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Abstract: In the past decade, it has been demonstrated that Plug-in Hybrid Electric Vehicles (PHEVs)
can significantly reduce petroleum consumptions. However, the extend to which these vehicles can
reduce the petroleum consumption highly depends on components size and driving patterns. In other
words, PHEVs show the best benefits if the components are dimensioned to match the driver’s driving
behavior. In this paper, the effect of different driving patterns on the optimal sizing of three major
components of series PHEVs, i.e., battery, electric motor, and engine generator unit is studied. Different
driving cycles are generated stochastically from real driving data using Markov chains, to represent
life-time driving patterns of different drivers.
To find the optimal size of the components, the problem is formulated as a convex optimization problem.
The optimization variables (the variables of component size and energy management) are obtained by
minimizing a cost function which is the sum of the operational and component costs.
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1. INTRODUCTION

Electrification of vehicles is becoming more and more inter-
esting among researchers and industries because of the envi-
ronmental benefits achieved by the reduction in emissions and
fuel consumption. Plug-in hybrid electric vehicles (PHEVs) are
the next generation of HEVs that have all the merits of HEVs
gained by downsizing the engine, recovering braking energy,
having extra power control freedom by the two power sources,
and stopping the engine when idle. In addition, PHEVs have the
additional ability to store energy from the electricity grid using
large capacity batteries. PHEVs can run on the stored energy on
short trips, reducing vehicle’s dependency on petroleum. The
extent to which this can be achieved depends highly on the size
of the engine, EM, and battery as well as the driving behavior
of the vehicle owner.

In car industries, components’ sizing is mainly driven by per-
formance requirements, e.g., 0-100 kph acceleration time, max-
imum speed, and all electric range (AER), however, in order
to get the best fuel efficiency and performance, PHEVs should
be designed to match the driver’s driving behavior i.e., both the
speed profile and the distance distribution of the trips. While the
effect of single trips has been studied in detail in many papers
e.g., in Moawad et al. [2009], Patil et al. [2009], Rahman et al.
[1999], Gonder et al. [2007], and Kwon et al. [1999], the effect
of the distance distribution of the trips has only been mentioned
cursorily in Gonder et al. [2007], Frank [2007], Markel et al.
[2006], Gao et al. [2010] and Smith et al. [2012]. Moreover, in
most of these studies, the distribution of driving distance has
been estimated per day and over the population of many drivers
instead of being estimated over life-time and for single drivers.
Because of huge differences in movement patterns of different

drivers, there will be a huge difference in the opportunity in
utilizing a PHEV Kullingsjö et al. [2012]. This means that there
is a need to study how vehicles should be designed to get the
best benefits for drivers with different driving behaviors.

Another aspect of PHEVs that makes the problem of sizing even
more complex is energy management, i.e., the control strategy
that determines how the battery should be used (or, basically,
how the energy should be split between battery and engine at
every time instant). Since the energy management affects both
fuel economy and performance, it should ideally be part of the
optimal design process in the same way as component sizing.

To find the proper design of a PHEV for different driving
patterns, we cast the problem as a convex optimization problem
based on quasi-static models similarly as in Pourabdollah et al.
[2013]. Convexity has two important implications: (1) there is
a unique optimum, and (2) fast, reliable solvers are available.
This in turn means that not only component sizes but also
the complete control trajectory of the energy management
system can be included as optimization variables. Using convex
optimization methods, the optimal sizes of the battery, EM, and
EGU for the series PHEV is obtained by minimizing a cost
function over a pre-specified driving cycles. The cost function
comprises two parts; the first part reflects the cost of the key
components of the vehicle, namely battery, EM, and EGU and
the second part is the operational cost of fuel and electricity.
The focus in this study is mainly on the effect of driving
behavior on the components sizing. Therefore, pre-specified
driving cycles are made of several stochastic trips (a trip is
defined by events for which the driver has the opportunity to
charge the battery) generated by a Markov process, in a way to
reflect the driving behavior of different drivers.



The constraints in the convex optimization problem are given
by equations governing the power flow in the components and
system, and by the maximum component ratings. Finally, the
decision variables to be found by the optimization solver are
the component sizes (battery, EM, and EGU) and the optimal
energy management at every time instant.

