

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, August 2012

Visualization of Software Quality Trends
Master of Science Thesis in Computer Science and Engineering

NARJIS HACHILIF

BEHNOUSH PEJHANMANESH

The Author grants to Chalmers University of Technology and University of Gothenburg the non-

exclusive right to publish the Work electronically and in a non-commercial purpose make it

accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not

contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher

or a company), acknowledge the third party about this agreement. If the Author has signed a

copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she

has obtained any necessary permission from this third party to let Chalmers University of

Technology and University of Gothenburg store the Work electronically and make it accessible on

the Internet.

© NARJIS HACHILIF, August 2012.

© BEHNOUSH PEJHANMANESH, August 2012.

Examiner: AGNETA NILSSON

Supervisor: ROBERT FELDT

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden August 2012

Acknowledgements

The authors would like to thank John Haagen, the supervisor at

Ericsson AB, for his support and sharing of knowledge, which was

inspiring and encouraging during this study. His positive energy and

valuable suggestions were always the greatest assistance for

conducting the project.

The authors would also like to thank Robert Feldt, the supervisor at

Chalmers University, for his help and encouragement that made it

feasible to conduct a comprehensive research in industry.

Finally, the precious support from the Ericsson’s Portal Team, who

provided important information for this work, was kindly appreciated.

Preface

This Master of Science Thesis is reported here in a hybrid format, i.e.

the main content of the Work is reported as a scientific article

conforming to the Empirical Software Engineering Journal’s template.

Table of Contents

Introduction .. 1

Background... 2

Methods .. 5

Results .. 9

Discussion... 13

Conclusion.. 17

Appendix.. 19

Noname manuscript No.
(will be inserted by the editor)

Visualization of Software Quality Trends

Master of Science Thesis in Computer Science and Engineering

Narjis Hachilif · Behnoush Pejhanmanesh

Received: date / Accepted: date

Abstract Background: Designing large and advanced
software products puts specific requirements on soft-

ware quality, in particular in multi-team and agile set-
tings. One challenge is to manage and make decisions
on quality efforts when the relevant data have large vol-

ume and thus becomes hard to overview, interpret and

analyze. Involved staff might not only waste time, if

they miss important software build and test outcome

information this can result in delays in delivery as well

as lost improvement opportunities. If the information
can be collected and presented in a coherent and intu-
itive way it can support software engineers in spotting

overall patterns and trends and thus support organiza-

tional learning.

Problem: A case company, Ericsson AB, was unclear

on how to dynamically visualize and present informa-

tion related to software quality. The objective is to in-

vestigate both how data can be intuitively represented

and how it can improve efficiency of the employees us-
ing it. Previous studies have already investigated these
aspects separately, but there is a lack of real-world case
studies combining them.

Method: Through iterative design research we ex-

tended an existing project information portal at the
case company to visualize test-related data. In order

to achieve this, requirements were collected from ini-

tial interviews and workshops with users of the existing

system. This data was analyzed along with results from

the literature to come up with a proposal for a new vi-

sualization method. This led to the design of several

prototypes and their evaluation by end users. A set of

eight interviews was used to evaluate the final result.

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Gothenburg, Sweden

Results: The selected prototype was then implemen-

ted as a web page displaying both an overview and a

history of quality data. The integration of the new page

in the existing portal was considered as an important

issue to address in order to properly evaluate how this

new page could improve the work’s efficiency.

Conclusions: We conclude that the proposed imple-

mentation provides an intuitive visualization of large
quantities of software quality data and improves the
current visualization method. It helps visualizing soft-
ware quality trends by displaying the evolution of re-

sults over time. The new visualization can be used both

as a tool for quality data analysis at Ericsson AB, but

it also provides guidelines for developing efficient soft-

ware visualization tools in general. Moreover, we con-
clude that there is a need for further improvements in
order to display data in the most efficient and intuitive
way possible.

1 Introduction

Managing large software projects requires dealing with

a large amount of indicators or main measurements.

These measurements are sometimes related to each other.

Therefore, presenting a large amount of measurement

dependencies to the user can be problematic and needs

significant effort [1].

This paper aims at evaluating possible new data pre-

sentation methods in a software portal called Integra-

tion Portal which is currently used at Ericsson AB (in

the following frequently referred to as the “company”)

as a tool for collecting and presenting quality informa-

tion. Mainly targeted at software testing, it is presented

in the form of a table displaying builds along with their

test results. Different dimensions and types of data are

2 Narjis Hachilif, Behnoush Pejhanmanesh

represented in the current portal, and may not be of

interest for a specific type of user. Indeed, the current

presentation could be confusing by providing an large

number of detailed and different metrics and only a lim-

ited overview of the product quality. Users of the portal

are working in various positions such as project man-

agers, developers, designers and testers. Current data

presentation is mainly based on numeric representation
on detailed level for each quality type separately, which
only gives a limited overview of the complete product

quality. Another drawback is that some pages display

condensed information that makes it difficult to per-

form efficient data analysis. There is a need for a vi-

sualization displaying data in a more intuitive and un-

derstandable manner in order to increase users’ work’s

efficiency. Indeed, by providing a clearer visualization,

users can carry out their tasks faster and in a better

way, as they would need less effort and time to access

the information they need. In this study, work’s effi-

ciency is therefore linked to the usability of the visual-

ization.

Research has already been conducted in that area,
including a study about software metrics presentation

[1]. The results show that selecting the right visualizing
method for a specific type of data is not trivial. One has
to take into account several parameters such as usabil-

ity, maintainability, ability to overview and interpret

results and possibility to handle large sets of data [2].

Familiar and intuitive metaphors were found to be the

ones to meet all requirements.

From an academic perspective, the challenge brought

by this project is to gather and select information about

data visualization in order to implement an efficient and

user-friendly system. In particular, the field of visual

analytics has been investigated as a suitable model to

provide efficient tools for software visual analysis (SVA)

[3]. Other previous studies have investigated how to

provide intuitive visualization, for instance by provid-

ing a ranking of quantitative perceptual tasks [4].

In the industry, this would result in a concrete im-

plementation integrated in the current portal and aim-

ing at facilitating users’ work. This will be done by com-

ing up with new ways of presenting data in a more in-

tuitive manner for a more efficient analysis. These new

methods make use of existing ways to display data, both

from the Integration Portal and from previous studies.
Existing methods will be combined and modified based
on users’ feedback and will result in a new page in the

Integration Portal. Previous articles will also be investi-

gated as they can provide relevant information on how

to present information to different types of users. For

instance, Buse and Zimmerman designed a survey for

managers and developers to find out what type of data

they are the most interested in [5]. Along with inter-

views performed at the company, with users of the cur-
rent portal, this can help us relate data visualization
to work’s efficiency. The research will therefore be fo-
cused on finding ways to present data, implementing a

concrete example of an efficient visualization and eval-
uating this implementation. Based on these issues, the
scope and limitations of this study are described below:

– displaying relevant information with respect to data
type and data dimensions,

– providing a tool to be used in development project
monitoring,

– providing both an overview of data and sufficient
information to be used for every kind of user, in a

common and shared view.

The paper is structured as follows; section 2 presents

important visualization theories that are related with
our topic. Section 3 describes the methods used to con-
duct this work, including research questions and data

collection. Results from interviews and implementation

are presented in section 4 and discussed in section 5.

Finally, section 6 concludes the paper.

2 Background

This section presents previous studies related to visual-
ization and used as a reference for this work. The first
subsection describes both general and specific concepts

about data visualization. The second subsection pre-

sents previous work that can be directly linked to our

project.

2.1 Data visualization

Visual analytics (VA) integrates visualization, graphics,
data analysis and interaction to help users in reasoning
and decision making in complex situations. However,
building these tools is challenging as it requires devel-

opers to be experienced in information visualization,

graphics and technologies of user interaction design.

Indeed, understanding the connection between the re-

quired information needed for decision making and the

available data is a key factor in applying visual analytic

to a new domain [3].

Application of analytics has changed the process of

decision making in many areas. For instance, web an-

alytics reduces the click-stream data volumes in order

to provide managers with good decision making pos-

sibilities in different aspects of business ranging from

content management to investments [5].

Visualization of Software Quality Trends 3

Fig. 1 Accuracy ranking of quantitative perceptual tasks [6].

Cleveland and McGill have conducted a study on

graphical perception, that is how to visually decode

information encoded on graphs [4]. They selected el-

ementary tasks that people carry out when extracting

information from graphs, and organized them depend-

ing on how accurately they are performed. Their anal-

ysis showed that in order to extract information from

one type of graph (for example a bar chart or a pie
chart), one has to perform one or several specific tasks
(judging position, length, area. . .). Experiments were
conducted in order to order tasks on the basis of how

accurately people performed them. Results can guide

us to choose a type of visualization that helps the user

extracting the information as accurately as possible.

