Production and examination of oxygen carrier materials based on manganese ores and Ca(OH)$_2$ in chemical-looping with oxygen uncoupling (CLOU)

Nasim M. Pour*
Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, S-412 96 Goteborg, Sweden

Golnar Azimi
Department of Chemical and Biological Engineering, Division of Environmental Inorganic Chemistry, Chalmers University of Technology, S-412 96 Goteborg, Sweden

Henrik Leion
Department of Chemical and Biological Engineering, Division of Environmental Inorganic Chemistry, Chalmers University of Technology, S-412 96 Goteborg, Sweden

Magnus Rydén
Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, S-412 96 Goteborg, Sweden

Anders Lyngfelt
Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, S-412 96 Goteborg, Sweden

* Correspondence concerning this article should be addressed to Nasim Pour: nasim.pour@student.unimelb.edu.au
Abstract:

This study concerns production of oxygen-carrier particles using six different manganese ores. The ores were made to react with Ca(OH)$_2$ at elevated temperature, forming calcium manganite. The method utilized to manufacture particles was extrusion. Methane and syngas conversion and oxygen release of the samples in inert atmosphere were investigated. The oxygen carrier based on South African (B) manganese ore, showed good methane conversion and was able to transfer oxygen corresponding to 1.5% of its mass during reduction with gaseous fuel. All examined oxygen carriers were capable of converting syngas completely. The ability to release gaseous oxygen was examined by adding wood char in a stream of nitrogen for four selected samples sintered at 1300°C/6 hours. These samples released an amount of oxygen corresponding to 0.37-0.68% of their mass. The reactivity of all of the ores was improved after the proposed treatments. Reactivity results of the oxygen carrier made from South African (B) ore and Ca(OH)$_2$, sintered at 1300°C for 6 hours were the most promising. Attrition measurements with a jet cup of the oxygen carriers sintered at 1300°C/6 hours showed that all the samples made from ores were at least three times more resistant to mechanical attrition compared to particles made from synthetic Mn$_2$O$_3$. Producing feasible oxygen carriers directly from ores could potentially cut the cost of chemical-looping with oxygen uncoupling (CLOU) and have a significant impact on its competitiveness among other carbon capture technologies.

Keywords: CO$_2$ capture, Chemical-looping combustion, Chemical-looping with oxygen uncoupling, Oxygen carrier, Manganese ore, Calcium manganate
Introduction

In recent decades concerns about greenhouse gas (GHG) emissions and its effect on the global climate have increased significantly. Among GHGs, carbon dioxide is known to be the main anthropogenic factor for global warming. Burning fossil fuels, which constitutes 80-85% of the primary energy of the world, is the main source of CO\textsubscript{2} emissions today. One way to mitigate CO\textsubscript{2} emissions from combustion of fossil fuels is carbon capture and storage (CCS). Here CO\textsubscript{2} is sequestered from the flue gas produced in combustion and stored in geological formations 1.

Chemical looping combustion (CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU)

Chemical-looping combustion (CLC) is an emerging method to capture carbon dioxide. A CLC system includes two reactors, a fuel reactor to which fuel is fed and where it reacts with the oxygen of the oxygen carriers (reaction 1), and an air reactor, in which the reduced oxygen carrier is re-oxidized by air (reaction 2). The oxygen carrier normally consists of metal oxide particles.

Fuel reactor: \((2n + m) \text{Me}_x\text{O}_y + \text{C}_n\text{H}_{2m} \rightarrow (2n + m) \text{Me}_x\text{O}_{y-1} + m\text{H}_2\text{O} + n\text{CO}_2\) \hspace{1cm} (1)

Air reactor: \(2\text{Me}_x\text{O}_{y-1} + \text{O}_2 \leftrightarrow 2\text{Me}_x\text{O}_y\) \hspace{1cm} (2)

The total amount of heat released from the entire system (reaction 1 & 2) is equal to the heat released from the ordinary combustion. In CLC the circulating oxygen carrier transfers oxygen from the air reactor to the fuel reactor (see figure 1). Thereby, CO\textsubscript{2} and H\textsubscript{2}O are kept separate from other flue gas components, primarily N\textsubscript{2} and excess O\textsubscript{2}. Accordingly, the necessity of other gas separation units that are costly and energy consuming is eliminated 2. Moreover, since air and fuel in CLC are added to the separate reactors, combustion takes place without flame, so NOx emission due to thermal formation of NO is naturally avoided.

For the use of solid fuels in CLC a gasification stage in which the solid fuel is gasified with steam or CO\textsubscript{2} is necessary 3. This step often slows down the overall reaction rate.
and thereby increases the required residence time of fuel and reactor size, and thus the overall costs. Another option is chemical-looping with oxygen uncoupling (CLOU). CLOU includes three steps; one in the air reactor and two in the fuel reactor. In first step in the fuel reactor, the oxygen carrier releases oxygen as gas-phase O_2 (reaction 3). In the second step the gaseous O_2 reacts with combustible gas or char (reactions 4a and 4b). The third step is the same as in CLC where reduced oxygen carrier is oxidized with oxygen in the air reactor (reaction 5).

In fuel reactor:

\[
Me_xO_y \leftrightarrow Me_{x-2}O_{y-2} + O_2(g) \quad (3)
\]

\[
C_nH_{2m} + (n + \frac{m}{2})O_2(g) \rightarrow nCO_2 + mH_2O \quad (4a)
\]

\[
C + O_2 \rightarrow CO_2 \quad (4b)
\]

In air reactor:

\[
O_2(g) + Me_{x}O_{y-2} \leftrightarrow Me_{x}O_{y} \quad (5)
\]

The net reaction of the CLOU reactions 3-5 is the same as the reaction for normal combustion or for CLC. Even though CLOU was first suggested for solid fuel application it can also be used for gaseous fuels.

![Figure 1- Schematic representation of the chemical-looping combustion process](image-url)
Oxygen carriers

Oxides of transition metals like copper, manganese, nickel and iron have been examined by many CLC researchers \(^5\)\(^-\)\(^9\). The selection of oxygen carriers depends on the fuel and the operational conditions of the system. High reactivity in reduction and oxidation reactions, resistance to fragmentation, attrition and agglomeration, low production cost, low environmental impacts and high oxygen transfer capacity are some of the criteria that feasible oxygen carrier materials should fulfill.

