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Goals and motivation

e (Goal 1: Derive the corrections to the dispersion
relation for the electron branch of the GAM
originating from coupling to the m=2 mode.

e Motivation: In simulations growth rates of the
GAMs are signicantly influenced by the m=2
interactions.
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Motivation

« Inthe ASDEX-U tokamak, a periodic modulation of flow and
turbulence level, with the characteristics of a limit cycle
oscillation at the geodesic acoustic mode (GAM) frequency,
has been observed preceding the L-H transition in low density

plasmas. [1]

« A complex interaction between turbulence driven ExB zonal
flow oscillations, i.e., geodesic acoustic modes (GAMSs), the
turbulence, and mean equilibrium flows is observed during the
low to high (L-H) plasma confinement mode transition. [1]

« |t was observed that GAMs are only somewhat less effective
than the residual zonal flow in providing the non-linear
saturation. [2]

1) G. Conway et al PRL 2011
2) Waltz et al PoP 2008
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Generation of the GAM

 The basic mechanism is found in the

poloidal component of the equation for
parallel motion.

* In toroidal geometry, a coupling between
the n=0=m electric potential perturbation
and the m=1, n=0 density perturbation is

established by toroidicity resulting in the
GAM.
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Electron Temperature Gradient Modes

We use the electron continuity and energy equations adapted from the Braginskii's model
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Normalized Electron Equations
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The m=0, m=1 and m=2 Equations
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Solving for the el-GAM dispersion relation
starting with the m=2 equations

There is a simple relation between the m=2 density perturbation and the m=1
density and temperature perturbation
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We can use this to compute a relation between the m=1 density and temperature
Perturbations, where C,=1 and C, = 2/3 if the m=2 contributions are neglected,

§€Qr igqr

2 sin * 6 5 sin * @
f(l):% 3QqC = () Cozz 392qC
e 2 e
3 1- 2 ”q’ sin > @ 3 1 - 2 ”qr sin > @
q q 9




15th EFTC Fusion Theory Conference September 23-26, 2013, Oxford, England

GAM Dispersion Relation

To find the dispersion relation, we must determine the relation between the m=1
components and the potential

The dispersion relation is now:

1
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Note that this dispersion relation reduces to the previous relation (see page 11) for
C,=1and G, = 2/3.
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Solutions to the linear dispersion relation
including m=2 effects
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Figure 1. (color online) The linear el-GAM real frequency (with m = 2 harmonics
included in black line and without represented by the red line) normalized to (c./R)
as a function of the safety factor ¢ is shown for the parameter 7. = 4.0 whereas the
remaining parameters are €, = 0.909, 8 = 0.01, gzp. = 0.3 in the strong ballooning
limit g(0) = 1. 11
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Summary

« A first derivation of the effects of higher harmonics on
the electron branch of the Geodesic Acoustic Mode (el-
GAM) is presented.

« An analytical dispersion relation for the el-GAM growth
rate was derived.

 Allowing for interactions with the higher harmonics (m =
2) components moderates the decrease in the
frequency. This effect is due to the third term on the left
hand side arising from the m = 2 higher harmonics. Note
that, the CO term describes the effect of including
temperature perturbations in the system and would
vanish if these could be neglected.

12