Mackinlay has also performed an accuracy ranking
for quantitative perceptual tasks (Fig. 1). Based on this

layout, the higher tasks (such as position, length, angle
and slope) are carried out more accurately than the
lower tasks (such as area, volume, color not shown and

density) [6]. The layout provides a helpful guideline for

designing an appropriate GUI with large sets of data.

Shneiderman has proposed a Visual Information-

Seeking Mantra in order to design advanced graphical

user interfaces and to understand varied set of data.

This provides a set of design guidelines following the

mantra: “overview first, zoom and filter, then details-

on-demand” [7]. These ideas can help us to present data

rapidly and allow for fast user-controlled exploration.

Representing data visually effects how the structure
is perceived in this data. According to Rogowitz and

Treinish, “in order to accurately represent the struc-

ture in the data, it is important to understand the re-

lationship between data structure and visual represen-

tation” [8]. This can differ in various data types, for

example nominal data, ordinal data, interval data and
ratio data. We also need to have an appropriate usage
of colors, since the perceptual effect of a color cannot
be predicted from knowledge about blue, red and green.

Therefore, without providing guidance about the psy-

chological and physical characteristics of the colors, the

user is at loss. In order to address this issue we can

provide the users with a default color-map [8].

In order to make the user extract information in a
fast way, we can use results from the study conducted

by Healey, Booth and Enns on preattentive process-

ing. Preattentive processing corresponds to the organi-

zation of the visual field based on cognitive operations

that are rapid, automatic and do not require focused

attention [9]. Several features such as size, spatial loca-

tion and hue, were studied in relation to their capac-
ity of helping display high-dimensional data elements
in a low-dimensional environment such as a computer

screen. Experiments show that some of these features

allow rapid and accurate estimations without interfer-

ing with one another. This result provides a relevant

guideline for choosing display properties and developing

effective multi dimensional interfaces for visualization.

In order to find a suitable method which meets users’
requirements while presenting data in an intuitive man-

ner, we also investigated several types of visualization

methods that are described below.

The thermometer model is a method used for dis-

playing indicators’ status [1]. It has the advantage to be

intuitively understandable and to clearly present and

separate different kinds of data. However, it can easily

become too cluttered and therefore difficult to read, and

it does not necessarily display data in a precise way.

The speedometer model is also considered as an

intuitive understandable metaphor. It contains an ar-

row displaying the indicator’s current value, along with

three or more different colors in order to alert the users

about the data status [1].

The dashboard overview is a popular method for dis-

playing a large number of indicators. Unlike the speed-

ometer model, it is not restricted to a limited number

of colors. The range of colors is therefore defined ac-

cording to the users’ requirements. Another advantage

of dashboards is that is they can provide more detailed

4 Narjis Hachilif, Behnoush Pejhanmanesh

information such as indicator’s name, indicator’s value

and decision criteria [1].
Bullet graphs are also a common way to display

quantitative measurements by presenting them over a

linear scale [10]. The advantage of this method is that

all information is visible even when scaled down, which

makes it a suitable method for displaying small multi-

ples [11].
Sparklines display information in form of a chart

without axes or coordinates. The problem with spark-

lines is that the density of the chart can lead to a loss of

details when having low resolution of display. However,

they are considered suitable for comparing values over

time [12].

Heat maps constitute a common visualization me-

thod by providing a matrix in which the value of data

is represented by colors [10]. A major advantage of this

technique is that it can both be compact and present

an important number of values, which constitutes one

of the requirements of our work.

All these methods propose ways to display informa-

tion in a user-friendly manner by investigating graph-

ical perception, perceptual tasks and various data vi-

sualization techniques. However, they do not necessar-

ily address the impact of visualization methods on the

work’s efficiency. This is the problem we are aiming to

address in this study by investigating how and what

should be visualized in order to improve the work’s ef-
ficiency.

2.2 Related work

Development of software projects has been always un-
predictable and software developers are still experienc-
ing failures or long delays during the development pro-

cess.

There is also a permanent gap between the informa-

tion required by managers for decision making and the

information delivered by the current tools. This is due
to misunderstanding of the managers’ real data needs
[5]. The managers requirements has been ignored in re-

search area since the focus in the research is more on de-

velopers’ information needs. The important issues from

project managers’ perspective are more related to high

level concerns such as: resource allocation, monitoring

the work of developers, software designers and testers.
For developers, issues such as code, architecture and
performance are of higher importance [5].

When the requirements are not covered due to un-

availability of the tools, difficulty of using them or their
inappropriate presentation of data to users, managers
should rely on their past experience in making impor-

tant decisions in the project which might not go well

[13]. Indeed, important decisions should be rather based

on facts in order to prevent risks such as late deliveries
and unnecessary costs.

In visual analytics, data and systematic reasoning

are applied for decision making. Therefore, instead of
only taking the metrics into consideration, visual ana-

lytic could help users to change from answering “What
happened?” to answering to “How did it happen and
why?”. In this way, more information is collected via

different types of analysis, which enables the users to

filter and summarize the information [5].

In the area of software quality, three elements are

considered to be important to measure: source code

with its associated changes, results of executing test

cases and alterations in test cases. However, during the

development of software projects, changes related to the

source code and results of tests for the whole system

over time are not considered as the main metrics to

support decision making process. Since it is challeng-

ing to visualize large amounts of data for the whole

system, data related to failures is taken into account

when a problem occurs in the development of software

projects [14].

Software visualization tools are suitable methods

used to help managers and developers to cope with data

complexity. By using graphical techniques, software vi-

sualization tools make software more understandable

by displaying different program artifacts and behavior.

The strategy used for visualizing large-scale software

systems is often to split them into smaller parts (mod-
ules) and visualize them individually. However, in prac-
tice, decomposition of software in modules is quite chal-
lenging and often the “big picture” of the project state

is lost [15]. On the other hand, Buse and Zimmerman

[5] and Ko et al. [16] argue that requirement diversity

is often unavoidable.

In order to select the requirements for information

visualization needed by decision makers, Buse and Zim-

merman designed a survey for managers and developers

working at Microsoft. According to the findings, data

and metrics are considered as important information

for managers in their decision making, whereas devel-

opers considered their experience to be more important

[5]. Metrics used by developers and managers were also

investigated. By comparing them, it was found that the

most important information was related to project fail-

ures. However, at least half of the engineers and man-

agers would use all metrics if available [10]. In conclu-

sion, people working in different positions are interested

in different information and this is due to the nature of

the software project itself. Buse and Zimmerman con-

clude that in order to support information needs in the

Visualization of Software Quality Trends 5

area of software development, changes need to be done

and data collection should focus on users’ needs [5].

A study conducted by Jones et al. aims at presenting

errors and faults in an obvious manner [17]. A visual

mapping was proposed in order to identify and locate

failures. This can provide helpful guidelines in order to

highlight errors in projects that can present on-time

deliveries.

Analysis of previous work point out several things
that should be taken into consideration when dealing

with large and complex data. In order to make users

cope with the complexity of the displayed information,

it is important to present the right data and to present
it in the right way. This could provide an overview of
results rather than going into too much details and risk-

ing that users miss important information. A focus is

made on gathering requirements, since different users

need to access different information. The visualization

would therefore need to carefully select the data that

could be useful to many types of users and facilitate

communication between them. Previous studies were

therefore helpful in order to find out what should be

taken into consideration in our project, but they do

not provide concrete examples of which data should be

displayed and how, which is what we aim to investigate

in this paper.

3 Methods

This section describes the methods used during this

study. Section 3.1 describes the context of the project,

which was conducted at the company. Section 3.2 pre-

sents a set of research questions and sub-questions in-

vestigated during this study. Section 3.3 introduces the

design research illustrated by a flow chart. Section 3.4

describes how data was collected and analyzed during

the project. Finally, section 3.5 explains what validity

threats have been encountered in this study and how

they have been addressed.

3.1 Context

Ericsson AB provides telecommunications equipment,

data communication systems and services to mobile and

fixed network operators. Over 40 percent of the world’s

mobile traffic passes through the company’s networks,

with more than 180 countries using its network equip-

ment [16].

The study was performed at Ericsson Lindholmen,

where the focus area is mobile internet [18]. It was con-

ducted with the Integration Portal team that deals with

the web portal used to present software quality data.

Table 1 Data types currently used in the Integration Portal.

