
 

 

An Incompressible Navier-Stokes Equations Solver
on the GPU Using CUDA
Master of Science Thesis in Complex Adaptive Systems

NIKLAS KARLSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
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Abstract

Graphics Processing Units (GPUs) have emerged as highly capable computational acceler-
ators for scientific and engineering applications. Many reports claim orders of magnitude
of speedup compared to traditional Central Processing Units (CPUs), and the interest for
GPU computation is high in the computational world. In this thesis, the capability of us-
ing GPUs to accelerate the full computational chain of a 3D incompressible Navier-Stokes
solver, including solvers and preconditioners for sparse linear systems as well as assembly
routines for a finite volume discretization, has been evaluated. The CG, GMRES and
BiCGStab iterative solvers have been implemented on the CUDA GPGPU platform and
evaluated together with the Jacobi, and Least Square Polynomial preconditioners. A
double precision Navier-Stokes solver has been implemented using CUDA, adopting a
collocated cartesian grid, SIMPLEC pressure-velocity coupling scheme, and implicit time
discretization.

The CUDA GPU implementations of the iterative solvers and preconditioners and
the Navier-Stokes solver were validated and evaluated against serial and parallel CPU
implementations. For the iterative solvers, speedups of between six and thirteen were
achieved against the MKL CPU library, and the implemented methods beats existing open
source GPU implementations of equivalent methods. For the full Navier-Stokes solver,
speedups of up to a factor twelve were achieved compared to an equivalent commercial
CPU code when equivalent iterative solvers were used. A speedup of a factor two was
achieved when a commercial Algebraic MultiGrid method was used to solve the pressure
Poisson equation in the commercial CPU implementation.

The bottleneck of the resulting implementation was found to be the solution of the
pressure Poisson equation. It accounted for a significant part of the total execution time
for large problems. The implemented assembly routines on the GPU were highly efficient.
The combined execution time for these routines were negligible compared to the total
execution time.

The GPU has been assessed as a highly capable accelerator for the implemented
methods. About an order of magnitude of speedups have been achieved for algorithms
which can efficiently be implemented on the GPU.

Keywords: GPU, GPGPU, CUDA, Iterative Solver, Preconditioner, Navier-Stokes Equa-
tions, Fluid Solver, CFD, Finite Volume Methods
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Chapter 1

Introduction

The Navier-Stokes equations are used to model fluid flow in numerous scientific and
engineering applications. It is used in climate research and meteorology to model weather
systems; in medicine to model blood flow; and in engineering to aid in the design of cars
boats, and airplanes. Solving real world fluid flow problems are often computationally
heavy, both in terms of time and required memory. Simulations can easily take days,
weeks or months to finish. Speeding up such simulations with an order of magnitude
could be ground breaking for many applications, allowing designers to work interactively
with applications and use models more extensive and accurate.

With the arrival of modern graphics card processors, the computational power of
normal desktop computers have increased by an order of magnitude. For many years, this
extra computational power was utilized almost exclusively for visualization of graphics
applications. Today, things are starting to get different, cutting edge engineering and
scientific applications are using the extra processing power coming from the graphics
processor to achieve orders of magnitude speedup. The worlds fastest supercomputers
are built with Graphics Processing Units (GPUs) for increased computational power
and reduced power consumption [1]. However, the speedup does not come automatically.
GPUs consist of many cores allowing for massively parallel computation, but also requires
massively parallel applications. Specific programming platforms and models, such as
CUDA and OpenCL, have emerged to allow for general purpose GPU programming.

Navier-Stokes equations can allow for massive parallelization if discretized properly.
Using a Finite Volume method on a structured grid the discretization of the equations
allow for locality in assembling properties in each computational node, suitable for parallel
computations. To solve the discretized equations, one typically have to solve a large
sparse linear system, Ax = b, where the majority of the elements in the coefficient matrix
A are zero. An efficient way of solving such a system is to use an iterative method. Rather
than directly computing the inverse of the matrix, as would be the case for a direct
method, the iterative methods gradually converges towards the true solution stopping
once the residual is small enough. The main operation of such methods is the sparse
matrix-vector multiplication operation, which can be massively parallelized.
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CHAPTER 1. INTRODUCTION

1.1 Scope of this thesis

The aim of this thesis work is to design, implement, evaluate and optimize a complete
Navier-Stokes equations solver on the GPU. This involves finding, efficiently implement-,
and evaluate suitable methods for solving large sparse linear systems on the GPU; along
with suitable discretization and assembling techniques of the Navier-Stokes equations on
the GPU.

This work is limited to using the CUDA, Compute Unified Device Architecture,
GPU programming platform. Other languages such as OpenCL have not been explicitly
evaluated. The choice of GPU used for computations, was partly based on the GPU
available to the author. It was neither the best nor the worst on the market, and the
performance when using other GPUs was not evaluated but could only be estimated.
Furthermore, as the main aim with the work is to assess the capability of using GPUs to
accelerate a Navier-Stokes solver, the ability to handle arbitrary computational domains
has not been of high focus.

Motivating this research is the potential in improving the performance of the state of
the art general purpose fluid flow solver IBOFlow [2, 3, 4, 5],s developed at Fraunhofer-
Chalmers Research Centre for Industrial Mathematics (FCC) [6].

1.2 Approach and accomplished work

This thesis project has been posed with the open question of evaluating the GPUs potential
in speeding up a finite volume discretized, implicit time, Navier-Stokes equations solver.
The open question gives a high degree of freedom but also a demand for responsibility
and ability for independent work. The aim of this thesis when starting it was that the
final product, if successful, would be a solid foundation of a complete general purpose
GPU implementation of the Navier-Stokes equations. This includes methods, techniques
and evaluation of limitations as well as a significant code base. The solver would then
be incorporated into IBOFlow. Therefore inspiration from the high level code structure
of IBOFlow was used in the development of the code to ease an eventual incorporation
process.

Attaning and gathering in-depth knowledge and expertise of GPU computing and
CUDA has been a key component and essential to carry through this project efficiently,
and thereby a non-negligible part of the work.

Iterative methods were evaluated on the GPU since a large part of the potential
speedup of the Navier-Stokes equations lies in performing these routines efficiently. The
sparse iterative solvers GMRES, CG, and BiCGStab; together with the least square polyno-
mials, and Jacobi preconditioners were implemented as a part of this thesis work. Building
blocks for these methods were elementary linear algebra routines, such as vector-vector
multiplication and sparse matrix-vector products (SpMV), from Nvidia’s cuSPARSE
and cuBLAS libraries [7]. Sparse matrix formats and different SpMV implementations
were evaluated, but there was eventually nothing motivating an implementation of these
methods specifically for this project.
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CHAPTER 1. INTRODUCTION

The full set of discretization and assembly routines for solving the Navier-Stokes
equations were implemented on the GPU as a part of this thesis.

The choice of implemented iterative solvers and preconditioners as well as the choice
of discretization and coupling schemes for the Navier-Stokes equations were based on
literature studies.

1.3 Organization of the report

The structure of this report is as follows: In Chapter 2, the Graphics Processing Unit
(GPU) alongside with the GPU programming platform this work is based upon, CUDA,
are introduced and described in detail. First, GPU history and differences to the Central
Processing Unit (CPU) is described. It is followed by the GPU architecture, programming
model, and optimization considerations. A specific CUDA programming and optimization
example is given in the end of this chapter.

In Chapter 3, previous work within the fields of sparse linear algebra, sparse iterative
methods, and Navier-Stokes equations solvers on the GPU are referred to.

In Chapter 4, implementations of the Sparse-Matrix Vector operation are described
and results presented.

In Chapter 5, sparse iterative solvers and preconditioners are described. Algorithms
of the implemented iterative methods and preconditioners is given, together with an idea
of the underlying theory and application, and implementation considerations. The results
of the iterative methods and preconditioners are also presented in Chapter 5.

The approach, method and discretization schemes for the implemented incompressible
Navier-Stokes equations solver are described in Chapter 6. CUDA considerations and
optimizations used for these routines are also discussed. The chapter ends with presenting
the achieved results.

