

Evaluation of switched Ethernet as a backbone for

in-vehicle communication

Master of Science Thesis in Computer Systems and Networks

KOSTAS BERETIS

IEROKLIS SYMEONIDIS

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, June 2013

2

The Authors grant to Chalmers University of Technology the non-exclusive right to

publish the Work electronically and in a non-commercial purpose make it accessible

on the Internet.

The Authors warrant that they are the authors to the Work, and warrant that the Work

does not contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for

example a publisher or a company), acknowledge the third party about this agreement.

If the Authors have signed a copyright agreement with a third party regarding the

Work, the Authors warrant hereby that they have obtained any necessary permission

from this third party to let Chalmers University of Technology store the Work

electronically and make it accessible on the Internet.

Evaluation of switched Ethernet as a backbone for in-vehicle communication

KOSTAS BERETIS

IEROKLIS SYMEONIDIS

© KOSTAS BERETIS, June 2013.

©IEROKLIS SYMEONIDIS, June 2013.

Examiner: JOHAN KARLSSON

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

The cover illustration is a press image provided by NXP at a press release on

November 09, 2011. Available at: http://www.nxp.com/news/press-

releases/2011/11/nxp-develops-automotive-ethernet-transceivers-for-in-vehicle-

networks.html

Department of Computer Science and Engineering

Göteborg, Sweden June 2013

http://www.nxp.com/news/press-releases/2011/11/nxp-develops-automotive-ethernet-transceivers-for-in-vehicle-networks.html
http://www.nxp.com/news/press-releases/2011/11/nxp-develops-automotive-ethernet-transceivers-for-in-vehicle-networks.html
http://www.nxp.com/news/press-releases/2011/11/nxp-develops-automotive-ethernet-transceivers-for-in-vehicle-networks.html

3

Acknowledgements

We would like to express our appreciation to Samuel Sigfridsson and Jerker Fors

from Volvo Car Corporation for their insightful advice. Also, we would like to express our

gratitude to Michael Svenstam from ArcCore for his support. Our grateful thanks are also

extended to Niklas Angebrand, Tobias Johansson and Mårten Hildell for their help during the

development of the software for the experimental boards. Furthermore, we would like to

express our deep gratitude to Professor Johan Karlsson and Postdoc researcher Risat Pathan

from Chalmers University of Technology for their helpful guidance and comments. Finally,

we would like to thank all the people both at Volvo Car Corporation, as well as ArcCore for

making us feel welcome.

4

Abstract

 Ethernet was not originally designed for real-time communication. However, the

growing need for available bandwidth combined with the fact that it is an open standard has

made the automotive industry to consider it as a possible solution for in-vehicle

communication. To enable Ethernet to be used in real-time communication, certain guarantees

(i.e. end-to-end delay bounds) have to be provided. The purpose of this thesis is to propose a

network architecture for in-vehicle communication and to develop a technique for analysis of

end-to-end delay. In order to meet this objective, both theoretical and experimental methods

were deployed. A theoretical model of the system under consideration was produced, based

on network calculus. An experimental setup, which accurately reflected an automotive

communication network, was implemented in order to evaluate the theoretical model. Three

use cases were investigated for two different maximum transmission units. The results

obtained by the experiments provided valuable feedback that redefined the analytical model.

Although the end-to-end delay bounds proved to be higher than originally anticipated, the

validity of the theoretical model was confirmed for the great majority of the experiments. As

a conclusion, it was shown that Ethernet can be used as a backbone in a domain-oriented

architecture as long as support for IEEE 802.1Q and 802.1p is provided both in hardware and

software. Given the fact that future versions of AUTOSAR will support these standards and

that implementation of such a system can be done with commercial of-the-shelf equipment,

great potential is being presented for the designers of future vehicular communication

networks.

5

Table of Contents

1. Introduction ... 7

2. Literature Review .. 10

2.1 Automotive domains ... 10

2.2 In-vehicle communication networks ... 11

2.3 Switched Ethernet .. 14

2.4 AUTOSAR .. 17

2.5 Network Calculus .. 18

2.6 Implementation Choices .. 21

3. Methodology ... 23

3.1 Use Cases .. 23

3.2 Traffic Model .. 23

3.3 Switch Model .. 25

3.4 System Adaptation .. 27

3.5 Delay and backlog calculation ... 30

3.6 Experimental Setup ... 31

3.7 Implementation Details ... 32

3.8 Data processing ... 33

4. Results and Discussion .. 35

5. Conclusions and future work ... 40

References ... 43

Appendix A ... 45

Appendix B.. 46

Appendix C.. 52

6

Acronyms

ABS Antilock Braking System

AUTOSAR Automotive Open System Architecture

BSW Basic Software Component

CAN Controller Area Network

CAPL CAN Access Programming Language

CFI Canonical Format Indicator

CoS Class of Service

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CSMA/CR Carrier Sense Multiple Access with Collision Resolution

ECU Electronic Control Unit

EMC Electromagnetic Compatibility

ESP Electronic Stability Program

FCS Frame Check Sequence

HMI Human Machine Interaction

IGMP Internet Group Management Protocol

IP Internet Protocol

LAN Local Area Network

LIN Local Interconnect Network

MOST Media Oriented System Transport

MTU Maximum Transmission Unit

OEM Original Equipment Manufacturer

QoS Quality of Service

RTE Runtime Environment

SWC Software Component

TCI Tag Control Information

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TPID Tag Protocol Identifier

TTCAN Time-Triggered Controller Area Network

TTP/C Time Triggered Protocol with Sae Class C Fault-Tolerant Requirements

UDP User Datagram Protocol

VLAN Virtual Local Area Network

7

1. Introduction

In-vehicle communication networks are evolving constantly. Due to rising

requirements in terms of performance, safety and comfort an increasing number of electronic

control units (ECU) are integrated within modern cars. The demand for faster, more robust

and more dependable networks, results not only in increased complexity, but also in higher

production cost.

The electronic control units are connected by application specific communication

buses. The most traditional network technology used by the automotive industry is CAN.

CAN has been used since the late 1980s and is a cost efficient solution with bandwidth up to

1Mbit/s [1]. The physical medium consists of two twisted unshielded wires and access to the

shared medium is priority based (strict). A more recent communication bus is FlexRay which

has higher bandwidth (10Mbit/s). FlexRay was developed for higher reliability in real-time

communications.

The increasing need for bandwidth has led the automotive industry to consider

Ethernet as a possible alternative to the existing network communication protocols. Indeed the

automotive industry has introduced Ethernet in vehicles for diagnosis/updates and

entertainment [2]. Ethernet is being further examined as a network technology for in-vehicle

communication since it offers high bandwidth (up to 1000Mbit/s) while being cost-efficient.

Furthermore, using IP and Ethernet different traffic types originating from different

communication protocols can be integrated into a common backbone.

Ethernet was not originally designed for real time communications and does not offer

any timeliness guarantees. However, Ethernet-based full duplex data transmissions could

provide high bandwidth/high rate communication with relatively low jitter and high

determinism [3]. Additionally various versions of Ethernet are widespread and have become

successful in other industrial domains such as avionics and industrial automation [4]. The fact

that Ethernet standards are non-proprietary, may lead to reduction of cost. The only way to

guarantee bounds for end-to-end delay over Ethernet is to carefully analyze the worst case

behavior of the network traffic. A static, a priori known network, such as an in-vehicle

network is ideal for such analysis. To the best of our knowledge, attempts to explore these

issues in the automotive context have been previously performed only by simulation

techniques [5]. However, the behavior of such complex systems can only be realistically

examined by an actual hardware experimental setup. In this way useful results about whether

Ethernet can be used as the backbone network of an automotive system architecture can be

obtained.

8

The research carried out in the framework of this thesis aims to evaluate the use of

switched Ethernet as the backbone network of an automotive system architecture. The main

objective of the thesis is to evaluate the end-to-end delay of the network and provide

deterministic upper bounds. This was done by examining the systems behavior under six

different use cases, provided by Volvo Car Corporation. Another objective of this thesis is to

propose a system architecture for in-vehicle communication. Yet another objective is to

produce a theoretical model of the system under examination. Furthermore, it is of great

importance to also set up an experimental model, which accurately reflects the system

architecture. In order to demonstrate that existing technology enables the usage of switched

Ethernet in the automotive domain, commercial off the shelf switches will be used.

The scope of this thesis is to explore and fully understand network communications

on a switched Ethernet network. Only the case of standard Ethernet will be examined.

Furthermore any switch used will meet the IEEE standards. Ethernet will be used as a

backbone for the communication between the domain masters, according to the proposed

domain-oriented architecture. There are also certain limitations for this thesis. First of all,

intra-domain communication over Ethernet will not be addressed. The redundancy and fault

tolerance of the topology are also out of scope. Finally only the case of Fast Ethernet

(100BASE-TX) Ethernet will be considered since Gigabit Ethernet (1000BASE-T) is not yet

available for automotive use due to EMC issues.