Manganese oxide is a good oxygen carrier candidate due to its low price, comparably high reactivity and non-toxicity. It also shows higher oxygen transport capacity in comparison with other low-cost candidates like iron \(^2\). Several support materials have been investigated to improve the reactivity and mechanical strength of pure manganese oxides. Johansson et al. \(^10\) investigated ZrO\(_2\) as support for Mn\(_3\)O\(_4\). Manganese-based oxygen carriers have been considered for CLOU applications as well. For instance, the CLOU effect of Fe-Mn-based oxygen carriers with gaseous and solid fuel in a small fluidized-bed batch reactor was tested by Azimi et al. \(^11\), \(^12\). Shulman et al. \(^13\) examined manganese oxides with MgO and optional addition of TiO\(_2\) or Ca(OH)\(_2\). Adding Ca(OH)\(_2\) to manganese oxide leads to formation of perovskite phases of Ca-Mn-O (CaMnO\(_{3-\delta}\)). CaMnO\(_{3-\delta}\) is known to have high oxygen capacity and usually maintains its perovskite structure even at highly oxygen deficient conditions \(^14\), \(^15\). This could give good CLOU properties. Rydén et al. \(^16\) examined the CLOU effect of the perovskite CaMn\(_{0.875}\)Ti\(_{0.125}\)O\(_3\), which showed decent release of gas phase oxygen. Recent experiments on CaMn\(_{0.9}\)Mg\(_{0.1}\)O\(_{3-\delta}\) in Chalmers 10 kW\(_{th}\) continuously operating reactor, have shown very promising results in terms of natural gas conversion and mechanical stability \(^17\).

There are few studies with actual operation experiences with manganese ores, but data available indicate large loss of material by attrition \(^18\), whereas operation with calcium manganite shows very low loss of fines \(^17\).

In recent years the possibility of using manganese ores as oxygen carriers has been examined. Although manganese ore contains impurities that can affect its physical and chemical behaviour during redox cycles, it is much cheaper than pure, synthetic manganese oxides and in some cases has shown promising results \(^19\).
Cost of production and cost of raw materials are the two main factors in the total oxygen carrier cost. This paper examines whether it is possible to successfully manufacture feasible oxygen carrier particles using a very cheap raw material, i.e. manganese ore. The price of ores, metals and oxides change considerably between the years, thus manganese ore cost has varied between 100 and 800 €/tonne in ten years\(^{20}\) and an example of a recent index price is 5.15 \$/dmtu which corresponds to 180 €/tonne\(^{21}\), while industrial grade manganese oxide (\(\approx 99\%\) purity) could cost e.g. 1500 €/tonne. Raw materials with higher purity are even more expensive. Costs for material production are uncertain but are likely within the range 500-5000 €/tonne, i.e. excluding raw materials. As an example there are spray-dried materials being sold for around 1000 €/tonne. Thus, it is clear that the use of low cost raw materials potentially could reduce the over-all cost of a manufactured oxygen carrier quite significantly. The effect of oxygen carrier cost on the CO\(_2\) capture cost is given by equation 6.

\[
CCC_{OC} = \frac{C_{OC} \cdot SI}{SE \cdot \tau} \quad (6)
\]

Where \(CCC_{OC}\) is the Cost of CO\(_2\) Capture caused by the oxygen carrier in €/tonne CO\(_2\) captured, \(C_{OC}\) is the cost of oxygen carrier in €/tonne, SI is the solids inventory in tonne/MW\(_{th}\), SE is the specific emission in tonne CO\(_2\)/MWh\(_{th}\) and \(\tau\) is the average lifetime of the oxygen carrier. In Table 1, two examples of the effect of costs of oxygen carriers on CO\(_2\) capture costs are given in order to illustrate the relation between material cost and CO\(_2\) capture cost. The numbers for specific emissions is simply given by the heating value and the carbon content of the fuel. The solids inventory used corresponds to what is expected to be needed to attain high conversion, based on typical reactivity of oxygen carriers as well as experimental experiences in pilot operation. The estimated lifetime of oxygen carrier in gas is based on estimated lifetimes from pilot operation, e.g. Källén et al.\(^{17}\). For solid fuels the lifetime is assumed to be much shorter based on the higher losses due to fuel ash. Finally, for the oxygen carrier cost it is assumed that a low-cost manganese ore in combination with even less costly lime (Ca(OH)\(_2\)), are produced at a fairly low cost. Thus, for natural gas where a long lifetime is expected the effect of material cost on the CO\(_2\) capture cost is likely to be low. For coal on the other hand it is more uncertain whether
manufactured materials would be suitable. At present there are no safe estimations with respect to possible lifetime of oxygen carriers with solid fuels. But with a low cost of particle manufacture and a lifetime of several hundred hours, manufactured materials could be a possibility also for coal.

Table 1. Examples of CO₂ capture costs related to oxygen carrier materials

<table>
<thead>
<tr>
<th></th>
<th>Gas</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE, tonne/MW₂₉₅₀₀</td>
<td>0.2</td>
<td>0.334</td>
</tr>
<tr>
<td>SI, tonne/MWhₑ₅₀₀</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>τ, h</td>
<td>5000</td>
<td>300</td>
</tr>
<tr>
<td>𝐶_{OC}, €/tonne oxygen carrier</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>CCC_{OC}, €/tonne CO₂</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Most of the research on oxygen carriers so far has been dedicated to manufactured materials using pure raw materials. Lately, very promising results have been obtained with calcium manganite materials and the purpose of this paper is to see whether oxygen carrier material costs can be reduced by the use of low-cost raw materials. The potential advantage of manganese ores with calcium added, as compared to the original ores, would be much improved performance as well as much longer lifetime.

Oxygen carrier manufacturing methods

The method of material preparation has significant impact on the oxygen carrier properties. Shapes of particles, distribution of active metal oxide on the support material, reactivity and mechanical strength during redox cycles are some of the parameters that are influenced by the preparation method. Another important factor is the cost of manufacturing that can be a significant share of the cost of the process. Particle manufacturing normally include three major steps.

1- Mixing and homogenization; to homogenize the mixture several methods are utilized. In some methods, including milling and rotary evaporation, powders of metal oxide and support materials are mixed mechanically. In other mixing techniques like precipitation, dissolution, sol-gel and solution combustion, the raw materials are mixed in an aqueous solution.

2- Formation of particles; in this step particles are formed by dispersing the well-homogenized slurry into hot air/nitrogen (Spray drying and Spin-flash drying) or into liquid nitrogen (freeze granulation), or by extruding the homogenized dough of
materials in a cylinder syringe (extrusion). Impregnation is another method in which mixing and formation of particles somehow occur simultaneously. Impregnation typically involves distribution of active material on the surface of highly porous particles 6, 7, 22, 23.

3- Calcination of particles; in order to harden the particles and ensure their chemical stability and formation of the desired phases they are calcined at high temperature. This is done in the same way regardless of the previous steps.

Scope

The aim of this work is to show that it is feasible to manufacture highly reactive oxygen-carrier particles of CaMnO$_{3-\delta}$ perovskite structure from cheap raw materials such as manganese ores and calcium hydroxide for CLOU applications. The materials were prepared by a simple extrusion method. In addition to the ability to release gas phase O$_2$, reactivity with methane, syngas and wood char in CLC and CLOU applications, mechanical stability of the resulting particles were investigated.

