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Abstract 

 

 Ethernet was not originally designed for real-time communication. However, the 

growing need for available bandwidth combined with the fact that it is an open standard has 

made the automotive industry to consider it as a possible solution for in-vehicle 

communication. To enable Ethernet to be used in real-time communication, certain guarantees 

(i.e. end-to-end delay bounds) have to be provided. The purpose of this thesis is to propose a 

network architecture for in-vehicle communication and to develop a technique for analysis of 

end-to-end delay. In order to meet this objective, both theoretical and experimental methods 

were deployed. A theoretical model of the system under consideration was produced, based 

on network calculus. An experimental setup, which accurately reflected an automotive 

communication network, was implemented in order to evaluate the theoretical model. Three 

use cases were investigated for two different maximum transmission units. The results 

obtained by the experiments provided valuable feedback that redefined the analytical model. 

Although the end-to-end delay bounds proved to be higher than originally anticipated, the 

validity of the theoretical model was confirmed for the great majority of the experiments. As 

a conclusion, it was shown that Ethernet can be used as a backbone in a domain-oriented 

architecture as long as support for IEEE 802.1Q and 802.1p is provided both in hardware and 

software. Given the fact that future versions of AUTOSAR will support these standards and 

that implementation of such a system can be done with commercial of-the-shelf equipment, 

great potential is being presented for the designers of future vehicular communication 

networks. 
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1. Introduction 
 

In-vehicle communication networks are evolving constantly. Due to rising 

requirements in terms of performance, safety and comfort an increasing number of electronic 

control units (ECU) are integrated within modern cars. The demand for faster, more robust 

and more dependable networks, results not only in increased complexity, but also in higher 

production cost.  

The electronic control units are connected by application specific communication 

buses. The most traditional network technology used by the automotive industry is CAN. 

CAN has been used since the late 1980s and is a cost efficient solution with bandwidth up to 

1Mbit/s [1]. The physical medium consists of two twisted unshielded wires and access to the 

shared medium is priority based (strict). A more recent communication bus is FlexRay which 

has higher bandwidth (10Mbit/s). FlexRay was developed for higher reliability in real-time 

communications. 

The increasing need for bandwidth has led the automotive industry to consider 

Ethernet as a possible alternative to the existing network communication protocols. Indeed the 

automotive industry has introduced Ethernet in vehicles for diagnosis/updates and 

entertainment [2]. Ethernet is being further examined as a network technology for in-vehicle 

communication since it offers high bandwidth (up to 1000Mbit/s) while being cost-efficient. 

Furthermore, using IP and Ethernet different traffic types originating from different 

communication protocols can be integrated into a common backbone.  

Ethernet was not originally designed for real time communications and does not offer 

any timeliness guarantees. However, Ethernet-based full duplex data transmissions could 

provide high bandwidth/high rate communication with relatively low jitter and high 

determinism [3]. Additionally various versions of Ethernet are widespread and have become 

successful in other industrial domains such as avionics and industrial automation [4]. The fact 

that Ethernet standards are non-proprietary, may lead to reduction of cost. The only way to 

guarantee bounds for end-to-end delay over Ethernet is to carefully analyze the worst case 

behavior of the network traffic. A static, a priori known network, such as an in-vehicle 

network is ideal for such analysis. To the best of our knowledge, attempts to explore these 

issues in the automotive context have been previously performed only by simulation 

techniques [5]. However, the behavior of such complex systems can only be realistically 

examined by an actual hardware experimental setup. In this way useful results about whether 

Ethernet can be used as the backbone network of an automotive system architecture can be 

obtained.  



8 

 

 

 

 

The research carried out in the framework of this thesis aims to evaluate the use of 

switched Ethernet as the backbone network of an automotive system architecture. The main 

objective of the thesis is to evaluate the end-to-end delay of the network and provide 

deterministic upper bounds. This was done by examining the systems behavior under six 

different use cases, provided by Volvo Car Corporation. Another objective of this thesis is to 

propose a system architecture for in-vehicle communication. Yet another objective is to 

produce a theoretical model of the system under examination. Furthermore, it is of great 

importance to also set up an experimental model, which accurately reflects the system 

architecture. In order to demonstrate that existing technology enables the usage of switched 

Ethernet in the automotive domain, commercial off the shelf switches will be used. 

The scope of this thesis is to explore and fully understand network communications 

on a switched Ethernet network. Only the case of standard Ethernet will be examined. 

Furthermore any switch used will meet the IEEE standards. Ethernet will be used as a 

backbone for the communication between the domain masters, according to the proposed 

domain-oriented architecture. There are also certain limitations for this thesis. First of all, 

intra-domain communication over Ethernet will not be addressed. The redundancy and fault 

tolerance of the topology are also out of scope. Finally only the case of Fast Ethernet 

(100BASE-TX) Ethernet will be considered since Gigabit Ethernet (1000BASE-T) is not yet 

available for automotive use due to EMC issues. 

The remainder of this thesis is organized as follows.  The literature review regarding 

in-vehicle communication networks as well as network calculus is summarized within the 

second chapter. First, a theoretical review of the concepts combined in our work is made, 

followed the implementation specific choices made under the context of our study. Network 

Calculus and its basic concepts are also presented. 

 The methodology used within this thesis, is presented in the third chapter, giving 

information regarding the theoretical analysis and the experimental procedure. One of the 

main parts of the research, the modeling of the system, is then introduced.  Basic information 

regarding the equipment used is given, followed by the experimental implementation details.  

A thorough presentation of the results obtained by the six different use cases is made 

in chapter four. Theoretical results are compared with experimental results and findings of the 

project as well as key observations are then thoroughly discussed.  



9 

 

The  thesis  is  finalized  with  a  chapter  that  summarizes  the  basic  conclusions  

that have come up by the data analysis, trying to give answers to the questions presented in 

the  thesis’  objectives.  The conclusions, apart from answering the basic research questions, 

result in the proposal of more researches in the future. 
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2. Literature Review 
 

Over the past decades the number and complexity of electronic systems integrated in 

vehicles has increased exponentially. This was the result of replacing mechanical and 

hydraulic parts with ECUs, sensors and actuators. By using embedded systems it was also 

possible to add functionality especially in areas such as dynamic driving control resulting in 

more reliable and robust control systems. Leen and Hefferman presented these trends of the 

automotive industry in [6]. In the same article it was stated that “the cost of electronics in 

luxury vehicles can amount to more than 23 percent of the total manufacturing cost”. Thus the 

design of such systems is becoming more demanding. 

2.1 Automotive domains 
 

In order to deal with the complexity the domain-oriented approach was recently 

introduced, where subsystems of similar functionality are grouped into the same domain. The 

most common functional domains found in a modern car are: 

 Powertrain domain: Control of the engine (generation of power) and transmission 

of power from the engine to the driving axis through the gearbox. Such systems 

have strict timing requirements and demand high dependability in communication. 

 Chassis domain: Responsible for control of car stability and dynamics. Typical 

subsystems of the domain include suspension, braking and steering (ABS, ESP). 

Again the requirements for dependability and predictability are high. 

 Body domain: This domain does not deal with functionality directly connected with 

driving. It includes systems that concern the comfort of the driver and passengers. 

Typical systems include climate control, locks, windows, seats etc. 

 Safety domain: Control of systems like airbags, safety belts and impact sensors. 

 Telematics/Infotainment domain: Includes services like in-vehicle navigation 

systems and multimedia entertainment systems (CD/DVD players, monitors). It also 

includes human machine interaction systems (HMI) such as dashboard and head-up 

displays concerning route and traffic information.    

An example of a domain-oriented architecture is shown in Figure 1. The system consists of 

around 40 ECUs, which are divided into the powertrain and chassis domain, the body 

electronics domain and the infotainment domain [7]. 
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Figure 1. Volvo XC90 Network Topology and ECU explanation [7]  

2.2 In-vehicle communication networks 
 

 Functional domains of modern vehicles have diverse communication requirements. 

That fact led the automotive industry to develop distinct communication technologies to 

satisfy the specific requirements. As the number of ECUs inside a car increased, so did the 

amount of wiring needed to interconnect them. As an example, it has to be mentioned that a 

luxurious car today may contain more than 4km of wiring, while a car manufactured in 1955 

had only 45m [6]. Extra wiring results in added weight and increased fuel consumption. The 

development of serial based communication networks reduced the need of using discrete 
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wiring. Application-specific communication buses are integrated in the vehicle. The most 

common networks will be described in this section. 