The remainder of this thesis is organized as follows. The literature review regarding

in-vehicle communication networks as well as network calculus is summarized within the

second chapter. First, a theoretical review of the concepts combined in our work is made,

followed the implementation specific choices made under the context of our study. Network

Calculus and its basic concepts are also presented.

 The methodology used within this thesis, is presented in the third chapter, giving

information regarding the theoretical analysis and the experimental procedure. One of the

main parts of the research, the modeling of the system, is then introduced. Basic information

regarding the equipment used is given, followed by the experimental implementation details.

A thorough presentation of the results obtained by the six different use cases is made

in chapter four. Theoretical results are compared with experimental results and findings of the

project as well as key observations are then thoroughly discussed.

9

The thesis is finalized with a chapter that summarizes the basic conclusions

that have come up by the data analysis, trying to give answers to the questions presented in

the thesis’ objectives. The conclusions, apart from answering the basic research questions,

result in the proposal of more researches in the future.

10

2. Literature Review

Over the past decades the number and complexity of electronic systems integrated in

vehicles has increased exponentially. This was the result of replacing mechanical and

hydraulic parts with ECUs, sensors and actuators. By using embedded systems it was also

possible to add functionality especially in areas such as dynamic driving control resulting in

more reliable and robust control systems. Leen and Hefferman presented these trends of the

automotive industry in [6]. In the same article it was stated that “the cost of electronics in

luxury vehicles can amount to more than 23 percent of the total manufacturing cost”. Thus the

design of such systems is becoming more demanding.

2.1 Automotive domains

In order to deal with the complexity the domain-oriented approach was recently

introduced, where subsystems of similar functionality are grouped into the same domain. The

most common functional domains found in a modern car are:

 Powertrain domain: Control of the engine (generation of power) and transmission

of power from the engine to the driving axis through the gearbox. Such systems

have strict timing requirements and demand high dependability in communication.

 Chassis domain: Responsible for control of car stability and dynamics. Typical

subsystems of the domain include suspension, braking and steering (ABS, ESP).

Again the requirements for dependability and predictability are high.

 Body domain: This domain does not deal with functionality directly connected with

driving. It includes systems that concern the comfort of the driver and passengers.

Typical systems include climate control, locks, windows, seats etc.

 Safety domain: Control of systems like airbags, safety belts and impact sensors.

 Telematics/Infotainment domain: Includes services like in-vehicle navigation

systems and multimedia entertainment systems (CD/DVD players, monitors). It also

includes human machine interaction systems (HMI) such as dashboard and head-up

displays concerning route and traffic information.

An example of a domain-oriented architecture is shown in Figure 1. The system consists of

around 40 ECUs, which are divided into the powertrain and chassis domain, the body

electronics domain and the infotainment domain [7].

11

Figure 1. Volvo XC90 Network Topology and ECU explanation [7]

2.2 In-vehicle communication networks

 Functional domains of modern vehicles have diverse communication requirements.

That fact led the automotive industry to develop distinct communication technologies to

satisfy the specific requirements. As the number of ECUs inside a car increased, so did the

amount of wiring needed to interconnect them. As an example, it has to be mentioned that a

luxurious car today may contain more than 4km of wiring, while a car manufactured in 1955

had only 45m [6]. Extra wiring results in added weight and increased fuel consumption. The

development of serial based communication networks reduced the need of using discrete

12

wiring. Application-specific communication buses are integrated in the vehicle. The most

common networks will be described in this section.

Controller Area Network (CAN)

CAN was originally developed in the mid-1980s by Bosch and is the most widely

used automotive control network up to date. CAN uses carrier sense multiple access with

collision resolution (CSMA/CR) protocol in order to control the access to the bus. This

method resolves collisions in a deterministic way. CAN employs small sized (payload of 0-8

bytes) event triggered messages which are transmitted in a common bus. The data rate of the

bus may vary from 10kbps up to 1Mbps.

 Figure 2. CAN message frame format

As it was mentioned CAN is a collision-based communication protocol. The sender

transmits a message header with the 11-bit identifier. A collision-detect mechanism

determines which node will be permitted to transmit a complete message. By assigning a

proper identifier a deterministic bound on the queuing delay can be achieved. The collision

resolution is performed by the “wired-AND”. In case of simultaneous transmission by

multiple nodes, if all nodes transmit a “1”, then all nodes will see a “1”. If at least one node

transmits a “0”, then all nodes will see a “0”. When a node transmitting a recessive bit (“1”),

detects a dominant bit (“0”) it stops transmitting. The node that transmits all 11 bits of the

identifier without detecting any inconsistency is the one with the highest priority and

therefore can transmit the whole message.

Local Interconnect Network (LIN)

 LIN is a time triggered, low cost serial bus which is typically found in systems within

the body and comfort domain. Such applications may be car seats, door locks, sunroofs and in

general on-off devices. LIN has a data rate of 20kbps and employs a master-slave mechanism.

It is widely used because of its simplicity, low cost and the fact that it is an open standard.

Media Oriented Systems Transport (MOST)

 MOST is the de-facto standard for multimedia and infotainment applications.

Offering a high bandwidth of 25 up to 150Mbps, MOST uses a ring topology and

synchronous data communication. Point-to-point links are used for data transfer and both

synchronous and asynchronous traffic is supported. Synchronization between the nodes is

13

achieved through a master/slave mechanism, with one node being the timing master. The

protocol was developed by a consortium of more than 50 companies including Audi, BMW

and Daimler under the MOST Cooperation [8].

FlexRay

FlexRay is a fault-tolerant and highly reliable communication protocol. It combines

both event and time triggered communication and offers data rates up to 10Mbps. A FlexRay

network may consist of maximum 64 nodes. FlexRay supports dual channels and can be

implemented in a star, bus or even mixed topology. The second channel can be used to

provide redundancy or higher bandwidth. A FlexRay frame consists of a 5 bytes header and

0-254 bytes of payload. These frames can be scheduled for transmission during the static or

the dynamic segment of a communication cycle.

The static segment contains slots which are statically assigned to nodes and offer

guaranteed service. Multiple slots can be assigned to one node in the same cycle, which

increases flexibility. The dynamic segment is divided into mini-slots. These mini-slots are

assigned dynamically based on message identifiers and slot counters. A high message-id

offers a guaranteed service and a low message-id offers a best effort service. In this way

FlexRay combines both exclusive access to the medium, as well as arbitrary.

 Figure 3. FlexRay Communication Cycle

Time-Triggered Protocol (TTP/C)

 The TTP/C is a communication protocol developed by a consortium of companies

known as TTA-Group. It offers speeds up to 25Mbps and employs Time Division Multiple

Access (TDMA). For redundancy it deploys two channels and can be implemented either in

14

twin bus or twin star topology. Communication in TTP/C is organized in TDMA rounds.

Each round is divided into slots and each slot is assigned to a respective node. The slots do

not have to be necessarily equal within the same round, but they are statically assigned and do

not change in each TDMA round. This static scheduling reduces the flexibility of the system

but increases the predictability. Any non-periodic messages have to be fitted into the static

slots by the application. Each TTP/C frame contains up to 240 bytes of data and 4 bytes of

overhead.

 TTP/C implements several mechanisms that make it a highly fault-tolerant

communication protocol. An important feature is that clock synchronization is established

through a global time base, without relying on a single time server. This makes the system

fault-tolerant, which is required in safety critical applications such as avionics and x-by-wire

systems.

Time-Triggered CAN (TTCAN)

CAN was extended with an additional layer in order to provide time-triggered

behavior. TTCAN uses the same physical and data link layer as CAN and allows scheduling

of messages in both a time-triggered and event-triggered way. TTCAN is implemented in a

bus topology and achieves a data rate up to 1Mbps. Synchronization is achieved by a master

node that sends periodic reference messages. Communication in TTCAN is achieved by a

static schedule that consists of communication cycles. During each of the basic cycles

TTCAN offers guaranteed service to periodic messages, while arbitration windows are used

to support event-triggered messages. During these windows access to the medium is resolved

arbitrary, as in CAN.

TTCAN employs the fault-tolerant mechanisms of CAN and also does not allow any

retransmission of erroneous messages. Its main advantage is that it allows both event and

time-triggered traffic on the same network, resulting in more flexibility. It is also a cost

efficient solution because it was built on top of the CAN standard. However it has relatively

low bandwidth which may limit its usage in the future.

2.3 Switched Ethernet

Ethernet was introduced in the 1980’s as a networking technology for local area

networks (LAN). It originally used coaxial cable as a shared medium which was later

replaced by copper twisted pair and optic fiber cables. It quickly became popular and is the

15

most common LAN technology used today in data communication networks. Ethernet has a

wide range of available bandwidth. Starting from 10BASE-T at 10MBps up to 10GBASE-T

at 10Gbps. The most common type of Ethernet used today is the 100BASE-TX which offers a

speed of 100Mbps. Ethernet is expected to exceed the speed of 100Gbps over optic fiber in

the future [9].