Experimental

Oxygen carrier manufacturing method

The oxygen carriers were prepared by a simple extrusion method. Manganese ore and Ca(OH)$_2$ were mixed mechanically. All ores contain some iron and it is very likely that iron substitutes for manganese in reacting with Ca(OH)$_2$. In order to assure formation of the perovskite phase of CaMnO$_{3-\delta}$, a stoichiometric amount of Ca(OH)$_2$ was therefore added relative to the sum of Mn+Fe in the ore. Distilled water was added to the mixture of Mn-ore and Ca(OH)$_2$ powders (particle size< 90 µm and 46 µm, respectively). To mix the ingredients thoroughly wet ball milling was applied. Thus, the wet mixture was stirred in an alumina jar with small stainless steel balls for 2 hours. The wet homogenized slurry was put into an oven set to 200°C to be dried overnight. In order to get the best result in terms of viscosity, particle size and particle distribution, polyvinyl alcohol (Alfa–Aesar, average molecular weight of 25000) as binder agent, soluble starch ((C$_6$H$_{10}$O$_5$)$_n$, Merck) as an auxiliary binder, LAROSTAT 519 (quaternary ammonium compound) as dispersant, ammonium hydroxide as peptizing agent and distilled water as solvent were added to the dried mixture. The
well-mixed dough was extruded using a hand-held single-screw manual extruder. The extrudates were collected on a stainless steel plate and put into an oven set to 200°C to be dried overnight. A more elaborate version of this method, using rotary evaporator to homogenize the mixture, has been used before to manufacture ceria-supported oxygen carriers 24.

In order to find the particles with best reactivity several samples from each Mn-ore were made and calcinated at different temperature/duration. Detailed information about different samples is presented in Table 2. The designation of the samples follows a general pattern, in which three or four letters represent an abbreviation of the Mn-ore name, the following four digits show sintering temperature and the last digits present the sintering duration in hours. A reference oxygen carrier was made from synthetic manganese oxide (Mn₂O₃) and Ca(OH)₂ denoted as SMN.

Table 2. Denotation and calcination schemes of manufactured samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>ID</th>
<th>Calcination temperature (°C)/duration(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn₂O₃/ Ca(OH)₂</td>
<td>SMN13006</td>
<td>1300/6</td>
</tr>
<tr>
<td></td>
<td>SMN12006</td>
<td>1200/6</td>
</tr>
<tr>
<td>Gabon Mn-ore/ Ca(OH)₂</td>
<td>GBN13006</td>
<td>1300/6</td>
</tr>
<tr>
<td></td>
<td>GBN12006</td>
<td>1200/6</td>
</tr>
<tr>
<td>East European Mn-ore/ Ca(OH)₂</td>
<td>ESE13006</td>
<td>1300/6</td>
</tr>
<tr>
<td></td>
<td>ESE12506</td>
<td>1250/6</td>
</tr>
<tr>
<td></td>
<td>ESE120012</td>
<td>1200/12</td>
</tr>
<tr>
<td></td>
<td>ESE12006</td>
<td>1200/6</td>
</tr>
<tr>
<td>South African(A) Mn-ore/Ca(OH)₂</td>
<td>SAFA13006</td>
<td>1300/6</td>
</tr>
<tr>
<td></td>
<td>SAFA120012</td>
<td>1200/12</td>
</tr>
<tr>
<td></td>
<td>SAFA12006</td>
<td>1200/6</td>
</tr>
<tr>
<td>South African(B) Mn-ore/Ca(OH)₂</td>
<td>SAFB13006</td>
<td>1300/6</td>
</tr>
<tr>
<td></td>
<td>SAFB12506</td>
<td>1250/6</td>
</tr>
<tr>
<td></td>
<td>SAFB12006</td>
<td>1200/6</td>
</tr>
<tr>
<td>Brazilian Mn ore/Ca(OH)₂</td>
<td>BRZ13006</td>
<td>1300/6</td>
</tr>
<tr>
<td></td>
<td>BRZ120012</td>
<td>1200/12</td>
</tr>
<tr>
<td>Egyptian Mn ore/Ca(OH)₂</td>
<td>EGP13006</td>
<td>1300/6</td>
</tr>
</tbody>
</table>
After calcination, extrudates were crushed and sieved. Particles in the size range of 125-250 µm were collected and used in the experiments. In this study oxygen carriers manufactured from six different Mn-ore were examined. Each Mn-ore has its own composition and impurities, which could lead to formation of complex chemical phases. Consequently, each ore shows different physical and chemical behaviour during CLC/CLOU processes. In Table 3 composition analysis of the all used manganese ores is presented.

Table 3. Elemental Composition analysis of manganese ores in wt%

<table>
<thead>
<tr>
<th>Element</th>
<th>Egyptian</th>
<th>East European</th>
<th>Gabon</th>
<th>South African A</th>
<th>South African B</th>
<th>Brazilian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EGP</td>
<td>ESE</td>
<td>GBN</td>
<td>SAFA</td>
<td>SAFB</td>
<td>BRZ</td>
</tr>
<tr>
<td>Si</td>
<td>2.13</td>
<td>7.07</td>
<td>5.19</td>
<td>0.84</td>
<td>2.63</td>
<td>5.84</td>
</tr>
<tr>
<td>Al</td>
<td>0.58</td>
<td>0.24</td>
<td>3.26</td>
<td>0.20</td>
<td>0.17</td>
<td>4.05</td>
</tr>
<tr>
<td>Ca</td>
<td>10.15</td>
<td>6.76</td>
<td>0.37</td>
<td>4.12</td>
<td>5.42</td>
<td>0.21</td>
</tr>
<tr>
<td>Fe</td>
<td>15.95</td>
<td>5.76</td>
<td>4.92</td>
<td>18.61</td>
<td>13.08</td>
<td>5.61</td>
</tr>
<tr>
<td>K</td>
<td>0.10</td>
<td>0.35</td>
<td>0.37</td>
<td>0.07</td>
<td>0.04</td>
<td>0.52</td>
</tr>
<tr>
<td>Mg</td>
<td>0.93</td>
<td>1.71</td>
<td>0.01</td>
<td>0.47</td>
<td>0.65</td>
<td>0.40</td>
</tr>
<tr>
<td>Mn</td>
<td>37.80</td>
<td>48.26</td>
<td>49.11</td>
<td>44.30</td>
<td>49.03</td>
<td>53.29</td>
</tr>
<tr>
<td>Na</td>
<td>0.41</td>
<td>0.32</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>P</td>
<td>0.06</td>
<td>0.03</td>
<td>0.50</td>
<td>0.04</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Ti</td>
<td>0.03</td>
<td>0.03</td>
<td>0.10</td>
<td>0.02</td>
<td>0.01</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Experimental set up

All the experiments were performed in a straight fluidized bed reactor with a total length of 820 mm, with a quartz porous plate of 22 mm in diameter placed 370 mm from the bottom. To make sure that the quartz reactor is completely inert and doesn’t take part in the reactions blank test using sand as the bed material were conducted. After passing 450 mL/min of methane at 950°C no sign of any reaction or oxygen release were observed. Besides, direct reactions between the quartz reactor and manganese are deemed as unlikely in this system as the reactor is made from nonporous and unreactive SiO₂ (quartz) with extremely small specific surface area.