Controller Area Network (CAN)    

CAN was originally developed in the mid-1980s by Bosch and is the most widely 

used automotive control network up to date. CAN uses carrier sense multiple access with 

collision resolution (CSMA/CR) protocol in order to control the access to the bus. This 

method resolves collisions in a deterministic way. CAN employs small sized (payload of 0-8 

bytes) event triggered messages which are transmitted in a common bus. The data rate of the 

bus may vary from 10kbps up to 1Mbps. 

 Figure 2. CAN message frame format 

As it was mentioned CAN is a collision-based communication protocol. The sender 

transmits a message header with the 11-bit identifier. A collision-detect mechanism 

determines which node will be permitted to transmit a complete message. By assigning a 

proper identifier a deterministic bound on the queuing delay can be achieved. The collision 

resolution is performed by the “wired-AND”. In case of simultaneous transmission by 

multiple nodes, if all nodes transmit a “1”, then all nodes will see a “1”. If at least one node 

transmits a “0”, then all nodes will see a “0”. When a node transmitting a recessive bit (“1”), 

detects a dominant bit (“0”) it stops transmitting. The node that transmits all 11 bits of the 

identifier without detecting any inconsistency is the one with the highest priority and 

therefore can transmit the whole message. 

Local Interconnect Network (LIN) 

 LIN is a time triggered, low cost serial bus which is typically found in systems within 

the body and comfort domain. Such applications may be car seats, door locks, sunroofs and in 

general on-off devices. LIN has a data rate of 20kbps and employs a master-slave mechanism. 

It is widely used because of its simplicity, low cost and the fact that it is an open standard. 

Media Oriented Systems Transport (MOST)    

 MOST is the de-facto standard for multimedia and infotainment applications. 

Offering a high bandwidth of 25 up to 150Mbps, MOST uses a ring topology and 

synchronous data communication. Point-to-point links are used for data transfer and both 

synchronous and asynchronous traffic is supported. Synchronization between the nodes is 
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achieved through a master/slave mechanism, with one node being the timing master. The 

protocol was developed by a consortium of more than 50 companies including Audi, BMW 

and Daimler under the MOST Cooperation [8].     

FlexRay 

FlexRay is a fault-tolerant and highly reliable communication protocol. It combines 

both event and time triggered communication and offers data rates up to 10Mbps. A FlexRay 

network may consist of maximum 64 nodes. FlexRay supports dual channels and can be 

implemented in a star, bus or even mixed topology. The second channel can be used to 

provide redundancy or higher bandwidth. A FlexRay frame consists of a 5 bytes header and 

0-254 bytes of payload. These frames can be scheduled for transmission during the static or 

the dynamic segment of a communication cycle.  

The static segment contains slots which are statically assigned to nodes and offer 

guaranteed service. Multiple slots can be assigned to one node in the same cycle, which 

increases flexibility. The dynamic segment is divided into mini-slots. These mini-slots are 

assigned dynamically based on message identifiers and slot counters. A high message-id 

offers a guaranteed service and a low message-id offers a best effort service. In this way 

FlexRay combines both exclusive access to the medium, as well as arbitrary. 

 Figure 3. FlexRay Communication Cycle 

     

Time-Triggered Protocol (TTP/C) 

 The TTP/C is a communication protocol developed by a consortium of companies 

known as TTA-Group. It offers speeds up to 25Mbps and employs Time Division Multiple 

Access (TDMA). For redundancy it deploys two channels and can be implemented either in 
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twin bus or twin star topology. Communication in TTP/C is organized in TDMA rounds. 

Each round is divided into slots and each slot is assigned to a respective node. The slots do 

not have to be necessarily equal within the same round, but they are statically assigned and do 

not change in each TDMA round. This static scheduling reduces the flexibility of the system 

but increases the predictability. Any non-periodic messages have to be fitted into the static 

slots by the application. Each TTP/C frame contains up to 240 bytes of data and 4 bytes of 

overhead. 

 TTP/C implements several mechanisms that make it a highly fault-tolerant 

communication protocol. An important feature is that clock synchronization is established 

through a global time base, without relying on a single time server. This makes the system 

fault-tolerant, which is required in safety critical applications such as avionics and x-by-wire 

systems. 

Time-Triggered CAN (TTCAN) 

CAN was extended with an additional layer in order to provide time-triggered 

behavior. TTCAN uses the same physical and data link layer as CAN and allows scheduling 

of messages in both a time-triggered and event-triggered way. TTCAN is implemented in a 

bus topology and achieves a data rate up to 1Mbps. Synchronization is achieved by a master 

node that sends periodic reference messages. Communication in TTCAN is achieved by a 

static schedule that consists of communication cycles. During each of the basic cycles 

TTCAN offers guaranteed service to periodic messages, while arbitration windows are used 

to support event-triggered messages. During these windows access to the medium is resolved 

arbitrary, as in CAN.  

TTCAN employs the fault-tolerant mechanisms of CAN and also does not allow any 

retransmission of erroneous messages. Its main advantage is that it allows both event and 

time-triggered traffic on the same network, resulting in more flexibility. It is also a cost 

efficient solution because it was built on top of the CAN standard. However it has relatively 

low bandwidth which may limit its usage in the future. 

 

2.3 Switched Ethernet 
 

Ethernet was introduced in the 1980’s as a networking technology for local area 

networks (LAN). It originally used coaxial cable as a shared medium which was later 

replaced by copper twisted pair and optic fiber cables. It quickly became popular and is the 



15 

 

most common LAN technology used today in data communication networks.  Ethernet has a 

wide range of available bandwidth. Starting from 10BASE-T at 10MBps up to 10GBASE-T 

at 10Gbps. The most common type of Ethernet used today is the 100BASE-TX which offers a 

speed of 100Mbps. Ethernet is expected to exceed the speed of 100Gbps over optic fiber in 

the future [9]. 

Access to the medium is achieved through the carrier sense multiple access with 

collision detection (CSMA/CD) mechanism. Before transmitting a node senses the medium in 

order to see if another node is transmitting at that point of time. The node starts transmitting 

only when the channel is idle. During a transmission the node checks if a collision has 

occurred. If a collision is detected the node aborts transmission and sends a jamming signal 

informing all nodes that a collision occurred. The transmitting node then randomly selects a 

backoff period of time from a specified range of values, before attempting to retransmit. In 

case a second collision occurs the range of backoff values is increased exponentially and the 

same process is repeated. Therefore, the queuing delay of a message cannot be bounded. This 

fact made Ethernet unsuitable for real-time communications. 

The introduction of switches allowed the segmentation of networks into collision 

domains. A collision domain is a segment of the network where collisions may occur. On one 

collision domain only one device may transmit at a time. Complete elimination of collisions 

was made possible with the introduction of full-duplex links which allowed devices to receive 

and transmit at the same time. In other words, a switched Ethernet network operating in full-

duplex is a collision free network.  

Figure 4. The Ethernet Frame 

Before being transmitted, messages are encapsulated in the Ethernet frame. Figure 4 

shows the structure of the Ethernet frame. A preamble of 8 bytes is used for synchronization 

purposes. The preamble is followed by the destination and source addresses, each of them 

having a length of 6 bytes. The following two bytes describe the type of the payload data. The 

payload may vary from 46 to 1500 bytes. Finally the frame check sequence field is 

responsible for error-detection. 
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IEEE 802.1Q added support for Virtual LANs (VLAN). By using VLANs a physical network 

can be segmented into multiple logical networks.  This logical division is usually done by the 

switch. Each VLAN represents a broadcast domain. In a broadcast domain all nodes can reach 

each other using broadcasts at the link layer. A member of a specific VLAN cannot directly 

communicate with a member of another VLAN unless it is permitted by a router, which is a 

layer three device. 

The VLAN tag as shown in Figure 5 contains all the necessary information for the 

switch, in order for it to make the correct forwarding decisions. The VLAN tag contains a 2 

bytes field called Tag Protocol ID that is always set to the value 0x8100, in order to identify 

the frame as a tagged one. The following 2 bytes, named Tag Control Information, contains 

the User Priority field, the Canonical Formal Indicator and the VLAN ID. The User Priority 

field, also referred to as Priority Code Point (3 bits), allows up to eight priority levels, as 

defined by the IEEE 802.1p standard. In practice only four priority levels are supported by 

most switch manufacturers. The CFI (1 bit) is always set to 0, indicating that the MAC 

address is in canonical format. This was used for compatibility in token ring networks. Finally 

the VLAN ID (12 bits) allows up to 4094 VLANs.   