Access to the medium is achieved through the carrier sense multiple access with

collision detection (CSMA/CD) mechanism. Before transmitting a node senses the medium in

order to see if another node is transmitting at that point of time. The node starts transmitting

only when the channel is idle. During a transmission the node checks if a collision has

occurred. If a collision is detected the node aborts transmission and sends a jamming signal

informing all nodes that a collision occurred. The transmitting node then randomly selects a

backoff period of time from a specified range of values, before attempting to retransmit. In

case a second collision occurs the range of backoff values is increased exponentially and the

same process is repeated. Therefore, the queuing delay of a message cannot be bounded. This

fact made Ethernet unsuitable for real-time communications.

The introduction of switches allowed the segmentation of networks into collision

domains. A collision domain is a segment of the network where collisions may occur. On one

collision domain only one device may transmit at a time. Complete elimination of collisions

was made possible with the introduction of full-duplex links which allowed devices to receive

and transmit at the same time. In other words, a switched Ethernet network operating in full-

duplex is a collision free network.

Figure 4. The Ethernet Frame

Before being transmitted, messages are encapsulated in the Ethernet frame. Figure 4

shows the structure of the Ethernet frame. A preamble of 8 bytes is used for synchronization

purposes. The preamble is followed by the destination and source addresses, each of them

having a length of 6 bytes. The following two bytes describe the type of the payload data. The

payload may vary from 46 to 1500 bytes. Finally the frame check sequence field is

responsible for error-detection.

16

IEEE 802.1Q added support for Virtual LANs (VLAN). By using VLANs a physical network

can be segmented into multiple logical networks. This logical division is usually done by the

switch. Each VLAN represents a broadcast domain. In a broadcast domain all nodes can reach

each other using broadcasts at the link layer. A member of a specific VLAN cannot directly

communicate with a member of another VLAN unless it is permitted by a router, which is a

layer three device.

The VLAN tag as shown in Figure 5 contains all the necessary information for the

switch, in order for it to make the correct forwarding decisions. The VLAN tag contains a 2

bytes field called Tag Protocol ID that is always set to the value 0x8100, in order to identify

the frame as a tagged one. The following 2 bytes, named Tag Control Information, contains

the User Priority field, the Canonical Formal Indicator and the VLAN ID. The User Priority

field, also referred to as Priority Code Point (3 bits), allows up to eight priority levels, as

defined by the IEEE 802.1p standard. In practice only four priority levels are supported by

most switch manufacturers. The CFI (1 bit) is always set to 0, indicating that the MAC

address is in canonical format. This was used for compatibility in token ring networks. Finally

the VLAN ID (12 bits) allows up to 4094 VLANs.

Figure 5. 802.1Q VLAN tag with 802.1p priority field

Regarding the current adoption of Ethernet technology by the automotive industry,

standard Ethernet is not considered as a solution. Due to EMC issues, shielded cables have to

be used, resulting both in higher cost and weight. This is the reason that the automotive

industry considers the unshielded single twisted pair cable instead. OPEN Alliance is a

special interest group consisting of manufacturers and OEMs. Its purpose is to promote the

“wide scale adoption of Ethernet-based, single pair unshielded networks as the standard in

automotive applications” [10]. BroadR-Reach is the Ethernet solution that is promoted by the

OPEN Alliance and is expected to be used soon in vehicles [11]. Unfortunately this

technology is proprietary. IEEE is working on a Gb/s automotive version, which will be non-

17

proprietary. For this reason the Reduced Twisted Pair Gigabit Ethernet study group [12] was

created in order to support 1 Gb/s operation in automotive and industrial environments. This

standard is expected to become available around 2018.

2.4 AUTOSAR

AUTomotive Open System Architecture is a software architecture standard developed

jointly by automotive manufacturers, OEMs and tool developers. This standard was created to

satisfy the need for standardization of basic software and the interfaces to applications/bus

systems, since future E/E architectures will have a common basis across OEMs [13]. The

intention behind this effort was to reduce system complexity and keep the development cost

feasible. Some additional goals of AUTOSAR include the scalability across different vehicles

and platforms, maintainability throughout the product lifecycle and the sustainable utilization

of natural resources [14].

AUTOSAR follows a layered architecture, where hardware, basic software, runtime

environment and application software are separated from each other [15]. The basic concepts

of AUTOSAR are the following:

 Software Component (SWC) Each SWC should be assigned to one ECU and

encapsulates part of the functionality of the application [16]. The component’s

implementation is independent of the infrastructure following the basic design

concept of separation between layers.

 Runtime Environment (RTE) The RTE provides a communication abstraction to the

SWCs connected to it, providing the same interface and services both for inter and

intra ECU communication. Since the requirements of SWCs running on RTE may

vary, different ECUs may have different RTEs.

 Basic Software (BSW) The BSW is essential to run the functional part of the

software. It is the standardized software layer, that provides services to the SWCs

[12]. It contains both standard and ECU specific components.

18

Figure 6. AUTOSAR layered architecture [10]

2.5 Network Calculus

Network Calculus is a well-established technique used for performance analysis of

real-time communication networks. It was originally proposed by Cruz [17, 18] and further

developed by Le Boudec and Thiran [19]. The foundation of network calculus is based on the

min-plus algebra and takes into consideration networks consisting of service nodes and the

packet flows between them. Network calculus is a theory for deterministic queuing systems.

In contrast with traditional queuing theory, which models the system’s behavior based on

stochastic processes and probability functions, network calculus applies bounding constraints

on packet arrival and service [20]. This enables delay and backlog bounds to be calculated.

This property makes network calculus very attractive for real-time applications which require

QoS guarantee and has already been used for industrial and avionics network applications.

19

 The building blocks of network calculus are the arrival and the service curve of a

node as well as two functions of the min-plus algebra, the convolution and the deconvolution

represented by the operator and respectively.

Convolution

 denotes the set of wide sense increasing sequences or functions such that for t < 0,

 . For two functions f and g belonging to the convolution is defined as:

(

(If < 0, ()

The infimum of a subset S of a partially ordered set T is the greatest element of T that is less

than or equal to all elements of S, denoted by inf.

Deconvolution

The deconvolution of the two functions is:

If both and are infinite for some t , the above equation is not defined. In contrast

with min-plus convolution is not necessarily zero for t ≤ 0.

The supremum of a subset S of a totally or partially ordered set T is the least element of T that

is greater than or equal to all elements of S, denoted by sup.

Arrival Curve

If is the cumulative function, expressing the amount of data arriving in a time

interval , then a flow entering a node has an arrival curve if for all

where is a non-negative and non-decreasing function.

As shown by Le Boudec and Thiran at [15], the leaky bucket controller concept can

be used as a regulation method denoting the constraints of the traffic. This controller

constrains a flow by an affine curve , where is the maximum amount of data

that can arrive in a burst and an upper bound on the long term average rate of the traffic

flow. This expression is similar to the concept of burstiness constraint as described by Cruz

[13]. If R(t) is the instantaneous rate of data arriving on time t , then the

burstiness constrained is:

20

Service Curve

 A service curve describes the service of a flow F inside a node. Let be the

amount of data output in a time interval . Then the non-negative and non-decreasing

function is called the service curve for flow F in this node if for all ,

Output Characterization

 For a flow constrained by an arrival curve , traversing a system that offers a

service curve , the output flow is constrained by the arrival curve [21]:

Pay burst only once

 As shown in Figure 7, a flow with an arrival curve enters the first node which

offers a service curve . The output flow will be constrained by the arrival curve

 . This output flow will be the input flow of the second node. Likewise the output

flow of the second node will be constrained by the arrival curve . The

total delay of the system is the sum of the delays of each node.

Figure 7. Concatenation of nodes

 The service curve offered to a flow that traverses two nodes in sequence is

 (Concatenation of Nodes) [15]. By applying the network service curve in order

to calculate the system’s delay, the results obtained are tighter. This happens because in the

first case the delay due to the burstiness of the flow was calculated twice. This is referred to

as “pay burst only once” phenomenon.

21

Applied network calculus

 As mentioned earlier network calculus has been successfully applied in the field of

industrial automation. The most significant research in this field has been performed by

Georges et al. [22-25]. In [18], inspired by the work of Cruz, the authors proposed a model of

a switch based on a sequence of elementary components. Their goal was to obtain a formula

for the calculation of end-to-end delay in switched Ethernet networks. In [19], the authors

make a comparison of different theoretical models of Ethernet switches. A network

simulation tool was used in order to identify the one that represents more accurately the

functionality of a switch. In a later work [20], a formal method to guarantee a deterministic

behavior of switched Ethernet was introduced. The previously described models were

extended taking into consideration the QoS mechanism which enables prioritization according

to IEEE 802.1p. Finally in [21], using the new model of the switch, comparison between strict

priority and weighted fair queuing scheduling policies was performed. Also, new formulas

that calculate the upper bound of the maximum end-to-end delay were presented.

 Network calculus has also been applied in the automotive domain. To be more

specific in [5] Rahmani et al. compared different topologies of in-vehicle networks regarding

QoS performance. In [26], the authors presented an analytical model for resource planning

and performance evaluation of the in-vehicle network, using network calculus theory.