Two Pentronic CrAl/NiAl thermocouples enclosed in quartz tubes inside the reactor measured the temperature 5 mm under and 10 mm above the porous quartz plate. The temperature presented in the paper is the set-point temperature, i.e. the temperature at
the beginning of the reduction, measured by the upper thermocouple. The bed height in the stationary condition was measured to be in the range of 20-25 mm, when it is fluidizing its height increases up to 25-30 mm. Thus, thermocouple would be in the right place to measure the bed temperature. This is proven by observing bed particles stick to the tip of the tube holding the thermocouple and by opening the oven just after the experiments was terminated.

For experiments with inert gas and gaseous fuels, a sample of 10 g of oxygen carriers with the size of 125-250 µm was placed on the porous plate. The reactor was then heated up to 900°C in a 900 mL/min flow of 5% O₂ in nitrogen (oxidation period). When particles were adequately oxidized they were fluidized by 600 mL/min of pure N₂ (inert period). The particles were exposed to consecutive cycles of oxidizing and inert periods at a temperature of 900°C. For reactivity evaluation, the particles were exposed to 450 mL/min of CH₄ or syngas (50/50% H₂/CO) at 950°C. The oxidation and the reduction periods were separated by 60 sec of inert periods, in which N₂ is passed through the reactor. These inert periods prevent back-mixing of the product gases of the CH₄ or syngas period and oxygen of the oxidation period. Details of the experimental scheme are presented in Table 4. The methane cycles were repeated until a stable reactivity was observed.

Table 4. Experimental scheme for gaseous fuel; ox, in, and red represents oxidation, inert and reduction respectively

<table>
<thead>
<tr>
<th>No of cycles</th>
<th>Reducing gas</th>
<th>F_{ox} (mL/min)</th>
<th>F_{in} (mL/min)</th>
<th>F_{red} (mL/min)</th>
<th>t_{in} (s)</th>
<th>t_{red} (s)</th>
<th>T_{ox}</th>
<th>T_{red}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Nitrogen</td>
<td>900</td>
<td>600</td>
<td>-</td>
<td>360</td>
<td>-</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>3-6</td>
<td>Methane</td>
<td>900</td>
<td>600</td>
<td>450</td>
<td>60</td>
<td>20</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>3</td>
<td>Syngas</td>
<td>900</td>
<td>600</td>
<td>450</td>
<td>60</td>
<td>80</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>3</td>
<td>Nitrogen</td>
<td>900</td>
<td>600</td>
<td>-</td>
<td>360</td>
<td>-</td>
<td>900</td>
<td>900</td>
</tr>
</tbody>
</table>

For solid fuel experiments, a sample of 10 g oxygen carrier particles with a size of 125–250 µm was placed onto the porous plate and heated to the temperature of interest (950°C) in a flow of 1000 mL/min of a gas mixture consisting 5% O₂ and 95% N₂. The particles were then alternatingly exposed to this O₂/N₂ mixture and a reducing period in which 0.1 g of wood char was introduced to the bed of oxygen carrier particles. During reducing periods the reactor was fluidized with 900 mL/min of pure N₂. Further, 300 mL/min of inert sweep gas (N₂), was also introduced to the
system at the top of the reactor together with the solid fuel throughout the reducing period to ensure that the pulverized fuel did not get stuck in the feed line. This sweep gas did not enter the hot reaction zone of the reactor. The oxidation and the reduction periods were separated by an inert period with 900 mL/min of pure N₂ for 60 s. The solid fuel used for these tests was Swedish wood char with 11% volatiles, 3% moisture and 3% ash.

Superficial gas velocity during oxidation periods in the solid fuel experiments with 1000 mL/min air (5% O₂) at 950°C is 22 cm/s. Minimum fluidization velocity of the samples is about 0.2-0.5 cm/s. Using formula presented by Kunii and Levenspiel terminal velocity of tested particles would be around 50 cm/s. This places the superficial velocity used in the reactor safely between the minimum and terminal fluidization velocities.

All the exhaust gases from the reactor passed through an electric cooler and after condensation of H₂O the flue gas was led to a gas analyzer (Rosemount NGA-2000), which measures the concentration of CO, CO₂, H₂, O₂ and CH₄.

From high frequency measurements of the pressure drop it was possible to see if the bed was fluidizing or not. Highly fluctuating pressure drop is interpreted as stable fluidization. In contrast, when the bed is defluidized there are no fluctuations in the measured pressure drop. A schematic description of the experimental set up can be found in Figure 2.

Figure 2- Schematic layout of the laboratory setup.
Data Evaluation

Oxygen carrier’s conversion is evaluated by using mass based conversion, \(\omega \), which is defined as the actual mass of oxygen carrier, \(m \), divided by the mass of oxygen carrier in the most oxidized state, \(m_{ox} \) (equation 7)

\[
\omega = \frac{m}{m_{ox}} \quad (7)
\]

When CH\(_4\) (equation 8) or syngas (equation 9) is used as fuel, \(\omega \) is calculated as a time integral using measured outgoing gas concentrations.

\[
\omega_i = \omega_{i-1} - \int_{t_o}^{t_i} \frac{\dot{n}_{out}}{m_{ox}} M_{\omega} (4x_{CO_2} + 3x_{CO} - x_{H_2}) \, dt \quad (8)
\]

\[
\omega_i = \omega_{i-1} - \int_{t_o}^{t_i} \frac{\dot{n}_{out}}{m_{ox}} M_{\omega} (2x_{CO_2} + x_{CO} - x_{H_2}) \, dt \quad (9)
\]

In the N\(_2\) periods \(\omega \) is calculated as a time integral of outgoing O\(_2\) concentration (equation 10).

\[
\omega_i = \omega_{i-1} - \int_{t_o}^{t_i} \frac{2\dot{n}_{out}}{m_{ox}} x_{O_2} \, dt \quad (10)
\]

In the solid fuel experiments the mass based conversion during reduction with wood char is described by means of equation 11.

\[
\omega_i = \omega_{i-1} - \int_{t_o}^{t_i} \frac{2\dot{n}_{out}}{m_{ox}} M_{\omega} (x_{CO_2} + 0.5x_{CO} + x_{O_2} - \frac{O_2}{C}_{fuel} \times (x_{CO_2} + x_{CO} + x_{CH_4})) -

\left[\left(\frac{H_2}{C} \right)_{fuel} \times (x_{CO_2} + x_{CO} + x_{CH_4}) \right] - 0.5x_{H_2} - x_{CH_4} \, dt \quad (11)
\]