  

Figure 5. 802.1Q VLAN tag with 802.1p priority field  

Regarding the current adoption of Ethernet technology by the automotive industry, 

standard Ethernet is not considered as a solution. Due to EMC issues, shielded cables have to 

be used, resulting both in higher cost and weight. This is the reason that the automotive 

industry considers the unshielded single twisted pair cable instead. OPEN Alliance is a 

special interest group consisting of manufacturers and OEMs. Its purpose is to promote the 

“wide scale adoption of Ethernet-based, single pair unshielded networks as the standard in 

automotive applications” [10]. BroadR-Reach is the Ethernet solution that is promoted by the 

OPEN Alliance and is expected to be used soon in vehicles [11]. Unfortunately this 

technology is proprietary. IEEE is working on a Gb/s automotive version, which will be non-
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proprietary. For this reason the Reduced Twisted Pair Gigabit Ethernet study group [12] was 

created in order to support 1 Gb/s operation in automotive and industrial environments. This 

standard is expected to become available around 2018. 

 

2.4 AUTOSAR 
 

AUTomotive Open System Architecture is a software architecture standard developed 

jointly by automotive manufacturers, OEMs and tool developers. This standard was created to 

satisfy the need for standardization of basic software and the interfaces to applications/bus 

systems, since future E/E architectures will have a common basis across OEMs [13]. The 

intention behind this effort was to reduce system complexity and keep the development cost 

feasible. Some additional goals of AUTOSAR include the scalability across different vehicles 

and platforms, maintainability throughout the product lifecycle and the sustainable utilization 

of natural resources [14]. 

AUTOSAR follows a layered architecture, where hardware, basic software, runtime 

environment and  application software are separated from each other [15]. The basic concepts 

of AUTOSAR are the following: 

 Software Component (SWC) Each SWC should be assigned to one ECU and 

encapsulates part of the functionality of the application [16]. The component’s 

implementation is independent of the infrastructure following the basic design 

concept of separation between layers. 

 Runtime Environment (RTE) The RTE provides a communication abstraction to the 

SWCs connected to it, providing the same interface and services both for inter and 

intra ECU communication. Since the requirements of SWCs running on RTE may 

vary, different ECUs may have different RTEs. 

 Basic Software (BSW) The BSW is essential to run the functional part of the 

software. It is the standardized software layer, that provides services to the SWCs 

[12]. It contains both standard and ECU specific components. 
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Figure 6. AUTOSAR layered architecture [10]  

 

2.5 Network Calculus 
 

Network Calculus is a well-established technique used for performance analysis of 

real-time communication networks.  It was originally proposed by Cruz [17, 18] and further 

developed by Le Boudec and Thiran [19]. The foundation of network calculus is based on the 

min-plus algebra and takes into consideration networks consisting of service nodes and the 

packet flows between them. Network calculus is a theory for deterministic queuing systems. 

In contrast with traditional queuing theory, which models the system’s behavior based on 

stochastic processes and probability functions, network calculus applies bounding constraints 

on packet arrival and service [20]. This enables delay and backlog bounds to be calculated. 

This property makes network calculus very attractive for real-time applications which require 

QoS guarantee and has already been used for industrial and avionics network applications.  
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 The building blocks of network calculus are the arrival and the service curve of a 

node as well as two functions of the min-plus algebra, the convolution and the deconvolution 

represented by the operator   and   respectively.  

Convolution 

   denotes the set of wide sense increasing sequences or functions such that for t < 0, 

       . For two functions f and g belonging to     the convolution is defined as: 

(                               

(If   < 0, (          ) 

The infimum of a subset S of a partially ordered set T is the greatest element of T that is less 

than or equal to all elements of S, denoted by inf. 

Deconvolution 

The deconvolution of the two functions is: 

                               

If both       and       are infinite for some t , the above equation is not defined. In contrast 

with min-plus convolution           is not necessarily zero for t ≤ 0. 

The supremum of a subset S of a totally or partially ordered set T is the least element of T that 

is greater than or equal to all elements of S, denoted by sup. 

Arrival Curve 

If      is the cumulative function, expressing the amount of data arriving in a time 

interval      , then a flow entering a node has an arrival curve      if for all        

                 

where       is a non-negative and non-decreasing function.  

As shown by Le Boudec and Thiran at [15], the leaky bucket controller concept can 

be used as a regulation method denoting the constraints of the traffic. This controller 

constrains a flow by an affine curve           , where    is the maximum amount of data 

that can arrive in a burst and   an upper bound on the long term average rate of the traffic 

flow. This expression is similar to the concept of burstiness constraint as described by Cruz 

[13]. If R(t) is the instantaneous rate of data arriving on time t , then                the 

burstiness constrained is: 
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Service Curve 

 A service curve describes the service of a flow F inside a node. Let       be the 

amount of data output in a time interval      . Then the non-negative and non-decreasing 

function       is called the service curve for flow F in this node if for all    , 

             

Output Characterization 

 For a flow constrained by an arrival curve     , traversing a system that offers a 

service curve     , the output flow is constrained by the arrival curve [21]: 

                

Pay burst only once 

 As shown in Figure 7, a flow with an arrival curve      enters the first node which 

offers a service curve      . The output flow will be constrained by the arrival curve        

          . This output flow will be the input flow of the second node. Likewise the output 

flow of the second node will be constrained by the arrival curve                   .  The 

total delay of the system is the sum of the delays of each node. 

  

Figure 7. Concatenation of nodes 

 

 The service curve offered to a flow that traverses two nodes in sequence is       

            (Concatenation of Nodes) [15]. By applying the network service curve in order 

to calculate the system’s delay, the results obtained are tighter. This happens because in the 

first case the delay due to the burstiness of the flow was calculated twice. This is referred to 

as “pay burst only once” phenomenon. 
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Applied network calculus 

 As mentioned earlier network calculus has been successfully applied in the field of 

industrial automation. The most significant research in this field has been performed by 

Georges et al. [22-25]. In [18], inspired by the work of Cruz, the authors proposed a model of 

a switch based on a sequence of elementary components. Their goal was to obtain a formula 

for the calculation of end-to-end delay in switched Ethernet networks. In [19], the authors 

make a comparison of different theoretical models of Ethernet switches. A network 

simulation tool was used in order to identify the one that represents more accurately the 

functionality of a switch. In a later work [20], a formal method to guarantee a deterministic 

behavior of switched Ethernet was introduced. The previously described models were 

extended taking into consideration the QoS mechanism which enables prioritization according 

to IEEE 802.1p. Finally in [21], using the new model of the switch, comparison between strict 

priority and weighted fair queuing scheduling policies was performed. Also, new formulas 

that calculate the upper bound of the maximum end-to-end delay were presented.    

 Network calculus has also been applied in the automotive domain. To be more 

specific in [5] Rahmani et al. compared different topologies of in-vehicle networks regarding 

QoS performance. In [26], the authors presented an analytical model for resource planning 

and performance evaluation of the in-vehicle network, using network calculus theory.  

 

2.6 Implementation Choices 
 

 After completing the literature review and having acquired a background in the 

research problem under investigation, we made certain choices regarding the design of the 

thesis project. The most suitable topology for an in-vehicle communication network was 

considered to be the double star topology. The reason behind this choice is that this topology 

is the most viable to be implemented by an automotive manufacturer. The two switches can 

be placed in the front and the back of the cabin of the car, allowing a more flexible design. In 

this way, domain masters that exchange messages more frequently can be connected to the 

same switch, achieving better network performance. Moreover, other advantages of this 

topology are the network resilience in case a node fails and the flexibility in choosing link 

capacities for separate parts of the network [5]. 

 The strict priority policy was selected as the queuing policy. Since the traffic of an in-

vehicle network varies both in terms of requirements but also in criticality level, specific QoS 

guarantees have to be provided for each type. The strict priority policy reflects more 



22 

 

accurately this requirement and is the most straight forward solution. The traffic of the 

network was grouped into four types and each one was assigned to its respective priority 

level. Another factor contributing to this decision is that in practice switches only support up 

to four priority levels. 