The paper is organized as follows. In this Section 2, an overall
picture of the optimization problem is given; we also introduce
the powertrain and components model, the driving cycle, and
the performance requirements used in the problem. Illustrative
results from the study are shown in Section 4. Finally conclu-
sions are drawn.

2. PROBLEM FORMULATION

The optimization problem that was briefly introduced in the
Introduction will now be described in detail. As shown in Fig. 1,
for a vehicle model and a given driving cycle, we first find the
engine on-off decisions. Having these, in addition with the cost
models and the performance requirements, a convex problem
is solved to find the optimal component sizes and the energy
management.

The objective function to be minimized in the convex optimiza-
tion problem is a weighted sum of operational and component
costs: cost = costop + costcomp.

The operational cost includes the consumed fossil fuel and
electrical energy, whereas the latter includes the cost of battery,
electric motor, and internal combustion engine as

costop =
ρ f

ρLHV

N∑
k=1

P f (k)h(k)+
ρel

1000 · 3600

N∑
k=1

Pg(k)Pg(k)Pg(k)h(k). (1)

where the fuel power, P f , and charger power, PgPgPg, are converted
to an equivalent cost in EUR using energy prices ρ f for gasoline
and ρel for electricity and ρLHV is the lower heating value of
gasoline. The time varying sampling interval h(k) is equal to 1 s
when driving and changes when charging.

The components cost is the sum of the costs of battery, EM,
and EGU; the remaining cost of the vehicle is assumed to
be independent of sizing and is therefore excluded from the
problem. The components cost is calculated as the depreciation
over the driving cycle, i.e., the proportion of the components
cost given by the ratio between the length of the cycle, d, and
the lifetime driving distance of the vehicle. Including a yearly
interest rate of pc = 5%, the components cost is given by

costcomp =
d

syv

(
1 + pc

yv + 1
2

)
(costbat + costEM + costEGU),

(2)
where yv is the vehicle lifetime, and s is the average traveled
distance of the vehicle in one year. For each component, the
cost model is a linear function as cost j = cost j,init + cost j,slope s js js j
for j ∈ {bat, EM, EGU}, where s js js j is a component scaling
parameter used to scale the size of the components.

The decision variables of the optimization problem include,
firstly, the component scaling parameters sbatsbatsbat, sEMsEMsEM , and sEGUsEGUsEGU ,
which are all dimensionless scaling parameters for battery, EM,
and EGU. The second group consists of optimization variables
which are related to the energy management and are determined
for every time instant. These variables are EM torque TEM(k)TEM(k)TEM(k),
EGU power, PEGU(k)PEGU(k)PEGU(k), battery current, ĩ(k)ĩ(k)ĩ(k), battery state of
energy, Eb(k)Eb(k)Eb(k), grid power, Pg(k)Pg(k)Pg(k), and braking power, Pbrk(k)Pbrk(k)Pbrk(k).

Fig. 1. Framework of the optimal PHEV design.

The optimization variables are marked in bold in the paper.
The convex problem is automatically translated by a tool called
CVX Grant et al. [2010] to a form required by a publicly
available solver, Sedumi 1 . The constraints in the convex
problem are in forms of powertrain and the component models,
introduced in section 3.

2.1 Driving patterns

The optimization finds the optimal components size and the
energy management parameters over a given driving cycle.
Therefore, designing a vehicle with optimal components size
requires knowledge about the lifetime driving cycle of the ve-
hicle. However, not only it is impossible to predict the pre-
cise lifetime driving cycle, but also there is a problem with
the limitations of computational resources. Therefore, a short
driving cycle, which still reflects the lifetime behavior of a
driver is needed. As mentioned earlier, the design of Plug-
in Hybrid Electric Vehicle (PHEV) is influenced by both the
driving distance distributions and the speed profile of the trips.
In the next sections we show how we generate driving cycles
considering these characteristics.

Driving distance distribution To make driving cycles that
represent life-time driving cycle of different drivers, we first ex-
amine how the distribution of driving looks for different drivers
from real data. We use trip distance data from 200 privately
driven cars provided by the Test Site Sweden project 2 ; the
cumulative probability densities (CDF) of the trip distances for
all drivers are depicted in Fig. 2.