CO\(_2\) yield (\(\gamma \)) is defined as the fraction of CO\(_2\) in the outlet gas flow divided by the sum of the outgoing carbon-containing gases on dry basis (equation 12). By this definition a gas yield of 1 means complete conversion of the gas fuel to CO\(_2\).
\[
\gamma = \frac{x_{CO_2}}{x_{CH_4} + x_{CO_2} + x_{CO}} \tag{12}
\]

In the above equations, \(\omega_i \) is the mass-based conversion at a given time during a specific period \(i \) (oxidation or reduction), and \(\omega_{i-1} \) is the mass-based conversion at the end of the previous period. \(t_0 \) and \(t_1 \) are the times for the start and the end of the period. \(x_{CO_2}, x_{CO}, x_{H_2}, x_{CH_4} \) and \(x_{O_2} \) represent molar fraction of the gases \(CO_2, CO, H_2, CH_4 \) and \(O_2 \). \(M_O \) represents the molar mass of oxygen, which is 32 g/mole, and \(n_{out} \) represents the molar flow rate of the exhaust gas after condensation of \(H_2O \). \((O_2/C)_{fuel}\), \((H_2/C)_{fuel}\) are the estimated molar ratios of oxygen and hydrogen over carbon in the fuel.

Results & Discussion

Gas conversion

Figure 3 presents the gas yield, \(\gamma \), as a function of oxygen carrier conversion, \(\omega \), during reduction with \(CH_4 \) as fuel at 950°C for the six pure, untreated ores and the five samples calcined at 1300°C/6h.

As illustrated in Figure 3-a, East European ore, ESE, which released \(O_2 \) equal to 1 wt\%, showed better methane conversion than other ores. The sample from synthetic manganese oxide, SMN13006, had the highest conversion (with average gas yield of 90\% during \(CH_4 \) period) - see Figure 3-b. This is not unexpected and could be explained by the absence of impurities that results in complete formation of perovskite \(CaMnO_3-\delta \). Among all the Mn-ore-based samples, South African (B) sample, SAFB13006, particles with 1.5 wt\% oxygen release and 80\% average \(CO_2 \) yield showed the highest \(CH_4 \) conversion. On the other hand, Gabon manganese ore-based sample, GBN13006, with only 0.25 wt\% oxygen release had the lowest \(CH_4 \) conversion. Comparing figures 3a and 3b one could see that adding calcium hydroxide to the ores in all the cases enhanced their reactivity for methane conversion. The reactivity improvement was the greatest for South African ores (SAFA & SAFB). The sample based on Brazilian ore (BRZ13006) melted during calcination at 1300°C/6h. Besides, the Egyptian ore-based sample sintered at
1300°C/6h (EGP13006) was very soft and defluidized permanently during heat up. Thus, the corresponding graphs of these two samples are not presented in the Figure 3-b.

Figure 3- Gas yield as a function of oxygen-carrier conversion during reduction with CH₄ as fuel at 950°C for (a) pure, untreated Mn ores and (b) the five samples calcined at 1300°C/6 h.

Gas conversion versus oxygen carrier conversion is shown in Figure 4 for samples with different sintering conditions. As seen in Figure 4-a, among the oxygen carriers based on South African (B) ore, the CO₂ yield of the sample sintered at 1300°C/6h, SAFB13006, is distinctively higher than the other samples sintered at lower temperatures. Particles of SAFB13006 could release 1.4wt% oxygen and convert CH₄ with an average gas yield of 85%. Seemingly, for these particles increased sintering temperature improved their ability to convert methane. On the other hand, as shown in Figure 4-b all South African (B) based oxygen carriers show very similar reactivity in terms of syngas conversion. In fact all of them were able to convert syngas completely. The main phase of these samples was detected as CaMnₓ(1-x)FeₓO₃, as will be discussed later. All the SAFBs showed stable fluidization behaviour during the tests.

For the SAFAs particles, methane and syngas conversion does not seem to be influenced by changing the calcination scheme. The South African (A) based oxygen
carriers sintered at 1300°C/6h, 1200°C/12h and 1200°C/6h (SAFA13006, SAFA120012 and SAFA12006 respectively) had very similar gas conversion characteristics (see Figure 4). All the SAFA samples showed stable fluidization behaviour during the experiments and the main detected phase in all the cases was CaMn_{(1-x)}Fe_xO_3.

Figure 4- Gas yield as a function of oxygen-carrier mass-based conversion during reduction with (a) CH_4 as fuel and (b) syngas at 950°C.

As seen in Table 2, the only ore examined at all sintering schemes is the East European ore. As shown in Figure 4-a, CH_4 conversion of the East European ore–based samples calcined at 1300°C/6h and 1250°C/6h (ESE13006 and ESE12506) with Δω equal to 1% and average γ of 0.65, is almost the same. These two samples showed slightly higher reactivity than ESE120012. The ESE-samples sintered at 1200°C (ESE120012 and ESE12006) had tendency to defluidization during fuel cycles. In case of ESE12006 defluidization was so severe that no experiments with fuel could be done.

The Gabon ore-based samples, GBNs, showed the opposite behaviour to increased calcination temperature; as is illustrated in Figure 4a, GBN13006, calcined at 1300°C, had a lower ability to convert CH_4 and syngas than GBN12006 (sintered at 1200°C). In fact GBN12006 could release two times as much oxygen by weight compared to
GBN13006. However, both these Gabon ore-base samples have lower reactivity during CH\textsubscript{4} reduction compared to the other samples. Despite low methane conversion GBN12006 shows complete syngas conversion.

By comparing the CH\textsubscript{4} and syngas conversion graphs of the Brazilian ore based sample sintered at 1200°C/12h (BRZ120012), it is seen that although this oxygen carrier had the lowest CH\textsubscript{4} conversion among all the tested samples it showed complete syngas conversion.

Oxygen uncoupling behaviour

For all samples the release of oxygen in inert atmosphere by exposing oxygen carriers to N\textsubscript{2} was examined. Particles with high gaseous O\textsubscript{2} release during N\textsubscript{2} periods, the so-called CLOU effect, can enhance solid fuel conversion 26.

Figure 5 presents O\textsubscript{2} release at 900°C as a function of oxygen carrier mass-based conversion, \(\omega\), for the six pure, untreated manganese ores (a) and the five samples with Ca(OH)\textsubscript{2} sintered at 1300°C/6h (b). As shown, oxygen release level in the case of all the ores goes to zero. Their capability to release gas-phase O\textsubscript{2} seems to be poor, with a very small \(\Delta\omega\) (less than 0.1%) during the N\textsubscript{2} period (see Figure 5 a). On the other hand, samples presented in Figure 5 b could release O\textsubscript{2} equal to 0.4 wt% during the N\textsubscript{2} periods.
Comparatively, the sample made from synthetic manganese oxide, SMN13006, releases O_2 at higher partial pressure ($P_{O_2}=0.6\%$). In spite of having different CH_4 conversion properties, SAFA13006, SAFB13006 and ESE13006 have almost the same O_2 release level, equal to 0.4 wt% at a stable P_{O_2} of 0.3%. Release of oxygen from the Gabon ore-based sample, GBN13006 (with only 0.2 wt %) was lower than for the other samples.