 Since the double star topology adds the extra cost of the two switches, it is very 

important for automotive manufacturers to be able to evaluate the potential of commercial of-

the-shelf solutions. This is why such switches were used and not a high-end solution. Another 

reason behind that choice was to demonstrate that the proposed solution is feasible with 

existing technology. 

 Another important design choice was the use of AUTOSAR as an operating system 

for the development boards of our experiments. In this way, our system becomes more 

realistic and complies with the automotive standards. In addition to that the development 

boards used were equipped with a Freescale MPC5567 processor which is typical for 

automotive applications.    
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3. Methodology 
 

In order to evaluate the end-to-end delay, both theoretical and experimental methods 

were deployed. End-to-end delay is defined as the time it takes for a frame to traverse the 

backbone once it is received from an input port of the first switch until it is fully transmitted 

by an output port of the second switch. As a first step, a theoretical model that accurately 

reflects the traffic load and patterns, as well as timing constraints (specified by Volvo Car 

Corporation) was created. Then, an experimental setup which was based on the theoretical 

model was produced. In this way the results obtained from the theoretical analysis can be 

compared with those measured from the experiments. 

3.1 Use Cases 
 

  The following use cases were investigated: 

 Use case 1. The traffic load for the first two types of traffic complies with the existing 

load of an in-vehicle network of a Volvo car. The third priority traffic (video traffic) 

has a rate of 32Mbps and the best effort traffic has a rate of 8Mbps. 

 Use case 2. To investigate the effect of increased video traffic, the rate of third 

priority traffic was doubled reaching 64Mbps. All other traffic remains the same as in 

use case 1. 

 Use case 3. In the future it is expected that the amount of control data exchanged 

within the network will be significantly increased. Therefore, in this use case the 

payload of the first priority traffic is doubled. All other traffic remains the same as in 

use case1.  

The three use cases were examined both for a standard MTU of 1500 bytes, as well as 

for an MTU of 800 bytes.  

3.2 Traffic Model 
 

For the model of our system the following four priority classes will be employed: 

 Hard real time messages: This class has the highest priority and consists of control 

messages regarding the powertrain, chassis and body electronic systems. These are 

small sized periodic messages. Usually they have more than one destination 

(multicast). No packet loss is tolerated in this priority class.   
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 Soft real time messages: This class has second priority and consists of diagnostic 

messages. These are also small sized messages that exhibit periodic behavior. 

However they are not as highly critical as the previous class and an amount of missed 

deadlines can be tolerated.   

 Video data: This class has the third priority and consists of video streams. One or 

more cameras will stream video of MJPEG format. This class generates a lot of traffic 

since it has high data rate. Certain losses ≤0.1% can be tolerated [5].  

 Best effort data: Finally the last class consists of best effort messages. Typical 

applications can be web browsing or file transferring. These applications use TCP 

which facilitates mechanisms that ensure reliable transfer of data. This class consists 

of non-critical traffic that has no real time constraints. Since TCP is used, any packets 

lost will be retransmitted.   

In our model strict priority policy will be deployed. This means that any frame of a 

given priority will be served only if there are no other frames of higher priority present in the 

queues. Therefore the service offered by the switch is not the same for all priority classes. The 

traffic generated by each class will be referred to as flow i, where i is the respective priority. 

The arrival curves of the flows will be expressed as               (where b is the burst 

size and r is the average rate of the flow), following the leaky bucket controller concept.  As 

shown by Georges et al [25], the service curve offered to each flow can be expressed as 

             , where   is the rate at which data will be served expressed in bits/sec 

and   is the total delay suffered by a flow before being actually served.   may consist of two 

factors depending on the priority level of the flow. The first one is the interference from 

higher priority flows being served at that point and the second one is the blocking point due to 

a non preemptive transmission of lower priority flows. In detail the service curve for each 

priority can be expressed as: 

 1
st
 Priority: The packets of this priority will be selected first. However since 

forwarding of a packet is non-preemptive, the packets of this flow might be blocked 

by a lower priority packet that is being transmitted. The service curve of this flow is: 

               

                                          

 2
nd

 Priority: The packets of this priority have to wait in case any packet of flow 1 has 

to be served (interference). Furthermore as mentioned earlier due to the non-

preemptive transmission of packets, the packets of this flow can again be blocked by 

a lower priority packet from flow 3 or 4. Since flow 1 will be always served first the 
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forwarding rate left for flow 2 will be limited to       . The service curve of this 

flow is: 

               

  
  

    
                                    

 3
rd

 Priority: The packet of this priority can only be served if all higher priority 

packets have already been served and no packet of flow 4 is being transmitted at that 

point of time. The service rate is limited to         . The service curve of this 

flow is: 

               

  
     

       
 

      

 
             

 4
th

 Priority: The packet of this priority can only be served if all higher priority 

packets have already been served. The service rate is limited to            . The 

service curve of this flow is: 

               

  
        

          
                

3.3 Switch Model 
 

In traditional CSMA/CD Ethernet, a collision can cause a random back-off of the 

node before retransmitting. Therefore the calculation of an upper bound for the delay is not 

possible. In full duplex switched Ethernet collisions are completely avoided. However this 

new element (the switch) introduces delays in the network traffic, whose upper bounds can be 

calculated in a deterministic way. 

 The total delay of a frame passing through a switch can be expressed as [27]: 

Dswitch=Dproc+Dqueue+Dtrans , 

where Dproc is the processing delay of a frame by a switch. It depends on the hardware 

capabilities of the switch, often referred to as switch fabric. The value of this delay lies in the 

area of a few microseconds and is often provided by the manufacturer or can be found 
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experimentally. For the needs of the thesis the switch fabric was measured experimentally
1
 

and was found to be 10μs (in the worst case). Measurements were performed both for a 

maximum sized Ethernet frame as well as for frame size equal to those of the control data. 

The worst case was observed for the small frame size as it can be seen in Figure 8. 

  

Figure 8. Switch Fabric measured values 

 Dqueue  represents the delay caused by the queuing of the frame before being 

transmitted by the output port. This type of delay has the greatest impact on the total delay 

imposed by the switch. Finally, Dtrans is the time needed for the frame to be transmitted. This 

can be easily calculated by the expression  

       
 

 
  , 

where L is the frame length and C is the maximum link capacity. 

Figure 9 shows a conceptual model of the switch. A frame is received by Rx port and 

is then processed by the switch fabric and placed in the appropriate priority queue. The 

queues although being represented as discrete logical elements they are located in the same 

physical shared memory. The queue scheduler decides which frame will be transmitted based 

on the queuing policy. The frame is then transmitted through the Tx port.    

In case high bit rate traffic arriving from multiple ports is destined to one output port, 

the rate at which traffic will be forwarded by the output port is limited by the link capacity. 

As a consequence frames have to be stored in buffers located in the shared memory of the 

switch. If the shared memory becomes full then any received frame, regardless of which port 

it was received or to which priority it belongs to, will be dropped.  Packet drops are not 

                                                      
1 The details of the experiment are presented in the Appendix A. 
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acceptable for real time communications. Therefore the calculation of buffer sizes as well as 

the utilization of shared memory should also be examined. As mentioned earlier by applying 

network calculus, theoretical upper bounds can be derived both for the queuing delays and the 

buffer sizes. 

Figure 9. Switch Model (Notice the four queues for the traffics having different priorities) 

 

3.4 System Adaptation 
 

 The system traffic, as shown in Figure 10, represents the worst case scenario and is 

modeled into four flows. As mentioned earlier our system has a double star topology. In such 

topology the frames that will experience the highest delay are those traversing through both 

switches. Therefore the traffic generated on one side of the network destined for the other side 

of the network will be examined (from left to right). In order to have realistic measurements 

the system traffic was fully loaded on both directions. The scenario under examination 

represents the worst case because high volume traffic of all priorities is generated on the left 

side of the network and traverses switch A through the same output port, which is the 

bottleneck of the system. The highest amount of data is generated from the Video Source and 

the FTP server. 

 Flow         
         

         
      is the sum of all flows of 1

st
 priority 

messages generated from the powertrain and chassis domain, body electronics domain and 

safety domain. Flow         
         

         
      is the sum of all flows of 2

nd
 

priority messages generated from the powertrain and chassis domain, body electronics 

domain and safety domain. Flow       is the flow of 3
rd

 priority video data destined for the 

video sink. Finally, flow       is the flow of 4
th
 priority best effort data sent from an FTP 

server to a client. 

