participate in electrochemical
bonding between atoms. The PP’s mimic the atomic potentials exactly down to
a given cut off radius. Within that region the atomic potential is replaced with a
potential, with the same scattering properties, such that the resulting pseudo wave
function is smooth and more easily represented in a plane wave basis.

These methods are readily available in various simulation software packages. The
one used in this thesis is VASP[32], specifically version 5.2.12.
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3 Theoretical Modeling

3.1 Hydration and oxidation of BaZrO3

The reaction presumed to be responsible for the hydration of doped BaZrO3 is the
so called filling the oxygen vacancies:

V··O + OO + H2O(g)↔ 2OH·O (1)

Through this reaction the amount of hydrogen absorbed is related to the vacancy
concentration. In order to increase the proton conductivity which is proportional to
the number of charge carriers, BaZrO3 is doped by substituting some of the Zr4+ with
a trivalent dopant M3+, Y3+ for instance. The net result is an increased concentration
of oxygen vacancies compensating the charge difference. The vacancies are +2 while
the the relative charge of the dopants is -1 so ideally one vacancy forms per every
two dopant atoms. This however is not the only possible way to fill the vacancies.
In dry atmospheric conditions the material oxidizes through

1

2
O2(g) + V··O ↔ OO + 2h· (2)

Under wet conditions it would then be possible for water based oxidation

H2O(g) + V··O ↔ OO + 2h· + H2

to occur since the humid atmosphere must be an equilibrium between H2O, H2 and O2.
A first approximation of the reaction enthalpies is just the total energy difference
between the products and the reactants

∆H = ∆E − p∆V = Etot
products − Etot

reactants (3)

since the DFT calculations are done at p = 0 and T = 0. This means that our
material can have holes and conduct electricity which we usually do not want in
applications. Whether this creates a problem depends on the hole conductivity vs.
the proton conductivity of our material.

3.2 Formation energies and equilibrium rate constants

We define the formation energy of defects as the total energy difference between the
pure system and the one with a defect introduced. For example, this is the formation
energy of a vacancy V q

O of charge q, calculated using a supercell of n primitive cells

∆Ef
V q
O

= E[n(BaZrO3−1/n); q ]− E [n(BaZrO3)] + µO + qµe (4)

9



The energy is of course dependent on the chemical potentials of the species we remove
or add to the system when creating the defect. Similarly the formation energy of
incorporating a proton into BaZrO3 is

∆Ef
Hq = E[n(BaZrO3H1/n); q ]− E [n(BaZrO3)]− µH + qµe (5)

The periodic boundary condition of the supercell used in practice means that there
will inevitably be interaction between defects unless a large enough cell is used. A
larger cell requires more computing power and which makes it unattractive. However,
[33] have estimated the coulombic error in total energy due to interactions of charged
defects in periodic system with a period L, defect charge q and ε the macroscopic
dielectric constant of the medium the defects are embedded in. Their estimate is

Eerror = −αq
2

2εL

which we have then subtracted from all total energies.
In order to examine the competition between oxidation and hydration in the

material we must calculate the equilibrium rate constants for the reactions

K = exp

(
−∆Gf

kBT

)
(6)

The Gibbs free energy
G(p, T ) = H(p, T )− TS(p, T ) (7)

can be approximated for the solid phases as the vibrational part of the free energy
added to the total electronic energy

G(p, T ) = Etot + F vib(T )

with

F vib(T ) =
3N∑
s=1

hνs
2

+ kBT ln [1− exp (−hνs/KBT )]

The sum adds the contributions from all normal modes in a lattice containing N
atoms. For the reactions the Gibbs energy change becomes

∆Gf = ∆Etot + ∆G̃vib(T ) + ∆Gvib(T ) + ∆Ggas(p, T ) (8)

as described thoroughly by [34]. For hydration we have ∆Etot = 2∆Ef
H+ − ∆Ef

V 2+
O

which is the change in electronic energy caused by creating two protonic defects and
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filling a vacancy. ∆G̃vib(T ) are the contributions from the three atoms added to the
system. By adding three new atoms we’ve introduced 3 × 3 new normal modes to
the lattice. The ∆Gvib(T ) contains the contributions due to the altered vibrational
frequencies of the nearest neighbour atoms coordinated with the added atoms. The
oxidation on the other hand has ∆Etot = −∆Ef

V 2+
O

and the solid vibrational parts
obviously do not include effects from protons. Finally the last term describes the
free energy change when a water or an oxygen molecule is lost from the gas phase at
partial pressure p

∆Ggas
H2O/O2

(p, T ) = −h0(T ) + Ts0(T )− kBT ln
p

p0

Treating the oxidation reaction in this way to calculate the rate constant is tech-
nically incorrect. The holes should not be treated as defects occupying localized sites
but as band states occupying energy levels which leads to a different rate constant.
However, the two distinct rate constants are related through

Kdefects =
pH2OcV 2+

O

n2
h

Kband states

with cV 2+
O

and nh defined as in the next section. Because of this simple relation we’ll
treat the holes as defects in our results.