2.6 Implementation Choices

 After completing the literature review and having acquired a background in the

research problem under investigation, we made certain choices regarding the design of the

thesis project. The most suitable topology for an in-vehicle communication network was

considered to be the double star topology. The reason behind this choice is that this topology

is the most viable to be implemented by an automotive manufacturer. The two switches can

be placed in the front and the back of the cabin of the car, allowing a more flexible design. In

this way, domain masters that exchange messages more frequently can be connected to the

same switch, achieving better network performance. Moreover, other advantages of this

topology are the network resilience in case a node fails and the flexibility in choosing link

capacities for separate parts of the network [5].

 The strict priority policy was selected as the queuing policy. Since the traffic of an in-

vehicle network varies both in terms of requirements but also in criticality level, specific QoS

guarantees have to be provided for each type. The strict priority policy reflects more

22

accurately this requirement and is the most straight forward solution. The traffic of the

network was grouped into four types and each one was assigned to its respective priority

level. Another factor contributing to this decision is that in practice switches only support up

to four priority levels.

 Since the double star topology adds the extra cost of the two switches, it is very

important for automotive manufacturers to be able to evaluate the potential of commercial of-

the-shelf solutions. This is why such switches were used and not a high-end solution. Another

reason behind that choice was to demonstrate that the proposed solution is feasible with

existing technology.

 Another important design choice was the use of AUTOSAR as an operating system

for the development boards of our experiments. In this way, our system becomes more

realistic and complies with the automotive standards. In addition to that the development

boards used were equipped with a Freescale MPC5567 processor which is typical for

automotive applications.

23

3. Methodology

In order to evaluate the end-to-end delay, both theoretical and experimental methods

were deployed. End-to-end delay is defined as the time it takes for a frame to traverse the

backbone once it is received from an input port of the first switch until it is fully transmitted

by an output port of the second switch. As a first step, a theoretical model that accurately

reflects the traffic load and patterns, as well as timing constraints (specified by Volvo Car

Corporation) was created. Then, an experimental setup which was based on the theoretical

model was produced. In this way the results obtained from the theoretical analysis can be

compared with those measured from the experiments.

3.1 Use Cases

 The following use cases were investigated:

 Use case 1. The traffic load for the first two types of traffic complies with the existing

load of an in-vehicle network of a Volvo car. The third priority traffic (video traffic)

has a rate of 32Mbps and the best effort traffic has a rate of 8Mbps.

 Use case 2. To investigate the effect of increased video traffic, the rate of third

priority traffic was doubled reaching 64Mbps. All other traffic remains the same as in

use case 1.

 Use case 3. In the future it is expected that the amount of control data exchanged

within the network will be significantly increased. Therefore, in this use case the

payload of the first priority traffic is doubled. All other traffic remains the same as in

use case1.

The three use cases were examined both for a standard MTU of 1500 bytes, as well as

for an MTU of 800 bytes.

3.2 Traffic Model

For the model of our system the following four priority classes will be employed:

 Hard real time messages: This class has the highest priority and consists of control

messages regarding the powertrain, chassis and body electronic systems. These are

small sized periodic messages. Usually they have more than one destination

(multicast). No packet loss is tolerated in this priority class.

24

 Soft real time messages: This class has second priority and consists of diagnostic

messages. These are also small sized messages that exhibit periodic behavior.

However they are not as highly critical as the previous class and an amount of missed

deadlines can be tolerated.

 Video data: This class has the third priority and consists of video streams. One or

more cameras will stream video of MJPEG format. This class generates a lot of traffic

since it has high data rate. Certain losses ≤0.1% can be tolerated [5].

 Best effort data: Finally the last class consists of best effort messages. Typical

applications can be web browsing or file transferring. These applications use TCP

which facilitates mechanisms that ensure reliable transfer of data. This class consists

of non-critical traffic that has no real time constraints. Since TCP is used, any packets

lost will be retransmitted.

In our model strict priority policy will be deployed. This means that any frame of a

given priority will be served only if there are no other frames of higher priority present in the

queues. Therefore the service offered by the switch is not the same for all priority classes. The

traffic generated by each class will be referred to as flow i, where i is the respective priority.

The arrival curves of the flows will be expressed as (where b is the burst

size and r is the average rate of the flow), following the leaky bucket controller concept. As

shown by Georges et al [25], the service curve offered to each flow can be expressed as

 , where is the rate at which data will be served expressed in bits/sec

and is the total delay suffered by a flow before being actually served. may consist of two

factors depending on the priority level of the flow. The first one is the interference from

higher priority flows being served at that point and the second one is the blocking point due to

a non preemptive transmission of lower priority flows. In detail the service curve for each

priority can be expressed as:

 1
st
 Priority: The packets of this priority will be selected first. However since

forwarding of a packet is non-preemptive, the packets of this flow might be blocked

by a lower priority packet that is being transmitted. The service curve of this flow is:

 2
nd

 Priority: The packets of this priority have to wait in case any packet of flow 1 has

to be served (interference). Furthermore as mentioned earlier due to the non-

preemptive transmission of packets, the packets of this flow can again be blocked by

a lower priority packet from flow 3 or 4. Since flow 1 will be always served first the

25

forwarding rate left for flow 2 will be limited to . The service curve of this

flow is:

 3
rd

 Priority: The packet of this priority can only be served if all higher priority

packets have already been served and no packet of flow 4 is being transmitted at that

point of time. The service rate is limited to . The service curve of this

flow is:

 4
th

 Priority: The packet of this priority can only be served if all higher priority

packets have already been served. The service rate is limited to . The

service curve of this flow is:

3.3 Switch Model

In traditional CSMA/CD Ethernet, a collision can cause a random back-off of the

node before retransmitting. Therefore the calculation of an upper bound for the delay is not

possible. In full duplex switched Ethernet collisions are completely avoided. However this

new element (the switch) introduces delays in the network traffic, whose upper bounds can be

calculated in a deterministic way.

 The total delay of a frame passing through a switch can be expressed as [27]:

Dswitch=Dproc+Dqueue+Dtrans ,

where Dproc is the processing delay of a frame by a switch. It depends on the hardware

capabilities of the switch, often referred to as switch fabric. The value of this delay lies in the

area of a few microseconds and is often provided by the manufacturer or can be found

26

experimentally. For the needs of the thesis the switch fabric was measured experimentally
1

and was found to be 10μs (in the worst case). Measurements were performed both for a

maximum sized Ethernet frame as well as for frame size equal to those of the control data.

The worst case was observed for the small frame size as it can be seen in Figure 8.

Figure 8. Switch Fabric measured values

 Dqueue represents the delay caused by the queuing of the frame before being

transmitted by the output port. This type of delay has the greatest impact on the total delay

imposed by the switch. Finally, Dtrans is the time needed for the frame to be transmitted. This

can be easily calculated by the expression

 ,

where L is the frame length and C is the maximum link capacity.

Figure 9 shows a conceptual model of the switch. A frame is received by Rx port and

is then processed by the switch fabric and placed in the appropriate priority queue. The

queues although being represented as discrete logical elements they are located in the same

physical shared memory. The queue scheduler decides which frame will be transmitted based

on the queuing policy. The frame is then transmitted through the Tx port.

In case high bit rate traffic arriving from multiple ports is destined to one output port,

the rate at which traffic will be forwarded by the output port is limited by the link capacity.

As a consequence frames have to be stored in buffers located in the shared memory of the

switch. If the shared memory becomes full then any received frame, regardless of which port

it was received or to which priority it belongs to, will be dropped. Packet drops are not

1 The details of the experiment are presented in the Appendix A.

27

acceptable for real time communications. Therefore the calculation of buffer sizes as well as

the utilization of shared memory should also be examined. As mentioned earlier by applying

network calculus, theoretical upper bounds can be derived both for the queuing delays and the

buffer sizes.

Figure 9. Switch Model (Notice the four queues for the traffics having different priorities)

3.4 System Adaptation

 The system traffic, as shown in Figure 10, represents the worst case scenario and is

modeled into four flows. As mentioned earlier our system has a double star topology. In such

topology the frames that will experience the highest delay are those traversing through both

switches. Therefore the traffic generated on one side of the network destined for the other side

of the network will be examined (from left to right). In order to have realistic measurements

the system traffic was fully loaded on both directions. The scenario under examination

represents the worst case because high volume traffic of all priorities is generated on the left

side of the network and traverses switch A through the same output port, which is the

bottleneck of the system. The highest amount of data is generated from the Video Source and

the FTP server.

 Flow

 is the sum of all flows of 1

st
 priority

messages generated from the powertrain and chassis domain, body electronics domain and

safety domain. Flow

 is the sum of all flows of 2

nd

priority messages generated from the powertrain and chassis domain, body electronics

domain and safety domain. Flow is the flow of 3
rd

 priority video data destined for the

video sink. Finally, flow is the flow of 4
th
 priority best effort data sent from an FTP

server to a client.