 Each of the four types of messages is placed in its respective queue by the switch 

fabric. The queue scheduler of the transmitting port will forward the frames according to the 

scheduling policy. The output traffic of each flow has an arrival curve of   
           

      . These curves will be the input for switch B. However, in switch B, traffic exchanged 
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between the communication domain and the infotainment domain must also be taken into 

consideration. Furthermore the incoming traffic to switch B has multiple output destinations. 

The video traffic is directed to the port connected to the video sink, no other types of traffic 

arrive at this port so it only has one queue. The same applies to the best effort data flow. For 

the two domain masters residing on this side of the network there are two queues at each 

output port and the arrival curves for each flow are expressed as: 

  
       

       
       and    

       
     for the communication domain  

 

  
        

       
       and    

       
      for the infotainment domain  

 Figure 10. System traffic model 

 

FlexRay is used nowadays as the backbone for in-vehicle communication by some 

automotive manufacturers. In order to evaluate Ethernet as an alternative solution, the current 

traffic load of the FlexRay implementation of Volvo Car Corporation was adapted to a 

switched Ethernet implementation.  

 Each node sends a given number of frames to one or more other nodes. These frames 

are transmitted at their predefined time slot in the FlexRay cycle. The length of the cycle is 

5ms and a frame may have a period of n*5ms, where n=0,1,2,… . It was observed that a node 
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does not transmit all of the frames at once (sequential time slots), but there is a time gap 

between each transmission. This behavior is represented in our model. The frames of each 

node will be transmitted with a given offset between them (200μs) while the periods remain 

the same. 

For the first two priority classes of the system under examination, the exchanged 

messages are of periodical nature. The traffic generated on the vehicle’s backbone network is 

known beforehand both in terms of size and period. Therefore the arrival curve can be 

expressed as           , where b is the maximum frame size of the flow
2
 and r is the 

average data rate. This has the following advantages. First of all a(t) is a deterministic upper 

bound of the specific traffic flow, as shown in Figure 11. However, the data arrival on a 

physical network is limited by its link capacity C. As a consequence the arrival curve will be 

expressed as : 

                   

 Each of the frames sent periodically by a node, may represent a flow with an arrival 

curve     . The arrival curve of the total traffic of a node can be found by simply adding the 

arrival curves for each frame flow. This however leads to a large burst value. By introducing 

this “mimicking FlexRay” behavior, only one frame will be transmitted at a time by a node, 

thus keeping the burst size to a minimum of one frame size. This approach results in a tighter 

estimation of end-to-end delays and backlogs.  

 

 Figure 11. Arrival Curve of periodic traffic 

 

                                                      
2 The frame size for the first and second priority traffic is 90 bytes (32 bytes of payload plus overhead of additional 

layers UDP,IP and Ethernet). 

Data amount 

arrival

t

α(t) = b + rt

cycle

b

Slope r
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 In order to analyze the entire system in a deterministic way the last two priority 

classes must also have arrival curves constrained by a leaky bucket. Indeed the third priority 

class which consists of MJPEG video data can be modeled in the same way. MJPEG format is 

preferred by the automotive manufacturers due to its low complexity and low hardware 

requirements. Each frame is a JPEG picture which is compressed individually and then sent to 

the destination. A typical configuration consists of a resolution of 640X480 (standard VGA) 

and a rate of 30 fps. The arrival curve of this flow can be expressed as             where b 

is the frame size of a JPEG picture and r the average data rate. 

 Finally the traffic of the fourth priority class is random by nature. Therefore 

traffic shaping has to be applied at the source so that the arrival curve of this flow will 

conform to a leaky bucket curve expression. In this way determinism can also be achieved for 

this class. A simple leaky/token bucket traffic shaper can be applied. The numerical 

expressions for the arrival curves of the system traffic are: 

                   

                  

                       

                    

3.5 Delay and backlog calculation 
 

For a flow with an arrival curve      traversing through a system with service curve 

      , Le Boudec and Thiran have shown that the maximum delay D is the maximum 

horizontal distance between the two curves and the maximum backlog B is the maximum 

vertical distance between the two curves (Figure 12). The inflection point g  is defined as the 

point where the arrival curve changes slope [28]. That is the point where       . 

Therefore,    
 

   
  

For the calculation of the backlog two cases are distinguished. For     the 

maximum backlog is found at point g, while for     the maximum backlog is found at 

point T. The derived expressions for the calculation of the backlog and delay of a given flow 

are the following: 
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 Figure 12. Backlog and Delay illustration for  T≤g and for  T>g 

 

 For the calculations of the delay and backlog values, a program was developed in 

Java. The source code is presented in Appendix B. 

 

3.6 Experimental Setup 
 

 The following equipment was used in order to perform the experiments: 

1. Netgear GS108Tv2 smart switch (two items). 

2. QRTECH ODEEP development board (five items). 

3. iSYSTEM winIDEA iC3000 debugger.  

4. Fluke networks inline TAP-100 (two items). 

5. Vector VN5610 network interface. 

6.  Laptop computers with Linux operating system (four items). 

7. Desktop computer with CANoe by Vector. 

 In order to measure the end-to-end delay of a frame, the frame has to be time stamped 

while entering and exiting the network. Then by subtracting the two time values the end-to-

end delay can be calculated. For the measurement of the first priority message delay, one 

network tap was connected on the link between the powertrain and chassis domain and switch 

A and the other tap was connected to the link between switch B and the infotainment domain. 

This was done since the rate of data traversing that path is the highest for the system. Due to 

the fact that all diagnostic messages are destined to the communication domain master, the 

second priority message delays were measured between the powertrain and chassis domain 

and the communication domain. The two taps were then connected to an experimental 

computer through the VN5610 network interface, which captured and time-stamped the 

frames. The trace of the captured traffic was analyzed using CANoe. The network is full 

duplex and special caution has to be exercised in capturing the desired direction of traffic. 
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The same approach was applied to the third priority flow between the video source and sink. 

The fourth priority flow is not considered since it is best effort traffic. 

The development boards were running ArcCore’s Autosar Implementation [29] with 

an IP Stack. Support for 802.1p and 802.1Q in Autosar is specified for version 4.1, which is 

not released by any developer during this thesis. Therefore, the IP Stack was extended to 

support these protocols. Figure 13 illustrates the experimental setup. 

 
Figure 13. Experimental Setup 

 

3.7 Implementation Details 
 

 The specifications defined that frames transmitted by a domain had multiple 

destinations (multicast). In order to implement this, the network was divided into VLANs. 

Each domain belonged to a specific number of VLANs. Two separate VLANs were also 

created, one for the video traffic and one for the FTP traffic. The use of VLANs allows the 

logical isolation of traffic within the same physical network. This feature is beneficial in 

terms of resilience, isolating a “babbling idiot” into its respective VLAN. Also this is 

beneficial in a security perspective, in case an attacker gains access i.e. to the FTP VLAN; he 
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will not have access to the rest of the network. An alternative for implementing multicast in 

such a network is the IGMP protocol. However the switches must support layer 3 

functionality. 

 The following actions were taken to ensure behavior according to the IEEE 802.1Q 

and 802.1p. The development boards, representing the domain masters, were configured to 

tag the transmitted frames with the appropriate VLAN-id and priority. The development 

boards were programmed to discard frames upon reception since no useful data were 

transmitted. The appropriate VLAN configuration was applied to the switches as well as the 

mapping of the PCP value with the priority queues of the switch. The link between the 

switches was the trunk link, on which traffic from all VLANs was allowed.   

 The laptop used as video source streamed an MJPEG video file over UDP using the 

VLC media player. The video sink was playing the stream using the same software. The FTP 

client was retrieving a large file form the FTP server, on which traffic shaping had been 

implemented. As mentioned earlier, all four laptops were running Linux. A typical example 

of the commands used to configure them is presented below. 