3.3 Defect concentrations, charge neutrality and the electron
chemical potential

Using the formation energies we can calculate the temperature dependent defect
concentration

cdef = c0def exp

(
−

∆Gf
def (p, T )

kBT

)
(9)

c0def is the site density for the specific defect, i.e. number of sites to form a defect per
volume. The atomic chemical potentials can be calculated or tuned to represent dif-
ferent chemical environments but the electron chemical potential, µe is more difficult
to pinpoint. µe is dependent on the densities of charge carriers and dopants through
the charge neutrality condition which states that for a charge neutral material the
total charge of all charge carriers and charged defects must cancel out∑

i

qici + nh − ne = 0 (10)

11



The sum runs over all possible point defects and their charge states, nh and ne are
the concentration of holes in the valence band and electrons in the conduction band
respectively. In practice it is of course impossible to include all possible defects so
an approximation must be made to which defects are relevant. Take for example
yttrium doped BaZrO3, our charge neutrality becomes at first approximation

−cYZr
+ nh − ne = 0

but as discussed in section 1.1, the doping induces a charged oxygen vacancy per every
two dopant atoms which can not be neglected so we need to include the vacancies

−cYZr
+ 2cV 2+

O
+ nh − ne = 0

One might want to add to this dopant atoms placed on Ba sites and other possible
defects but in this work we will include only these.

From basic solid state physics we know that the average number of electrons with
a specific energy is

n̄(ε) = g(ε)f(ε, µe) = g(ε)(1 + exp[(ε− µe)/β])−1

where g(ε) is the density of states and β = kBT .[35] The Fermi-Dirac distribution
f(ε, µe) represents the distribution of occupied states in the system so integrating this
expression from the CBM to infinity gives us the concentration of charge carrying
electrons in the conduction band.

ne(µe) =

∫ ∞
CBM

dE g(E)f(E, µe)

Similarly we use the distribution of unoccupied states in the valence band to find the
concentration of holes

nh(µe) =

∫ V BM

∞
dE g(E)[1− f(E, µe)]

The equations above can be used to pinpoint the electron chemical potential. This
has to be done self consistently as the charge neutrality equation has in general no
analytical solution with the integral formulas for the carrier concentrations. From an
initial guess for the electron chemical potential we can acquire values for the charge
carrier concentrations and then solve for a new µe from the defect concentrations
(eq. 9).
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3.4 The band gap

The band gap is the difference in energies it takes to add one electron to a system
and to remove one, i.e. the electron affinity and the ionization energy:

Egap = EA − EI

This is in practice
Egap = (E− − E)− (E − E+)

= ECBM − EV BM
(11)

Where ECBM and EV BM are the conduction band minimum and valence band max-
imum respectively. A known problem of DFT is the band gap, GGA’s tend to
underestimate the band gap significantly and LDA’s are no better. In order to cal-
culate a more accurate band gap we can apply hybrid functionals which have been
shown to improve it substantially.[36]

3.5 Formation volume

The way we calculate the formation volume of defects is similar to the partial molar
volume of simple mixtures[37],

Vi =

(
∂V

∂ni

)
p,T,nj 6=i

is the variation in the total volume of a solution with respect to the amount of
substance i in that solution, while all other quantities are kept fixed. They partial
molar volume of a substance depends on the composition of the solution because
the molecular environment changes with the composition which affects the packing
capability of the solution.

Our defect formation volume has to be defined at certain compositions as well.
At high concentrations the defects interact more than under dilute conditions so it
only makes sense to speak about a formation volume of a defect with respect to the
concentration c.

However we cannot vary the concentration as easily as with a solution and see
how the volume changes. We calculate the volume of the system with a certain
concentration of defects and subtract the volume of the pure system

V f
i = V tot

defect(ci = x)− V tot
pure(ci = 0)

This describes an infinite system through the periodic boundary conditions so the-
oretically adding one extra defect to this system will change the volume negligibly
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since the concentration is essentially constant. The periodicity also means that we
cannot add just one defect rather we add an infinite number of defects to an infinite
system. We can think of the total volume change from the pure system to the de-
fected one as the combined formation volume of all the defects at this concentration.
In practice we use a super cell containing one or more defects. The volume change
from the pure supercell to the defected one should account for the formation volume
per the number of defects contained in the super cell at this specific concentration.