Data types

Unit and component test results

Code coverage data

Memory errors (Purify, Valgrind, Coverty Prevent)

Function test results (REG, PTB)

System test characteristics

Code changes

Data types currently displayed in the Integration

Portal are listed in table 1. As seen in figure 2, for each

of these data types, a small rectangle is displayed with a
different color depending on whether the test has failed
or not. Additional information such as number of failing
test cases and total number of tests are presented as

numerical values, whereas the evolution of test results

is displayed with arrows.

The drawback of this visualization is that it does

not provide an intuitive and fast way to analyze and

compare the evolution of results build after build.

Indeed, several users of this web portal have ex-

pressed the wish to improve it. According to them, the

integration portal provides only a limited overview of

software quality data, which can make it difficult and

time consuming to analyze the information. The goal

of the project was then to improve these aspects and
provide a focus on data dimensions such as time dimen-
sion, feature/functionality dimension, test type dimen-
sion and codebase dimension. Available quality data

can indeed be viewed from different angles, depending

on which dimension is being considered. For instance,

when a set of tests is being available in a single point

of time, the feature/functionality dimension is the test-
ing functionality. On the other hand, one can focus on
the result of a test over time, in which case the time

dimension is being considered. The challenge is there-

fore to present this complex collection of data in a way

that is easily understandable to the user, and by taking

into account that not all dimensions can be viewed si-

multaneously without providing a collection of “views”
[19].

Furthermore, all data types are not needed by ev-

ery kind of user and there is also a challenge in selecting
and presenting the data that will provide a significant

improvement in the work’s efficiency of different kind

of employees. Showing the right data to the right peo-

ple would allow them to react early and make proper

decisions in order to avoid issues that prevent on-time

deliveries.

6 Narjis Hachilif, Behnoush Pejhanmanesh

Fig. 2 Current visualization in the Integration Portal.

3.2 Research questions

A set of research questions and sub-questions has been
investigated as a guideline through the project. RQ1
and RQ2, as well as their sub-questions have been stud-
ied in the prototyping and the implementation phase,

whereas RQ3 refers to the evaluation of the prototype

and its implementation.

RQ1:
What is a suitable method for visualizing large quan-

tities of quality data generated in large scale soft-
ware development projects?
SQ1.1: How current and historical data generated

from different test types should be managed for
presentation?

SQ1.2: What are the main requirements and quality
attributes for the presentation methods?

SQ1.3: What channels (size, shape, color, sound or
movement) are suitable for presenting data to
the users?

RQ2:

Which quality data should be visualized and how
shall it be combined to increase the information

throughput to the user?

SQ2.1: What type of data is the most important to
extract?

SQ2.2: How can we combine data of different di-

mensions?

SQ2.3: How can data be translated into information

channels?

RQ3:

How does the visualization method effect the user’s

communication about the product?

SQ3.1: What benefits will be seen by users?

SQ3.2: How can the visualization improve the user’s

work’s efficiency?

The first research question deals with finding the

right methods to visualize important amounts of data.

The first sub-question deals with studying how differ-

ent data types should managed, i.e. displayed in a struc-

tured way. The second sub-question refers to the gather-

ing of requirements and the third one deals with finding

out which information channels can be used to present
software quality data. The term channel is used to de-
scribe shapes, colors or symbols that provide informa-

tion to the user.

The second research question refers to which data

should be selected in order to display the right informa-

tion. Finally, the last research question is related to the

evaluation of the visualization and how it can improve

the work’s efficiency.

3.3 Design research

Design research methodology [20] has been used in this

study. As seen in figure 3, the design research consists

of 6 phases. Once the scope and limitations of the the-

sis were defined, previous studies were investigated and

existing articles were reviewed in order to come up with

a proposal for a visualization method. These phases of
problem awareness and literature review were followed
by a suggestion for a new visualization method. This
led to the design phase which resulted in several proto-

types. The selection of a prototype and its implementa-

tion were followed by a final evaluation with end users.

However, evaluation was already being done while de-

signing and implementing the prototypes, hence the it-
eration from the Evaluation phase back to Design and
Implementation (Fig. 3). For instance, interviews were
conducted to gather requirements, select the correct

prototypes and develop a relevant implementation.

3.4 Data collection

Three types of interviews were performed as part of the

evaluation of the study, as seen in table 2. These differ-

ent evaluation methods are described in more details in

this section.

Visualization of Software Quality Trends 7

Fig. 3 Flow chart illustrating research design.

Table 2 Evaluation methods.

Evaluation
method

Objective Project phases

Focused
group
interview

This method aimed at
gathering requirements
from a group of users
who occupy different
roles in the company

Suggestion
and design

Prototype
evaluation

The method was used
for exploring and evalu-
ating early interface de-
signs, suggestions were
gathered in an interview
with a project manager

Design and
implementa-
tion

Individual
demon-
strations
and semi-
structured
interviews

This interviews led to the
evaluation of both the
prototype and its imple-
mentation

Evaluation

At the beginning phase of the thesis work, a fo-

cused group interview was conducted as a technique for
requirements elicitation. Focused group interview is a

qualitative research method used to reveal how people
think about an issue or product. Using this technique,
researchers can interactively question a group of par-

ticipants to solicit ideas and views about a topic [21].

Some of the benefits of using focused group interview

technique are: involving the participants in a shared

concrete situation, analyzing the specific context, using

the interview guide (questionnaire) to test hypotheses
and focusing on the subjective experiences of partici-
pants [22]. However, Grim et al. argue that this tech-

nique has some disadvantages. For instance, discussion

can be dominated by a few vocal individual and some

people might not get attention. Besides, the informa-

tion could be difficult to analyze [21].

There were eight participants attending the inter-

view and representing different roles such as function

testers, software designers and developers. The intervie-

wees were selected deliberately from all different roles

that deal with the current representation of quality

data at the company. In this way, they could provide

us with their wishes concerning a visualization method

and bring up different aspects of the visualization that

should be taken into consideration before implementa-

tion.

The interview questions included different themes in
order to document the major needs and requirements

of the users group (see First interview questions in the

appendix I). The purpose of using different themes in

the questionnaire was to cover multiple requirements

from various users’ perspectives. In some cases follow

up questions were brought into discussion to give a
good insight about the issues. The session lasted nearly
50 minutes and results gained from the interview were
recorded and applied in the paper prototyping phase.

The answers provided a guideline on how to design

prototypes by following the users’ needs. According to

them, the visualization should take into account differ-

ent types of users and their corresponding needs. De-
signers expressed the wish to access a visualization cen-
tered on builds, whereas testers would prefer an inter-

face based on test results. Both types of users think that

managers would be interested in an overview rather

than a too detailed presentation. Users are also inter-

ested in a visualization that provides traceability. In

the Integration Portal, following test results build after
build can be problematic and it can also be difficult
to get a comparative view of results. Other suggestions

concern the wish to provide more control to the user

(with customization for instance) and to be notified

when a test case fails.

Paper prototype is a validated technique for explor-
ing and evaluating early interface designs. This tech-

nique provides many advantages during the design pro-

cess. It allows for instance rapid externalization of de-

sign ideas with low costs and it generates numerous

alternatives early in the design cycle. It also provides

a good opportunity for designers to iterate on a design

many times before they commit to the implementation.

Evaluation of the prototypes are more focused on macro

level issues (major interface screen) and since the de-

sign appears informal, designers and users tend to offer

various critiques of the design [23]. There were differ-

ent ideas that we could come up with during this phase.

Data gathered both in the literature review and during

the focused group interview was used to design proto-

types. The challenge was to take into account and com-

bine different suggestions expressed by different types
of users. The first prototypes included several views

8 Narjis Hachilif, Behnoush Pejhanmanesh

and visualization methods such as dashboards and bar

charts. They were updated based on feedback and com-

ments from users. Prototypes were also discussed dur-

ing a meeting with a project manager that led to the fi-

nal prototype that was chosen to be implemented. This

confirmed the idea that an overview visualization would

be helpful for project management. It was also pointed

out that providing only one or two views would be a
better way to provide interaction between the different
types of users. Indeed, if several views are displayed,

users with different roles do not access the same data

and are less likely to be able to interact and commu-

nicate about the same information. Furthermore, the

Integration Portal already provides several views dis-

playing different types of data. Providing a single view

to be used by several types of users could be a way

to provide an improvement and possibly improve the

users’ work. There is still a challenge of making this

view useful for different types of users. The suggestion

at this point was to display one bar chart related to

the build’s status, one bar chart related to the trouble

reports and other deliverables and one table display-

ing the test results. Traceability and history of results

would be then provided by the bar charts. This proto-

type was once again evaluated with users. Along with

knowledge about data visualization, it was found that

it could be simplified in order to provide more clarity.