In Chapter 7, conclusion, complementary discussion, and outlook are given.
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Chapter 2

The Graphics Processing Unit

The Graphics Processing Unit (GPU) is, like the Central Processing Unit (CPU), designed
with the sole purpose of performing calculations. Unlike the CPU which is designed at
performing general computations, the GPU is specialized at processing graphics data
visible to the user through the screen. Graphics processing involve processing huge
amounts of data in parallel. The GPU has been adopted to suit this purpose, resulting
in a design with many computing cores which can perform computations in parallel,
together with a high memory bandwidth. As it seems, such devices can be utilized
to accelerate also other computations than graphics processing, such as engineering
calculations. Accelerating engineering computations is what brings the GPU into the
scope of this thesis. Programming GPUs effectively require some basic knowledge of its
underlying architecture and functionality. This chapter will start with describing the
GPU in general, followed by the specific GPU programming platform, CUDA, used in
this thesis.

2.1 General Purpose-GPU: Past, present and future

The GPU was originally designed for accelerating graphics rendering, which it has
been optimized for. Graphics rendering is in nature highly parallel, involving local
operations on large sets of pixels and vertices. The first programming interfaces for
GPUs were via graphics-, also known as shader-, languages in OpenGL and DirectX.
These graphics programming languages were where the idea of General Purpose GPU
(GPGPU) computing was first explored and where its potential was discovered. For the
first graphics processors, OpenGL and DirectX only supported a fixed modifiable, but
not programmable, API pipeline. The first steps towards a programmable pipeline, were
taken in 2001 at the time of DirectX8 [8]. The first GPGPU programming was carried
out in a very limited fashion. The possible operations in early GPU architectures were
restricted to those required for graphics operations. As an example, locations of memory
writes were restricted and floating point data was not supported [9].

Long before the arrival of modern GPGPU languages such as CUDA, GPGPU ap-
plications were developed using the shader languages. Confirming this, the website
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“GPGPU.org” [10] were founded as early as 2002. Predecessors to todays GPU pro-
gramming platforms were the high level GPU languages BrookGPU [11] and SH [12],
launched in 2004. BrooksGPU is an extension of the C programming language developed
at Stanford University, and SH is an extension to C++ developed at Waterloo University,
both built on top of shader languages.

Many attractive features for GPGPU applications of todays GPUs originates from
the need of a similar kind of feature or improvement required from graphics developers.
An example being the high memory bandwidth, which was required for high resolution
displays to be able to update the frames rapidly. Memory bound GPGPU applications
are common. In these applications, memory bandwidth more than the peak Floating
point Operations Per Second (FLOPS) rate is what gives the GPU an advantage over
the CPU.

Modern graphics programming took a leap forward when Nvidia released their G80-
series in the year shift 2006/2007, built on what is called the Tesla architecture. It opened
up the world of GPGPU computing to a wider public. A new combined hardware and
software architecture called Compute Unified Device Architecture (CUDA) was introduced,
simplifying the programmability and GPGPU possibility of the GPUs through both
hardware changes and software support.

CUDA introduced several new features: A unified shader pipeline, where each Arith-
metic Logic Unit (ALU) could be programmed freely. The arithmetic units had built in
support for single-precision floating point arithmetic complying with IEEE standards.
The set of callable instructions were more adopted to general GPU computations. The
programmer was given read and write access to arbitrary memory locations on the GPU.
A shared memory acting as a manually controlled cache was introduced. Also parallel
programming primitives such as threads, atomic operations, and synchronization were
made available. Several months after the initial release of CUDA, an extension to the C
programming language with a callable API to the GPU functionality was made available
to developers.

There exist alternatives to CUDA. Most notably OpenCL, which is open source and
supervised by the Khronos group, and Microsofts DirectCompute and C++AMP. The
GPU has found its way into todays supercomputers, which are increasingly using GPUs for
speeding up applications and reducing power consumption. The TITAN supercomputer
of the Oak Ridge National Laboratory [1] is one of the worlds fastest computers, and iss
built with both GPUs and CPUs. The increased use and threat from GPU manufacturers
in the super computer industry has made Intel come up with a competing device, the
Xeon Phi accelerator. The interest of major developers, such as: Intel, Nvidia, and
AMD, in the many core architecture super computing industry, promises good future
development in the area. Both GPUs and the GPGPU phenomena are relatively new, and
significant future improvements and discoveries can be expected. On the hardware side,
researchers will find ways to do calculations more efficient and open up new programming
possibilities. On the application side, speedups of yet more applications can be expected
as researchers in different fields and with increased GPU proficiency accelerates their
applications with GPUs.
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2.2 A closer look: the GPU versus the CPU

To start with, the basic functionality of a CPU will be briefly explained. The CPU is a
hardware unit which is built for performing arithmetic, logic and input/output operations
of a computer. It performs the instructions a programmer has written as a program. The
CPU consists of execution units, control logic, and caching and is connected to a larger
Random Access Memory (RAM), of size in the orders of GBs. The clock frequency of a
CPU is a measure of how many operations it can perform per second, but it is not the
only factor limiting performance. In many applications, a more important measure is the
memory bandwidth. In order to perform an operation, both the operation and the data
to perform the operation on must be loaded onto the CPU. Memory bandwidth describes
how fast the memory transfer between the CPU and the RAM memory is. To improve
the performance of often accessed memory locations, relatively large amounts of data is
stored in the CPU’s caches. The reason caches are used, is that memory accesses from
RAM takes many clock cycles while access from caches takes only a few. The caches of a
CPU are divided into a hierarchy with faster but smaller caches closer to the arithmetic
and logic processing units and larger but slower further away. An important concept for
achieving high performance of the CPU is to avoid cache misses. These occurs when a
memory location required for computation is not found in the caches, but rather need to
be accessed from the RAM memory directly.

A natural question to ask when reports are claiming several orders of magnitude
of speedup for GPUs compared to CPUs is: what makes the GPU more capable of
computations than the CPU, and for what applications does this apply? The general
answer is that they have different design targets and thus the transistors are distributed
differently between different tasks. The aim of the GPU is to optimize parallel processing
power, without having to devote large amounts of transistors to control logic and caching.
The CPU on the other hand is general purpose and optimized for serial code, and performs
well on most tasks. To be general purpose is a tradeoff to peak performance, but it
results in a more flexibly programmed processor. More specifically, the CPU has more
transistors devoted to control logic and caching, while the GPU has more devoted to
computing power involving only rather basic control logic. The CPU will perform better
on serial programs while the GPU is better suited for highly parallel programs.

The GPU demands more of the developer to be utilized optimally. It also requires
different programming ideas and platforms than the CPU due to its parallel architecture
and execution. For example, the CPU has extensive control logic and caching which
effectively can remove memory access latencies. The GPU however can also reduce
memory access latencies, but to do so requires thousands of parallel threads to be
launched simultaneously, performing computations on some threads meanwhile fetching
memory for other threads. A major architectural and practical concept is that the GPU
is built with a Single Instruction Multiple Data (SIMD) philosophy, being able to coalesce
memory access and instruction fetches if programmed correctly.

To continue the comparison, let us compare some technical data of a high end CPU,
a high end GPU, and the GPU used for computations in this thesis. The high end CPU
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CHAPTER 2. THE GRAPHICS PROCESSING UNIT

is the Intel Xeon E5-2650 (also used for CPU computations in this thesis work), the high
end GPU is the Nvidia Geforce Titan. Both are available at a retail price of about 1000
USD. The GPU used in this thesis is a Nvidia Geforce 660 Ti. It is available at a retail
price of around 300 USD. The technical data is compared in Table 2.1. The significant
differences are the memory bandwidth, peak FLOP performance, and powerr efficiency,
which are higher on the GPU. Not visible in the table are cache sizes, control logic etc.
which are more sophisticated on the CPU.

Table 2.1: Comparison of an Intel CPU used in this work and two different Nvidia GPUs.
The Geforce 660 Ti is the GPU used for calculations in this thesis work.