4 Results

4.1 Pure BaZrO3

4.1.1 Atomic structure

We first determined the lattice parameter a, of cubic BaZrO3 by relaxing a cubic
unit cell containing five atoms. We used VASP and the GGA functional PBE with
the PAW potentials released April 2012. The obtained value a = 4.23 Å is closer
to the experimental value 4.19 Å[38] than 4.24-4.25 Å from prior PBE calculations
using VASP[39] and SIESTA[9]. This is in line with the statement that the new
PAW potential from April 2012 should improve the lattice constants of many oxides.

We compared the cubic system to the tilted octahedra system (figure 1) and
found the cubic system to be energetically favorable by 10−3 eV. This is similar to
the results of [40] and [41] where the energies of the two possible ground states are
found similar with ab initio methods. Maier et al.[42] reported some local distortions
within pure BaZrO3 using Raman spectroscopy while their HRXRD shows a perfect
cubic system. They suggest that their Raman results indicate an octahedral tilting.
The fact that XRD does not detect tilted octahedra is likely to be caused by the
mean value nature of XRD. If the system contains tilted octahedra it the macroscopic
sample has them tilted in all directions so that the average position of the oxygen
atoms will still be located at the undisturbed site. With the two structures so close
in energies the system is likely to possess both phases though not coherently.[42]

Many theoretical studies address the issue ([43][41] and references within [9]) with
different results on whether or not the ground state is perfectly cubic or not. Bilić
and Gale[9] tried to sort out these differences by comparing multiple DFT imple-
mentations, potentials and functionals. Their conclusion is that the cubic lattice
is indeed dynamically unstable but were unable to resolve the ground state. They
predict that the instability induces tilting.
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Figure 2: The extrapolated affinity and ionization energy. Here N is the number of
unit cells in the supercell used to calculate the energies. We see a wider band gap
given by PBE0 which is much more like the experimental value.

4.1.2 Electronic structure

We have also investigated the electronic structure of BaZrO3. The band gap was
calculated according to equation 11. In order to calculate correct ECBM and EV BM
we add and remove electrons from different supercell sizes (1x1x1 and 2x2x2 unit
cells) and extrapolate to the dilute limit, see figure 2. The values obtained from the
extrapolation are given in table 1.

Oxide PBE PBE0 Experiment
∆Egap[eV] 3.3 5.1 5.3[7]

Table 1: BaZrO3 band gap. The affinity and ionization energies have been ex-
trapolated to reveal the band gap. We see a drastic improvement with the hybrid
functional.

In figure 3 we examine the band gap of the DOS. There is a notable difference
between the GGA and hybrid functional. Both the conduction band and the valence
band shift to make the gap wider. The valence band shifts a little more than the
conduction band. Looking at the edges of the band gap we notice that with higher
resolution the gap could be broader than realized here. The whole DOS are depicted
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Figure 3: DOS around the band gap. The valence band and conduction band are
seen shift lower down and higher up in energies respectively when we switch from
PBE to PBE0. The valence band shifts a bit more than the conduction band.

in figure 4. The change is both a shift in accordance with the altered band gap
(noticeable in all peaks below the valence band) and an overall dampening and
broadening of the peaks most noticeable in the second peak close to -24 eV. We
also note the large difference high in the conduction band. In figure 5 we see the
calculated PBE band structure.

4.1.3 Formation energy

We’ve calculated the formation energies for BaZrO3, ZrO2, BaO and BaO2 from their
constituents: Babcc, Zrhcp and O2 (table 3). In figure 6 we’ve plotted the calculated
chemical stability range of BaZrO3 from the formation energies. The triangle is
defined by the individual chemical potentials adding up to the formation energy of
BaZrO3 or

∆µBa + ∆µZr + 3∆µO = ∆Hf [BaZrO3]

and the contour within the triangle denotes equilibrium between BaZrO3 and other
possible oxide phases

∆µBa + ∆µO = ∆Hf [BaO]

∆µZr + 2∆µO = ∆Hf [ZrO2]

∆µBa + 2∆µO = ∆Hf [BaO2]

(12)

Our calculations underestimate the heats of formation. The reason for this could
be the chemical potential µO. The PBE functional (GGA in general) is known
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Figure 4: DOS. The DOS dampens and broadens a little as we switch from PBE
to PBE0. We also note the overall lowering of eigenvalues of peaks below and in
the valence band using PBE0 with respect to PBE0. The band gap widens and the
upper end of conduction band changes considerably.
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18



to over estimate the binding energy of the molecule[25] resulting in a lower total
energy for the molecule. Then µO = 1

2
Etot[O2] will be underestimated. Our current

calculations overestimate the binding energy by 1.27 eV compared with the value from
[25] lowering our potential by 0.635 eV. This difference offsets our heats of formation
for BaZrO3, ZrO2, BaO and BaO2 derived from this potential. If we correct for this
difference we arrive much closer to the experimental values (table 3) which suggests
that the oxygen chemical potential is responsible for greater part of the discrepancy
between the experimental values and those calculated here. Using the experimental
value for µO alters the chemical stability range as well. We see a clear shift in the
diagonal line representing ∆µO = 0, however the borders between BaZrO3 and the
other oxide phases remain intact as the shift of ∆µO cancels out in the calculation
of eq. 12.