In general, trips are separated by charging events during the
parking times. Here, we assume that charging events happen
once a day during night at home. Having more possibilities for
charging occasions makes the trip lengths to be shorter.

To use the distributions in a systematic way, we approximate
Weibull CDFs to the data. Weibull CDF is widely used in life
data analysis due to its versatility and is defined as Miller et al.
[2004]

f (x; λ, k) =
{ k
λ
( x
λ
)k−1e−( x

λ )k
, x ≥ 0,

0, x < 0,
(3)

, with k as shape parameter and λ as scale parameters; the
approximated curves to the data are shown with red curves
in Fig. 2. The curves approximate the distribution of lifetime
1 Available at http://sedumi.ie.lehigh.edu/
2 Available: http://www.testsitesweden.com
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Fig. 2. The cumulative probability densities of the trip distances
for 200 privately driven cars considering daily charging.
Weibull cumulative distribution function for k = 1.5
and different values of λ = [15, 30, 50, 80, 100, 120, 140]
are shown in red curves, and the driving lengths in the
synthesized driving cycle are shown with circles.

driving distances for 7 different fictitious drivers. For example,
a driver with the CDF curve similar to the Weibull curve with
λ = 15, drives 80% of times trips that are shorter than 23 km,
whereas for the Weibull curve with λ = 140, this is less than
10%. We then generate a driving cycle including 10 trips with
distances taken from these 7 CDF curves. The distances are
chosen uniformly on the y-axisas as shown in Fig. 2. In this
way, the trips represent similar distance distribution functions
as the CDFs. However, it is worth mentioning that considering
the same total driving distance for all these different drivers
means that either the driver with higher values of λ has not been
driving some of the days, or the driver with lower values of λ
had more opportunities of charging, besides at nights.

Driving style A driving cycle includes the vehicle’s velocity,
v(k), possibly road’s inclination, β(k), both at discrete time
instants, and charging times between the trips. To include dif-
ferent driving styles and reduce the dependency of the sizing on
a specific given driving cycle, stochastic trips are made from a
discrete time, continuous state, time invariant Markov process.
The states of the Markov process are the speed and acceleration.
The initial process states are zero; the chain then moves from
one state to another according to specified probabilities. The
probabilities are saved in a matrix, called transition matrix,
which is defined as

Pk(Vk+1 = vk+1, Ak+1 = ak+1|vk, ak) (4)

for all possible combinations of vk+1 and ak. To construct the
transition matrix, we use the real data from the Test Site Sweden
project. Since the style of driving can be different for different
trip distances, we divide the data into different groups so that
we get different transition matrices for each; the procedure is
similar as given in Lee et al. [2011]. Here, the driving cycles
are divided into three groups, city (distance ≤ 5), mixed (5 <
distance ≤ 30) and highway (30 < distance). The properties
of these cycles are given in Table 1. Later, for a desired trip
distance, the corresponding transition matrix is used to generate
a stochastic driving cycles.

Table 1. Parameters of the cycle

parameter city mixed highway
number of trips 943 481 208
distance 5765 km 8293 km 7269 km
time (N) 194 h 164 h 97 h
max. speed 120 kph 123 kph 123 kph
average speed 30 kph 50 kph 74 kph
max. acceleration 4.8 m/s2 4.8 m/s2 4.7 m/s2

avrg. acceleration 0.4 m/s2 0.3 m/s2 0.2 m/s2

max. deceleration 5.6 m/s2 4.9 m/s2 4.9 m/s2

2.2 Performance requirements

A long driving cycle can reflect real-life driving, but might
not include extreme situations that require high performance.
However, high performance is still considered as an important
vehicle attribute by many drivers. In series HEVs, it is only the
EM that directly drives the vehicle, therefore we can incorpo-
rate such performance requirements as explicit constraints on
the EM size. Here, we have considered the maximum speed
of 160 kph, constant speed of 90 kph at 10 % slope, and 0-
100 kph acceleration time of 9 seconds as the performance re-
quirements. Using the baseline vehicle mass, these performance
requirements demand a minimum size of the EM equal to
73.5 kWh. Moreover, the sum of the power from EGU and
battery need to provide the maximum power demand of the EM.

3. MODELING

Modeling of the powertrain and its components is a crucial
step of the optimization method, since convexity has to be
guaranteed. This section presents the powertrain model and the
component models.