#for VLAN TAG 

vconfig add eth0 17 

ip addr add 192.168.0.30/24 dev eth0.17 

ifconfig eth0.17 up 

 

#for priority TAG 

iptables -t mangle -A POSTROUTING -d 192.168.0.31 -j CLASSIFY 

--set-class 0:4 

vconfig set_egress_map eth0.17 4 4 

 

#rate control 

tc qdisc add dev eth0 root tbf rate 8mbit burst 8kb limit 32kb  

 The switches used were gigabit switches. Our network operated with a rate of 

100Mbps. For some of the switch’s ports the auto-negotiation feature had to be disabled and 

the data rate had to be configured manually. If one device on the link is configured to auto-

negotiate and the other is not, an auto-negotiation failure occurs, leading to duplex mismatch.  

As a result the auto-negotiating device will operate in half duplex by default. This mode of 

operation leads to degraded performance and possible collisions. 

3.8 Data processing 
 

 The captured traffic was stored in a binary log file in CANoe. CANoe however, did 

not provide all the features for statistical analysis that were required for this thesis. Using a 
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CAPL script the valuable information was extracted from the binary log files and was 

converted into ASCII text files. These files were imported to Microsoft EXCEL for further 

processing.  

By applying   the appropriate filters, the matching time values
3
 of the same frame 

were sorted into two columns. The two time values were subtracted and the delay of each 

frame was obtained. The precision of the measurement is 1μs. The same procedure was 

repeated for all priorities in all use cases. The values were also used to produce charts and 

diagrams which are presented in section four. Tables with minimum, maximum and average 

delays per priority were also created. 

  

                                                      
3 The time-stamp value of a frame entering the network and the time-stamp value of the same frame leaving the 

network.  
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4. Results and Discussion 
 

 In this chapter both theoretical and experimental results will be presented. Initially, 

the calculated theoretical values regarding the end-to-end delay and backlog are shown in 

Tables 1 and 2. The backlog value displayed is the total backlog of the output port of switch 

A. This is the bottleneck of the system, which has the highest requirements for buffer. As it 

can be seen from the tables below the highest amount of memory needed is in case 2 for an 

MTU of 1500. The backlog value in that case is 125KB, while the switch used in the 

experiments has a total amount of 128KB of shared memory. Therefore, no packet drops 

should occur for any of the use cases. The calculated values are pessimistic and the actual 

requirement for memory is significantly lower.     

Table 1. Theoretical Delay and Backlog values (MTU 1500) 

 

Table 2. Theoretical Delay and Backlog values (MTU 800) 

 

 To continue with, the experimental results for the first use case are presented below. 

In Figure 14 it can be observed that all measured values are below the theoretical bound. 

Furthermore according to Figure 15, more than 50% of all measured delays experience the 

minimum delay for this type of traffic. The minimum delay value of 28μs does not contain 

any delay due to queuing. The area of delay values between 29 and 90μs describes the case 

where a frame is blocked by an ongoing non-preemptive transmission of a frame. The frames 

in the area of delay values between 90 and 210μs, suffer high queuing delays due to blocking 

from lower priority traffic and represent 41% of the total measured values. Finally only          

0, 32% of the frames had a delay value higher than 210μs.    
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 The experimental values of the second priority traffic are presented in Figure 16. 

Again, the measured values are below the theoretical bound and the spread of the values 

follow a similar pattern as in the first priority traffic. The measured delays for the third 

priority traffic are presented in Figure 18. There are no specific patterns and the delay values 

Figure 14. Case 1 first priority delay values Figure 15. Case 1 first priority delay spread 

Figure 16. Case 1 second priority delay values Figure 17. Case 1 second priority delay spread 

Figure 18. Case 1 third priority delay values 
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are scattered from a minimum of 246μs to a maximum of 1263μs, with only one value being 

relatively close to the theoretical bound of 1287μs. 

 After the presentation of the first use case, only the experimental cases for the first 

priority traffic will be illustrated. The remaining diagrams are available in Appendix C. Only 

the first priority traffic will be discussed, since it is the most critical.  

 

    

 

 

 

The experimental values for the second use case with increased video traffic are presented in 

Figure 19. The theoretical bound is safe, but there are more values that come close to it, 

compared to the first use case. It can also be observed that 78% of the delay values are in the 

area of 90 up to 210μs. This was expected since the rate of the video traffic was doubled, 

increasing the possible number of frames that suffer from blocking factor.  

Figure 21. Case 3 first priority delay values 

Figure 20. Case 2 first priority delay spread Figure 19. Case 2 first priority delay values 

Figure 22. Case 3 first priority delay spread 
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 The results for the third use case seen in Figures 21 and 22 are similar with those of 

the first use case. The only difference is the minimum delay which has now risen from 28 to 

33μs, due to the fact that the frame size has increased. 

 The same three use cases were repeated for an MTU of 800 bytes, in order to reduce 

the blocking delay caused by the transmission of a maximum-sized lower priority frame. 

Indeed as it can be seen in all three cases both the theoretical as well as the experimental 

values were significantly reduced. However it was observed for the first and second case that 

a few experimental values slightly exceed the theoretical bound. More specific for the first 

use case one value has exceeded the bound of 216μs by only 3μs. For the second use case, 

two values exceed the bound of 216μs, the first by 10μs and the second by 1μs. For the third 

case no measured values were higher than the bound. 

 

  

 

Figure 23. Case 1 first priority delay values (MTU 800) Figure 24. Case 1 first priority delay spread 

Figure 26. Case 2 first priority delay spread Figure 25. Case 2 first priority delay values (MTU 800) 



39 

 

 

 In general, it can be easily observed from the diagrams that the vast majority of the 

experimental results are inferior to the calculus bound. Furthermore, no packet drops were 

observed during the experiments. Even in cases of deviation from the theoretical bound, the 

differences were very small. It has to be mentioned that the modeling of the system was based 

on a certain switch operation model. Details of the specific implementation of the switch 

operation were not available, as they were considered confidential by the vendor. Therefore it 

would be of great interest to repeat the experiment using switches of different vendors. 

 Although in theory a high priority frame can be blocked by one lower priority frame, 

during our experiments it was observed that the blocking point due to a non-preemptive 

transmission consists of two frames. This was used as feedback for our theoretical model 

resulting in higher values than originally anticipated. However, both measured and calculated 

delay values were considerably lower than the given 5ms deadline of the first and second 

priority messages.  

 Another point that has to be mentioned was that in case 2 for an MTU of 800 bytes, 

the quality of experience for the video was lower with lags observed during playback. The 

reason behind this, was that the video frames had to be segmented into a greater number of 

Ethernet frames since the MTU was 800 bytes. This increased the total delay of a video frame 

resulting in degraded performance. However, under situations that lower delays are required 

for highly critical traffic, degraded performance could be tolerated for the third and fourth 

priorities. For example, this can be seen as another mode of operation of the system 

increasing the performance for highly critical messages. 

  

Figure 27. Case 3 first priority delay values (MTU 800) Figure 28. Case 3 first priority delay spread 
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5. Conclusions and future work 
 

The purpose of this thesis was to evaluate the use of switched Ethernet as the 

backbone network of an automotive system architecture. A specific system architecture for in-

vehicle communication was proposed, taking into consideration the requirements provided by 

Volvo Car Corporation. The proposed system uses a double-star network topology. In terms 

of performance a single-star topology would be better; however such a topology would lead 

to increased cabling. On the other hand, a double star topology is easier to integrate within the 

vehicle.   

The main objective of the thesis was to evaluate the end-to-end delay of the network 

and provide deterministic upper bounds for it. A theoretical model of the system under 

examination was produced followed by an experimental setup, which accurately reflected the 

system architecture. The theoretically calculated end-to-end delay values were compared with 

the values obtained experimentally. 

The theoretical analysis was based on network calculus. Through our work, we 

showed that this method can be applied in the automotive domain, since the traffic generated 

on the vehicle’s backbone network is known beforehand both in terms of size and period. 

This fact enables the accurate modeling of the system using network calculus. In addition to 

that, the “mimicking FlexRay” concept, described in section 3.4 allowed the calculation of 

tighter upper bounds, which otherwise would be very pessimistic. 