 Each of the four types of messages is placed in its respective queue by the switch

fabric. The queue scheduler of the transmitting port will forward the frames according to the

scheduling policy. The output traffic of each flow has an arrival curve of

 . These curves will be the input for switch B. However, in switch B, traffic exchanged

28

between the communication domain and the infotainment domain must also be taken into

consideration. Furthermore the incoming traffic to switch B has multiple output destinations.

The video traffic is directed to the port connected to the video sink, no other types of traffic

arrive at this port so it only has one queue. The same applies to the best effort data flow. For

the two domain masters residing on this side of the network there are two queues at each

output port and the arrival curves for each flow are expressed as:

 and

 for the communication domain

 and

 for the infotainment domain

 Figure 10. System traffic model

FlexRay is used nowadays as the backbone for in-vehicle communication by some

automotive manufacturers. In order to evaluate Ethernet as an alternative solution, the current

traffic load of the FlexRay implementation of Volvo Car Corporation was adapted to a

switched Ethernet implementation.

 Each node sends a given number of frames to one or more other nodes. These frames

are transmitted at their predefined time slot in the FlexRay cycle. The length of the cycle is

5ms and a frame may have a period of n*5ms, where n=0,1,2,… . It was observed that a node

29

does not transmit all of the frames at once (sequential time slots), but there is a time gap

between each transmission. This behavior is represented in our model. The frames of each

node will be transmitted with a given offset between them (200μs) while the periods remain

the same.

For the first two priority classes of the system under examination, the exchanged

messages are of periodical nature. The traffic generated on the vehicle’s backbone network is

known beforehand both in terms of size and period. Therefore the arrival curve can be

expressed as , where b is the maximum frame size of the flow
2
 and r is the

average data rate. This has the following advantages. First of all a(t) is a deterministic upper

bound of the specific traffic flow, as shown in Figure 11. However, the data arrival on a

physical network is limited by its link capacity C. As a consequence the arrival curve will be

expressed as :

 Each of the frames sent periodically by a node, may represent a flow with an arrival

curve . The arrival curve of the total traffic of a node can be found by simply adding the

arrival curves for each frame flow. This however leads to a large burst value. By introducing

this “mimicking FlexRay” behavior, only one frame will be transmitted at a time by a node,

thus keeping the burst size to a minimum of one frame size. This approach results in a tighter

estimation of end-to-end delays and backlogs.

 Figure 11. Arrival Curve of periodic traffic

2 The frame size for the first and second priority traffic is 90 bytes (32 bytes of payload plus overhead of additional

layers UDP,IP and Ethernet).

Data amount

arrival

t

α(t) = b + rt

cycle

b

Slope r

30

 In order to analyze the entire system in a deterministic way the last two priority

classes must also have arrival curves constrained by a leaky bucket. Indeed the third priority

class which consists of MJPEG video data can be modeled in the same way. MJPEG format is

preferred by the automotive manufacturers due to its low complexity and low hardware

requirements. Each frame is a JPEG picture which is compressed individually and then sent to

the destination. A typical configuration consists of a resolution of 640X480 (standard VGA)

and a rate of 30 fps. The arrival curve of this flow can be expressed as where b

is the frame size of a JPEG picture and r the average data rate.

 Finally the traffic of the fourth priority class is random by nature. Therefore

traffic shaping has to be applied at the source so that the arrival curve of this flow will

conform to a leaky bucket curve expression. In this way determinism can also be achieved for

this class. A simple leaky/token bucket traffic shaper can be applied. The numerical

expressions for the arrival curves of the system traffic are:

3.5 Delay and backlog calculation

For a flow with an arrival curve traversing through a system with service curve

 , Le Boudec and Thiran have shown that the maximum delay D is the maximum

horizontal distance between the two curves and the maximum backlog B is the maximum

vertical distance between the two curves (Figure 12). The inflection point g is defined as the

point where the arrival curve changes slope [28]. That is the point where .

Therefore,

For the calculation of the backlog two cases are distinguished. For the

maximum backlog is found at point g, while for the maximum backlog is found at

point T. The derived expressions for the calculation of the backlog and delay of a given flow

are the following:

31

 Figure 12. Backlog and Delay illustration for T≤g and for T>g

 For the calculations of the delay and backlog values, a program was developed in

Java. The source code is presented in Appendix B.

3.6 Experimental Setup

 The following equipment was used in order to perform the experiments:

1. Netgear GS108Tv2 smart switch (two items).

2. QRTECH ODEEP development board (five items).

3. iSYSTEM winIDEA iC3000 debugger.

4. Fluke networks inline TAP-100 (two items).

5. Vector VN5610 network interface.

6. Laptop computers with Linux operating system (four items).

7. Desktop computer with CANoe by Vector.

 In order to measure the end-to-end delay of a frame, the frame has to be time stamped

while entering and exiting the network. Then by subtracting the two time values the end-to-

end delay can be calculated. For the measurement of the first priority message delay, one

network tap was connected on the link between the powertrain and chassis domain and switch

A and the other tap was connected to the link between switch B and the infotainment domain.

This was done since the rate of data traversing that path is the highest for the system. Due to

the fact that all diagnostic messages are destined to the communication domain master, the

second priority message delays were measured between the powertrain and chassis domain

and the communication domain. The two taps were then connected to an experimental

computer through the VN5610 network interface, which captured and time-stamped the

frames. The trace of the captured traffic was analyzed using CANoe. The network is full

duplex and special caution has to be exercised in capturing the desired direction of traffic.

32

The same approach was applied to the third priority flow between the video source and sink.

The fourth priority flow is not considered since it is best effort traffic.

The development boards were running ArcCore’s Autosar Implementation [29] with

an IP Stack. Support for 802.1p and 802.1Q in Autosar is specified for version 4.1, which is

not released by any developer during this thesis. Therefore, the IP Stack was extended to

support these protocols. Figure 13 illustrates the experimental setup.

Figure 13. Experimental Setup

3.7 Implementation Details

 The specifications defined that frames transmitted by a domain had multiple

destinations (multicast). In order to implement this, the network was divided into VLANs.

Each domain belonged to a specific number of VLANs. Two separate VLANs were also

created, one for the video traffic and one for the FTP traffic. The use of VLANs allows the

logical isolation of traffic within the same physical network. This feature is beneficial in

terms of resilience, isolating a “babbling idiot” into its respective VLAN. Also this is

beneficial in a security perspective, in case an attacker gains access i.e. to the FTP VLAN; he

33

will not have access to the rest of the network. An alternative for implementing multicast in

such a network is the IGMP protocol. However the switches must support layer 3

functionality.

 The following actions were taken to ensure behavior according to the IEEE 802.1Q

and 802.1p. The development boards, representing the domain masters, were configured to

tag the transmitted frames with the appropriate VLAN-id and priority. The development

boards were programmed to discard frames upon reception since no useful data were

transmitted. The appropriate VLAN configuration was applied to the switches as well as the

mapping of the PCP value with the priority queues of the switch. The link between the

switches was the trunk link, on which traffic from all VLANs was allowed.

 The laptop used as video source streamed an MJPEG video file over UDP using the

VLC media player. The video sink was playing the stream using the same software. The FTP

client was retrieving a large file form the FTP server, on which traffic shaping had been

implemented. As mentioned earlier, all four laptops were running Linux. A typical example

of the commands used to configure them is presented below.

#for VLAN TAG

vconfig add eth0 17

ip addr add 192.168.0.30/24 dev eth0.17

ifconfig eth0.17 up

#for priority TAG

iptables -t mangle -A POSTROUTING -d 192.168.0.31 -j CLASSIFY

--set-class 0:4

vconfig set_egress_map eth0.17 4 4

#rate control

tc qdisc add dev eth0 root tbf rate 8mbit burst 8kb limit 32kb

 The switches used were gigabit switches. Our network operated with a rate of

100Mbps. For some of the switch’s ports the auto-negotiation feature had to be disabled and

the data rate had to be configured manually. If one device on the link is configured to auto-

negotiate and the other is not, an auto-negotiation failure occurs, leading to duplex mismatch.

As a result the auto-negotiating device will operate in half duplex by default. This mode of

operation leads to degraded performance and possible collisions.

3.8 Data processing

 The captured traffic was stored in a binary log file in CANoe. CANoe however, did

not provide all the features for statistical analysis that were required for this thesis. Using a

34

CAPL script the valuable information was extracted from the binary log files and was

converted into ASCII text files. These files were imported to Microsoft EXCEL for further

processing.

By applying the appropriate filters, the matching time values
3
 of the same frame

were sorted into two columns. The two time values were subtracted and the delay of each

frame was obtained. The precision of the measurement is 1μs. The same procedure was

repeated for all priorities in all use cases. The values were also used to produce charts and

diagrams which are presented in section four. Tables with minimum, maximum and average

delays per priority were also created.

3 The time-stamp value of a frame entering the network and the time-stamp value of the same frame leaving the

network.

