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Introduction

The topic of this work is turbulent transport of main ions
and impurities driven by ion (ITG) and electron modes
(TEM) in tokamaks. The code GENE [1–3] was used for
quasi-linear (QL) and nonlinear (NL) gyrokinetic (GK) sim-
ulations.

Results are compared with a computationally efficient
fluid model [4]. We look at the effect of different equi-
librium models: concentric circular geometry, s − α and
magnetic geometry obtained from the JET L-mode dis-
charge #67730.

For the NL GK simulations two sets of JET-like parameters
are considered. Both use the realistic equilibrium, then
the second set (case C below) has in addition:

• introduction of collisions (Landau-Boltzmann type)

• a 2% Carbon background

• inclusion of finite β effects.

Particle transport is quantified by the density gradient of
zero particle flux, related to the balance of convection
and diffusion. This measure of the impurity peaking is
calculated for ITG/TEM turbulence and the effects of the
equilibrium model are shown.

Particle transport

Particle transport for species j is derived from:

Γnj = 〈δnjvE×B〉, (1)

where 〈·〉 means a spatial averaging [5, 6].

This is divided into a diffusive and a convective part:

Γj = −Dj∇nj + njVj (2)

where Γj is the flux and nj the density of the species [5].

For constant ∇nj and ∇Tj, the flux can be written as:

RΓj
nj

= Dj
R

Lnj

+RVj, (3)

with R the major radius and 1/Lnj ≡ −∇nj/nj.

In the core region convection (“pinch”) and diffusion bal-
ance to give zero flux. The zero flux peaking factor quan-
tifies this:
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≡ PFj (4)

Thus PFj is interpreted as the gradient of zero flux.

For trace impurities DZ and VZ are independent of ∇nZ.
Eq. (3) is then linear in R/LnZ, and PFZ can be found by
fitting a straight line to flux data. This is illustrated in
Fig. 1.
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FIGURE 1: The impurity flux dependence on ∇nZ, illustrating

PFZ and validity of linearity assumption, eq. (3), for trace impuri-

ties (charge Z). Data from NL GENE simulations.

In general, Dj and Vj may depend on ∇nj, and PFj has to
be found explicitly from the zero flux condition.

Results

EFFECTS OF THE EQUILIBRIUM MODEL ON IMPURITY

TRANSPORT: Simulations of impurity transport using a
realistic JET -like magnetic equilibrium are compared to
circular and s−α geometry for an ITG dominated discharge.
JET-like parameters are chosen in accordance with L-mode

discharge #67730 (see [6] for details).
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FIGURE 2: Radial profiles of the background parameters for JET

discharge #67730 at t = 47.5 s. All simulations performed at mid-

radius (r/a = 0.5; indicated).

With realistic geometry the growthrate (γ) spectrum:

• is destabilised

• shifts to higher kθρs.

This is consistent with previous results obtained using a
fluid model [7] and results in larger heat and particle trans-
port (NL GK).
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FIGURE 3: Left: growthrate spectra for s − α, circular and exper-

imental magnetic equilibrium for ITG mode-dominated case with

JET-like parameters. Right: experimental equilibrium with added

degrees of realism. Case A - full geometry with no added effects;

case B - 2%C background added; case C - collisions also added.

The eigenvalue spectra also show that:

• γ for circular equilibrium is closer to the realistic geom-
etry than the s− α one, in agreement with [8];

• both collisions and 2% carbon have a stabilising effect
(in both ITG and sub-dominant TEM).

The stabilization effect is stronger with the addition of
collisions, in particular for lower kθρs, where most of the
transport occurs.
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FIGURE 4: Timeseries of particle (left) and heat (right) fluxes for

NL GENE simulations with s−α, case A and case C. Normalisation

is to the maximum of corresponding s−α case. Realistic geometry

increases transport levels (compared to s−α); extra added effects

decrease them. Both trends consistent with the linear eigenvalue

spectra.

COMPARISON BETWEEN FLUID AND GK RESULTS: The re-
sults of QL GK simulations were compared with the fluid
model for different values of kθρs. The equilibrium model
was seen to have a definite effect on the PF scaling with Z.
For the fluid model the s − α equilibrium was considered,
with shaping effects due to elongation included.

• In both fluid and GK the PF is reduced when using a
more realistic equilibrium

• fluid model gives higher PFs than GK, as also seen pre-
viously [6, 9, 10].
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FIGURE 5: Scaling of impurity peaking factor (PF ) with impurity

charge (Z). Left: QL, effects of added realism. Right: NL GENE

cases A and C, compared with fluid results (including elongation

effects and also collisions). Error-bars indicate standard error of

±σ.

Result of the added effects on the PF :

• in GK (QL and NL) lowering for low Z and increase at
high Z, when adding collisions + 2% C;

• in fluid model, lowering with collisions for low Z; no
noticeable effect at higher Z.

Effects of sheared toroidal rotation on impurity PF were
also studied. In realistic geometry this lead to a reversal
of the impurity pinch at γE×B = 0.23 for both low and high
Z. For this JET discharge the shearing rate is too small and
the effect is not included in NL GK simulations.

⇛ For the effect of sheared rotation on the PF and pre-
dictive simulations of JET discharges see P4.137 (D. Teg-
nered et al.)
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