3.1 Powertrain model

The studied PHEV, depicted in Fig. 3, is a powertrain with
series topology where only the EM is mechanically linked to the
drive train and can propel the wheels. The engine generator unit
(EGU) can directly feed the EM or charge the battery. Having
the velocity v(k), the acceleration a(k), and the road slope β(k)
at discrete time instants k from the driving cycle, the required
traction force Ft(k) can be calculated as

Ft(k) =
cdA fρv(k)2

2
+mtotgcr cos(β(k))+mtotg sin(β(k))+mtota(k),

(5)
where Ft is the longitudinal force from the drive line and
mtot, A f , cd, ρ, g, cr, β, and a are total vehicle mass, frontal
area, air drag coefficient, air density, gravitational acceleration,
rolling resistance coefficient, road angle, and acceleration, re-
spectively. The total vehicle mass, mtot, is the sum of the masses
of the glider, battery, EM, and EGU, which are linear functions
of sizes, or m j = m j,slope s js js j for j ∈ {bat, EM, EGU}.
The powertrain model is described by power balance equations,
given as

Pdem(k) + Pbrk(k) = TEM(k)TEM(k)TEM(k)ωEM(k), (6)

ωEM(k)TEM(k)TEM(k)TEM(k) + PEM,loss(k) = PEGUPEGUPEGU + Pbat(k) − Paux, (7)
with Pdem(k) calculated from (5); PbrkPbrkPbrk is the power dissipated
at the friction brakes; TEMTEMTEM , ωEM and PEM,loss are the torque,
speed and power losses of the EM; Pbat, PEGUPEGUPEGU , and Paux are
the battery power, the mechanical power of the EGU and the
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Fig. 3. Series PHEV configuration (solid lines: mechanical link,
and dashed lines: electrical links).

Table 2. Vehicle parameters

parameter value

baseline mass (m) 1600 kg
glider mass (mg) 1280 kg
frontal area (Af) 2.37 m2

rolling resistance (cr) 0.009
aerodynamic drag coefficient (cd) 0.33
air density (ρ) 1.293 kg/m3

wheel radius (rw) 0.3 m
ratio of the final gear (r f g) 4.2
EM reduction gear (rEM) 2

electrical power used by auxiliary devices. For simplicity, the
losses in the power electronics are included in the EM losses
and the rotational inertia (including the inertia of the wheels, the
differential, the EM and the EGU) are neglected in the models.
The vehicle’s parameters are given in Table 2. At each time
instant on the driving cycle, the angular speed of the EM is
calculated in advance as

ωEM(k) = rEMv(k)
r f g

rw
, (8)

where rw, r f g, and rEM are the wheel radius, ratio of the final
gear (differential), and EM reduction gear respectively.

3.2 Battery

The battery consists of sbatsbatsbat identical cells, each modeled as
an open circuit voltage, Voc, in series with a constant internal
resistance, R. The terminal power, Pbat, and the stored energy
of the battery, Eb, are calculated as

Pbat(k) = sbatsbatsbat(Voci(k) − Ri2(k)) = Vocĩ(k)ĩ(k)ĩ(k) − R
ĩ2(k)ĩ2(k)ĩ2(k)
sbatsbatsbat

(9)

Eb(k + 1)Eb(k + 1)Eb(k + 1) = Eb(k)Eb(k)Eb(k) − h(k) Voc ĩ(k)ĩ(k)ĩ(k). (10)

The cell current i(k) ∈ [imin, imax] is chosen to be positive
when discharging and the current ĩ(k)ĩ(k)ĩ(k) = sbatsbatsbati(k) is a variable
change that is introduced to keep the convexity [Murgovski
et al., 2012]. The voltage over each cell, Voc, is approximated
to be constant; this assumption can be justified when operating
in limited SoC ranges. During the available parking periods,
∆tc(k), it is assumed without loss of generality that the vehicle
is charged with constant current and power. Then, it is assumed
that the whole charging energy enters the battery in one extra
long sample, ∆tc(k), at the parking events. In this way, at
charging occasions in (10), h(k) is equal to ∆tc(k).