Geforce Titan GPU Xeon E5-2650 CPU Geforce 660 Ti

Cores 2688 8 1536

Clock Speed [MHz] 836.5 2000 915

Memory bandwidth [GB/s] 288.4 51.2 144.2

TDP [Watt] 250 95 150

Memory (max) [GB] 6 750 3

No of ransistors [109] 7.08 2.27 3.54

Retail price $1000 $1100 $300

The GPU approach of using many cores with low clock rate rather than a few with
high, is beneficial from performance aspects. There is a limitation of how high clock rate
for CPUs that can be produced. Further the power consumption increases super-linear
with clock frequency, in addition causing difficulties with cooling and lower efficiency.
Estimates have been given roughly approximating that GPUs are 10 times more energy
efficient than CPUs [13].

Not excluding either the GPU nor the CPU it is an appealing option to use hetere-
ogenuous hardware architectures, which means combining the GPU and CPU. The CPU
and GPU can perform computations at the same time and are good at different tasks,
complementing each other. The supercomputers using GPUs are often build with this
strategy in mind. The drawback with GPU-CPU programs is that the memory transfer
between the GPU and CPU is slow.

2.3 The General Purpose GPU: An overview

This section gives an overview of the GPU architecture from a GPGPU perspective.
More details and specifics of interest to developers can be found in Section 2.4, where
CUDA is described.

The GPU consist of streaming multiprocessors (SMs) which are connected to the
Dynamic Random Access Memory (DRAM), the global memory or simple GPU memory,
of the GPU. Note that the DRAM of the CPU and GPU are different. A stream in
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computer science is a set requiring similar computations. The SMs in turn consists of
many single-instruction-multiple-data units (SIMD), also referred to as stream processors.
In the stream processors one instruction is executed at a time but over several data
sets independently. This is a major benefit of the SIMD architecture, and implies that
many instructions and memory operations can be combined and coalesced. Many GPUs
traditionally perform operations in a vectorized fashion. This has led to that some
operations consisting of several add and multiply operations are in the GPU treated as
one operation. An example is the addition of two RGB colors. The GPU is commonly
connected to the CPU via 8-16 PCIe3 buses. This can be a major performance bottleneck
needed to take into consideration when transferring data.

2.4 CUDA

The thesis work presented in this report is based on the CUDA programming platform,
which will be explained in detail in this section.

CUDA is a programming platform developed by Nvidia to facilitate general purpose
computations on Nvidia GPUs. The CUDA programming model is based on Single
Program Multiple Data, SPMD, operations. This means that the same operations are
carried out by several threads but acting on different data. In a data independent for-loop,
the CUDA structure would be that each thread carries out the body of one or a few loop
iterations. The CUDA programming interface is essentially a C/C++ based programming
interface for communication with GPUs, extended with GPU programming functionality
similar to C/C++.

The first CUDA architecture was the Tesla architecture. Its main features have
already been briefly explained in the GPGPU history chapter. Double precision floating
point operations support was introduced on later Tesla GPUs. After Tesla, the Fermi
architecture was launched in 2010. It introduced among others: more peak double
precision Floating Point Operations Per Second (FLOPS), support for double precision
floating point numbers complying to IEEE standards, caching, debug support, and
improvements of many existing features. In 2012, the Kepler architecture was introduced.
It is the most recent architecture at the time of the writing of this report. New features in
the Kepler architecture were: Dynamic Parallelism - allowing kernels to call other kernels,
thus supporting recursive calls; Hyper-Q - allowing up to 32 CPU threads to launch work
on the same GPU, facilitating MPI applications; and GPUDirect - allowing other GPUs
and other RDMA equipped devices to directly access the GPUs memory without passing
via the host device. Also the power consumption was significantly reduced.

On Nvidia’s GTC 2013 conference their CEO gave some insight into future GPU
developments in his keynote speech. The coming architecture will be called Maxwell,
and will introduce a feature allowing GPUs and CPUs to read from each others address
spaces. The Maxwell is said to be expected in 2014. The successor of Maxwell is said
to be Volta. It will introducing what appears like a significant improvement for many
GPGPU applications, namely stacked DRAM of the GPU. This means that the DRAM
will be stacked on top of the computing chip on top of each other and communicate to
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each other via a silicon substrate. According to Nvidia this will lead to 1 TB/s of DRAM
memory bandwidth compared to todays 200-300 GB/s. Also for every layer stacked
memory on top of each other the memory capacity will increase by that many times.
Nvidia have also said that they are working on enabling more programming languages via
an open source GNU compiler back-end. Other software related features to be expected
in future CUDA versions are: just in time linking and compiling, ARM-device support,
supporting c++11, a library of sparse linear algebra solvers, and single GPU debugging.
Even further in the future we can expect optimized memory locality and computation as
well as task parallelism. Furthermore Nvidia will introduce CUDA into their Tegra series
mobile chip. The first such GPU will be called Logan and is said to arrive in the year
shift 2013/2014.

2.4.1 Execution hierarchy

The parallelism in CUDA follows a hierarchy. Threads are grouped together in blocks
and blocks are contained in a grid, consisting of all computational parts of the kernel.
A block is assigned to an SM, and resides on the same SM until it has finished its
computations. Threads in the same block run concurrently. They can communicate via
block synchronization and shares a programable memory space, similar to the CPU’s L1
cache, called shared memory. Once all threads in the block have finished computations
the block has finished. An SM can have several blocks assigned to it at the same time and
schedules work between them as it finds suitable. Some blocks might run in parallel but
not necessarily all, depending on the resources available. It is required that all blocks can
be executed independently and in any order. The kernel has completed its computations
once all blocks have finished their computations.

Thread blocks consist of several sets of 32 threads called warps, which are executed
by stream processors. A warp is ideally computed in parallel as a Single Instruction
Multiple Data, SIMD, unit. In SIMD, the same instruction is performed by each thread
within the warp but the data varies between threads. This design makes it possible for
coalescing of several operations for all threads in a warp, such as instruction fetching
and memory fetching. All threads in a warp are executed in a lock-step fashion, which
means that only one instruction is performed at a time. If all threads are to perform
the same instruction then this execution is in parallel. However, if some threads in
the warp are to perform different instructions, this gives rise to what is called thread
divergence. Thread divergence can be caused if threads within a warp follow different
branches of a conditional statement. In the case of thread divergence, the execution will
be serialized to as many instructions as there are diverging branches. Threads within
the branch that do not perform the executed instruction will remain idle. To allow for
thread divergence in CUDA makes the warps execute in what is called Single Instruction
Multiple Threads (SIMT). It differs from the previously mentioned SIMD by allowing
threads to take different execution paths.

Dividing work into blocks and threads is not explicitly required of the programmer.
The programmer rather writes the code as SPMD, meaning that the same piece of code
can be executed by any of the threads, using different data, with the possibility to

9



CHAPTER 2. THE GRAPHICS PROCESSING UNIT

extinguish different threads and blocks. More low level control, such as which threads
get scheduled to which SM and in which order the threads get executed, is handled by
CUDA.

2.4.2 Memory hierarchy

The memory of the GPU follows a hierarchy. Private to individual threads are registers.
Shared within a thread block is an on-chip L1 cache. The L1 cache consists of a
programmable “shared memory” and a general purpose cache, the latter is used to speed
up random access operations. Shared memory is completely software managed. The
partition of L1 cache used for shared memory and general purpose memory respectively,
can be determined by the programmer. The size of the total L1 cache is 64KB on Kepler
and Fermi GPUs. The shared memory part of the L1 cache opens up intercommunication
between threads in a block.

Further there exist read only data caches: texture cache and constant memory cache.
Texture and constant memory are visible to all threads of a kernel. The beneficial access
pattern for constant memory is that all threads within a warp should access the same
memory location. For textures, there should be spatial locality of data, no uniform access
is required. The texture memory is hardware managed. Shared to all blocks on an SM
is an L2 cache, which is of size 1536KB on Kepler. The L2 cache is a general purpose
cache and speeds up code where the access pattern is not known beforehand. Shared
within the whole GPU is the DRAM, also called global memory. The size of the global
memory is up to 6GB with a bandwidth of up to 288GB/s at the time of writing this
report. The global memory of the GPU has higher bandwidth but also slightly higher
memory latencies than its CPU equivalent.