This led to a design based on a single table that in-
cludes build names, deliverables and test results. This
final prototype is described in the Results section.

After implementing this prototype, a set of indi-

vidual demonstrations and interviews were conducted
in order to evaluate both the prototype and its im-

plementation (See Summarized interview questions in

the appendix I). The same approach was used for the

second round interview and there were some follow up

questions for some of the themes in order to encour-

age suggestions. Ten interviews have been performed

with interviewees holding several positions as described

in table 3. All of these interviewees deal with software

quality data to a certain extent and in different ways.
Developers, designers and testers use the portal in a
more frequent ways than managers for instance. Some

interviewees such as IT architects do not use the por-

tal on a regular basis but their opinion was helpful to

evaluate the final implementation.

Each interview lasted 30 minutes and was recorded

and used as an evaluation of the final work. Results

from these final interviews are also described in the re-

sults section.

Table 3 Roles of interviewees during the final evaluation.

Role

Software Designer

Software Developer

Functional Tester

Test & Verification Engineer

IT Architect

Configuration Manager

Technical Test Coordinator

Project Manager

3.5 Validity threats

The main issue encountered is related to the complexity

of the designed prototypes. The challenge was to select

a method realistic enough to be implemented that still

provides a significant improvement to the visualization

methods currently used. It was also challenging to de-

sign a prototype that meets all requirements and could
be easily accepted by the team. This was dealt with
using evaluation methods such as meetings and inter-
views. In these interviews, validity threats have also

been taken into consideration. Previous studies have

shown that these issues are difficult to avoid [24][25]

and should be considered from the beginning of the

study.

In software engineering the aspects of validity and

threats could be classified to validity in different ways.

One of the schemes proposed by Runeson et al. [26],

and also used by Yin [27] distinguishes between four

different aspects of validity which are construct validity,

internal validity, external validity and reliability [26].

Construct validity describes the extension to which

the operational measures really convey what the re-

searcher has in mind and to which the investigated issue

is based on the research questions [26]. For instance, if

the researcher and the interviewee do not interpret the

constructs of the interview questions in the same way,
the construct validity may have a threat in the research
area. This aspect could be considered as a threat when
we conducted a focused group interview, since one of

the drawbacks with focused group interview technique

is the domination of ideas which prevent some people in

the group to have the same interpretation of the inter-

view questions. In order to mitigate this risk, interview

questions were designed with suitable themes and ex-

planation so that to resolve any misunderstanding as

much as possible. On the other hand, since the visual-

ization was highly dependent on the results of the in-

Visualization of Software Quality Trends 9

terviews, interviewees were selected from different roles

with extensive knowledge who were dealing with the

current visualization at the company. Thus, the results

of the interviews contain different types of users’ per-

spective. Both interviewers being external researchers,

there was a potential risk that the interviewees ideas

were misinterpreted. However, since this visualization

method was a continuation of the previous visualization
work, this issue was not considered as a large threat.

Internal validity refers to the examination of causal

relations, that is when a third factor is not taken into

consideration when investigating a relation between two

factors [26]. When studying whether one factor is ef-

fected by another factor, there is a risk that a third

factor is not taken into account. Considering the na-

ture of the project, internal validity is not considered

in this study.

External validity is related to the extension to which
it is possible to generalize findings and to realize how

much people outside of the studied case are interested
to the findings [26]. Since this study is conducted as
an industrial thesis, results were only posed to a single

company. This could be a potential threat to general-

ization of the study’s results. The risk was mitigated

by getting inspired from the previous representation of

software quality data which is the current visualization

used at the company. It is also possible to generalize vi-
sualization of test-related data to other companies deal-
ing with software quality data.

Reliability deals with how much the analysis has

dependency on the specific researcher [26]. If the same
study was conducted by another researcher later, the
results gained from it should be the same. For instance,
the ambiguity of the interview question can lead to a

threat to reliability as interviewees can interpret the

same question differently. We tried to address this by

writing precise and detailed questions, along with a

proper explanation of the visualization.

4 Results

This section presents the results gathered during and

at the end of the project. It is therefore focused on the

last phases illustrated by the research flow chart on fig-

ure 3. Section 4.1 presents results from the prototyping

and design phase. Section 4.2 describes the actual im-

plementation, illustrated with screenshots and pseudo

code. Section 4.3 presents the results from the evalua-

tion conducted at the end of the study.

4.1 Prototyping

From the first design of prototypes, the idea was to

make a prototype that provides helpful software build

information for software testers and designers, as well as

an overview of the project status for project managers.

In this way, various groups of users could use the ben-

efits of the same page view. The emphasis was put on

the importance of providing an overview, rather than

going too much into details, and providing the user with

a history of data. The first suggestions consisted in one

bar chart displaying the build and status of each sub

builds and one bar chart displaying the trouble reports

for different builds and their status. The history would

be displayed in terms of bar charts. This idea has been

replaced by a view focusing more on specific data types

but the idea of a vertical history has been kept. Table

1 shows a list of data types already displayed in the

current version of the portal.

Based on discussions led with users, we considered

that function test results (REG and PTG) and mem-
ory errors and leaks are the most interesting data to

display, along with deliverables such as trouble reports.
Our goal is to make errors and failures occurring in
these tests as obvious as possible. Indeed, we believe

that displaying this data in an intuitive manner will

help designers and project managers to interact in a

more efficient way. We will not focus on Coverage data

or Unit tests and Signal Flow tests as they should in

principle never fail. Due to time constraints, the idea
of notifying users with failing test cases has not been
kept, but the visualization aims at making failing test

results as obvious as possible.

The prototype was designed using papers to repre-

sent the main interface screens and colored markers to

sketch contents. As shown in figure 4, build related data

considered important from designers and project man-

agers points of view is taken into consideration, such as

build name, deliverables, trouble reports, REG, PTB

and Purify test results. In this prototype, the green

color corresponds to the passed test cases and the red

color corresponds to failed ones.

4.2 Implementation

In order to finalize the mentioned paper prototype, some

alterations were done according to the received feed-

back from different users. Indeed, evaluation was done

during and after the prototyping phase as illustrated

in figure 3. This evaluation led to changes that were

applied in the final implementation as described below.

The application was implemented using PHP, HTML,

CSS, MySQL and the Drupal framework. These tech-

10 Narjis Hachilif, Behnoush Pejhanmanesh

Fig. 4 Proposed prototype for the new visualization method.

nologies are already used in the current portal imple-

mented at the company. Drupal is an open source Con-
tent Management System implemented by an impor-
tant community of developers and distributed under
the GNU General Public License [28]. It is written in

PHP, supports diverse web technologies and is used

as a back-end system for several websites across the

world. Drupal was developed according to principles

such as: an architecture based on modules, a commit-
ment to quality coding and standards, low resource de-
mands and collaboration between users [29]. Having lit-

tle experience of this framework, it took us some time

and explanations to be able to use Drupal efficiently.

However, Drupal also aims for high usability and af-

ter encountering some difficulties, it has proved to be a

helpful tool in our work. The quality data is stored in
MySQL database and a copy of the database was pro-
vided to us for implementation and testing purposes.

The database is characterized by a complex architec-

ture where test results are being mapped to builds in

different ways. It constituted a challenge to understand

how data was connected and how to retrieve the infor-

mation we were interested in. From a technical point

of view, SQL statements were written using a set of

PHP libraries called Doctrine. In particular, we used

the Doctrine Object-Relational Mapping, that allows

to write database queries in a dialect called Doctrine

Query Language [30]. Even though we were not famil-

iar with this technology, we were able to manage these
difficulties, notably thanks to already available APIs in
PHP.

The purpose of the implementation was to provide
the user with a history of test results for the latest

builds and for a specific product. The user can compare

the results from different builds and gets an overview

of the evolution of results build after build. Test results

are also displayed along with deliverables, so that the

user can relate them with each other. As illustrated in

Table 4 List of displayed deliverables

Deliverables

Trouble Reports (TR)

Anatom (ATM)

Extra View TR (EV)

RedMine TR (RM)

Change Request (CR)

Requirement (REQ)

figure 5, once the user has chosen a product, a table
is displayed containing build names, deliverables and

test results. The build name column represents the lat-
est builds, which can be accessed by clicking on the
corresponding names. Latest builds were retrieved via

an API function that takes into parameters the chosen

product, the limit for the oldest build to be retrieved

and the maximum numbers of builds to be fetched. For

each build, data related to deliverables and test results

(REG, PTB and Valgrind) is represented along the line.