As shown in Figure 5b, the mass-based conversion difference, $\Delta \omega$, of SAFA13006, SAFAB13006 and ESE13006 during the 360 seconds of N_2 period is approximately 0.4 %. On the other hand, $\Delta \omega$ of the different oxygen carriers in CH_4 periods is considerably higher, 0.5%-2.3% (see Figure 3b). As illustrated in Figure 3, during the 20 seconds of CH_4 addition, $\Delta \omega = 1.5\%$ for SAFB13006, but for ESE13006 $\Delta \omega = 0.75\%$. So, all the samples lost much less oxygen during N_2 periods than in CH_4 cycles. This is partly explained by the low concentrations of oxygen that make the release slow. It is also evident from Figure 5b that most of the oxygen carriers still release O_2 after 360 s. Just as for CH_4 conversion the samples made of Gabon Mn-ore (GBNs) shows the lowest oxygen release.
Solid fuel conversion

Solid fuel tests using wood char was conducted with the samples with the highest oxygen release during N₂ periods at 900°C i.e. SMN13006, SAFB13006, SAFA13006 and ESE13006. Figures 6a-d illustrate the outlet gas concentrations as a function of time during the reducing period with wood char at 950°C.

When the fuel is introduced to the reactor peaks of CH₄ and CO can be seen in the beginning of the reaction due to devolatilization of the fuel. Some volatiles react with the oxygen carrier and CO₂ increases rapidly. For all of the three oxygen carriers the peak value for CO₂ is almost the same as the CO and higher than the CH₄ peak. The oxygen concentration falls to zero as the fuel conversion consumes all O₂ released. Because the fluidizing gas is nitrogen there is no or very little gasification, so after devolatilization is finished, the remaining char can only be converted by reaction with oxygen released from the oxygen carrier. Therefore the CO₂ is a measure of oxygen release.
Figure 6—Concentrations for the reduction for a cycle with 0.1 g of Swedish wood char in 10 g of (a) SMN13006, (b) SAFB13006, (c) SAFA13006, and (d) ESE13006 oxygen carriers at 950°C. The fluidizing gas in reduction is pure nitrogen.

Figure 7 illustrates the mass-based conversion of the four oxygen carriers with bed mass of 10 g as a function of time during the reduction with N₂ (60 sec) followed by addition of 0.1 g wood char at 950°C. Calculating the Δω when ω_{t=0} is the mass-based conversion of particles at the end of oxidation which is assumed to be equal to 1 gives a better understanding of the ability of the oxygen carriers to release oxygen at
reducing atmosphere at 950°C. In this case, \(\Delta \omega \), of SMN13006, SAFA13006, SAFB13006 and ESE13006 would be 1.1%, 0.68%, 0.62% and 0.37%, respectively (see Figure 7). The fuel and oxidation periods in these experiments were separated by a period of \(\text{N}_2 \), so the particles release some part of their oxygen during this \(\text{N}_2 \) period prior to the fuel period. As seen, about 20 sec (for SMN13006, SAFA13006 and SAFB13006) to 60 sec (for ESE13006) after adding fuel the reactivity graphs become steeper. That is due to the volatiles of the fuel, which accelerate the reaction rate. When devolatilization is finished the rate of reactions decreases and the slope becomes less steep. The falling time is not significantly different between the different samples, but sometimes fuel particles stick to the tube and need to be helped to fall down into the reactor by some gentle strokes. That’s why the starring time seems to differ in the figure. Important point is that during reduction with fuel, all oxygen carriers have the same general reactivity pattern, but that the different reaction kinetics differs.

![Graph showing reactivity patterns](image)

Figure 7- Oxygen-carrier mass-based conversion as a function of time during reduction with \(\text{N}_2 \) followed by addition of 0.1 g wood char at 950°C.
Oxygen carrier characterisation

The phase compositions of all oxygen carrier particles were measured using a Siemens D5000 powder X-ray diffractometer (Cu Kα1, k = 1.54056 Å). The X-ray diffractograms can be found in Figure 8. They do not reveal any considerable difference in phases formed for different calcination schemes of the same material. Besides, the X-ray diffractograms for most of the samples were almost identical, with detection of a major phase of CaMn$_{(1-x)}$Fe$_x$O$_{3-δ}$. Due to high iron oxide concentration in the Mn-ores, the tendency of Mn and Fe to form combined oxides and difficulties in distinguishing Fe from Mn in XRD, obtaining CaMn$_{(1-x)}$Fe$_x$O$_{3-δ}$ as main phase is not surprising. In contrast, in the X-ray diffractograms of the untreated manganese-ores no CaMn$_{(1-x)}$Fe$_x$O$_{3-δ}$ was found. Therefore it is clear that the perovskite structure had formed after the manufacturing procedures.

![XRD powder patterns for the fresh samples](image)

Figure 8- XRD powder patterns for the fresh samples, () CaMn$_x$Fe$_{(1-x)}$O$_3$.
Moreover, XRD results for materials made from synthetic manganese oxide (SMN13006, SMN12006) showed that the desired perovskite structure of $\text{CaMnO}_{3-\delta}$ was formed in all cases. All the experimental series were ended with an oxidation phase and x-ray diffraction measurements were performed on these oxidized used samples. No significant phase change between the fresh and such used particles was seen. To summarize, it is clear that all materials formed the expected and desired perovskite structure during calcination and maintained it over the course of the experiments.

The shape and morphology of fresh and tested oxygen carriers were observed using a FEI, Quanta 200 Environmental Scanning Electron Microscope FEG. The Scanning Electron Microscopy, SEM, image of the samples looked very similar hence only SAFB13006 is presented in Figure 9. One can see that the particles have a rough structure and their surface is porous both before and after the tests. These images show that no evident changes in porosity or shape of the particles.

![Figure 9](image.png)

Figure 9- SEM images of SAFB13006 (a) prior to, (b) after the reactivity test. The images are 600x magnified at 300 mm range.

Table 5 presents the physical properties of the used particles. The crushing strength, i.e. the force needed to fracture the particles, was examined using a Shimpo FGN-5 crushing strength apparatus. The mean value of the crushing strength for 30 particles in the range size of 180–250 µm is presented as the crushing strength value for each oxygen carrier. Measurements of the pressure drop in the reactor were used to verify
that the particles fluidized properly. Several of the oxygen carriers have high crushing strength, i.e. above 2 N. This is an indication that the particles could be sufficiently hard for practical applications.