3.3 Electric motor

The EM model with its power electronics is described by a
power loss map, PEM,loss,base, where the losses are measured
at steady-state for different torque-speed combinations. The
power losses for each EM speed can be approximated by a
second-order polynomial in the torque

PEM,loss,base(ωEM ,TEM,base) = (11)

c1(ωEM)T 2
EM,base+ c2(ωEM)TEM,base + c3(ωEM)

where the coefficients c1 ≥ 0, c2 and c3 functions of ωEM and
are calculated using least squares method [Murgovski et al.,
2012]. To vary the size of the EM, the maximum and mini-
mum torque, TEM,max,base(ωEM(k)) and TEM,min,base(ωEM(k)), are
scaled by the scaling factor sEMsEMsEM . The losses are also assumed
to change linearly with sEMsEMsEM . Hence, given a baseline EM de-
scribed by torque Tem,base and losses PEM,loss,base, the losses of
the scaled EM are calculated at each time instant as

PEM,loss(k) = c1(k)
T 2

EM(k)T 2
EM(k)T 2
EM(k)
sEMsEMsEM

+ c2(k)TEM(k)TEM(k)TEM(k) + c3(k)sEMsEMsEM . (12)

This nonlinear model is convex in TEMTEMTEM and sEMsEMsEM for sEMsEMsEM > 0.

3.4 Engine generator unit

The fuel power, P f , of an EGU is a function of the generator
power and is approximated with a second-order polynomial in
PEGU as

P f ,base(PEGU) = b1P2
EGU,base + b2PEGU,base + b3 (13)

where b j ≥ 0; j ∈ 0, 1, 2, and are calculated in a similar way as
c1, c2, and c3 for the EM [Murgovski et al., 2012]. Considering
that losses vary linearly with respect to scaling factor sEGUsEGUsEGU , the
fuel power is calculated as

P f (k) = b1
P2

EGU(k)P2
EGU(k)P2
EGU(k)
sEGUsEGUsEGU

+ b2PEGU(k)PEGU(k)PEGU(k) + eon(k)b3sEGUsEGUsEGU . (14)

where the variable eon is introduced to remove the idling losses
b3sEGUsEGUsEGU , when the EGU is off. The decision variable eon is made
prior to the optimization to preserve the problem convexity and
it is decided based on the baseline power demand required by
the vehicle when following the driving cycle.

4. RESULTS

The optimization problem gives the optimal components size
over a given driving cycle therefore, we study the effect of dif-
ferent driving patterns on the components sizing. Since driving
cycles are combination of trips with different lengths, to fully
understand the effect, we first find the optimal components size
of PHEVs assuming that the driver drives only a single trips
with a specific length. We use the results to explain the effect
of the driving cycles that represent different life time driving
behaviors on component sizing.

4.1 Single trips with fixed length

Stochastic trips have been generated with trip lengths from 1 to
180 km. To see the effect of different speed profiles, for each trip
length we use 10 stochastic trips. The optimal sizes of battery,
EM, and EGU at each trip length are shown in Fig 4. The battery
size is shown by its power, however, there is a linear function
between the power and capacity, i.e., a battery with capacity of
1 kWh has a power of 5.53 kW.
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Fig. 4. Optimal battery, EM, and EGU size for single trips with
different lengths.

As can be seen, the EM has constant size for all the cycles,
which is decided by the performance requirements (the second
order effect due to the change of weight is neglected due to
the use of the baseline weight). This is because the power
demand of the performance requirement has been higher than
the power demand from the trips. For short trips up to 22 km,
the battery and EGU have constant sizes of around 20 kw and
52 kw respectively. Considering the energy demand of the trips,
we can see that the battery is oversized from the energy point
of view. This is due to power limitations and resistance losses,
which increase/decreases respectively by increasing the number
of battery cells. In other words, if the battery had no power
limitation, the EGU size would become zero, since it is only
needed at high power demands. On the other hand, if the battery
resistance was smaller, the battery would have been sized by the
energy demand, which increases approximately linearly by the
trip distance.