Originally, Purify results were represented in the paper

prototype (Fig. 4), but Valgrind results were consid-

ered by users to be more interesting to display. Table 4

shows a list of deliverables being retrieved.

Deliverables are displayed inline using different wid-

ths. For instance, 1 pixel is used to display zero deliv-

erable, 5 pixels for displaying only one deliverable, 10

pixels for displaying 2 to 4 deliverables and finally 20

pixels are used for displaying more than 5 deliverables.
By hovering, the user can see a list of all deliverables
names and know exactly how many deliverables there

are for each build.

For each build, the test results column display the

corresponding failed test cases, sorted alphabetically.

Each red line corresponds to a test case that has failed

and which name is displayed by the hovering feature.

Visualization of Software Quality Trends 11

Fig. 5 The final implementation.

$verdicts = array(); foreach ($builds as &$build) { $buildId = $build->id;

$verdicts[$buildId] = array(); foreach (getJobs($buildId) as $job) {

$testCases = getJobTestCases($job->id); foreach ($testCases as $tc) { if

(!$tc->isPassed()) { // save the verdict for this test case

$verdicts[$buildId][$tc->getName()] = $tc->getVerdict(); } } } }

Fig. 6 Code retrieving failed test cases.

Along a column, the same test result is represented for

different builds, which means there will be a red line
if the test has failed and a white space otherwise. This
was shown to be more readable than using green lines

for passed results and red lines for failed results as in

the paper prototype (Fig. 4). As a matter of fact, passed

results are not displayed at all since our purpose is to

focus on where and how the test cases failed. Indeed,

in this case, the white space shows that the test case
did not fail, but this does not necessarily mean that
this test has passed. It was also found that display-

ing only failed test cases would make the visualization

clearer in case of many tests failing. In order to achieve

this, an array was created to store fetched test cases

for each build, as seen in figure 6. For instance, $ver-

dicts[’build123’][’tc name’] is a test case from build123.

If a test case has been failing for a specific build, its

verdict (which is not passed) is stored in order to be

displayed in the table.

In the case of many failed test cases, there will be a

big red block under the corresponding test results (as

seen for Valgrind results in figure 5). This is due to the

fact that for each build, test results are represented by

a fixed rectangle block to preserve the verticality that

makes it possible for the user to compare the same test
result for different builds, along the same column. Sev-

eral color nuances are used when the same test case has

failed for several times, red color is used when it fails for
the first time and if it fails consequently for the follow-
ing builds (up along the column), the color gets a lighter
shade. The user can therefore have a quick overview of

tests that have been failing build after build. This has

been implemented by creating counters that would be

updated depending on how many times in a row a test

has failed. As seen in figure 8, the updating function

updateCounters checks each verdicts and increases the

counter in case of a failing verdict. For instance, if a

test case fails for the first build, the counter is set to

1, if it fails on the next build, the counter is set to 2
etc. If this test case passes on the third build, it would
be however be set back to 0. This enables users to see

each time a test case is failing for the first time, even if

it has been failing intermittently. Test case color would

then be decided depending on the value of the counter.

As seen in figure 7, the shading is still visible with

nuances of gray, with the goal of making the visualiza-

tion not too color-dependent. One can also note that

even if data related to deliverables is presented in dif-

ferent colors, the actual information is shown by the

size of the rectangles and not their color.

12 Narjis Hachilif, Behnoush Pejhanmanesh

Fig. 7 The final implementation with nuances of gray.

function updateCounters(&$verdicts) { foreach (getUniqueLabels($verdicts) as

$label) { $counter = 0; foreach ($verdicts as $build => &$build_verdicts) {

if(array_key_exists($label, $build_verdicts) &&

!$build_verdicts[$label]->isPassed()) { $counter++; // updates the array with

a new counter value $build_verdicts[$label]->setTailCounter($counter); } else

{ $counter = 0; } } } }

Fig. 8 Function counting tests failing several times in a row.

More technical details about the implementation are

presented in the appendix II in the form of a table dis-

playing functions used in the code and their description.

4.3 Evaluation

This section presents results from the final evaluation
that was conducted at the end of the project, as seen
in figure 3. Most interviewees agreed that the visualiza-
tion provides a good history of results and is easily un-

derstandable when associated with basic explanations.

Before conducting the interviews, we presented the sys-

tem and explained how the user could interact with the

interface and get the information they need. This expla-
nation could later be summarized in a small documen-
tation document. Chosen shapes and colors have been

considered to be meaningful but some improvements

could be made. It has been suggested for instance to

take into consideration color vision deficiency by using

symbols or numbers. Showing how many times a test

case has been failing would then be displayed in another

way than with differences in color shading. Other com-

ments proposed to remove information concerning zero

deliverables (single lines) and collapse them into a nar-

row column would take less space and would be more

useful. These lines could either be totally removed, or

just hidden or extended according to the user’s choice.

The visualization provides sufficient information ac-

cording to designers, however interviewees carrying other

positions have expressed the wish to display more data.

Several comments suggested to add IPv6 information

along with IPv4, to show whether a test case has failed

with or without a trouble report or to include more

software quality data such as Coverity in the visualiza-

tion. Another recurrent suggestion was to provide the

number of total test cases so that the user can see the

ratio of failing test cases out of the total number of tests

run. Some suggestions simply express the wish to access

more detailed data, while providing trouble report in-
formation or total number of tests could significantly
improve the interpretation the user can make of the in-
terface. This could provide a more accurate comparison

between builds, and make users understand better why

a test case has been failing and if it has already been

dealt with. There were also suggestions about display-

ing reasons of the test failures graphically. This could
be done by using different colors to represent common
reasons for tests failing. Displaying the slow running

test cases could be helpful as well. Users argued that

in this way they would be aware of test cases prevent-

Visualization of Software Quality Trends 13

Table 5 Positive and negative feedback from the evaluation.

Positive points Possible improvements

Clear visualization of
test runs and test result
progress in a summarized
form

Customization could be pro-
vided

Condensed overview of
large amounts data in the
same view

There should be a dotted line
to represent lack of delivery

Useful data is presented The shading should be pink
for a new test case and red if
it’s been failing for a while

Good to visualize deliver-
ables next to test cases

It would be good to visualize
the total number of tests

Focus only on failed test
cases

It would be better to connect
each trouble reports to test
results

ing on time delivery of the product. Different points of

view were also gained about the way that test results
are sorted. Some participants were satisfied with the
current implementation which displays the results al-
phabetically. However, for some users (who deal with

SGSN tests) sorting the data according to the test’s

start time is considered more helpful. It has also been

suggested to sort the test cases based on their group

(test objects) or their node roles.

Finally, some interviewees have suggested to pro-

vide more customization to the user. This idea has been

suggested independently of the role occupied by the in-

terviewee. A way to achieve this would be to imple-

ment the possibility to reduce or extend different views.

Even though the focus on failing test cases was gener-

ally accepted by users, it has been noted that the white

space displayed when test cases are not failing should

be reduced, since it might provide confusion to the user.

One might think this white space represents passed test

cases, when it does not provide such information in re-

ality. The white space can indicate that the test has

not been run for this build. It would be interesting to

display these non-run test cases as well, but it could be

challenging to keep the visualization clear while provid-
ing such information. Other interviewees point out that
it is best to avoid too much customization in order to
keep a simple and clear picture. A compromise has been

suggested where instead of implementing customization

on the main page, the user could access another page

with different views, displaying for example results from

private builds.

Table 5 presents a summary of comments received

during the final evaluation phase, divided between pos-

itive feedback and possible improvements.

Table 6 Investigated methods with their benefits and disad-
vantages.

Method Pros Cons

Thermometer Intuitively under-
standable

Clear presentation
and separation of
different kinds of
data

Gets easily cluttered
and can be difficult
to read

Does not display
data in a precise way

Speedometer Provides detailed in-
dicator’s value

Displays data status
in an intuitive way

Provides only low
precision

Restricted to a lim-
ited number of colors

Dashboard Displays a large
number of indicators

Provides a large
range of colors

Provides detailed
information about
indicator’s name and
value

Complexity of use
depending on dis-
played data types

Bullet
graphs

Visible information
even when scaled
down

good for displaying
small multiples

Displays too little
information

Requires too much
space

Can get cluttered
with unnecessary
information

Sparkline Good for comparing
values over time

Density of the chart
can lead to a loss of
details

Heat map Can both be com-
pact and present an
important number of
values

5 Discussion

This section discusses the results from the prototyping,

the implementation and the evaluation phases by an-

swering the research questions investigated during the

project.

What is a suitable method for visualizing large quan-
tities of quality data generated in large scale software

development projects?