35

4. Results and Discussion

 In this chapter both theoretical and experimental results will be presented. Initially,

the calculated theoretical values regarding the end-to-end delay and backlog are shown in

Tables 1 and 2. The backlog value displayed is the total backlog of the output port of switch

A. This is the bottleneck of the system, which has the highest requirements for buffer. As it

can be seen from the tables below the highest amount of memory needed is in case 2 for an

MTU of 1500. The backlog value in that case is 125KB, while the switch used in the

experiments has a total amount of 128KB of shared memory. Therefore, no packet drops

should occur for any of the use cases. The calculated values are pessimistic and the actual

requirement for memory is significantly lower.

Table 1. Theoretical Delay and Backlog values (MTU 1500)

Table 2. Theoretical Delay and Backlog values (MTU 800)

 To continue with, the experimental results for the first use case are presented below.

In Figure 14 it can be observed that all measured values are below the theoretical bound.

Furthermore according to Figure 15, more than 50% of all measured delays experience the

minimum delay for this type of traffic. The minimum delay value of 28μs does not contain

any delay due to queuing. The area of delay values between 29 and 90μs describes the case

where a frame is blocked by an ongoing non-preemptive transmission of a frame. The frames

in the area of delay values between 90 and 210μs, suffer high queuing delays due to blocking

from lower priority traffic and represent 41% of the total measured values. Finally only

0, 32% of the frames had a delay value higher than 210μs.

36

 The experimental values of the second priority traffic are presented in Figure 16.

Again, the measured values are below the theoretical bound and the spread of the values

follow a similar pattern as in the first priority traffic. The measured delays for the third

priority traffic are presented in Figure 18. There are no specific patterns and the delay values

Figure 14. Case 1 first priority delay values Figure 15. Case 1 first priority delay spread

Figure 16. Case 1 second priority delay values Figure 17. Case 1 second priority delay spread

Figure 18. Case 1 third priority delay values

37

are scattered from a minimum of 246μs to a maximum of 1263μs, with only one value being

relatively close to the theoretical bound of 1287μs.

 After the presentation of the first use case, only the experimental cases for the first

priority traffic will be illustrated. The remaining diagrams are available in Appendix C. Only

the first priority traffic will be discussed, since it is the most critical.

The experimental values for the second use case with increased video traffic are presented in

Figure 19. The theoretical bound is safe, but there are more values that come close to it,

compared to the first use case. It can also be observed that 78% of the delay values are in the

area of 90 up to 210μs. This was expected since the rate of the video traffic was doubled,

increasing the possible number of frames that suffer from blocking factor.

Figure 21. Case 3 first priority delay values

Figure 20. Case 2 first priority delay spread Figure 19. Case 2 first priority delay values

Figure 22. Case 3 first priority delay spread

38

 The results for the third use case seen in Figures 21 and 22 are similar with those of

the first use case. The only difference is the minimum delay which has now risen from 28 to

33μs, due to the fact that the frame size has increased.

 The same three use cases were repeated for an MTU of 800 bytes, in order to reduce

the blocking delay caused by the transmission of a maximum-sized lower priority frame.

Indeed as it can be seen in all three cases both the theoretical as well as the experimental

values were significantly reduced. However it was observed for the first and second case that

a few experimental values slightly exceed the theoretical bound. More specific for the first

use case one value has exceeded the bound of 216μs by only 3μs. For the second use case,

two values exceed the bound of 216μs, the first by 10μs and the second by 1μs. For the third

case no measured values were higher than the bound.

Figure 23. Case 1 first priority delay values (MTU 800) Figure 24. Case 1 first priority delay spread

Figure 26. Case 2 first priority delay spread Figure 25. Case 2 first priority delay values (MTU 800)

39

 In general, it can be easily observed from the diagrams that the vast majority of the

experimental results are inferior to the calculus bound. Furthermore, no packet drops were

observed during the experiments. Even in cases of deviation from the theoretical bound, the

differences were very small. It has to be mentioned that the modeling of the system was based

on a certain switch operation model. Details of the specific implementation of the switch

operation were not available, as they were considered confidential by the vendor. Therefore it

would be of great interest to repeat the experiment using switches of different vendors.

 Although in theory a high priority frame can be blocked by one lower priority frame,

during our experiments it was observed that the blocking point due to a non-preemptive

transmission consists of two frames. This was used as feedback for our theoretical model

resulting in higher values than originally anticipated. However, both measured and calculated

delay values were considerably lower than the given 5ms deadline of the first and second

priority messages.

 Another point that has to be mentioned was that in case 2 for an MTU of 800 bytes,

the quality of experience for the video was lower with lags observed during playback. The

reason behind this, was that the video frames had to be segmented into a greater number of

Ethernet frames since the MTU was 800 bytes. This increased the total delay of a video frame

resulting in degraded performance. However, under situations that lower delays are required

for highly critical traffic, degraded performance could be tolerated for the third and fourth

priorities. For example, this can be seen as another mode of operation of the system

increasing the performance for highly critical messages.

Figure 27. Case 3 first priority delay values (MTU 800) Figure 28. Case 3 first priority delay spread

40

5. Conclusions and future work

The purpose of this thesis was to evaluate the use of switched Ethernet as the

backbone network of an automotive system architecture. A specific system architecture for in-

vehicle communication was proposed, taking into consideration the requirements provided by

Volvo Car Corporation. The proposed system uses a double-star network topology. In terms

of performance a single-star topology would be better; however such a topology would lead

to increased cabling. On the other hand, a double star topology is easier to integrate within the

vehicle.

The main objective of the thesis was to evaluate the end-to-end delay of the network

and provide deterministic upper bounds for it. A theoretical model of the system under

examination was produced followed by an experimental setup, which accurately reflected the

system architecture. The theoretically calculated end-to-end delay values were compared with

the values obtained experimentally.

The theoretical analysis was based on network calculus. Through our work, we

showed that this method can be applied in the automotive domain, since the traffic generated

on the vehicle’s backbone network is known beforehand both in terms of size and period.

This fact enables the accurate modeling of the system using network calculus. In addition to

that, the “mimicking FlexRay” concept, described in section 3.4 allowed the calculation of

tighter upper bounds, which otherwise would be very pessimistic.

The results of this thesis indicate that, even though Ethernet was not originally

designed for real-time communication, its worst case behavior can be deterministically

bounded under certain conditions. First of all, only switched Ethernet with full-duplex has to

be used for such applications, since it completely avoids collisions. In this way no packet loss

will occur due to collisions. However, packet loss may occur due to insufficient memory of

the switch. Also, prioritization as well as logical separation of traffic traversing the system

has to be performed. The standards supporting these functionalities are IEEE 802.1p and

802.1Q respectively. These standards have to be supported both by the switches as well as by

the software running on the ECUs. Indeed AUTOSAR 4.1 specifies support of these

standards; however, it is not yet released by any developer. The experimental results showed

that Ethernet has higher end-to-end delay and jitter compared to FlexRay. On the other hand,

Ethernet is able to integrate different types of traffic and is non-proprietary (open standard)

which could result in more cost-efficient solutions.

41

An important assumption, based on which the theoretical model was produced, is the

operation of the switch. As shown in 3.3, the shared memory switch architecture with output

queuing was assumed, since it is the most common one. However the details of the

implementation of the switch operation used in the experiments were not available. The only

way to know whether the switch operated in a different way than assumed was by

observation. A typical example of the previously mentioned point is the blocking point.

Although in theory a high priority frame can be blocked by one lower priority frame, during

our experiments it was observed that the blocking point due to a non-preemptive transmission

consists of two frames due to the way the switch hardware dispatches the traffic. This was

used as feedback to the theoretical model resulting in higher delay values than originally

anticipated.

 As shown in chapter four, the bounds obtained by the theoretical model were not

exceeded in the majority of the cases under consideration. Only in two cases the theoretical

bound was exceeded by just a few microseconds. The theoretical model seems to be valid and

these small deviations, observed in two out of eighteen cases examined, have to be further

investigated. As it can be easily understood in such a complex system such small deviations

can be attributed to a number of factors. Due to the specific time limitation of the thesis, these

factors could not be further investigated.

Taking into consideration that 1Gbps Ethernet will become available for automotive

and that future versions of AUTOSAR will support 802.1Q and 802.1p, great potential is

being presented for the designers of future vehicular communication networks. Finally, it has

to be mentioned that Ethernet can utilize both copper wire and optic fiber as physical

medium. This provides additional flexibility for the design of the system.

The conclusions above were drawn from the research carried out within this thesis

project and they can be considered as a starting point, regarding other future research work

that may be carried out.

An important issue that has to be examined is that of the message overhead. The first

and second priority messages had a payload of 32 bytes. This payload was encapsulated

within the UDP header, followed by IP header and the Ethernet header adding a total

overhead of 58 bytes. The valuable information travelling through the network is significantly

lower than the overhead required for the transmission leading to waste of bandwidth. On the

other hand, a large payload leads to higher delays. One possible solution is to pack a number

of messages into one Ethernet frame. However, research has to be carried out to find the

optimum solution regarding this trade-off.