For trips with lengths between 25 and 60 km, the battery
power/size increases because of the increasing energy demand;
increase in battery capacity results in higher battery power,
which in turn decreases the need on the power from EGU,
therefore the EGU becomes smaller. For trips with approximate
length of 60 km, it is almost optimal to have an electric vehicle.
However, for longer trips, the optimal battery size suddenly
drops which makes the optimal vehicle become more similar to
a HEV than EV. This is because it is not cost efficient anymore
to increase the size of a heavy and costly battery, to drive all
electrically; instead, the battery is sized small to be used for
having extra freedom and recovering the braking energy. In
this way, since the energy charged from the grid is not much,
the EGU can operate most of the time in higher power, which
means higher efficiency.

One important thing to notice here is that different driving styles
with same trip distance do not effect the sizing significantly.
However, this happens only when we add the constraints from
the performance requirements. For the cases where these con-
straints are relaxed, the sizes vary much for different trips. The
reason is mainly because these trips are more different in power
than energy, and when the power is limited by performance
requirement (which is similar for all trips), the sizing becomes
less effected by the trips, and more by the trip lengths or energy.

It is important to mention that the optimization can not give the
extreme cases, i.e. a conventional vehicle with no battery and
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Fig. 5. Average optimal size of components for different driving
cycles, corresponding to different values of λ.

an electric vehicle without an EGU. This is because the convex
cost function of these components are linear with an offset (the
packaging cost). With this cost model, even if the sizes are zero,
the cost will include the packaging cost. Therefore, to exclude
the total cost of battery or EGU, the optimal has to be run
separately including zero cost for these components.

4.2 Trips representing life-time driving

Having examined how the trip length effects the sizing, we
can now study how combination of these trips effect the op-
timal components size. We generate driving cycles which are
combination of 10 trips with different length with probabilities
according to the CDF curves in Fig 2.

The result of the optimal components size for driving cycles
corresponding to different values of λ are shown in Fig 5. To
get more general results, and see the effect of different driving
styles, we have made 10 different driving cycles for each CDF.
However, similarly to single trips cases, the sizes are quite
robust to the differences in speed profiles. Therefore, in Fig 5,
only the mean values of the sizes are shown.

For a driver who drives very short distances most of the times
(the driving cycle corresponding to the CDF with λ = 15),
the optimal battery size is quite small, due to small energy
demand. As the driver drives longer distances (the driving cycle
corresponding to the CDF with λ = 30), the optimal battery
size increases. As mentioned in the previous section, this is due
to the increasing energy demand on most cycles. However, for
driving cycles corresponding to larger values of λ, the battery
size starts decreasing. This happens because cycles with lengths
longer than 60 km, for which the optimal battery size is rather
small, become more influential. Eventually, for driving cycles
corresponding to λ > 100, the battery is sized by the dominant
trips with distances longer than 60 km, occurring more than
50% of the time. This is in accordance with the results for
single trips longer than 60 km, where the optimal battery size is
approximately 3 kWh.

5. CONCLUSION

In this paper, we use convex optimization techniques to solve
the problem of sizing the three major components of a plug-in
hybrid electric vehicle, i.e. the battery, the electric motor, and
the engine generator unit. To define the problem as a convex



optimization problem, the model of the vehicle and components
are approximated as convex functions. We mainly focus on the
effect of driving behaviors on component sizing. The driving
cycles used in the optimization are generated stochastically by
Markov chains, to represent behavior of drivers with different
driving distance distributions.

The results show that the size of the EM for a series PHEV is
decided by performance requirements. To provide the enough
power to the EM, the sum of EGU and battery power has to
be equal to or higher than the power of the EM. The size of
the engine generator unit and battery, however, are primarily
affected by the distribution of trip lengths. For instance, for a
driver that often drives short distances, a vehicle with a small
battery is optimal. If the driver drives longer distances, the
optimal battery size increases, while the EGU size decreases.
these characteristics are similar to the characteristics of an
electric vehicles. However, as the trips get even longer, the
optimal battery size decrease suddenly, as for an HEV.

In this particular study, we have specifically focused on the
distribution of trip lengths. We have made several driving cycles
stochastically from real data in order to gain general results
in the sense that they are not dependent on a specific trip.
However, these synthesized trips should be analyzed in greater
detail to verify that they include most of the real life driving
conditions. We have also used only an energy optimized battery,
which is more appropriate for PHEV or EV vehicles, whereas
for HEVs, an energy optimized battery is more suitable. Future
work can also include using different battery types with differ-
ent prices.
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