O2 H2O H2 OH
Exact[eV] 5.22 10.07 4.75 4.61
PBE[eV] 6.23 10.16 4.54 4.76

Table 2: Discrepancies between PBE and experimental values of binding energies of
molecules containing oxygen and hydrogen from ref. [25].

Instead of this semi-empirical approach we could use another reference for µO
than the poorly described O2. In reference [44] the author suggests using a water
molecule and a hydrogen molecule since the binding energies of these molecules are
more accurately described by PBE than O2 as we see in table 2. This leads to

µO = Epbe
tot [H2O]− Epbe

tot [H2]
= Eex

tot[H2O]− 0.09− (Eex
tot[H2] + 0.21)

= Eex
tot[H2O]− Eex

tot[H2]− 0.30

by using values from table 2 µO is underestimated by 0.5 eV using O2. Considering
more possibilities from the table from ref. [25] we managed to get the underestimation
down to 0.255 eV using the molecules OH and H2. Although this gets us closer to
the experimental value it is not a drastic improvement but it gives the possibility of
doing a more accurate purely theoretical approach than using O2 as a reference.

4.2 Oxygen vacancies and lattice expansion

We calculated the formation energies, lattice constants and partial molar volumes for
oxygen vacancies (table 4) for different concentrations and charge states. In figure 7
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Oxide PBE Corrected Experiment
BaZrO3 -16.5 -18.4 -18.102a
BaO -4.97 -5.6 -5.663b
ZrO2 -10.2 -11.5 -11.309b
BaO2 -6.5 -7.8 -

a: Ref. [45], b: Ref. [46]

Table 3: Heats of formation. Calculated values from PBE and the values with
a correction to the oxygen chemical potential due to an overestimation of the O2

binding energy. The corrected values are much closer to the experimental value than
the purely PBE ones which implies that much of the error can be explained by the
overestimated binding energy of O2.

we see the formation energy (equation 4) as a function of µe within the band gap,
where µe = 0 has been shifted to the top of the valence band. By introducing a
vacancy, the system reduces it’s volume and according to table 4 we see that higher
concentrations of vacancies reduce the volume even further.

a1[Å] a2[Å] a3[Å] ∆V
V2+
O (c=1/81) 4.227 4.220 4.220 -18.50

VO(c=1/81) 4.236 4.234 4.234 0.04
3V2+

O (c=3/81) 4.201 4.201 4.201 -16.08
V2+
O (c=1/24) 4.209 4.186 4.186 -17.78

Table 4: Lattice constants of the system including a vacancy. a1−3 are orthogonal to
each other and a1 is parallel to a Zr-VO-Zr bond. There are three possible orientations
for the vacancy and thus the lattice constant is not the same in all directions. In the
case of three vacancies in a 27 primitive cells, the constants reduce symmetrically
since the vacancies are placed equidistant and each with a different orientation. ∆V
is the change in volume the system exhibits divided by the number of vacancies in
the system.

In order to describe the shape of the deformation caused by the vacancy we
calculated the relaxation volume tensor[47]

vrel = det(L0) ln(L−10 L) ≈ det(L0)L
−1
0 (L− L0)

where L and L0 are matrices of the supercell dimensions after and prior to the
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Figure 7: Formation energy of a neutral and a charged oxygen vacancy within the
band gap at concentration c = 1/81. The positively charged vacancy is more favor-
able up to certain value of the electron chemical potential.

21



creation of a defect. Our vrel for the vacancy in a 3x3x3 super cell is

vrel =

 −3.94 0 0
0 −7.30 0
0 0 −7.30

Å3

The sum of the tensors eigenvalues is approximately equal to the relaxation volume
of the vacancy as it should be. The tensor indicates that BaZrO3 contracts in all
directions, but less so along the Zr-VO-Zr direction so there is an asymmetrical
contraction the system undergoes. When the different orientations of the vacancy
are taken into account the asymmetry evens out and the contraction is isotropic.

Freedman et al.[48] investigated the long range deformation of SrTiO3 due to a
vacancy by calculating the defect strain tensor from the stress induced. The defect
strain tensor Λ and vrel describe the same thing but derived differently. vrel is
calculated from a system that is allowed to relax its size and shape while the system
size and shape is kept fixed for Λ. Their findings indicate that SrTiO3 expands
along the Sr-VO-Sr direction and contracts in the orthogonal plane in such a way
that SrTiO3 experiences a slight expansion when this is averaged over all orientations
of the vacancies. This is fundamentally different from what our results for BaZrO3

show.
In figure 8 we observe the local strain around the created oxygen vacancy in the

Zr-O plane and in table 5 we’ve tabulated the change in distance from the vacancy
site to the nearest neighbour(NN) shells.