Warp operations play an important role also for memory accesses. Warps can coalesce
memory fetches from global memory, if the memory locations accessed are contiguous.
More specifically the global memory is organized into segments of 128 bytes, all threads
within a warp which access memory from the same segment will be coalesced. Memory
access is fully coalesced if all threads in a warp accesses the same segment, and uncoalesced
if all threads in a warp access different segments. The number of memory transactions
needed for a warp, is the number of different segments which that warp fetches memory
from. Also memory fetches from caches can be coalesced. Generally memory closer to
the threads have faster read and write access speeds. For instance, shared memory is
about hundred times faster than global memory. Access latencies from global memory is
hundreds of clock cycles. Coalesced memory access is required for reaching peak memory
bandwidth.

When programming the shared memory one has to be aware of what is called a
memory bank conflict. Bank conflicts arise in shared memory when two threads try to
access the same memory bank. The cost of a bank conflict is the maximum number of
simultaneous accesses to a single bank. This should be avoided since such requests will
be executed sequentially after each other. However, if all threads in a warp access an
identical address, this will not lead to a slowdown [14].

The architectural benefit of dividing threads into warps, comes from that memory
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and instruction access can be coalesced. The cost for doing such an operation can thus
be amortized over all threads in the warp.

2.4.3 Hardware limitations of the streaming multiprocessor

The Streaming Multiprocessor, SM, is subject to hardware restrictions, which limits the
size of threads and memories residing on it. Some limits are hardware specific and the
following numbers applies to Kepler GPUs, even though many numbers are the same for
previous architectures. The maximum number of threads per block is limited to 1024,
and the maximum number of blocks simultaneously scheduled to an SM is limited to 16,
while the maximum number of threads of an SM is limited to 2048. Registers are also
distributed within an SM, and is limited to 65536 per SM. The maximum number of
registers per thread is 255. The shared memory is also of fixed size within the SM, being
64KB, as already mentioned.

When programming CUDA one needs to be aware of these restrictions as they might
limit performance. None of these hardware limits may be violated. This leads to that if
the maximum number of register for an SM has been reached, no more blocks can be
scheduled to that SM, and the throughput is possibly reduced. If any property would be
violated, then the number of blocks of the SM is reduced by an integer number. That is,
the limiting adjusting building block is the blocks scheduled to it. Imagine the following
scenario. The number of registers per thread is increased by one, and that this increase
causes one block less to be able to be scheduled on an SM due to that the maximum
number of registers is reached. Assume further that the number of threads per block is
1024. Then by reducing the registers by one, two blocks of 1024 threads can be scheduled
to the SM rather than one. This change in a single register can thereby theoretically
increase the performance by almost a factor two. An analogous limit applies for shared
memory. To control the occurrence of this issue, one can set a limit on the maximum
number of registers per thread and shared memory per block by specifying it to the
Nvidia CUDA compiler, NVCC.

2.4.4 A scalable programming model

In computer science parallelism can conceptually be split up into different levels describing
how often the parts being executed in parallel communicate with each other. Coarse
grained parallelism refers to that a problem can be divided into several independent sub
problems. Fine grained parallelism refers to performing even smaller subproblems in
parallel. Performing two matrix vector products of two independent vectors with the same
matrix could be considered coarse grained parallelism while computing the accumulated
sum of a vector would require fine grained parallelism. CUDA supports such different
levels of parallelism. Kernels can be computed in parallel, solving different tasks (task
parallelism), while many threads can compute sub problems of a task in parallel. Threads
within a block can communicate with each other via shared memory and thread barrier
synchronization. Different blocks can communicate once the control is given to the CPU,
launching the kernel again with different data if necessary. Threads, blocks and kernels
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comprises a scalable programming model, where the programmer does not need to know
the exact number of available threads or blocks when programming. Many architecture
specific properties, such as the limitations of an SM, can be queried at runtime. The
scalability is an important concept as it generalizes the task of programming many core
devices, and allows for code written today to be efficient on future devices, including
those with orders of magnitude more computational cores.

2.4.5 The CUDA programming language

CUDA device code is based on C/C++, but it does not support all features from recent
standards [15]. The code flow consists of what is called host code, usually ran on the
CPU, and device code, called kernels, ran on the GPU. From now on it will be assumed
that the host is a CPU and that the device a GPU. The CPU part of the program takes
care of program control: making calls to the GPU for allocating memory and transferring
memory between GPU and CPU, invoking calls to GPU kernels, and synchronizing the
operations performed on the GPU. It is a single sided communication where the host can
send commands to the device but not vice versa. The host and the device have different
memory spaces. They cannot directly access each others memory. Kernels were initially
solely launched from the host code, but with the introduction of dynamic parallelism
on the latest Kepler architecture, kernels can be called from within kernels. In order to
make a kernel call, one has to specify certain multithreading parameters. Most of the
GPU and CPU computations can be done in parallel.

The host code is compiled with a standard C/C++ compiler, whereas all files
containing device code and kernel invocations are compiled with a CUDA compiler. The
compilation of CUDA code can be separated in two steps. Either one can compile directly
to binary code, or one can compile to some intermediate PTX assembly format. Binary
code is architecture specific, the PTX format is not. PTX code is compiled at runtime
to device code by the device driver. The PTX format enables code to be compiled
for architectures not yet built by the time of the writing of the code, and also benefit
from new features becoming available at later times. CUDA wrappers exist for other
languages/platforms than C/C++ so that CUDA can be written in for example Python,
Fortran, Java and Matlab.

Atomic operations is an important concept for thread safety and parallel computing.
During the duration of an atomic operation the state of the data being read or written
to, cannot be changed by any other thread. Several atomic operations are supported on
CUDA devices.

CUDA comes with several useful optimized software libraries provided by Nvidia. Of
interest to this thesis work are the libraries for Basic Linear Algebra Subroutines (BLAS):
cuBLAS, and cuSPARSE. Other libraries of interest to scientific computing are cuRAND,
cuFFT, and the library THRUST providing parallel implementations of basic routines.
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2.4.6 Programming features and performance considerations

For efficient and high performance execution, the CUDA code typically has to be carefully
developed and optimized, which often is a non-trivial task. With the described GPU and
CUDA architecture as a foundation, this section will explain some general optimization
considerations used in this thesis work.

In CUDA, the programmer must choose several parameters for execution. The most
notable example is that whenever a kernel is invoked, the programmer must specify the
number of threads per block and the total number of blocks it should be launched with.
The choice of these parameters has impact on the performance of the kernel, and while
there are no deterministic rules of what will be most efficient there exist some general
guidelines. To maximize coalescing of warp operations and to minimize thread divergence,
the number of threads per block should be a multiple of the warp size. To cover up for
memory latencies, many threads should be scheduled to each SM, which implies that
a large number of threads per block should be used. To set the number of threads per
block to 128 or 256 is usually a decent choice on todays architectures. Have in mind that
many GPU specific details are available to the application at runtime.

Many applications are memory bound. This makes it important to optimize the
use of different memory spaces when optimizing code. Generally one should make use
of all low level memory spaces available, as locality is an important concept for high
performance. Registers can be used to maximize data reuse, leading to lower reads and
writes from global memory. Shared memory can be effective when the access patterns of
threads are known beforehand, and when threads within a block make use of the same
elements but at different instructions in the code (to avoid bank conflicts). Constant
memory is cached and is ideal for use with program constants, but can also be used for
arrays. Texture memory is optimized for spatial locality in 2D and can therefore be used
if coalesced global memory access cannot be achieved. However the L2 cache on Kepler
architectures supposedly manages such memory reuse effectively as well. Recomputing
data rather than caching it or fetching it from global memory, should also be considered
when possible as a means to reduce the number of global memory accesses.