1. How current and historical data generated from dif-

ferent test types should be managed for presenta-

tion?

Table 6 shows a list of visualization methods consid-

ered at the beginning of the project. Despite their

14 Narjis Hachilif, Behnoush Pejhanmanesh

advantages, the use of these methods could not re-

sult in a visualization that would fit the users’ needs.

The heat map method was however considered as an

interesting visualization as it constitutes a good way

to visualize complex and large volumes of data [14].

Our final result was inspired by this method and by

interviews conducted with users. During these dis-

cussions, it has been suggested to provide a common
shared view that different users could use regardless
of their job position. This could be done by using

several visualization methods as the ones described

in table 6, but it would be then difficult to keep the

visualization simple and clear. It was decided to try

to condense different data types as much as possible,

without making the visualization cluttered. This led

to a visualization consisting of a historical summary

showing the latest builds along with corresponding

deliverables and test results. Displaying a historical

summary enables different types of users to com-

pare the latest builds between each other and to

notice how data evolve build after build. By having

an overview of data, users can spot instantly builds

with a lot of failing test cases, and possibly relate

these failing test results to the deliverables associ-

ated with the considered builds. Users can then ac-

cess more detailed information by clicking the name

of the corresponding build. Another feature that was

brought by this visualization was the possibility to
identify builds failing several times in a row. This
makes it possible for users to notice tests that have
been failing for a long time (in pink), tests failing for

the first time (in red), as well as intermittent tests.

All these types of tests provide important informa-

tion since they might deserve special attention.

2. What are the main requirements and quality attri-

butes for the presentation methods?

The main attribute considered in order to improve
the visualization methods is usability. Other attri-
butes such as functionality, reliability or maintain-
ability can be taken into account when evaluating

software quality. However, in this study, the focus is

on the visualization and its possible improvements

of users’ work. The goal is to improve an existing vi-

sualization method rather than to provide new func-

tionalities. Because of time limitations, the perfor-

mance and the portability of the implementation are

not be taken into consideration during this study.

ISO/IEC 9126-1 describes usability as based on “the
effort need for use” by a certain set of users [31]. In
our case, we tried to develop a system that would

help users reduce their effort to access information.

This was done by implementing an overview of data,

rather than going too much into details and pre-
senting a cluttered visualization. Presenting large
amounts of data in the form of a historical sum-

mary can also help users to analyze and interpret the

displayed information. Chosen shapes, colors and

the hovering feature provide a support for usabil-

ity as well. Previous studies such as the one con-

ducted by Voinea et al. [32] have investigated visu-

alization of large-scale software as a support for em-

ployees holding different positions. However, they do

not combine different features such as an overview

presentation, a historical summary and a common

shared view. This combination was motivated by

the fact that requirements would vary depending on

the user’s position. For instance, project managers

were more interested in having an overall status of

the product delivery. The most important data to

show them was therefore to point out the obsta-
cles preventing the online delivering of the project.
However, requirements from a software designer and

functional tester perspective included depicting de-

tailed data in a way that they could keep track of the

project deliverables and be aware of failed test cases

along or not with trouble reports. This would allow

them to fix errors on time and in a more efficient
way. Color nuances were then applied in order to
help them to follow the stream of test cases for each

specific build. The selected attribute, as well as the

requirements gathered by end users, inspired us to

implement a visualization following the mantra pro-

posed by Shneiderman: “overview first, zoom and

filter, then details-on-demand” [7]. Indeed, our pri-
ority is to first present an overview of historical data,
and then let the user access detailed information.

3. What channels (size, shape, color, sound or move-

ment) are suitable for presenting data to the users?

Suitable channels to achieve an intuitive representa-

tion of a fairly large amount of current and histori-

cal data include different sizes, shapes and color nu-

ances. Among several sources used to select suitable

channels for representation, the ranking of quanti-
tative perceptual tasks by Mackinlay was studied in
the early phases of the project. Results from this

study show that certain tasks are carried out more

accurately than others [6]. For instance, Mackin-

lay considers that position belongs to the “higher

tasks”, as seen in figure 1. In our project, position
was taken into consideration by providing a vertical
history when displaying results. Position can there-
fore be considered as a suitable channel for an intu-

Visualization of Software Quality Trends 15

itive representation of data. We also considered area

perception, which is neither a higher nor a lower task

according to Mackinlay [6]. In our implementation,

we considered area as a channel to represent the

number of deliverables. They are displayed as rect-

angles with different sizes depending on the number

of deliverables associated with the build. Since this

information is not the most important for the user
(who is generally more interested in test results, and
possibly their relation to deliverables), we do not

consider it as a drawback, even though it is open

to improvements. On the other hand, color density

perception is considered as a “lower task” and was

used in our implementation to display tests failing

several times in a row. The use of color as an infor-

mation channel can certainly be improved, as it can

be difficult to interpret for users with color vision

deficiency.

Which quality data should be visualized and how shall

it be combined to increase the information throughput

to the user?

1. What type of data is the most important to extract?

According to the users, the most important infor-

mation to display is data related to function test

results, as well as deliverables such as trouble re-

ports, requirements and change requests. The focus

is made on function test results and the goal is to

show when these tests fail in the most obvious and

intuitive way possible. Certain types of tests such

as unit tests and signal flow tests are not displayed

since they should in principle never fail. The ob-
jective is then to select data that is the most im-
portant to visualize, since presenting all data avail-
able would result in a cluttered visualization. An

important aspect to take into account when select-

ing data was the scalability of the system. Previous

studies have shown the importance of taking this

attribute into consideration when implementing a

new system, or improving an existing one. For in-

stance, when implementing an evolution matrix, it

was found that the system worked for a limited num-

ber of classes [33]. Similarly, in the first steps of our
project, the visualization displayed both passed and
failed test cases and would become very large in case

of many failing test cases. Such visualization would

make data harder to both summarize and interpret.

There was then a choice to focus only on failed test

cases, which was proven to be generally accepted by

end users.

2. How can we combine data of different dimensions?

In order to present data efficiently, time and test

type dimensions were combined in this visualization
method. Time dimension refers to test data that is
available for a specific time, test data could then

be summarized for time period corresponding to

the latest builds. This was used in the visualization

when providing a history of builds over time. Test

type dimension concerns different test types which

are accomplished before project deliveries, it starts

with low level testing (unit tests) and proceeds to

function and system levels. In the visualization, con-

sidered test types are function test results (REG

and PTB) and memory errors (Valgrind). According

to results from studies, prototypes and interviews,

the selected data should provide enough interesting
information without making the visualization clut-
tered or complex.

3. How can data be translated into information chan-
nels?

Once specific data was selected to be displayed, dif-

ferent ways were investigated in order to translate

this data into information channels. First prototypes

displayed deliverables with letters but did not pro-

vide information about how many were associated

to each build. In the implementation, several columns

are displayed for each deliverable types. Information

about the number of deliverables for a specific type

is shown by rectangles of different sizes, as well as

single lines when nothing is delivered. By hovering,

the user can have a more detailed list of deliverable

names and their exact number. The size of rectan-
gles and the hovering function are the channels used
to provide information about the number and names
of deliverables. As for test results, data concerning

failing test case is translated by single red lines for

each failing test. By hovering, the user can see the

name of the test that failed. Color nuances are also

used as an information channel to show when a test
has been failing several times in a row.

How does the visualization method effect the user’s com-
munication about the product?

1. What benefits will be seen by users?

The last interview findings indicate that the visual-

ization of software quality data has been improved

in the implementation. The visualization could meet

project managers’ requirements since it provides a

suitable historical summary of the quality data. They

can use the visualization as an overview tool by

quickly noticing builds having a lot of failed test

cases. Designers and testers can, on the other hand,

16 Narjis Hachilif, Behnoush Pejhanmanesh

access more detailed information such as how long

a test case has been failing, when it is failing for the

first time and which test cases are failing intermit-

tently. Designers, in particular, found it to be a use-

ful tool for tracking the results related to test cases

and in this way they could efficiently be aware of

the test cases preventing the product delivery, this

being especially important when multiple teams are
performing activities in the same area. It can be ar-
gued that without this knowledge, it would be dif-

ficult for developers to optimize their development

efforts.

It has been suggested to take into consideration

color vision deficiency by not using colors but sym-

bols and numbers instead. The trade-off of this is

that it would be more difficult for the user to get an

overview of data. Indeed, we believe that the chosen

shapes and colors can provide a visualization that is

intuitive and easy to understand. Provided with ba-

sic explanations about how the visualization works,

the user can quickly extract the needed information.