It is interesting that even though the lattice shrinks along the direction of the
Zr-VO-Zr bond the Zr atoms move outwards away from the vacancy, i.e. the Zr-VO-
Zr distance is longer than the undoped Zr-O-Zr. The same is true for the top and
bottom oxygen atoms on the in figure 8, those belong to the 4th NN shell. Similar
analysis was done by Freedman et al.[48] for the perovskite structured SrTiO3 using a
shell model. They used quite a large supercell 14x14x14 and shell potential model for
the interactions. Although the strain is qualitatively almost identical to our results
the quantitative distortions are notably different. The Sr-VO-Sr length increases by
almost 11% with the introduction of a vacancy while our Zr-VO-Zr gains only 7%.
The other distances behave in a similar manner, i.e. the strain is more exaggerated
in the SrTiO3 than in BaZrO3. One anomaly appears in the 4th NN shell, the two
oxygen atoms along the Zr-VO-Zr move closer together, the distance is reduced by
0.5% while the same oxygen atoms in SrTiO3 increase their distance by 1.5%. The
other four oxygen atoms in the plane orthogonal to the Zr-VO-Zr also display different
behaviours. The ones in SrTiO3 hardly move at all whilst the BaZrO3 ones increase
their distance by 2%.

22



Local strain around the vacancy in an Oxygen-Zirconium plane

Figure 8: Local strain around the oxygen vacancy(c=1/81). The red circles mark O
positions and the blue ones the Zr. All atomic displacements larger than 0.1Å have
been exaggerated for illustrative purposes.
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Table 5: Local strain. The third column lists distances from an oxygen atom in
BaZrO3 to its nearest neighbours in increasing order. The second column shows the
distance to the same nearest neighbours from a center of a vacancy created at the
oxygen site used for the second column.

- V2+
O (c=1/81)[Å] No vacancy[Å]

1NN Zr 2.269 2.117
2NN O 2.793 2.995
3NN Ba 3.059 2.995
4NN O 4.216/4.326 4.235
5NN Zr 4.712 4.735
6NN Ba 5.245 5.187

Because these system share the same structure it is all but natural that they
display related behaviour, but as they are two separate materials of course some
variation is expected. However it is possible that these variations emerge in part
from the fact that our supercell is much smaller and does not imitate the dilute limit
accurately. This could be the reason for the less pronounced change in distances that
appear in our system since not so far away there are periodically repeated vacancies
inducing opposite effects on the atoms. The change in the 4th NN shell behaviour is
difficult to explain with respect to finite system size so this might exhibit fundamental
differences of these materials.

Freedman et al.[48] investigated the long range deformation of the material due
to a vacancy through the elastic dipole tensor. From this tensor the calculate the
defect strain tensor with use of elastic compliance tensor. Their findings indicate
that SrTiO3 expands along the Sr-VO-Sr direction and contracts in the orthogonal
plane in such a way that SrTiO3 experiences an slight expansion, εc/δ = 0.001, when
this is averaged over all orientations of the vacancies. This is fundamentally different
from what our results for BaZrO3 show. BaZrO3 contracts in all directions, but
less along the Zr-VO-Zr direction. This naturally results in an average contraction
εc/δ = −0.003.

4.3 Doping and lattice expansion

We investigated the lattice expansion BaZrO3 due to doping by replacing one tetrava-
lent Zr4+ by a trivalent atom M3+ and allow the cell shape and volume to relax.
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Table 6: Expansion according to equation 13 for three different concentrations of
V2+
O . The change in lattice constant is averaged over the three orientations.

- V2+
O (c=1/81) 3V2+

O (c=3/81) V2+
O (c=1/24)

εV 2+
O

(10−3) -3.0 -7.9 -9.9

The expansion at a certain dopant concentration x is:

εM(x) =
aM(x)− apure

apure
(13)

where aM(x) and apure are the lattice constants of the doped and un-doped system
respectively and the concentration is the sites occupied by M divided by sites avail-
able. When we dope the material we also create vacancies. There are twice as many
dopants as there are vacancies in order to maintain charge neutrality (one vacancy
V2+ per two dopant atoms M3+ with an effective -1 charge). In table 7 we show εM(x)
for BaMxZr1−xO3−x/2 with x = 1/27 and x = 1/8 for a number trivalent dopants M3+

in order of their ionic crystal radii. In the table we also include the expansion with
effects from vacancies added as ε = (apure+(aM−apure)+0.5(aV −apure)−apure)/apure.