The results of this thesis indicate that, even though Ethernet was not originally 

designed for real-time communication, its worst case behavior can be deterministically 

bounded under certain conditions. First of all, only switched Ethernet with full-duplex has to 

be used for such applications, since it completely avoids collisions. In this way no packet loss 

will occur due to collisions. However, packet loss may occur due to insufficient memory of 

the switch. Also, prioritization as well as logical separation of traffic traversing the system 

has to be performed. The standards supporting these functionalities are IEEE 802.1p and 

802.1Q respectively. These standards have to be supported both by the switches as well as by 

the software running on the ECUs. Indeed AUTOSAR 4.1 specifies support of these 

standards; however, it is not yet released by any developer.  The experimental results showed 

that Ethernet has higher end-to-end delay and jitter compared to FlexRay. On the other hand, 

Ethernet is able to integrate different types of traffic and is non-proprietary (open standard) 

which could result in more cost-efficient solutions.  
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An important assumption, based on which the theoretical model was produced, is the 

operation of the switch. As shown in 3.3, the shared memory switch architecture with output 

queuing was assumed, since it is the most common one. However the details of the 

implementation of the switch operation used in the experiments were not available. The only 

way to know whether the switch operated in a different way than assumed was by 

observation. A typical example of the previously mentioned point is the blocking point. 

Although in theory a high priority frame can be blocked by one lower priority frame, during 

our experiments it was observed that the blocking point due to a non-preemptive transmission 

consists of two frames due to the way the switch hardware dispatches the traffic. This was 

used as feedback to the theoretical model resulting in higher delay values than originally 

anticipated.     

 As shown in chapter four, the bounds obtained by the theoretical model were not 

exceeded in the majority of the cases under consideration. Only in two cases the theoretical 

bound was exceeded by just a few microseconds. The theoretical model seems to be valid and 

these small deviations, observed in two out of eighteen cases examined, have to be further 

investigated. As it can be easily understood in such a complex system such small deviations 

can be attributed to a number of factors. Due to the specific time limitation of the thesis, these 

factors could not be further investigated.       

Taking into consideration that 1Gbps Ethernet will become available for automotive 

and that future versions of AUTOSAR will support 802.1Q and 802.1p, great potential is 

being presented for the designers of future vehicular communication networks. Finally, it has 

to be mentioned that Ethernet can utilize both copper wire and optic fiber as physical 

medium. This provides additional flexibility for the design of the system. 

The conclusions above were drawn from the research carried out within this thesis 

project and they can be considered as a starting point, regarding other future research work 

that may be carried out.  

An important issue that has to be examined is that of the message overhead. The first 

and second priority messages had a payload of 32 bytes. This payload was encapsulated 

within the UDP header, followed by IP header and the Ethernet header adding a total 

overhead of 58 bytes. The valuable information travelling through the network is significantly 

lower than the overhead required for the transmission leading to waste of bandwidth. On the 

other hand, a large payload leads to higher delays. One possible solution is to pack a number 

of messages into one Ethernet frame. However, research has to be carried out to find the 

optimum solution regarding this trade-off. 
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A message may take an amount of time from the moment it is received from the 

network interface of an ECU to the moment it is delivered to its respective application.      

The delay calculated in this thesis was the end-to-end network delay. The application-to-

application delay has to be further investigated. The specifications provided by Volvo Car 

Corporation required a 5ms deadline. The experimentally measured end-to-end delay values 

were significantly lower, indicating than the deadline of 5ms can be met. However, an ECU 

performs a lot of other tasks besides the ones needed for communication purposes. Therefore 

the processor utilization of the ECU is a factor that has to be taken into consideration. Having 

an IP stack with advanced functionality may increase the processor utilization. 

As mentioned earlier, the only factor that may lead to packet loss is insufficient 

memory. Since the switches have a shared-memory architecture, lower priority traffic may fill 

the memory forcing the switch to drop incoming packets regardless of their priority. 

Therefore the calculation of the buffer size is of great importance. Network calculus enables 

the calculation of pessimistic backlog bounds. These bounds have to be experimentally 

evaluated so that design engineers will be aware of the exact amount of memory needed. 

Finally for the needs of this thesis project strict priority policy was applied. A strict 

priority policy may lead lower priority queues to starvation. Therefore other priority policies 

have to be experimentally investigated. A policy suitable for automotive application may be 

the one described by Rahmani et al. in [22]. In this hybrid approach, strict priority policy is 

applied for the first priority data while for the following priorities a weighted fair queuing 

policy is applied.    
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Appendix A 
 

 The switch fabric is the delay suffered by a frame passing through the switch without 

any queuing delays. In order to measure this delay, an experimental setup as the one shown in 

Figure 29 was deployed. Laptop A sends a ping message to Laptop B every 1ms. The nodes A 

to D exchange traffic between them in order to load the switch. For measuring the delay of a 

frame passing through the switch, the frame has to be time stamped while entering and exiting 

the switch. Then by subtracting the two time values the delay can be calculated. The first tap 

was connected on the link between Laptop A and Switch A, while the second tap was 

connected to the link between Switch A and Laptop B. The two taps were then connected to 

an experimental computer through the VN5610 network interface, which captured and time-

stamped the frames. The trace of the captured traffic was analyzed using CANoe by Vector. 

The experiments were performed both for small sized frames (90 bytes) as well as maximum 

sized frames (1530 bytes). The worst case switch fabric delay value was found to be 10μs.  

 Figure 29. Switch Fabric measurement setup 
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Appendix B 
 

/******** File: curve.java **********/ 
 
package netcalc; 
import java.io.*; 
import java.util.*; 
import java.util.logging.Level; 
import java.util.logging.Logger; 
 
 
 
public class curve { 
     
    double LinkCapacity,MaxFrameLength,SmallFrameLength,AtoVCM,InputCapacity; 
    double[] g,burst,rate,serviceRate,T; 
    double[] T1; 
    double[] T2; 
    double[] Backlog1,Delay1,Backlog2,Delay2; 
    double[] q,r; 
    double fabric,SmallTransmission,MaxTransmission; 
     
     public void init(){ 
        try { 
            burst = new double[8];      //array for the burst size of the 4 flows on 2 switches 
            rate = new double[8];       //array for the data rate of the 4 flows on 2 switches 
            serviceRate = new double[4];//array for the service rate of the 4 flows 
            T = new double[4];          //Delay caused by blocking and interference for every flow 
            T1 = new double[4];         //T for round 1 
            T2 = new double[4];         //T for round 2 
            q = new double[4];          //new burst size after switch A 
            r = new double[4];          //new rate after switch A 
            g = new double[4];          //inflection point 
            Backlog1 = new double[4];   //Backlog on switch A 
            Delay1 = new double[4];     //Delay on switch A 
            Backlog2 = new double[4];   //Backlog on switch B 
            Delay2 = new double[4];     //Delay on switch B 
            fabric=1E-5;                //switch fabric value  
           
             
            //Open the text file to read input 
            File file = new File("input.txt"); 
            Scanner in= new Scanner(file); 
            in.useDelimiter(",");   //values are separated with ',' 
            Scanner sc; 
             
            int i=-1; 
            while(in.hasNextLine()) 
            { 
                String str=in.nextLine(); 
                sc=new Scanner(str); 
                sc.useDelimiter(","); 
                if(i==-1){ 
                    //First line of input file has: 
                    LinkCapacity=sc.nextInt(); 
                    MaxFrameLength=sc.nextInt(); 
                    SmallFrameLength=sc.nextInt(); 
                    SmallTransmission=SmallFrameLength/LinkCapacity; 
                    MaxTransmission=MaxFrameLength/LinkCapacity; 
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                } 
                else if(i<8){ 
                    //the following lines give the arrival curves 
                    burst[i]=sc.nextInt(); 
                    rate[i]=sc.nextInt(); 
                } 
                else { 
                    AtoVCM=sc.nextInt(); 
                } 
                i++; 
            } 
             
             
        } catch (FileNotFoundException ex) { 
            Logger.getLogger(curve.class.getName()).log(Level.SEVERE, null, ex); 
            System.out.println("No input file found!"); 
        }   
    } 
     
     //calculate the inflection point 'g' of flow 'i' 
    void find_g(int i, int round) { 
         
        if(round==1){ 
            InputCapacity = 3*LinkCapacity; 
        } 
        else if (round==2){ 
            InputCapacity = 2*LinkCapacity; 
        } 
         
        if(i<2){ 
            g[i]=burst[i]/(InputCapacity-rate[i]); 
        } 
        else{ 
            g[i]=burst[i]/(LinkCapacity-rate[i]); 
        } 
    } 
     
