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ABSTRACT 

The impact of sheared toroidal rotation on impurity transport is studied by means of predictive 

simulations of JET L-mode and H-mode discharges with carbon wall using the coupling between the 

transport codes JETTO1 for main ions and SANCO for impurities. The simulations are based on a 

fluid model2 for Ion-Temperature-Gradient (ITG) mode and Trapped-Electron (TE) mode driven 

turbulence and neoclassical transport. The fluid impurity transport coefficients are compared with 

gyrokinetic simulations using the code GENE.3 Predictive simulations of temperatures (Te, Ti=TZ) 

and densities (ne, nZ) are performed while the toroidal rotation is treated interpretatively. 

 

FLUID MODEL 

 Weiland multi-fluid model2 for main ions, trapped electrons, and impurities (one species). 

 Impurity flux: Z = <vEnz> = -Dznz + nzVz where Dz and Vz are the impurity diffusivity and 

convective velocity respectively. The convective velocity has contributions from thermodiffusion 

(~1/Z), curvature, parallel compression and roto-diffusion.4   

 Z = 0 gives the impurity density normalized inverse scale length PF = -RnZ/nZ = -RVZ/DZ. 

 

GYROKINETIC MODEL 

 Interpretative quasilinear (QL) flux-tube simulations with the GENE code.3 The transport fluxes 

are computed including gyrokinetic dynamics of ions, impurities and electrons, with effects of 

sheared rotation. 

 Trace results obtained assuming fZ = nZ/ne = 10-6. 

 

SIMULATED JET DISCHARGES 

 Predictive simulation of impurity injection experiment #677305 and H-mode discharge  #59217.6 
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L-mode 67730 3.0 1.8 4.2 1.8 3.4 3.4 131 

Low density H-mode 59217 2.9 1.9 11.6 5.2 5.0 6.6 216 

 

EFFECTS OF ROTO-DIFFUSION 

 

 

Figure 1. Effects of shear in toroidal flow on 

impurity density normalized inverse scale 

lengths (-R∇nZ/nZ), including contributions from 

roto-diffusion (
   

  
 - pinch). The perpendicular 

and parallel flow shear is controlled by the 

parameter       
   

  

  

  

 

  
. Results obtained by 

fluid and quasi-linear GENE simulations of 

#67730 in the collisionless, electrostatic limit. 

Experimental shearing rate is indicated by the 

dashed line. 

 

PREDICTIVE SIMULATIONS OF L-MODE #67730 

 

 

 

 

 

 

 

Figure 3. Comparison of simulated and 

experimental8 normalized C profile for #67730. 

C profile flat or hollow in L-mode discharge, not 

reproduced by simulations.  

PREDICTIVE SIMULATION OF H-MODE #59217 

  
Figure 4. Steady state experimental and 

simulated profiles of Ti, Te, (with/without ExB-

shearing) of low density H-mode discharge 

#59217 after 2.5 s of simulation time. 

Figure 5. Effects of shear in toroidal flow on 

R/LnZ, including contributions from roto-diffusion. 

Results obtained by quasi-linear GENE 

simulations of #59217 in the collisionless limit. 

Experimental shearing rate is indicated by the 

dashed line. 

 

 

 

Figure 6. Simulated impurity density normalized 

inverse scale lengths at steady state for H-mode 

discharge 59217 with ExB-shearing included. 

Neoclassical effects are important for r/a ≤ 0.5. 

In the H-mode simulations the electron density is 

treated interpretatively. 

 

CONCLUSIONS 

 Good agreement in R/LnZ between interpretative fluid and QL GENE simulations, including 

effects of roto-diffusion. 

 Weak effects of roto-diffusion on R/LnZ for considered JET discharges. 

 Predictive JETTO/SANCO simulations give R/LnZ consistent with the interpretative simulations7 

at mid radius. 

 C profile flat or hollow in L-mode discharge, not reproduced by simulations. 

 Neoclassical effects are dominant in inner core region resulting in a significant increase in 

R/LnZ. 
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Figure 2a. Steady state experimental and 

simulated profiles of Ti, Te, and ne after 2.0 s 

of simulation time. ITG mode turbulence 

dominates transport channels. 

Figure 2b. Simulated impurity density normalized 

inverse scale lengths at steady state. These are 

consistent with interpretative results7 at mid radius 

whereas neoclassical effects dominate for small 

and large radii resulting in large R/LnZ. 