Table 7: Expansion of BaMxZr1−xO3−x/2 as a function of effective ionic radii of the
dopant M with coordination number VI.

Dopant Nd Eu Gd Y In Sc Zr Ga
Radii(Å)[49] 1.123 1.087 1.078 1.040 0.940 0.885 0.860 0.760

εM(10−3)(x = 1/27) 4.6 4.0 3.5 3.0 1.8 1.2 - -0.5
εM(10−3)(x = 1/8) 10 - 7.6 6.3 2.1 -0.1 - -4.3
ε(10−3)(x = 1/27) 3.1 2.0 1.5 2.5 0.4 -0.3 - -1.6

We see a correlation between the ionic radii and the expansion of the medium.
Ignoring further interactions between the impurities we extrapolate the expansion
to higher concentrations (figure 9) and compare it with the expansion calculated at
higher concentration. However if we consider the vacancies we see that the expan-
sion at c=3/81 is not simply three times that of c=1/81 rather they decrease non-
linearly(table 6). This non-linearity is also apparent in the dopant case for x=1/27
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Figure 9: The extrapolated lattice constant calculated from a dopant concentration
x = 1/27 from DFT calculations. Note that scandium exhibits a negative slope in
contrast to having larger ionic radius as given by [49] in table 7.

compared with x=1/8. It is then highly unlikely that the expansion depicted in fig-
ure 9 is realistic at higher concentrations than 1/27. Note that Sc doped BaZrO3 is
shown to switch from expanding to contracting going from x=1/27 to x=1/8.

In a recent article by Marrocchelli et al.[50] did a combined MD and DFT investi-
gation of the expansion of Ce4+1−xCe3+x O2−x/2 fluorite. They show a linear relationship
between the chemical expansion εc and x for concentrations up to x=0.6. Such a lin-
ear model does not seem appropriate for our results. The linear expansion is likely to
be caused by the different lattice structure. Trying to model the perovskite expansion
in a way similar to what is done in [50] does not lead simple linear expression.

We calculated the expansion due to hydration of BaInxZr1−xO3−x/2. This we do
by adding the change in lattice constant from protonation to the already indium
doped system (see figure 10). We interpolated the values closest to 50% doping with
x ≈ 0.5 at 80% protonation. The expansion was calculated 0.75%. This is double
what is found experimentally by Knee[51] for the hydrated system, but the expansion
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Figure 10: Lattice constant of dry and wet BaInxZr1−xO3−x/2 as a function of dopant
concentration x. The expansion due to hydration is doubly compared to experimen-
tally obtained values from Knee[51].

due to the doping of the system agrees nicely.

4.4 Hydration and oxidation

We calculated the zero pressure reaction enthalpies from eq. 3 for the two processes
and the results are shown in table 8. These are calculated using the total energies
from a supercell containing 27 primitive cells (135 atoms). What is interesting is that
the oxidation reaction switches from being an exothermic reaction to an endothermic
one when we use PBE0 rather than PBE while the hydration remains qualitatively
the same. An endothermic reaction is more likely to occur in a high temperature
environment than at low temperatures as it requires energy. The endothermic PBE0
oxidation might at first glance seem more consistent with an increased conductivity
at raised temperatures reported in experiments (figure 2 in [52]) than the exothermic
PBE one. However, the conductivity is affected by the hole mobility as well. If the
mobility is able to compete with the decreased concentration the conductivity can
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PBE PBE0
∆HHydr [eV](eq. 1) -0.821 -1.224
∆HOx [eV](eq. 2) -1.008 1.444

Table 8: The zero pressure reaction enthalpies of equation 3 for hydration and oxi-
dation using both GGA and a hybrid functional.
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Figure 11: The temperature dependence of the equilibrium rate constants for the
two reactions at reference pressure p = p0. There is a clear change in the slope sign
between the PBE to PBE0 curve for the oxidation in (b)

increase.
By calculating the equilibrium rate constants we better examine the competition

between the reactions. In figure 11 we see the temperature dependance of the rate
equilibrium rate constants for the two reactions according to 6. The solid lines show
log10K using ∆G eq. 8 whilst the dashed lines do not include the solid vibrational
parts ∆G̃vib(T ) and ∆Gvib(T ). For both the PBE and PBE0 descriptions we have
borrowed the PBE vibrational frequencies worked out by [34] to calculate ∆G̃vib(T )
and ∆Gvib(T ). As a result our PBE0 description is not purely PBE0.