Perhaps the most important aspect to optimize memory bandwidth, is to program for
highly coalesced memory accesses for threads within a warp. As already discussed, this
is possible when contiguous threads (threads within a warp) access contiguous memory
spaces. An example is that one should use a struct of arrays rather than an array of
structs, and arrange data structures such that accesses can be coalesced. Consider the
case of having a struct where an instance of a struct stores all cell properties for one
cell, u, v, w. Now when two consecutive threads perform the same instruction, say
x = u[tID], then the first thread will access a specific address to get its velocity, while the
other thread will access a memory address being sizeof(struct) elements away, not being
consecutive elements. This leads to that the maximum number of coalesced memory
accesses by a warp is 32/sizeof(struct). On the other hand, if we store all velocities in a
separate array. Then the first thread will access u[tID] and the other u[tID + 1], where
u[tID] and u[tID + 1] are two consecutive memory addresses. This leads to that each
warp is able to perform 32 coalesced accesses, being the optimal value. Aligned access
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patterns are beneficial also for accessing the cache memories previously mentioned.
A technique often used together with shared memory is tiling. Threads that make

use of the same elements are arranged in a block, each thread loading some memory into
shared memory and then all threads make use of the whole shared memory. Now each
property only need to be read once and written once for the whole block, rather than once
for each thread within the block using the property. This reduces the number of read
and write operations to global memory to a maximum of two per property for each block.
Tiling and shared memory can also help coalescing memory access in non-structured data
structures via reordering the data through it.

As already discussed, warp divergence should be avoided. However, if the branch
granularity is a multiple of the warp size, this is not an issue.

Another efficient technique is loop unrolling, where the operations of several loop
iterations are all performed during one iteration. This decreases loop overheads and can
sometimes benefit from data reuse. Loop unrolling might require larger register usage,
but can decrease the number of global memory retrievals. This technique can be efficient
if there is an extra overhead for new threads, which can be removed by merging several
of them together.

An issue with CPU-GPU heterogeneous programs is that memory copy between the
CPU and GPU is a serious bottleneck. It is limited by a PCIe 3.0 connection. Such
programs are common in large programs where only computationally intensive parts are
ported to the GPU. In these cases, large portions of memory need to be copied between
the CPU and GPU whenever a GPU kernel is invoked. This limits the potential benefit
in using a GPU for the computation. All data required for the computation by the GPU
need to be in the GPU memory, and solutions of interest for future CPU routines need to
be in CPU memory afterwards. By utilizing certain techniques this memory copy can be
performed in parallel with other computations, but this is not always possible. For this
reason, it might sometimes be worth performing serial computations on the GPU rather
than on the CPU if this avoids a large memory copy. One should also keep in mind that
one large transfer is faster than several small transfers and therefore strive to combine
several small transfers into one large.

A question when optimizing code is: how long time will the optimization take versus
the speedup gained? This is a hard question to answer. In [8], the authors claim that the
performance increase by systematically tuning the parameters for the specific application
as compared to heuristically settings is usually about 20%.

2.4.7 Some limitations and advantages

CUDA is a proprietary language of Nvidia, which comes with both drawbacks and
advantages. The evolution of the language is entirely in the hands of Nvidia and as
of today CUDA is only supported for Nvidia GPUs. The benefit, though, is that it
can be streamlined for those GPUs without having to consider differences with other
manufacturers. CUDA implementations have been reported informally on the web to
be faster than other GPGPU languages such as OpenCL. However, if this is due to
differences in optimization, hardware or the language/compiler is hard to know, and
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this should only be taken as an indication. Another advantage increasing productivity,
is that CUDA comes with many existing libraries, such as the math libraries cuBLAS,
cuSPARSE, cuFFT, cuRAND, and Thrust. There is also a broad community of users.

A disadvantage with being proprietary, is that no one knows what Nvidia decides to
do with CUDA in the future.

2.4.8 Code and optimization example: A vector sum

There are differences when writing code for serial programs for CPUs and massively
parallel programs for GPUs. This section is intended to illustrate algorithmic differences,
illustrate CUDA code, and highlight a few considerations for writing optimized CUDA
kernels. The illustration will consist of writing and a few steps of the optimization, of
a vector sum routine in CUDA. This section is not required to be understood to read
the rest of this thesis, it is rather intended for those unfamiliar with CUDA interested in
having a glance at what it looks like and how it works.

In computer science a vector sum on a parallel architecture is often done using a
reduction algorithm. The problem is divided into smaller and smaller subproblems and
eventually solved once small enough. A similar reduction as will be illustrated here, can
be used to find the maximum or minimum of a vector. The example is highly inspired by
the slides of a presentation by Mark Harris [16]. The reason for choosing a vector sum as
an example is its simple problem description, and that such a routine was implemented
to calculate solver errors in the final Navier-Stokes implementation. Observe that some
assumptions have been made on the input to avoid complex code and handling exceptions.
Such simplifications are that the input vector size is a power of two, and that some
parameters are assumed to be known at compile time.

On a serial machine a routine for calculating the sum of a vector is trivially imple-
mented, see Algorithm 1.

Algorithm 1 Implementation of a serial vector sum.

for i = 1→ n do
sum+ = vec[i]

end for

The same algorithm implemented in CUDA would not yield any parallelism, instead a
reduction approach will be taken. The problem can be solved using a Divide & Conquer
algorithm, where the splitting part is trivial and the combining part is just combining
the numbers until only one remains. Each leaf of the reduction tree will correspond to
the computation performed by one of its child threads. Such an algorithm could look like
Algorithm 2.

In CUDA a similar routine based on the Divide & Conquer approach for computations
could look like Algorithm 3. For readers who have not seen CUDA code before, a lot
is new and it might be hard to grasp all details. Recall that a kernel is launched with
a number of blocks where each block can consist of up to thousands of threads. Each
thread being launched by the kernel evaluates the body of the function. The global
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Algorithm 2 Pseudo code for Divide & Conquer vector sum algorithm.

function reduction( data[ ], nElem)
if nElem == 2 then

return data[1]+data[2]
else

return reduction(data[1...nElem/2],nElem/2)+reduction(data[nElem/2+1,nElem],nElem/2)
end if

keyword, is what defines that the function is a CUDA kernel. threadIdx.x, blockIdx.x and
blockDim.x are built in variables for keeping track of, and numbering, the threads and
blocks inside a kernel. threadidx.x is the thread number (ID) within a block, blockIdx.x is
the block number (ID) of that thread, and blockDim.x is the number of threads per block.
The keyword shared is what defines shared memory. Recall that through shared
memory, threads within a block can communicate. The communication is done together
with the syncthreads() function, which says that before any of the threads in the same
block can continue, all thread in that block must have reached the syncthreads() mark.
THREAD PB is just a hard coding of the number of threads per block, done for simplicity
but not necessary.

The essence of the algorithm is that all threads within a block reads an entry of the
vector to shared memory. Consecutive blocks of threads reads consecutive elements of
the input array to its shared memory. Each block of thread then performs a Divide &
Conquer type of operation, written explicitly in form of a for-loop, on the elements stored
in its shared memory. First, every second thread computes the addition of the value
stored at the same position as its ID in the input array and the element after it, and
stores the result at the position of its ID. Then, every fourth thread adds its element
and the element two steps away, and stores it at its own position, and so on. Eventually,
each block will have computed the sum of the elements loaded into its shared memory
and stores the data in the position of the output array corresponding to its block ID.
After the kernel has completed, the output array will consist of as many elements as
there were blocks launched by the kernel. That is, if 512 blocks were launched by the
kernel, then the output will consist of 512 elements. Thus, to complete the vector sum,
the kernel has to be invoked several times with the computed output as the new input.
This first algorithm illustrates the huge difference between the serial implementation and
the parallel CUDA implementation. Not only does the CUDA implementation require
a parallel algorithm, it is also bound by that communication between threads can only
occur between threads within a block.

The above algorithm can be improved by observing how the threads are accessing data
from the shared memory in the Divide & Conquer operation. The if statement causes
diverging branches of the threads, something we wish to avoid, since neighboring threads
are not performing the same operations. Further, the access from shared memory is not
being coalesced, thereby causing bank conflicts. We would rather like to have consecutive
threads access consecutive elements in shared memory. Luckily the access pattern is
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Algorithm 3 Naive implementation of vector sum in CUDA C.

global void vecSum1( int nElem, int[] iData, int[] oData ) {
int tID = threadIdx.x+blockIdx.x*blockDim.x;
int localTID = threadIdx.x;

shared int s oData[THREAD PB];
oData[localTID] = 0;
if tID < nElem then

s oData[localTID] = inData[tID];
syncthreads();

for int i = 1; i<blockDim.x; i = i*2 do
if (localTID % 2*i) == 0 then

s oData[localTID] += s oData[localTID+i];
end if

syncthreads();
end for
if localTID==0 then

oData[blockIdx.x] = s oData[0];
end if

end if
}

known beforehand and can be done such that consecutive threads access consecutive
elements in shared memory. Instead of letting individual threads add together consecutive
elements, consecutive threads should access consecutive elements for addition. In the
next step, half as many threads adds elements from one fourth to half of the shared
memory array and so on. Also note that only half of the threads are active, as threads
with odd ID’s remain idle. This can be resolved by loading twice the number of elements
into the shared memory for each block, thereby launching half as many blocks when
launching the kernel. These issues are resolved in the improved algorithm, Algorithm 4.