    //calculate the delay value of 'T1' on flow 'i' for the first switch 
    void find_T1(int i){ 
        if (i==0){  //First priority level 
            T1[i]=2*MaxFrameLength/LinkCapacity; 
        } 
        else if (i==1){  //Second priority level 
            T1[i]=burst[0]/(LinkCapacity-rate[0]) + 2*MaxFrameLength/LinkCapacity ; 
        } 
        else if(i==2){   //Third priority level 
            T1[i]=+ (burst[0]+burst[1])/(LinkCapacity-rate[0]-rate[1]) + 
2*MaxFrameLength/LinkCapacity; 
        } 
        else if(i==3){  //Fourth priority level 
            T1[i]=(burst[0]+burst[1]+burst[2])/(LinkCapacity-rate[0]-rate[1]-rate[2]); 
        } 
    } 
     
    //calculate the delay value of 'T2' on flow 'i' for the second switch 
    void find_T2(int i){ 
        if (i==0){  //First priority level 
            T2[i]= 2*SmallFrameLength/LinkCapacity ; 
        } 
        else if (i==1){  //Second priority level 
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            T2[i]= burst[0]/(LinkCapacity-rate[0]) ; 
        } 
        else{ 
            T2[i]=0; 
        } 
    } 
     
    //calculate the service rate 'R' offered on flow 'i' for a 'round' 
    void find_R(int i, int round){ 
        if (i==0){ 
            serviceRate[i]=LinkCapacity; 
        } 
        else if (i==1){ 
           serviceRate[i]=LinkCapacity-rate[0]; 
        } 
        else if(i==2){ 
            if(round==1) 
            {serviceRate[i]=LinkCapacity-rate[0]-rate[1];} 
            else if (round==2) 
            {serviceRate[i]=LinkCapacity;} 
        } 
        else if(i==3){ 
            if(round==1) 
            {serviceRate[i]=LinkCapacity-rate[0]-rate[1]-rate[2];} 
            else if (round==2) 
            {serviceRate[i]=LinkCapacity;} 
        } 
    } 
     
    //calculates the backlog of flow 'i' on 'round' 
    void Backlog(int i,int round){ 
         
        if (round==1){ 
             
            if(T1[i]<=g[i]){ 
                Backlog1[i] = burst[i] + rate[i]*g[i] - serviceRate[i]*(g[i]-T1[i]); 
            } 
            else{ 
                Backlog1[i] = burst[i] + rate[i]*T1[i]; 
            } 
        } 
        else if(round==2){ 
             
           if(T2[i]<=g[i]){ 
                Backlog2[i] = burst[i] + rate[i]*g[i] - serviceRate[i]*(g[i]-T2[i]); 
            } 
            else{ 
                Backlog2[i] = burst[i] + rate[i]*T2[i]; 
            } 
             
        }      
    } 
     
    //calculates the delay of flow 'i' on 'round'  
    void Delay(int i,int round){ 
        if (round==1){ 
            Delay1[i] = (burst[i]+rate[i]*g[i])/serviceRate[i] + T1[i]-g[i]; 
        } 
        else if(round==2){ 
            Delay2[i] = (burst[i]+rate[i]*g[i])/serviceRate[i] + T2[i]-g[i]; 
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        } 
             
    } 
     
    //put values of new burst size and rate in variables 'q' and 'r' 
    void set_q(int i){    
        burst[i]=burst[i]+T1[i]*rate[i];  
        q[i]=burst[i]; 
        r[i]=rate[i]; 
    } 
     
    //update the 'burst' and 'rate' values for communication domain 
    void roundtwoVCM(){ 
        //burst and rate for flow1 
        burst[0]=q[0]+burst[4]; 
        rate[0]=r[0]+rate[4]; 
         
        //burst and rate for flow2 
        burst[1]=q[1]+burst[5]; 
        rate[1]=r[1]+rate[5]; 
    } 
     
    //update the 'burst' and 'rate' values for infotainment domain 
    void roundtwoDIM(){ 
 
        //burst and rate for flow1 
        burst[0]=q[0]+burst[6]; 
        rate[0]=r[0]+rate[6]; 
         
        //burst and rate for flow2 
        burst[1]=burst[7]; 
        rate[1]=rate[7]; 
    } 
     
    //calculate delays and backlogs for switch A 
    public void first_calc(){ 
    
        for (int i=0; i<4; i++ ) 
        { 
            find_g(i,1);    //find inflection point 
            find_T1(i);     //find delay parameter T 
            find_R(i,1);    //find service rate of the switch 
            Backlog(i,1);   //calculate the backlog 
            Delay(i,1);     //calculate the delay 
            set_q(i);       //restore burst and rate values  
                            //for next round calculations 
        }        
    } 
     
    //calculate delays and backlogs for switch 2 
    public void second_calc(){ 
         
        for (int i=0; i<4; i++ ) 
        {             
            find_g(i,2); 
            find_T2(i); 
            find_R(i,2); 
            Backlog(i,2); 
            Delay(i,2); 
        }        
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    } 
     
    //print results 
    public void results(){ 
         
        
System.out.println("========================================================
============================="); 
        System.out.println("Flow \tBuffer1 \tDelay1 \t\tBuffer2 \tDelay2 \t\tTotalDelay"); 
        for(int i=0;i<4;i++){ 
            System.out.format("%d",i+1); 
            System.out.format("\t%d",(int)Backlog1[i]); 
            System.out.format("\t\t%d",(int)(Delay1[i]*1000000)); 
            System.out.format("\t\t%d",(int)Backlog2[i]); 
            System.out.format("\t\t%d",(int)(Delay2[i]*1000000)); 
             
            SmallTransmission=(SmallFrameLength-12)/LinkCapacity; 
            MaxTransmission=(MaxFrameLength-12)/LinkCapacity; 
                     
            if(i<2){ 
                
System.out.format("\t\t%d%n",(int)((Delay1[i]+Delay2[i]+2*SmallTransmission+2*fabric)*1000
000)); 
            } 
            else{ 
                
System.out.format("\t\t%d%n",(int)((Delay1[i]+Delay2[i]+2*MaxTransmission+2*fabric)*10000
00)); 
            }             
        } 
       
System.out.println("========================================================
============================="); 
       int buffer=0; 
       for(int i=0;i<4;i++){ 
           buffer+=Backlog1[i]; 
       } 
       System.out.format("Total backlog %d => %dKB%n", buffer, buffer/1024); 
       
System.out.println("========================================================
============================="); 
    } 
    
} 
/******** End of File: curve.java **********/ 
 
/******** File: Netcalc.java **********/ 
 
package netcalc; 
 
public class Netcalc { 
     
    public static void main(String[] args) { 
         
        curve traffic= new curve(); //create a new class curve 
        traffic.init();             //initialize the variables 
 
         
////////////////////////////////////////////////////////////////////////// 
//        calculate delays and backlog on first switch 
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////////////////////////////////////////////////////////////////////////// 
 
        traffic.first_calc(); 
         
//////////////////////////////////////////////////////////////////////////        
// calculate delays and backlog on second switch for Communication domain 
////////////////////////////////////////////////////////////////////////// 
 
        traffic.roundtwoVCM();  //update the variables 
        traffic.second_calc();  //perform the calculations 
        traffic.results();      //print the results 
 
//////////////////////////////////////////////////////////////////////////        
// calculate delays and backlog on second switch for infotainment domain 
////////////////////////////////////////////////////////////////////////// 
         
        traffic.roundtwoDIM(); 
        traffic.second_calc(); 
        traffic.results(); 
    } 
} 
 
/******** End of File: Netcalc.java **********/ 
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Appendix C 
 

For an MTU of 1500 bytes 

 Use Case 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Case 2 second priority delay values Figure 31. Case 2 second priority delay spread 

Figure 32. Case 2 third priority delay values 
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 Use Case 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Case 3 second priority delay values Figure 34. Case 3 second priority delay spread 

Figure 35. Case 3 third priority delay values 
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For an MTU of 800 bytes 

 Use Case 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36.Case 1 second priority delay values (MTU 800) Figure 37. Case 1 second priority delay spread 

Figure 38. Case 1 third priority delay values (MTU 800) 
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 Use Case 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Case 2 second priority delay values (MTU 800) Figure 40. Case 2 second priority delay spread 

Figure 41. Case 2 third priority delay values (MTU 800) 
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 Use Case 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Case 3 second priority delay values (MTU 800) Figure 43. Case 3 second priority delay spread 

Figure 44. Case 3 third priority delay values 