The inclusion of ∆G̃vib(T ) and ∆Gvib(T ) for hydration decreases the slope and
thus lowers the temperature at which the reaction changes from favoring reactants
over products logKhydr(T0) = 0. However it does not change the qualitative behavior
of the K’s. The change from PBE to PBE0 increases the slope and T0 as suggested
by the increased magnitude of the negative reaction enthalpy (table 8). Both of the
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Figure 12: The temperature dependent reaction enthalpies and entropies for hydra-
tion and oxidation from fitting eq. 7 to each T in eq. 8

curves imply that hydration should occur less frequently as we raise the temperature.
∆G̃vib(T ) and ∆Gvib(T ) have the same but less pronounced effects on the oxida-

tion rate constants as for the hydration but we see a dramatic change from PBE to
PBE0. The positive slope of the PBE rate constant with a definite T0 warps into a
negative slope with seemingly no T0 (at reference pressure) using PBE0. The qual-
itative behaviour of the PBE curve is the same as that of the hydration whilst the
PBE0 curve implies an increased frequency of oxidation with raised temperature.

Using the approximated T -dependent Gibbs free energy of the reaction 8, we can
estimate the temperature dependence of the reaction enthalpy and entropy through
linearizing it and reading off the coefficients as

∆G(p, T ) = ∆H(p, T )− T∆S(p, T ) (14)

In figure 12 we’ve plotted their temperature dependence using a forward finite differ-
ence and solving for ∆H(p, T ) at each T . There is a constant shift in the enthalpy
of both reactions going from PBE to PBE0, -0.42 eV and 2.41 eV for hydration
and oxidation respectively. Again there is a sign shift for the PBE0. The reac-
tion entropies are calculated using PBE vibrational frequencies so we do not have
PBE0 specific entropies. We notice that the similar entropies for both reactions dif-
fer in such a way that ∆SHydr is lower and a bit steeper than ∆SOx. Our hydration
enthalpies are in line with reported experimental values ranging from -1.24 eV to
-0.69 eV[3][53][54], the calculated entropies are however significantly lower than the
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reported values from -1.29 meV/K to -0.76 meV/K. This is fairly similar to prior re-
sults ∆HHydr = −6.5eV and ∆SHydr = −1.8 meV/K of Björketun et al.[34] obtained
in the same manner and with the same vibrational frequencies for the entropy. Note
that the entropy calculated here is closer to the experimental than by Björketun et al.
It might be interesting to see if using hybrid functional vibrational frequencies will
improve upon this. To the authors knowledge there are no reports on the oxidation
enthalpy for BaZrO3.

Finally we’ve solved for the concentrations by self-consistently fixing µe as de-
scribed in section 3.3 using a program written by Paul Erhart which produces the
lovely plots in figure 13. The density of states used was calculated using DFT and
the dopant concentration is 10% Y.

In figure 13a we see that with descending temperature from 2000K, ch and cH+

grow in competition to fill the available vacancies which dwine at the same time.
Immediately noticeable is the way in which ch and cH+ seem have very similar trends
throughout the whole temperature range.

The cV 2+
O

drop in the interval 2000K-650K is roughly 5.6 · 1020 when cH+ gains
about 5.5 · 1020. For each proton incorporated in the system half a vacancy is filled
so the protons can account for close to half of the lost vacancies. The the same
applies for the holes, ch which rises about 1.1 · 1020 which leaves us with 2.3 · 1020

lost vacancies unaccounted for.
Throughout the temperature range we see that cY −Zr

steadily decreases. The
Y −Zr dopants are still there but YZr becomes increasingly favorable with declining
temperature. The charge difference is compensated by the surplus lost vacancies to
keep the charge neutrality condition fulfilled.

At around 600K ch peaks and begins to die out with the already decreasing
cV 2+

O
. A little lower cH+ begins to drop as well. At 300K both ch and cH+ have

fallen roughly 17% of their respective peak values. As with the vacancies at higher
temperatures this compensates for the effect the shift in the balance of cY −Zr

vs. cYZr

has on the charge neutrality condition. At higher temperatures the decline of cY −Zr

has been counteracted by a drop in vacancy concentration but at lower temperatures
the vacancies are scarce and the protons and holes start to respond.

Since we have holes and protons leaving the system creating vacancies despite
the overall decline in cV 2+

O
there must be a process filling the vacancies. The process

of changing the yttrium charge state must be involved.

2Y −Zr +
1

2
O2 + V 2+

O ↔ OO + 2YZr

The sign shift of the oxidation reaction enthalpy is the qualitative difference in
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Figure 13: Calculated BaY0.1Zr0.9O3 defect concentrations profiles at reference pres-
sures for both PBE and PBE0. The sign change of the reaction enthalpy is evident
from the different behavior of the hole concentration (black). In 13a it peaks at
around 600K and begins to drop in contrast to the monoclinic behavior in 13b.
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the results from the two functionals and we see its effect on ch in figure 13b. All con-
centration profiles in 13a and 13b exhibit similar behaviour, although a bit shifted,
except ch which instead of reaching a maximum, keeps growing with increasing tem-
perature in the PBE0 figure 13b.