A further step to improve performance consists of unrolling loops in different levels,
in this way reducing instruction time overheads. A clever way of doing this is noting that
threads within the same warp execute their instructions simultaneously and that the size
of a warp is 32, avoiding the need to use syncthreads() in addition to the unrolling.
Incorporating this change into the vector sum algorithm results in an algorithm like
Algorithm 5. In the algorithm a device function has been introduced, which is a
function callable from kernels only. These are handy for structuring and reusing code.
Often the body of these functions are directly inserted in the place where they are called
by the compiler. The vector sum algorithm can further be improved by letting each
thread calculate several entries from the input vector, in this way reducing the number
of blocks being launched when the kernel is invoked. This and further optimizations are,
however, not treated further here.

The three different algorithms are successively more effective for performing the
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Algorithm 4 Slightly optimized implementation of vector sum in CUDA C, making
consecutive threads perform more work together.

global void vecSum1( int nElem, int[ ] iData, int[ ] oData ) {
int tID = threadIdx.x+blockIdx.x*(blockDim.x*2);
int localTID = threadIdx.x;

shared int s oData[THREAD PB];
oData[localTID] = 0;
if tID < nElem then

s oData[localTID] = inData[tID];
if tID+blockDim.x<nElem then

s oData[localTID]+=iData[tID+blockDim.x]
end if

syncthreads();
for int i =blockDim.x/2; i>0; i/=2 do

if localTID < i then
s oData[localTID] += s oData[localTID+i];

end if
syncthreads();

end for
if localTID==0 then

oData[blockIdx.x] = s oData[0];
end if

end if}

computation. The timings for a vector sum of a vector of 223 = 8388608 elements for
the three different algorithms can be seen in Figure 2.1. The algorithm after the third
optimization step is almost four times faster than the naive implementation.
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Figure 2.1: Timings for the three different optimization steps of the vector sum. The vector
consisted of 223 = 8388608 elements.
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Algorithm 5 Further improved implementation of a vector sum in CUDA C, a first step
of loop unrolling.

device void unrollWarpLoop( volatile int[ ] s oData, int localTID) {
s oData[localTID]+=s oData[localTID+32];
s oData[localTID]+=s oData[localTID+16];
s oData[localTID]+=s oData[localTID+8];
s oData[localTID]+=s oData[localTID+4];
s oData[localTID]+=s oData[localTID+2];
s oData[localTID]+=s oData[localTID+1];
}

global void vecSum1( int nElem, int[ ] iData, int[ ] oData ) {
int tID = threadIdx.x+blockIdx.x*(blockDim.x*2);
int localTID = threadIdx.x;

shared int s oData[THREAD PB];
oData[localTID] = 0;
if tID < nElem then

s oData[localTID] = inData[tID];
if tID+blockDim.x<nElem then

s oData[localTID]+=iData[tID+blockDim.x]
end if

syncthreads();
for int i =blockDim.x/2; i>32; i/=2 do

if localTID < i then
s oData[localTID] += s oData[localTID+i];

end if
syncthreads();

end for
if localTID<32 then

unrollWarpLoop(s oData,localTID);
end if
if localTID==0 then

oData[blockIdx.x] = s oData[0];
end if

end if
}
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2.5 Parallel programming languages and GPGPU platforms
other than CUDA

In this section an overview of other parallel programming languages, models, API’s
and hardware accelerators will be given. First common CPU oriented models will be
explained, followed by many core alternatives.

MPI, an abbreviation for Message Passing Interface, is widely used by researchers
and engineers for computation on scalable clusters. MPI is targeted for use when several
compute nodes are being used, which do not share a memory. However the nodes
themselves could be of shared memory architectures. “Messages” are passed to share data
and communicate between nodes. MPI can be used together with CUDA GPUs.

OpenMP is a model building on pragma compiler directives for parallelization. It is
designed for parallel programs on single compute nodes, i.e. shared memory architectures.
Given specifications from the programmer, the compiler will automate the parallelization.
It is mainly targeted for shared memory systems with several processors, such as multicore
CPUs. OpenMP has a difficulty of arbitrary scaling to many cores, due to thread
management and hardware specifics [8].

Pthreads (POSIX threads) is, like OpenMP, aimed at providing parallelism for
shared memory architectures. In PThreads, the programmer is responsible for thread
synchronization and management, giving him/her higher flexibility than OpenMP.

OpenCL was initially a project from Apple, but is now an open source project
supervised by the Khronos group (also supervising OpenGL). OpenCL is similar to
CUDA, but supports graphics cards from multiple vendors as well as multicore CPUs from
several vendors. OpenCL applications are compiled for the specific target architecture at
runtime. The goal of OpenCL is to create an industry standard for parallel programming,
being able to run the same code on different computing devices.

DirectCompute is Microsoft’s equivalent to CUDA and OpenCL for GPGPU pro-
gramming, more closely linked to the DirectX graphics API. A similar platform from
Microsoft is C++ AMP, which builds on DirectCompute but provides an interface for
C++ developers.

OpenACC is a programming standard based on compiler directives, similar to that
of OpenMP, aimed at simplifying programming of heterogeneous CPU, GPU and other
accelerator programs. It is developed by CRAY, CAPS, Nvidia and PGI. Compiler
directives are used to specify the parallelism, the compiler then writes the necessary code
to transfer data and performing other necessary operations and port that part of the
code to GPU/accelerator code.

Intel MIC (Many Integrated Core) Architecture, with the brand name known as Intel
Xeon PHI, is Intel’s answer on the increasing trend of GPUs in the High Performance
Computing industry. The accelerators are used as co-processors to the CPU, yielding
high memory bandwidth, high processing power, and low energy consumption, similarly
to GPUs.

20



Chapter 3

Previous work

Applications and problems suitable for GPU computing should be highly parallelizable,
be carried out over large amounts of data, and individual data elements should have
minimal dependency. The interest for GPU accelerated engineering and scientific applica-
tions has been large for the last years. Applications within many different fields have
been accelerated by GPUs, such as biology and medicine research, seismic calculations,
engineering computations, gaming, image processing, and finance. In this chapter, what
have been done on GPUs in the fields of sparse linear algebra solvers and computational
fluid dynamics relevant to this thesis work will be presented.

Some terms introduced in this chapter will be described in later chapters. The
uninitiated reader can therefore find an interest in reading this chapter again or after
reading the chapters following.

3.1 Sparse Linear Algebra on GPUs

Numerous articles and reports have been published where linear algebra routines have
been accelerated on GPUs. Both sparse and dense linear algebra have been studied.
Dense linear algebra implementations show promising speedups, sparse linear algebra
implementations report speedups but not as high. Sparse linear algebra is a corner stone
in many scientific applications. In general in those involving discretization of PDEs
such as fluid mechanics and structural mechanics. This motivates the high interest in
literature, especially so as many linear algebra operations are inherently parallel.

Efficient SpMV implementations have been studied among others by [17, 18, 19]. In
[17], efficient implementations of the SpMV operation are investigated. Implementation
and performance of several sparse formats are investigated and compared to SpMV
implementations on CPUs. The HYB-sparse format is the best general format for the
majority of matrices tested. The GPU implementations outperform CPU implementations
with up to an order of magnitude if the matrices are decently sparse. It is also mentioned
that the usage of texture memory for the vector x increases performance with about 25
%. This is achieved by data reuse since texture memory is cached and x can be reused.
In [19], different implementations of the SpMV operation in the CSR sparse format is
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studied exclusively. The study reports an optimized SpMV in CSR format achieving
comparable results to Nvidia’s cuSPARSE library’s SpMV operation for the HYB sparse
format.