Table 5. Physical properties of all the used samples; The fluidization behaviour is indicated by: 0 not defluidized; 1 temporarily defluidized or tendencies of defluidization; and 2 permanently defluidized during the experiment

<table>
<thead>
<tr>
<th>ID</th>
<th>Crushing strength (N)</th>
<th>Fluidization behaviour</th>
<th>(d_v) (d_{ave}) (µm)</th>
<th>(\rho_{bulk}) (kg/m³)</th>
<th>(u_{mf}) ‡ (m/s)</th>
<th>(u_{mf}) ‡ (m/s)</th>
<th>BET Surface* (m²/g)</th>
<th>(d_{pore})* (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMN13006</td>
<td>3.0</td>
<td>0</td>
<td>152</td>
<td>1077</td>
<td>0.003</td>
<td>0.003</td>
<td>0.28</td>
<td>15.2</td>
</tr>
<tr>
<td>SMN12006</td>
<td>1.9</td>
<td>0</td>
<td>152</td>
<td>941</td>
<td>0.002</td>
<td>0.002</td>
<td>0.32</td>
<td>13.5</td>
</tr>
<tr>
<td>GBN13006</td>
<td>2.2</td>
<td>0</td>
<td>152</td>
<td>1496</td>
<td>0.004</td>
<td>0.004</td>
<td>0.14</td>
<td>18.4</td>
</tr>
<tr>
<td>GBN12006</td>
<td>1.4</td>
<td>1</td>
<td>152</td>
<td>863</td>
<td>0.002</td>
<td>0.002</td>
<td>0.37</td>
<td>16.5</td>
</tr>
<tr>
<td>ESE13006</td>
<td>2.4</td>
<td>0</td>
<td>152</td>
<td>1038</td>
<td>0.002</td>
<td>0.003</td>
<td>0.24</td>
<td>17.5</td>
</tr>
<tr>
<td>ESE12506</td>
<td>1.4</td>
<td>1</td>
<td>152</td>
<td>1151</td>
<td>0.003</td>
<td>0.003</td>
<td>0.3</td>
<td>12.5</td>
</tr>
<tr>
<td>ESE120012</td>
<td>1.2</td>
<td>1</td>
<td>152</td>
<td>864</td>
<td>0.002</td>
<td>0.002</td>
<td>0.37</td>
<td>15.0</td>
</tr>
<tr>
<td>ESE12006</td>
<td>1.3</td>
<td>2</td>
<td>152</td>
<td>896</td>
<td>0.002</td>
<td>0.002</td>
<td>0.33</td>
<td>9.6</td>
</tr>
<tr>
<td>SAFA13006</td>
<td>2.9</td>
<td>0</td>
<td>152</td>
<td>1937</td>
<td>0.005</td>
<td>0.005</td>
<td>0.3</td>
<td>9.3</td>
</tr>
<tr>
<td>SAFA120012</td>
<td>1.6</td>
<td>0</td>
<td>152</td>
<td>1117</td>
<td>0.003</td>
<td>0.003</td>
<td>0.15</td>
<td>16.9</td>
</tr>
<tr>
<td>SAFA12006</td>
<td>2.2</td>
<td>0</td>
<td>152</td>
<td>1022</td>
<td>0.002</td>
<td>0.003</td>
<td>0.21</td>
<td>16.0</td>
</tr>
<tr>
<td>SAFB13006</td>
<td>2.4</td>
<td>0</td>
<td>152</td>
<td>1202</td>
<td>0.003</td>
<td>0.003</td>
<td>0.2</td>
<td>11.7</td>
</tr>
<tr>
<td>SAFB12506</td>
<td>1.9</td>
<td>0</td>
<td>152</td>
<td>1065</td>
<td>0.003</td>
<td>0.003</td>
<td>0.2</td>
<td>15.0</td>
</tr>
<tr>
<td>SAFB12006</td>
<td>1.5</td>
<td>0</td>
<td>152</td>
<td>997</td>
<td>0.002</td>
<td>0.003</td>
<td>0.27</td>
<td>13.6</td>
</tr>
<tr>
<td>BRZ13006</td>
<td>Melted</td>
<td>-</td>
<td>152</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BRZ120012</td>
<td>1.0</td>
<td>1</td>
<td>152</td>
<td>833</td>
<td>0.002</td>
<td>0.002</td>
<td>0.58</td>
<td>15.1</td>
</tr>
<tr>
<td>EGP13006</td>
<td>1.8</td>
<td>2</td>
<td>152</td>
<td>1188</td>
<td>0.003</td>
<td>0.003</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

‡ 5% Oxygen (900 ml/min of Air + Nitrogen-N₂ experiments) at 950°C
+ CH₄ 450 ml/min at 950°C
*Measured by Micrometrics Tristar

As for fluidization, ESE12006 and EGP13006 defluidized permanently and caused abortion of the experiments.

The bulk density of the fresh particles in the range size of 125–250 µm was determined by measuring the mass and volume of a sample of material. The minimum fluidization velocity \(u_{mf}\) is calculated based on the relations by Kunii and Levenspiel. The superficial velocity in the reactor system is approximately 0.17 m/s for the air reactor and 0.11 m/s for the fuel reactor with CH₄ as fuel.
The Brunauer-Emmett-Teller (BET) surface area and pore size of the particles was measured by N\textsubscript{2} adsorption using Micrometrics, ASAP 2020. As can be seen in Table 5, the different oxygen carriers all had similar BET surface area and pore size. It can also be seen that particles sintered at lower temperature had slightly larger surface area compared to those sintered at higher temperature. This is expected since sintering is strongly associated with pore closure.

Another important property of particles used as oxygen carriers is their resistance to physical attrition. In a fluidized bed, gas enters the bed via nozzles and often at very high velocities. Due to these gas jets weak particles can be fragmented and/or abraded by colliding with each other and with the reactor walls. Attrition resistance of selected samples was measured in a customized attrition test apparatus. The attrition test rig was designed based on the jet cup method, as described by Cocco et al.27. The customized apparatus consists of a 39 mm high conical cup with an inner diameter of 13 mm in the bottom and 25 mm in the top. A nozzle with an inner diameter of 1.5 mm is located at the bottom of the cup, and tangentially in relation to the cup wall. During operation, air is added with a velocity of roughly 100 m/s through the inlet nozzle, creating a vortex of particles swirling upwards through the cup. The cup design is intended to induce accelerated attrition with mechanisms similar to grid jets (due to the high gas velocity in the nozzle) and cyclones (due to the cone shaped particle vortex). The cup is located at the bottom of a 634 mm high gravitational particle-gas separator, basically a cone with a maximum diameter of 216 mm. Due to the increasing cross-section area, the gas velocity in the settling chamber is less than 1/20000 compared to the inlet. The low gas velocity in the upper part of the gravitational separator allows elutriated particles to fall back into the cup, while generated fines are allowed to exit. A particle filter with a 0.01 µm filter element is located at the top of the device. The attrition test was conducted for 1 hour and the filter was dismantled and weighted every 10 min. A detailed description of the apparatus and methodology can be found elsewhere28.