However, we believe that it is important to consider

color vision deficiency and we tried to take it into

consideration by using a visualization as clear as

possible that does not only rely on colors. There are

still improvements to be made, and it is certainly

possible to combine symbols, numbers and colors

and still provide a clear and simple visualization.
There have been several suggestions concerning the
use of space in the visualization. For instance, it was
suggested to narrow unnecessary information such

as lines showing zero deliverables. It has also been

proposed to limit the white space displayed when

there are few failing test cases. Reducing this space

could be a way to make the visualization simpler
and to gain space but the verticality function would
then not be preserved. Indeed, a red line that turns
into a white space shows that this test is not failing

anymore, even though it does not give information

about whether the test has passed or not. Such in-

formation could be interesting to display, but in our

case, the choice was to focus on failing test cases,
and to point out when a test case has been failing
several times in a row or in an intermittent manner.

Differences of opinions about how the visualization

should be could be solved by providing customiza-

tion. This would allow users to access either differ-

ent possible views or a dynamic page where they

could extend or condense information according to

whether they are interested in it or not. It could

also provide a solution for sorting the data in dif-

ferent ways (either time based or name based for

instance). Customization certainly provides an in-

teresting improvement of the visualization, but it

can also compromise the wish to keep the presen-
tation as simple and intuitive as possible. A good
compromise would be to access both an overview
page, as it is proposed in this paper, and a more

personal page corresponding to the user’s role and
responsibility. In all cases, it is important to keep a
shared common overview of data, in order to pro-

vide interaction between users. In this way, users

holding different positions can then efficiently com-

municate since they have access to the same view

and therefore the same data.

Comments suggesting to display more data seem

easier to implement as they do not interfere with the

actual visualization method. This constitutes an in-

teresting challenge to the portal, as the visualization

must stay simple and not too cluttered. Data should

also be selected so that it provides interesting infor-

mation to users regardless of their roles. According
to interviews, this might not be the case with Cover-
ity data for instance, but displaying IPv6 results

along with IPv4 ones, and showing test cases failing

with or without trouble reports would definitely be

valuable to different types of users. Sorting results

in a specific manner is also depending on users’ roles

and might not be relevant for an overview interface.
Alphabetical order was chosen in order to provide
a simple common visualization, the focus being on

keeping a historical comparison of results and not vi-

sualizing them in a particular order. Recurring com-

ments suggested to display the total number of test

cases. This would constitute interesting information

to different types of users, but it can compromise the
focus on failing test cases, which constitutes one of
the requirements of our product. However, like other

suggestions being expressed by interviewees holding

different positions, they are important to consider

for future improvements.

2. How can the visualization improve the user’s work’s

efficiency?

By accessing an overview page displaying informa-

tion about various data types, users do not need

to navigate between different pages when different

types of data are needed. It also provides a possibil-

ity for comparing and relating builds, deliverables

and test results to each other. Specific data was se-

lected and displayed according to users’ needs. This

can reduce the effort to retrieve the interesting infor-
mation to users. Furthermore, the visualization can
point out builds with several failing test cases and
other situations that might require quick and spe-

Visualization of Software Quality Trends 17

cial attention. By providing a history of results, it

also can help users noticing patterns and the evolu-

tion of the results build after build. Due to a limited

time frame, it was not possible to actually measure

the impact of the visualization on the users’ work.

This could be done by conducting interviews once

the users have used the visualization for a certain

time. One could also notice if there have been im-
provements in decision making, in the planning and
making of projects. The effect of the visualization

on the users’ interaction could be shown by the use

of the visualization in communication, during group

meetings for instance. These possible suggestions for

measure work’s efficiency would however require the

use of the visualization for an extended time. For

now, we can only rely on the final evaluation and

feedback from the users to state whether the visual-

ization could improve their work’s efficiency. Previ-

ous studies such as the one conducted by Voinea et

al. [32] have investigated visualization of large-scale

software and related it to the quality of work of em-

ployees holding different positions. However, in this

work, an overview of data is provided along with the

possibility for users to track results over time.

6 Conclusion

The purpose of this study was to improve the current

visualization of software quality data at the company

by proposing new visualization methods. The study be-

gan with investigating web based methods for visualiz-

ing large amount of data with a focus on intuitive user

presentation. Several methods such as dashboards, pie

charts and bar graphs were investigated during the re-

search and prototyping phase. These methods provide

a way to display information intuitively. However, their

disadvantages were considered as obstacles in our goal

for a simple visualization that could be shared by dif-

ferent types of users. By conducting several interviews,
important data from different types of users’ point of
views was extracted. First, we were able to set up re-

quirements and a more limited scope to our project,

which enabled us to design more accurate prototypes.

We then presented these prototypes to users during a

first set of interviews, in order to get improvements

and more details about how the visualization should
be. After designing several prototypes, we concluded
that illustrating data in a table which acts as a timeline

(showing the latest changes in builds and test results)

would be a suitable way to visualize this type of data

in an intuitive and effective manner.
This visualization provided both a history and an

overview of results by presenting build information on a

horizontal line and failing test cases as vertical red lines.

If a test case has been failing several times in a row, it
is displayed as a longer continuous vertical line with
a fading color shade. Otherwise, it turns into a white

space, which can turn again into a red line, showing that

the test has been failing intermittently. Additional data

about the build such as type and number of deliverables

are displayed next to test results.

This visualization was implemented using the same

tools used for the current portal implementation, that

is PHP, MySQL, HTML, CSS and the Drupal frame-

work. We believe that this visualization can give several

advantages for users, such as providing, in a common

shared view, sufficient information to designers, testers

and project managers. By using suitable applied shapes

and colors, we wanted to make the visualization under-

standable for all these types of users. Whether this goal

was reached or not was measured by interviewing users

at several steps of the project. While the results from

the first interviews were to be applied in the prototyp-

ing and implementation phase, the second set of inter-
views consisted more of an evaluation of the final work.
This evaluation led to diverse and interesting sugges-

tions such as providing more customization, displaying

total number of test cases and connecting test results

to trouble reports. These suggestions could be used in

the future to improve this way of visualization. The

findings can be generalized to other products within
and outside the company. Any software project can in-
deed benefit from an overall summary of software qual-

ity data, in order to notice quickly obstacles preventing

the right progress of the project. Previous studies in-

vestigated several ways to visualize complex and large

volumes of data and proposed various efficient visual-

ization methods. There is however a lack of industrial

studies investigating how visualization can be help the

users in their work. The result of this study provides

an overview of data, a history of results and different

data types in a shared common view that can facilitate

interaction between users. We believe that this project

can therefore contribute to the current state-of-the-art

and provide an industrial example of how to display

data in an intuitive manner while aiming at improving

work’s efficiency.

References

1. Pandazo, K., Shollo, A., Staron, M., Meding, W.: Present-
ing Software Metrics Indicators: A Case Study. Proceedings
of the 20th International Conference on Software Product
and Process Measurement (MENSURA), Vol. 20, No. 1,
(2010).

2. Johansson, L., Meding, W., Staron, M.: An Industrial Case
Study on Visualization of Dependencies between Software

18 Narjis Hachilif, Behnoush Pejhanmanesh

Measurements. 7th Conference on Software Engineering Re-
search and Practice in Sweden , Vol. 1 (February 2007), pp.
23-33, ISBN/ISSN: 1654-4870.

3. Reniers, D., Voinea, L., Ersoy, O., and Telea, A.: The
solid* toolset for software visual analytics of program struc-
ture and metrics comprehension: From research prototype
to product. Science of Computer Programming, 2012.

4. Cleveland, W.S., McGill, R.: Graphical Perception: The-
ory, Experimentation and Application to the Development
Graphical Methods. Journal of the American Statistical As-
sociation, Vol. 79, No. 387. (September, 1984), pp. 531-554.

5. Buse, R. P., Zimmermann, T.: Information needs for soft-
ware development analytics, Proceedings of the 34th Inter-
national Conference on Software Engineering (June, 2012),
pp. 987-996, ISBN: 978-1-4673-1067-3.

6. Mackinlay, J.: Automating the Design of Graphical Pre-
sentations of Relational Information, Journal of ACM
Transactions on Graphics (TOG), Vol. 5, No. 2, (April,
1986), pp. 110-141.

7. Shneiderman, B.: The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualizations,.Visual
Languages Proceedings., IEEE Symposium (September,
1996), pp. 336- 343.

8. Rogowitz, B.E., Treinish, L.A., How NOT to Lie with Vi-
sualization, Journal of Computers in Physics, American In-
stitute of Physics Inc. Woodbury, NY, USA, Vol. 10, No.
3., (June, 1996), pp. 268-273, ISBN: 0-8186-7508-X.