Preconditioned iterative solvers accelerated on the GPU are studied in [18]. All
parts of the preconditioners and solvers are evaluated for implementation on the GPU,
including the SpMV operation and solution algorithms for triangular systems. They find
that the GPU SpMV implementations are superior to CPU implementations. For GPUs,
the JAD sparse format is found to be faster than the CSR format. The speedup against a
parallel CPU implementation is up to a factor of 5. The GPU accelerated triangular solve
operation, outperforms the CPU implementation by a factor of up to five if a technique
called level scheduling is being used. Incomplete Cholesky preconditioned CG was
reported to give moderate speedups over a CPU equivalent, while ILUT preconditioned
GMRES was reported to yield a speedup of three to four. The least square polynomials
preconditioner was also tested together with the Conjugate Gradient iterative solver
(CG). Speedups of up to seven to GPU Incomplete Cholesky preconditioned CG was
reported, but for some of the matrices tested they performed equally well.

Efficient implementations of the incomplete-LU and Cholesky preconditioners on the
GPU are studied in [20]. The preconditioners are parallelized using a technique called
implicit orderings. The authors report speedups of an average of two when incorporated
with solvers compared to CPU implementations.

In [21] kernel fusions of BLAS routines are discussed, meaning that several BLAS
operations are combined into one operation. Reporting speedups of up to 2.61 when
performing the same operations sequentially with cuBLAS. The benefit of kernel fusion
lies in reducing memory fetches from off chip memory, in the GPU case global memory.

In [22], a simple multigrid method for a pressure Poisson equation for use in graphics
oriented fluid flow simulations was implemented on the GPU. The speedup over a
CPU multigrid method was up to above 50, while the speedup to a GPU implemented
preconditioned CG was about eight. The implemented method was reported not to be
able to handle complex domains.

In [23], a geometric multigrid method for unstructured finite element grids based
on SpMV operations, which could handle complex domains, was developed. Reported
speedups when using the GPU over a parallel CPU multigrid implementation was between
six and ten for large grids.

3.2 Computational fluid mechanics on GPUs

The idea of GPU accelerated fluid simulations were present early in the GPGPU commu-
nity. The primary applications initially was computer graphics. Navier-Stokes solvers
were implemented on GPUs before both CUDA, and the Brook and SH programming
models. Many of the graphics fluid flow simulation applications are based on Stam’s
method [24], producing nice real time effects, but not being accurate enough for scientific
applications.

GPU implemented solvers of the Euler equations appear in the literature. The Euler
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equations is a simplified version of the full incompressible Navier-Stokes equations, where
the viscosity is assumed to be negligible. In [25], an Euler solver for a discretization on
an unstructured grid reports to give an average speedup of about 1.5 for double precision.
In [26], a 3D Euler Solver using the finite volume method is used to solve inviscid flow
aimed at graphics simulations. The reported grids were fairly small (< 400000 cells).
A tiling algorithm is used for assembly routines to decrease the memory fetches from
global memory. A block of threads is iterating through blocks of spatial nodes through
one of the domain dimensions. A speedup of sixteen times were reported using CUDA
compared to a serial CPU implementation.

In [27], an incompressible Navier-Stokes solver was implemented on single and multi-
GPU systems (up to 4 GPUs), and it was compared to a serial CPU implementation.
For a single GPU, speedups of up to 13 and 33, respectively, for two different CPUs,
were reported. Using two GPUs a speedup of less than two compared to a single GPU
system was reported. For four GPUs, a speedup of up to three times was reported. The
method implemented was an explicit time projection method, first solving the momentum
equation uncoupled from pressure, then correcting it through a pressure Poisson equation
solved using Jacobi iterations as iterative solver.

In [28], a double precision CFD code using the Boussinesq approximation was devel-
oped, solving incompressible flow of Rayleigh-Bernhard convection. An explicit Adams-
Bashforth discretization is used for the temporal term and a regular staggered grid was
used for the computational domain. A GPU multigrid method for simple geometries was
implemented to solve the pressure Poisson equation. For large enough grids, a speedup of
about 8 times compared to an OpenMP and MPI threaded CPU implementation using
8-cores was reported.

In [29], some CFD utility functions (block-tri diagonal solver, FVM maximum time
step kernel, Euler fluxes) were implemented on a GPU using CUDA. Some speedups
were reported compared to an OpenMP threaded CPU implementation. However, the
bottleneck in CPU-GPU memory transfer was encountered, thereby limiting the use of
only kernel accelerated applications.

Lattice Boltzman Methods (LBM) is another method of interest for solving fluid
problems. It is amenable for massive parallelism due to its parallel nature. LBM is
based on cellular automata. The fluid is modeled as particles on a discrete lattice of cells.
Various GPU implementations of LBM exist in the literature. An early implementation
of LBM on GPU, developed before the time of CUDA and OpenCL was the work done by
[30], where an LBM is implemented on a GPU cluster. The article is of historical interest
as well. A more recent LBM implementation on the GPU can be found in [31], where a
speedup of around 100 over a CPU implementation is achieved for the Lid-Driven cavity
case.
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Sparse matrix-vector kernel and
sparse matrix formats

The Sparse Matrix-Vector kernel, denoted SpMV, is the operation usually defined by

y = αAx+ βy, (4.1)

where A is a matrix, and x and y are vectors. It accounts for up to half of the time required
for many iterative methods. An efficient implementation of the SpMV kernel is thus of
great importance for effective implementation of iterative methods. The performance of
the SpMV kernel depends on the sparse matrix format used for the matrix. The sparse
matrix format is also of importance when assembling the matrix, i.e. computing the
matrix coefficients from the discretized Navier-Stokes equations. When assembling, it
is desirable with an intuitive format with good access alignment and locality of data.
Ideally, one would like to assemble directly into the format being used for the SpMV
operation in the iterative methods. If this is not possible for the fastest format, a transfer
of format might be the best choice. Another consideration is if theSpMV implementations
available in cuSPARSE, or in a non-restrictive open source library, is fast enough; or if
an implementation specifically for this thesis work should be considered.

The number of floating point operations of the SpMV, omitting the generalization
constants α and β, are two times the number of non-zero elements in A. One multiplication
and one addition per element in A. Each non-zero element in A is only used once while
each element of x could be used several times. The number of memory reads required
for one multiplication and one addition is at most two, fetching the x element and the
non-zero element of A. Ideally, each element of x would only be needed to be fetched
once from global memory and then stored in the cache. Depending on the effectiveness of
caching and the number of non-zero elements in A, the floating point operation:memory
access ratio lies between 1:1 and 2:1. Consequently the SpMV operation is memory
intensive and likely memory bound. This is the main issue limiting the performance
of SpMV on parallel architectures. The operation is of low arithmetic complexity and
has irregular memory accesses. To achieve an efficient implementation of the SpMV
operation, the memory access pattern is of uttermost importance and consequently the
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sparse format of the matrix. Recall that the peak bandwidth of the GPU cannot be
achieved unless coalesced memory accesses from global memory is being used.

Matrices resulting from discretization of engineering problems, or more specifically
those resulting from FEM, Finite Volume or Finite Difference discretizations, are often
extremely sparse. The efficiency of computation of these methods largely depends on
local dependence for computing properties in discretized nodes, even though exceptions
exist. This is also the case for CFD matrices, which commonly are based on a Finite
Volume or a Finite Element discretization. Matrices commonly have an order of millions
of rows and only on the order of tens of non-zeros per row. Normal matrix storage
would require storing O(N2) numbers for an NxN matrix, while the actual number of
unknowns is only O(N). This motivate the usage of sparse storage formats.

4.1 Sparse matrix formats

The main difference between different sparse matrix formats is their memory requirements
and efficiency on different sparsity patterns. Some can be efficient on regular patterns
and other on those with many non-zero elements per row. First, several popular sparse
matrix formats is briefly described, alongside with their benefits and drawbacks. Then,
timing measurements of different open source implementations of the SpMV operation
will be detailed. The interested reader can find a more detailed description of sparse
matrix formats in [32], [17] and [18] among others.