After being used in several cycles of gaseous and solid fuel experiments, samples based on South African A&B, East European and Gabon ores, in addition to sample made by synthetic Mn\textsubscript{2}O\textsubscript{3}, all sintered at 1300C/6h (SAFA13006, SAFB13006, ESE13006, GBN13006 and SMN13006) were tested in attrition test rig for 1 h.
Attrition index, which basically means the mass% of the sample which was elutriated as fines from the test rig after 1 h, of five used samples was measured and the results are presented in Figure 10. As can be seen, samples made by ores have considerably lower attrition index than the one made from synthetic manganese oxide, SMN13006. As an example particles based on the South African ore, SAFA13006, with attrition index of 3.34 mass%/h are almost 6.4 times more resistant to attrition than those made of manganese oxide, SMN13006, with attrition index of 21.3 mass%/h.

![Figure 10: Attrition index of the five used samples.](image)

To put these numbers in some perspective, the attrition index of sample raw silica sand used as bed material for fluidized bed combustion was 0.35 mass%/h, while a sample of crushed limestone for sulfur capture in fluidized bed was found to have an attrition index of 2.23 mass%/h. A sample of the commonly used oxygen carrier material, ilmenite, which had been subjected to operation with coal, had an attrition index of 5.68 mass%/h. So from a mechanical point of view, the better of the materials examined in this study had a resistance to mechanical attrition in the same order of magnitude as limestone and ilmenite.

Discussion

Among all the Mn-ore-based samples, the South African (B) materials showed the highest CH$_4$ conversion, whereas, Gabon and Brazilian manganese ore-based samples
showed the lowest methane conversion. The latter ores contain high wt% of Si and the highest wt% of Al. High concentration of Al could result in formation of manganese aluminate, which due to thermodynamic restrictions cannot be re-oxidized at the operating temperature (950°C) and pressure (P_{O2}=5%)\(^{29}\). All the tested ores showed reactivity enhancement after the described treatments. In some cases e.g. South African ores this improvement was greater.

As shown, crushing strength and attrition index did correlate to some extent, e.g. SAFA13006, ESE13006, GBN13006 and SAFB13006, the one exception being SMN13006. In general, attrition index should be a more reliable measure for the mechanical stability of the particles. Looking at the attrition and crushing strength measurement results, one can see that the mechanical stability of samples made from ores was significantly higher than that of the made from synthetic Mn\(_2\)O\(_3\), SMN13006.

Although the oxygen loss from the material during the inert period and in the period with char conversion is explained by oxygen release it cannot be excluded that a direct reaction occurs during the volatiles release. As seen from the methane peaks in Figure 6 the volatiles release occurs during 10 second or less after adding the fuel, and looking at the steep sections of the curves in Figure 7, it can be seen that the period of volatiles release corresponds to a \(\Delta \omega\) of 0.1-0.15%. There are three possibilities;

i) the lowering of the oxygen concentration caused by the volatiles is sufficient to make the oxygen carrier release oxygen more rapidly, i.e. there is no direct reaction

ii) the volatiles consume oxygen more rapidly than it can be released, and reacts directly with the oxygen carrier

iii) a mixture of both i) and ii)

It would thus be possible that part of the noted total release of 0.37-0.68% could be attributed to direct reaction, although this should be less than 0.1-0.15%. It could also be argued that even if there is some direct reaction during the period of volatiles, the material nevertheless continues to release significant amounts of oxygen after this period. This suggests that any oxygen loss during the period of volatiles caused by
direct reaction could also have been released as gaseous oxygen in absence of volatiles.

Conclusion

Oxygen carriers were manufactured from six different manganese ores with addition of calcium hydroxide using an extrusion method. Conversion of CH\(_4\) and syngas as well as O\(_2\) release of the oxygen carriers was investigated.

Among all the tested Mn-ore-based samples, oxygen carriers made from South African-B manganese-ore sintered at 1300°C/6h (SAFB13006) showed the best results in terms of oxygen release and CH\(_4\) conversion. During reduction with CH\(_4\), SAFB13006 particles could transfer oxygen corresponding to 1.5% of their mass. All the oxygen carriers were capable of converting syngas completely.

Solid fuel tests with wood char were conducted with oxygen carriers made from synthetic manganese oxide, South African-B, South African-A and East European manganese-ore sintered at 1300°C/6h. These samples released an amount of oxygen corresponding to 0.37 to 0.68% of their mass.

Attrition resistance of the samples sintered at 1300°C/6 hours was measured with a jet cup apparatus. The samples made by the ores were at least three times more resistant to attrition than particles made from synthetic Mn\(_2\)O\(_3\). These results correlated with the crushing strength measurements to a large extent. However, crushing strength is less reliable than attrition tests for predicting material integrity in actual operation.

There was some variation in composition of the studied manganese-ores, which is the likely explanation to significant differences in their properties and reactivity. This work shows that calcium manganate oxygen carriers for CLOU applications can be manufactured by low cost ores, albeit with varying loss of reactivity compared to using the synthetic raw materials.
Acknowledgement

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 291235 and also the Swedish Energy Agency, project number 32368-1.

References

10. Johansson M, Mattisson T, Lyngfelt A. Investigation of Mn₃O₄ with stabilized ZrO₂ for chemical-

12. Azimi G, Rydén M, Leion H, Mattisson T, Lyngfelt A. (MnₓFe₁₋ₓ)ₓO₄ combined oxides as oxygen
carrier for chemical-looping with oxygen uncoupling (CLOU). AIChE. 2012; 59(2),582-88.

13. Shulman A, Cleverstam E, Mattisson T, Lyngfelt A. Chemical - Looping with oxygen uncoupling
using Mn/Mg-based oxygen carriers - Oxygen release and reactivity with methane. Fuel.

14. Jorge MEM, Dos Santos AC, Nunes MR. Effects of synthesis method on stoichiometry, structure

15. Bakken E, Norby T, Stolen S. Nonstoichiometry and reductive decomposition of CaMnO₃₋δ. Solid

16. Rydén M, Lyngfelt A, Mattisson T. CaMn₀.₈₇₅Ti₀.₁₂₅O₃ as oxygen carrier for chemical-looping
combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed

17. Källén M, Rydén M, Dueso C, Mattisson T, Lyngfelt A. CaMn₀.₉Mg₀.₁O₃₋δ as Oxygen Carrier in a
Gas-Fired 10 kWth Chemical-Looping Combustion Unit. Industrial and Engineering Chemistry

18. Linderholm C, Lyngfelt A, Cuadrat A, Jerndal E. Chemical-looping combustion of solid fuels -
Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers,

19. Leion H, Mattisson T, Lyngfelt A. Use of Ores and Industrial Products As Oxygen Carriers in

20. Chuang SY, Dennis JS, Hayhurst AN, Scott SA. Development and performance of Cu-based

High-grade-prices change-direction-as-38-fall-further.html.

Conference on Safe production and use of nanomaterials. Journal of Physics: Conference Series 170,
2009.