9. Healey, C.G., Booth, K.S., Enns, J.T.: High-Speed Visual
Estimation Using Preattentive Processing. Dept. of Com-
put. Sci., Maryland Univ., College Park, MD, (June 1996),
Vol. 3, No. 2, pp. 107 135, ISBN:1049-2615.

10. MT-35. Alette, T., Fritzon, V.: Introducing Product and
Process Visualizations to Support Software Development,
Master of Science thesis in Software Engineering and Tech-
nology, Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden
(June, 2012).

11. Few, S.: Business objects’ bullet graphs: A
good idea, implemented poorly. [Online]. Available:
http://www.perceptualedge.com/blog/?p=160

12. Tufte, S.: Beautiful Evidence: A Journey through the
Mind of Edward Tufte, 1st ed. Graphics Press, (July 2006),
ISBN:0961392177.

13. Davenport, T., Harris, J., Morison, R.: Analytics at
Work: Smarter Decisions, Better Results, ser. Harvard Busi-
ness School Press. Harvard Business Press (2010), ISBN:
1422177696.

14. Feldt, R., Staron, M., Hult, E. and Liljegren, T.: Using
Heatmaps to Visualize Test Outcomes and Source Code
Changes: A Case Study at RUAG Space, 2012. (submitted
2012)

15. Ball, T. J., Eick, S. G.: Software Visualization in the
Large, IEEE Computer Society Press Los Alamitos, CA,
USA,(April 1996). Vol. 29, No. 4, pp. 33-43.

16. Ko, A. J., DeLine, R., Venolia, G.: Information needs in
collocated software development teams, Proceedings of the
29th international conference on Software Engineering, ser.
ICSE ’07. Washington, DC, USA: IEEE Computer Society
(May 2007), pp. 344353, ISBN: 0-7695-2828-7.

17. J. Jones, M. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of
the 24th international conference on Software engineering,
pages 467477. ACM, 2002.

18. Ericsson company facts. [Online]. Available:
http://www.ericsson.com/thecompany/company facts

19. Haagen, J.: Master Thesis-Visualization of Software
Quality Trend: Master thesis proposal at Ericsson AB
(2011).

20. Collins, A., Joseph, D. and Bielaczyc, K.: Design re-
search: Theoretical and methodological issues, The Journal
of the learning sciences,Taylor & Francis publisher, Vol. 13,
No.1, pp. 15-42, (2004)

21. Grim, B.J., Harmon, A., Gromis, J.: Focused Group In-
terviews as an Innovative QuantiQualitative Methodology
(QQM): Integrating Quantitative Elements into a Qualita-
tive Methodology, Vol. 11, No. 3. (September 2006), pp.
516- 537.

22. Merton, R. K., Kendall, P. L.: The focused interview.
P. F. Lazarsfeld & M. Rosenberg (Eds.) 2nd edition, The
language of social research, pp. 476-489. New York: The
Free Press. (1955), ISBN: 0029209862.

23. Beiley, B, Biehl, J.,Cook, D., Metcalf, H.: Adapting pa-
per prototyping for designing user interfaces for multiple
display environments, published by Springer (2008), Vol.
12, No.3 (January 2008), pp. 269-277.

24. Staron, M., Meding, W.: Using Models to Develop Mea-
surement Systems: A Method and Its Industrial Use. IWSM
’09 /Mensura ’09 Proceedings of the International Confer-
ences on Software Process and Product Measurement, Vol.
5891, No. 3 (2009), pp. 212-226, ISBN: 978-3-642-05414-3.

25. Staron, M., Meding, W., Nilsson, C.: A framework for
developing measurement systems and its industrial eval-
uation. Journal of Information and Software Technology,
published by Elsevier, Vol. 51. (April 2009), pp. 721-737.

26. Runeson, P., Hst, M.: Guidelines for conducting and re-
porting case study research in software engineering. De-
partment Computer Science, Lund University, published by
Springer, Vol. 14, No. 2, (December 2008), pp. 131-164.

27. Yin, R.K.: Case study research. Design and meth-
ods, 3rd edn. London, Sage, (December 24, 2002), ISBN:
0761925538.

28. About Drupal. [Online]. Available:
http://drupal.org/about

29. Drupal principles. [Online]. Available:
http://drupal.org/principles

30. Object Relational Mapper, Doctrine. [Online]. Available:
http://www.doctrineproject. org/projects/orm.html

31. ISO/IEC 9126-1:2001 Software engineering – Product
quality – Part 1: Quality model.

32. Voinea, L., Lukkien, J., and Telea, A.: Visual assessment
of software evolution. Science of Computer Programming,
65(3):222248, 2007.

33. Lanza, M.: The Evolution Matrix: Recovering Software
Evolution using Software Visualization Techniques. IWPSE
’01 Proceedings of the 4th International Workshop on Prin-
ciples of Software Evolution, New York, NY, USA, (2001),
pp. 3742, ISBN:1-58113-508-4.

Appendix I – Interview questions

Theme First interview questions

GUI Design What is your idea about the shape, color and arrows applied in test results? Do you think

they are meaningful?

Would it be useful to add more color nuances and an indicator of how close to one color

the test result is?

Would it be better to present raw data and let users interpret it?

Would you rather see different personalized views or avoid too much customization?

Usability Are the builds and test results (test cases) easily traceable? If not, why?

Can you easily get an overview of the status of the project?

How easy is it to find the detailed value of indicators?

Can you easily access a specific type of test?

How easy is it for you to access different types of data you need?

Is there any feature that is too complicated to handle/understand?

Functionality Do you think the status of the project should be more clearly presented?

Would it be useful to show that the status is about to change?

Would it be useful to have a notification of failed results, and what kind of notification

would be preferred?

Would it be useful to visualize the source code?

Would it be better to focus on the failed results in the presentation?

Would it be better to filter the results to present them in a specific order, or to display

only some of them?

Is there some information that is not so important or needed? (“nice to have”)

Would it be interesting to be able to compare different results and data?

Would you like to see some data grouped together or on the contrary strictly separated?

Efficiency How well does this way of presentation fulfill your information needs?

How do you think the presentation of the portal can be improved to increase work

efficiency?

Are there some features or displays that are obstacles to a quick access to information?

(slow down the work)

Conclusion Do you find the portal user-friendly? Why?

Is the information clear, unambiguous and simple?

Could you describe the negative and positive points with the integration portal?

What are your expectations (requirements) for this product?

What stops you from working efficiently?

Themes Summarized interview questions

Introduction Is this way of visualization clear to you?

Do you think it will be helpful in your job (designer or tester)?

GUI Design What is your idea about the applied shape and colors in the results? Do you think

they are meaningful?

Would you be interested in having more raw data displayed?

Would you rather see different personalized views (filters) or avoid too much

customization?

Is it interesting to have data in alphabetical order?

Usability Is there any feature that is too complicated to handle/understand?

Is this data easily traceable?

Functionality Is it good that only failed results have been focused in presenting the product status

or would it be better to display passed results as well?

Is there any information that is not so important to display in this presentation?

Would it be interesting to be able to compare other kind of results and data?

Efficiency How well does this way of presentation fulfill your information needs?

How do you think the new presentation can be improved to increase work

efficiency?

Are there some features or displays that are obstacles to a quick access to

information? (slow down the work)

Conclusion Could you describe the negative and positive points with the new presentation?

What are your expectations about the new presentation?

Appendix II – Implementation details

This table gives an overview of the implementation design by presenting functions used to retrieve and

display data.

Function name Arguments Description

generateDeliverables Array of events Generates html to display deliverables in the form of

rectangles.

generateRectangle Array of test result

verdicts

Array of test

names

Width of the

generated rectangle

Width of the failed

result line

Generates html to display test results in the form of vertical

lines.

getAllLabels Array of test result

verdicts

Whether to sort the

array or not

Return an array containing all unique test names.

notEmpty Array of (failed)

test cases

Filter function that checks if a build have any failed test

cases or not.

printDeliverables Number of

deliverables

List of deliverable

names

Color of the

rectangle

Html attributes of

the rectangle

Echos the html code for a rectangle displaying information

about deliverables.

renderSelectBuild Name of the

current product

Echos the html code for the drop-down menu where the

user can select a product name. If a current product is

passed, it is selected by default.

updateCounters A sorted array of

verdicts

Update counters of how many times in a row a test has

failed and returns a set of test names. (see getAllLabels)

verdictItem The name of a test

result

Returns a lightweight data structure representing a failed

verdict.

	Introduction
	Background
	Methods
	Results
	Discussion
	Conclusion