42

A message may take an amount of time from the moment it is received from the

network interface of an ECU to the moment it is delivered to its respective application.

The delay calculated in this thesis was the end-to-end network delay. The application-to-

application delay has to be further investigated. The specifications provided by Volvo Car

Corporation required a 5ms deadline. The experimentally measured end-to-end delay values

were significantly lower, indicating than the deadline of 5ms can be met. However, an ECU

performs a lot of other tasks besides the ones needed for communication purposes. Therefore

the processor utilization of the ECU is a factor that has to be taken into consideration. Having

an IP stack with advanced functionality may increase the processor utilization.

As mentioned earlier, the only factor that may lead to packet loss is insufficient

memory. Since the switches have a shared-memory architecture, lower priority traffic may fill

the memory forcing the switch to drop incoming packets regardless of their priority.

Therefore the calculation of the buffer size is of great importance. Network calculus enables

the calculation of pessimistic backlog bounds. These bounds have to be experimentally

evaluated so that design engineers will be aware of the exact amount of memory needed.

Finally for the needs of this thesis project strict priority policy was applied. A strict

priority policy may lead lower priority queues to starvation. Therefore other priority policies

have to be experimentally investigated. A policy suitable for automotive application may be

the one described by Rahmani et al. in [22]. In this hybrid approach, strict priority policy is

applied for the first priority data while for the following priorities a weighted fair queuing

policy is applied.

43

References

[1] B. Muller-Rathgeber, M. Eichhorn, and H. U. Michel, "A unified Car-IT
Communication-Architecture: Design guidelines and prototypical implementation,"
in Intelligent Vehicles Symposium, 2008 IEEE, 2008, pp. 709-714.

[2] L. Hyung-Taek, L. Volker, and D. Herrscher, "Challenges in a future IP/Ethernet-based
in-car network for real-time applications," in Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE, 2011, pp. 7-12.

[3] J. Rox, R. Ernst, and P. Giusto, "Using timing analysis for the design of future
switched based Ethernet automotive networks," in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2012, 2012, pp. 57-62.

[4] A. Kern, Z. Hongyan, T. Streichert, and J. Teich, "Testing switched Ethernet networks
in automotive embedded systems," in Industrial Embedded Systems (SIES), 2011 6th
IEEE International Symposium on, 2011, pp. 150-155.

[5] M. Rahmani, R. Steffen, K. Tappayuthpijarn, E. Steinbach, and G. Giordano,
"Performance analysis of different network topologies for in-vehicle audio and video
communication," in Telecommunication Networking Workshop on QoS in
Multiservice IP Networks, 2008. IT-NEWS 2008. 4th International, 2008, pp. 179-184.

[6] G. Leen and D. Heffernan, "Expanding automotive electronic systems," Computer,
vol. 35, pp. 88-93, 2002.

[7] T. Nolte, "Share-driven scheduling of embedded networks," PhD Thesis, Computer
Science and Electronics, Malardalen University, Sweden, 2006.

[8] (2013, 13 June). MOST. Available: http://www.mostnet.de
[9] P. Winzer, "Beyond 100G Ethernet," Communications Magazine, IEEE, vol. 48, pp.

26-30, 2010.
[10] (2013, 13 June). Open Alliance. Available: http://www.opensig.org/
[11] (2013, 13 June). BroadR-Reach Available:

http://www.broadcom.com/products/features/connected_car.php
[12] (2013, 13 June). RTPGE Study Group. Available: http://www.ieee802.org/3/RTPGE/
[13] S. Furst, "Challenges in the design of automotive software," in Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2010, 2010, pp. 256-258.
[14] (2013, 13 June). AUTOSAR. Available: www.autosar.org
[15] D. Diekhoff, "AUTOSAR basic software for complex control units," in Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2010, 2010, pp. 263-
266.

[16] B. Huang, H. Dong, D. Wang, and G. Zhao, "Basic Concepts on AUTOSAR
Development," in Intelligent Computation Technology and Automation (ICICTA),
2010 International Conference on, 2010, pp. 871-873.

[17] R. L. Cruz, "A calculus for network delay. I. Network elements in isolation,"
Information Theory, IEEE Transactions on, vol. 37, pp. 114-131, 1991.

[18] R. L. Cruz, "A calculus for network delay. II. Network analysis," Information Theory,
IEEE Transactions on, vol. 37, pp. 132-141, 1991.

[19] J.-Y. Le Boudec and P. Thiran, Network calculus : a theory of deterministic queuing
systems for the Internet. New York: Springer, 2001.

[20] J. Jasperneite, P. Neumann, M. Theis, and K. Watson, "Deterministic real-time
communication with switched Ethernet," in Factory Communication Systems, 2002.
4th IEEE International Workshop on, 2002, pp. 11-18.

[21] J.-Y. L. Boudec, "Network Calculus Made Easy," Technical Report EPFL, vol. 96, p. 30,
14 December 1996.

http://www.mostnet.de/
http://www.opensig.org/
http://www.broadcom.com/products/features/connected_car.php
http://www.ieee802.org/3/RTPGE/
http://www.autosar.org/

44

[22] J. P. Georges, E. Rondeau, and T. Divoux, "Evaluation of switched Ethernet in an
industrial context by using the Network Calculus," in Factory Communication
Systems, 2002. 4th IEEE International Workshop on, 2002, pp. 19-26.

[23] J. P. Georges, T. Divoux, and E. Rondeau, "Comparison of switched Ethernet
architectures models," in Emerging Technologies and Factory Automation, 2003.
Proceedings. ETFA '03. IEEE Conference, 2003, pp. 375-382 vol.1.

[24] J. P. Georges, T. Divoux, and E. Rondeau, "A formal method to guarantee a
deterministic behaviour of switched Ethernet networks for time-critical
applications," in Computer Aided Control Systems Design, 2004 IEEE International
Symposium on, 2004, pp. 255-260.

[25] J. P. Georges, T. Divoux, and E. Rondeau, "Strict Priority versus Weighted Fair
Queueing in Switched Ethernet Networks for Time Critical Applications," in Parallel
and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International,
2005, pp. 141-141.

[26] M. Rahmani, K. Tappayuthpijarn, B. Krebs, E. Steinbach, and R. Bogenberger, "Traffic
Shaping for Resource-Efficient In-Vehicle Communication," Industrial Informatics,
IEEE Transactions on, vol. 5, pp. 414-428, 2009.

[27] J. F. Kurose and K. W. Ross, Computer networking a top-down approach featuring
the internet, 3d ed. Boston: Addison-Wesley, 2004.

[28] J. Loeser and H. Haertig, "Low-latency hard real-time communication over switched
Ethernet," in Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro
Conference on, 2004, pp. 13-22.

[29] (2013, 13 June). ARCCORE. Available: www.arccore.com

http://www.arccore.com/

45

Appendix A

 The switch fabric is the delay suffered by a frame passing through the switch without

any queuing delays. In order to measure this delay, an experimental setup as the one shown in

Figure 29 was deployed. Laptop A sends a ping message to Laptop B every 1ms. The nodes A

to D exchange traffic between them in order to load the switch. For measuring the delay of a

frame passing through the switch, the frame has to be time stamped while entering and exiting

the switch. Then by subtracting the two time values the delay can be calculated. The first tap

was connected on the link between Laptop A and Switch A, while the second tap was

connected to the link between Switch A and Laptop B. The two taps were then connected to

an experimental computer through the VN5610 network interface, which captured and time-

stamped the frames. The trace of the captured traffic was analyzed using CANoe by Vector.

The experiments were performed both for small sized frames (90 bytes) as well as maximum

sized frames (1530 bytes). The worst case switch fabric delay value was found to be 10μs.