When the hole concentration begins to drop one would expect the conductivity to
drop unless the mobility of the holes increases sufficiently. Bevillion[55] showed that it
is possible to have this behaviour if the activation energy for hole migration fulfills the
condition Ea > |∆Hox|/4 where ∆Hox is the oxidation enthalpy per oxygen molecule.
The activation energy for the hole migration in yttrium doped BaZrO3 is reported on
the order of 0.7-0.9 eV [56][6] which is far greater than our |∆Hox|/4 ≈ 0.25 eV. We
conclude that we can not discern which description is more accurate without further
knowledge of the temperature dependent mobility.

As mentioned with respect to the formation enthalpies in the beginning of this
section, both results can be compatible with the experimental hole conductivity. The
PBE0 more directly since the conductivity is proportional to the concentration and
PBE more subtly if the mobility adapts.

5 Conclusions
Our pure BaZrO3 calculations support prior calculations that have reported octa-
hedral tilting, however due to the fact that the ground state and tilted state have
very similar energies they can probably coexist within a sample. We’ve seen that the
new PAW potentials lead to a slightly more accurate lattice constant than previously
obtained with PBE.

A small survey of BaZrO3 electronic structure using both GGA and a hybrid
functional approach confirms the excellent improvement of PBE0 on band gap cal-
culations. The DOS changes a substantially between the two methods, most notably
the band gap widens, lowering the valence band and raising the conductance band
asymmetrically. In addition we calculated the PBE band structure and the formation
energy of two differently charged vacancies as a function of the fermi energy within
the band gap.

We’ve also demonstrated that using H2O molecule for reference calculation in-
stead of O2 decreases the error caused by overestimated binding energies of the
molecules by 40%. This should result in a more accurate formation energy for
BaZrO3.

We’ve noticed discrepancies between the local environment of an doubly positive
oxygen vacancy in our BaZrO3(DFT) and a SrTiO3 shell model simulation. Al-
though the qualitative behaviour of the nearest neighbours is the same (with some
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exceptions) in both systems the BaZrO3 environment seems to be more rigid. We
conclude that the more rigid behaviour of our system might be an artifact of the
limited size and periodicity of the system, however some of the more irregular dis-
crepancies probably are not.

The most notable large scale difference between the systems is that BaZrO3 con-
tracts due to a vacancy whereas SrTiO3 slightly expands. From this we see that
filling vacancies will cause BaZrO3 to expand.

Our data on the expansion effects of vacancies and dopants do not exhibit the
same linear behaviour as the fluorite structured Ce4+1−xCe3+x O2−x/2. By adding lattice
effects from vacancies, dopants and protons separately we’ve tried to imitate the
expansion caused by first doping and then hydrating BaZrO3. Assuming a linear
behaviour of the expansion up to BaZr0.5In0.5O2.75 and adding lattice effects from
vacancies, dopants and protons separately, we’ve tried imitate the expansion caused
by first doping and then hydrating. We fail to reproduce the experimental hydration
expansion measured by others. But the expansion due to doping is not far off.

The zero pressure hydration enthalpy and the temperature dependent enthalpy
calculated from the Gibbs energy seem in line with experimental data, both for PBE
and PBE0. The entropy which uses only PBE data is severely underestimated but
less so than prior calculations using similar methods. Further work could explore if
a full PBE0 description would improve this further.

The zero pressure enthalpy for oxidation is positive when calculated with PBE0
(hybrid) in contrast to the negative enthalpy of PBE (GGA). This drastic change
is evident throughout further comparison of the equilibrium rate constants for the
oxidation and the defect concentrations profiles using PBE and PBE0.

The PBE0 results describe an endothermic oxidation that becomes more frequent
with raised temperature. The PBE0 concentration of holes grows with increasing
temperature. This agrees well with experiments that report an increased electri-
cal conductivity at elevated temperatures, since the electron hole concentration is
directly related to the oxidation.

The PBE results describe an exothermic oxidation with a growing concentration
of holes up to about 620K. When the temperature is raised further the concentration
of holes drops dramatically.

Despite the drop in hole concentration the PBE results do not necessarily con-
tradict the experimental evidence of increased electrical conductivity at raised tem-
perature. As long as the oxidation enthalpy fulfills the condition Ea > |∆Hox|/4
(demonstrated by [55]) the conductivity rises in spite of the lowered concentration
of the charge carrier. In order to learn whether PBE or PBE0 is more accurate we
need more information about the hole mobility.
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Of course the concentration profiles examined here do not include all possible
defects but we believe we have included the most important ones. However, other
defects might play an important role and a more detailed study might shed some
new light on the oxidation process.
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