 Figure 29. Switch Fabric measurement setup

46

Appendix B

/******** File: curve.java **********/

package netcalc;
import java.io.*;
import java.util.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class curve {

 double LinkCapacity,MaxFrameLength,SmallFrameLength,AtoVCM,InputCapacity;
 double[] g,burst,rate,serviceRate,T;
 double[] T1;
 double[] T2;
 double[] Backlog1,Delay1,Backlog2,Delay2;
 double[] q,r;
 double fabric,SmallTransmission,MaxTransmission;

 public void init(){
 try {
 burst = new double[8]; //array for the burst size of the 4 flows on 2 switches
 rate = new double[8]; //array for the data rate of the 4 flows on 2 switches
 serviceRate = new double[4];//array for the service rate of the 4 flows
 T = new double[4]; //Delay caused by blocking and interference for every flow
 T1 = new double[4]; //T for round 1
 T2 = new double[4]; //T for round 2
 q = new double[4]; //new burst size after switch A
 r = new double[4]; //new rate after switch A
 g = new double[4]; //inflection point
 Backlog1 = new double[4]; //Backlog on switch A
 Delay1 = new double[4]; //Delay on switch A
 Backlog2 = new double[4]; //Backlog on switch B
 Delay2 = new double[4]; //Delay on switch B
 fabric=1E-5; //switch fabric value

 //Open the text file to read input
 File file = new File("input.txt");
 Scanner in= new Scanner(file);
 in.useDelimiter(","); //values are separated with ','
 Scanner sc;

 int i=-1;
 while(in.hasNextLine())
 {
 String str=in.nextLine();
 sc=new Scanner(str);
 sc.useDelimiter(",");
 if(i==-1){
 //First line of input file has:
 LinkCapacity=sc.nextInt();
 MaxFrameLength=sc.nextInt();
 SmallFrameLength=sc.nextInt();
 SmallTransmission=SmallFrameLength/LinkCapacity;
 MaxTransmission=MaxFrameLength/LinkCapacity;

47

 }
 else if(i<8){
 //the following lines give the arrival curves
 burst[i]=sc.nextInt();
 rate[i]=sc.nextInt();
 }
 else {
 AtoVCM=sc.nextInt();
 }
 i++;
 }

 } catch (FileNotFoundException ex) {
 Logger.getLogger(curve.class.getName()).log(Level.SEVERE, null, ex);
 System.out.println("No input file found!");
 }
 }

 //calculate the inflection point 'g' of flow 'i'
 void find_g(int i, int round) {

 if(round==1){
 InputCapacity = 3*LinkCapacity;
 }
 else if (round==2){
 InputCapacity = 2*LinkCapacity;
 }

 if(i<2){
 g[i]=burst[i]/(InputCapacity-rate[i]);
 }
 else{
 g[i]=burst[i]/(LinkCapacity-rate[i]);
 }
 }

 //calculate the delay value of 'T1' on flow 'i' for the first switch
 void find_T1(int i){
 if (i==0){ //First priority level
 T1[i]=2*MaxFrameLength/LinkCapacity;
 }
 else if (i==1){ //Second priority level
 T1[i]=burst[0]/(LinkCapacity-rate[0]) + 2*MaxFrameLength/LinkCapacity ;
 }
 else if(i==2){ //Third priority level
 T1[i]=+ (burst[0]+burst[1])/(LinkCapacity-rate[0]-rate[1]) +
2*MaxFrameLength/LinkCapacity;
 }
 else if(i==3){ //Fourth priority level
 T1[i]=(burst[0]+burst[1]+burst[2])/(LinkCapacity-rate[0]-rate[1]-rate[2]);
 }
 }

 //calculate the delay value of 'T2' on flow 'i' for the second switch
 void find_T2(int i){
 if (i==0){ //First priority level
 T2[i]= 2*SmallFrameLength/LinkCapacity ;
 }
 else if (i==1){ //Second priority level

48

 T2[i]= burst[0]/(LinkCapacity-rate[0]) ;
 }
 else{
 T2[i]=0;
 }
 }

 //calculate the service rate 'R' offered on flow 'i' for a 'round'
 void find_R(int i, int round){
 if (i==0){
 serviceRate[i]=LinkCapacity;
 }
 else if (i==1){
 serviceRate[i]=LinkCapacity-rate[0];
 }
 else if(i==2){
 if(round==1)
 {serviceRate[i]=LinkCapacity-rate[0]-rate[1];}
 else if (round==2)
 {serviceRate[i]=LinkCapacity;}
 }
 else if(i==3){
 if(round==1)
 {serviceRate[i]=LinkCapacity-rate[0]-rate[1]-rate[2];}
 else if (round==2)
 {serviceRate[i]=LinkCapacity;}
 }
 }

 //calculates the backlog of flow 'i' on 'round'
 void Backlog(int i,int round){

 if (round==1){

 if(T1[i]<=g[i]){
 Backlog1[i] = burst[i] + rate[i]*g[i] - serviceRate[i]*(g[i]-T1[i]);
 }
 else{
 Backlog1[i] = burst[i] + rate[i]*T1[i];
 }
 }
 else if(round==2){

 if(T2[i]<=g[i]){
 Backlog2[i] = burst[i] + rate[i]*g[i] - serviceRate[i]*(g[i]-T2[i]);
 }
 else{
 Backlog2[i] = burst[i] + rate[i]*T2[i];
 }

 }
 }

 //calculates the delay of flow 'i' on 'round'
 void Delay(int i,int round){
 if (round==1){
 Delay1[i] = (burst[i]+rate[i]*g[i])/serviceRate[i] + T1[i]-g[i];
 }
 else if(round==2){
 Delay2[i] = (burst[i]+rate[i]*g[i])/serviceRate[i] + T2[i]-g[i];

49

 }

 }

 //put values of new burst size and rate in variables 'q' and 'r'
 void set_q(int i){
 burst[i]=burst[i]+T1[i]*rate[i];
 q[i]=burst[i];
 r[i]=rate[i];
 }

 //update the 'burst' and 'rate' values for communication domain
 void roundtwoVCM(){
 //burst and rate for flow1
 burst[0]=q[0]+burst[4];
 rate[0]=r[0]+rate[4];

 //burst and rate for flow2
 burst[1]=q[1]+burst[5];
 rate[1]=r[1]+rate[5];
 }

 //update the 'burst' and 'rate' values for infotainment domain
 void roundtwoDIM(){

 //burst and rate for flow1
 burst[0]=q[0]+burst[6];
 rate[0]=r[0]+rate[6];

 //burst and rate for flow2
 burst[1]=burst[7];
 rate[1]=rate[7];
 }

 //calculate delays and backlogs for switch A
 public void first_calc(){

 for (int i=0; i<4; i++)
 {
 find_g(i,1); //find inflection point
 find_T1(i); //find delay parameter T
 find_R(i,1); //find service rate of the switch
 Backlog(i,1); //calculate the backlog
 Delay(i,1); //calculate the delay
 set_q(i); //restore burst and rate values
 //for next round calculations
 }
 }

 //calculate delays and backlogs for switch 2
 public void second_calc(){

 for (int i=0; i<4; i++)
 {
 find_g(i,2);
 find_T2(i);
 find_R(i,2);
 Backlog(i,2);
 Delay(i,2);
 }

50

 }

 //print results
 public void results(){

System.out.println("==
=============================");
 System.out.println("Flow \tBuffer1 \tDelay1 \t\tBuffer2 \tDelay2 \t\tTotalDelay");
 for(int i=0;i<4;i++){
 System.out.format("%d",i+1);
 System.out.format("\t%d",(int)Backlog1[i]);
 System.out.format("\t\t%d",(int)(Delay1[i]*1000000));
 System.out.format("\t\t%d",(int)Backlog2[i]);
 System.out.format("\t\t%d",(int)(Delay2[i]*1000000));

 SmallTransmission=(SmallFrameLength-12)/LinkCapacity;
 MaxTransmission=(MaxFrameLength-12)/LinkCapacity;

 if(i<2){

System.out.format("\t\t%d%n",(int)((Delay1[i]+Delay2[i]+2*SmallTransmission+2*fabric)*1000
000));
 }
 else{

System.out.format("\t\t%d%n",(int)((Delay1[i]+Delay2[i]+2*MaxTransmission+2*fabric)*10000
00));
 }
 }

System.out.println("==
=============================");
 int buffer=0;
 for(int i=0;i<4;i++){
 buffer+=Backlog1[i];
 }
 System.out.format("Total backlog %d => %dKB%n", buffer, buffer/1024);

System.out.println("==
=============================");
 }

}
/******** End of File: curve.java **********/

/******** File: Netcalc.java **********/

package netcalc;

public class Netcalc {

 public static void main(String[] args) {

 curve traffic= new curve(); //create a new class curve
 traffic.init(); //initialize the variables

//
// calculate delays and backlog on first switch

51

//

 traffic.first_calc();

//
// calculate delays and backlog on second switch for Communication domain
//

 traffic.roundtwoVCM(); //update the variables
 traffic.second_calc(); //perform the calculations
 traffic.results(); //print the results

//
// calculate delays and backlog on second switch for infotainment domain
//

 traffic.roundtwoDIM();
 traffic.second_calc();
 traffic.results();
 }
}

/******** End of File: Netcalc.java **********/

52

Appendix C

For an MTU of 1500 bytes

 Use Case 2

Figure 30. Case 2 second priority delay values Figure 31. Case 2 second priority delay spread

Figure 32. Case 2 third priority delay values

53

 Use Case 3

Figure 33. Case 3 second priority delay values Figure 34. Case 3 second priority delay spread

Figure 35. Case 3 third priority delay values

54

For an MTU of 800 bytes

 Use Case 1

Figure 36.Case 1 second priority delay values (MTU 800) Figure 37. Case 1 second priority delay spread

Figure 38. Case 1 third priority delay values (MTU 800)

55

 Use Case 2

Figure 39. Case 2 second priority delay values (MTU 800) Figure 40. Case 2 second priority delay spread

Figure 41. Case 2 third priority delay values (MTU 800)

56

 Use Case 3

Figure 42. Case 3 second priority delay values (MTU 800) Figure 43. Case 3 second priority delay spread

Figure 44. Case 3 third priority delay values