4.1.1 COO format

The COOrdinate, COO, format is a straightforward general implementation of a sparse
matrix. Three vectors are stored, each being of length equal to the number of non-
zero elements of the matrix. The vectors the column indices, row indices and values,
respectively, for the non-zero elements. This format stores some redundant information.
The CSR format, explained next, is a more compact description of the matrix.

4.1.2 CSR format

In the Compressed Sparse Row, CSR, format one uses the redundant information that
after one row the next follows. It results in that the row storage vector can be of the size
M + 1 for an M − by −N matrix. The column vector stores the column index of each
non-zero element and the value vector stores the value of the non-zero elements. The
row vector stores the position in the value vector for the first non-zero element in each
row. It also stores an additional M + 1st element, which is the total number of non-zero
elements in the matrix. The CSR format is a general purpose-, intuitive-, and popular
sparse format. Other advantages is that the non-zeros per row can be trivially computed
and that retrieving specific elements can quickly be done.
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4.1.3 DIA format

DIA is not a general purpose format, but is constructed specifically for matrices consisting
of a number of diagonals. Two arrays are needed for storage in the DIA format, one
containing the offset of each diagonal from the main diagonal and one containing the
values. The diagonals which are not the main diagonal, and thus shorter, are padded with
arbitrary elements. It is this padding which makes this format unsuitable for arbitrary
matrices. The implicit knowledge of the elements row and column indices through the
diagonal offsets, makes the memory fetches efficient and memory requirement low on
matrices containing only a few number of diagonals, for example those resulting from
stencil discretization.

4.1.4 ELLPACK (ELL) format

The ELL format is another format which is unsuitable for general matrices, but can
be efficient on decently regular matrices. Assume that an M − by −N matrix have a
maximum number of non-zeros for any of its row being n, then the ELL format consists
of two M − by − n matrices. One stores the nonzero values and the other the column
index for each corresponding value. For rows containing less than n non-zeros, the extra
entries are padded by arbitrary values. The ELL format is suitable for unstructured
matrices for which the number of non-zeros per row are similar for all rows. The format
has a beneficial memory access pattern for vector architectures, such as the GPU.

4.1.5 HYB format

The Hybrid (HYB) format is a format being a hybrid of the general COO format and the
faster but more specific format ELL. Rows of the matrix containing less non-zeros than a
specified value, k, are stored in the ELL format while those containing more elements
are stored in the COO format. The format exploits that there are limitations on the
number of vertices (nodes) with exceptionally high degree (connected to many other
nodes) on discrete meshes of low dimensions. Reference [17] reports that empirically on
well structured meshes the ELL format is about three times as fast as the COO format,
with an empirical value of k chosen such that one third of the matrix rows contains k or
more non-zero elements.

4.1.6 JAD format

The Jagged Diagonal format (JAD) is a general purpose sparse format. The format
requires three vectors, one containing the values, one containing the column positions of
the non-zero elements and one containing the start position of each row. First the rows
of the matrix are sorted by the number of non-zero elements in decreasing order. Now
the value matrix is built up by a sequence of JAD vectors, the number of JAD-vectors
equals the maximum number of non-zeros per row. The first JAD-vector consists of the
first non-zero element per row of the sorted matrix. The second consist of the second
non-zero element per row and so on. The column vector contains the column position
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of the elements in the value vector, and the index vector contains the position of the
first element in each JAD. Now if one assigns a thread for each row of the matrix in the
sorted order, then the first thread will access the first element in the JAD vector, the
second, the second element and so on. Thus, the memory fetches can be coalesced. It is
advantagous for GPU architectures since the memory is aligned for contiguous threads.

4.2 SpMV performance

Different SpMV implementations for different sparse formats were tested to evaluate
suitable formats for computation. Implementations in CUDA Iter [33], Paralution [34]
and Nvidia’s cuSPARSE library were evaluated. The aim of the test was partly to see
which formats were best suited for the specific matrices and partly to see if there was
any need to implement an SpMV kernel for the purpose of this thesis. Since the result of
this thesis work might be used in commercial code in the future, the use of restricting
open source licenses would like to be avoided.

Double and single precision timings for an SpMV operation of a fluid mechanics finite
volume discretized momentum matrix without grid refinements can be seen in Table
4.1. Timings for a matrix with a refined grid can be seen in Table 4.2. Specifications of
the matrices can be found in Table 5.1. It is clearly seen that the sparse matrix format
matters. The Paralution COO format is up to 3 times slower than the best Paralution
format, while the ELL and HYB formats are consistently faster than CSR. For CuSparse
the HYB format is about twice as fast as CSR. Nvidia’s HYB format is the fastest for
both matrices in double and single precision. The reason why CUDA Iter is slower is
unknown, but might be due to bad optimization of recent GPUs as the latest update of
the code was no later than 2011. The conclusion is that the HYB implementation in the
cuSPARSE library is fastest. It is the implementation used for the SpMV operation in
the iterative methods described in the following chapter.

An interesting property which will be discussed further on, is that the timing difference
between single and double precision is slightly less than a factor two. As double precision
floating point numbers requires 8 byte while single precision requires 4 bytes, this indicates
that the hypothesis that the SpMV kernels are memory bound is likely correct.. The
reason why the differences are not exactly a factor two can be that some of the sparse
vectors, such as row and column pointer in CSR format, are integers, which are of the
same size regardless of if single or double precision is being used for the other vectors.
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Table 4.1: Timings for the SpMV operation in double and single precision for different
sparse formats and implementations. The operation is evaluated on the momentum1M
matrix.

CuSPARSE Paralution CUDA Iter

Format SP [ms] DP [ms] SP [ms] DP [ms] SP [ms] DP [ms]

CSR 1.30 2.30 1.24 2.08 - 6.49

HYB 0.67 1.15 1.01 1.83 - -

JAD - - - - - 1.57

ELL - - 0.63 1.13 - -

COO - - 2.49 3.17 - -

Table 4.2: Timings for the SpMV operation in double and single precision for different sparse
formats and implementations. The operation is evaluated on using the momentumR1.7M
matrix.

CuSPARSE Paralution CUDA Iter

Format SP [ms] DP [ms] SP [ms] DP [ms] SP [ms] DP [ms]

CSR 2.30 3.99 2.15 3.64 3.23 6.49

HYB 1.36 2.32 1.69 2.72 - -

JAD - - - - - 3.29

ELL - - 1.81 2.79 - -

COO - - 4.61 6.26 - -
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Iterative methods and solvers

Linear systems arise in discretization of many engineering and scientific applications,
specifically those involving finite volume and finite element discretization. Solving such
systems, Ax = b, can be done by calculating the inverse directly and applying it to both
sides of the equation resulting in x = A−1b. This involves calculating the inverse of
A, using a so called direct method, which generally is expensive with respect to time
and memory for large systems. If the system is to be solved multiple times with the
same matrix but different right hand sides, the process can be speeded up by factorizing
the matrix, in which the factorization might be expensive but where the solve phase
afterwards is relatively cheap.

For non-linear PDE’s such as the Navier-Stokes equations the matrices need to be
rebuilt often, eliminating the reusable benefit of factorization. Often a more efficient way
to solve such a system is by using an iterative method. In these methods, the inverse
A−1 is never calculated explicitly, one rather uses an algorithm that iteratively converges
towards the solution x. Three popular such methods are the Conjugate Gradient method
(CG), the Generalized Minimal Residual Method (GMRES) and Bi-Conjugate Gradient
Stabilized method (BiCGStab). These methods all fall under the category of iterative
methods called Krylov subspace methods.

In the following a brief description of the implemented methods and their underlying
idea, together with limitations and advantages, will be presented. For the interested
reader, a good and extensive textbook is [32], another is [35], an application based shorter
book with details and practicalities of implementations is [36].

5.1 Krylov subspace methods

The Krylov subspace methods search for the solution of the linear system Ax = b in a
certain subspace of the whole domain called the Krylov subspace. The methods try to
project the solution onto the Krylov subspace. The methods are part of a larger family
of methods called projection methods. The Krylov subspace is spanned by vectors of
polynomials of A of the form p(A)r, where r = Ax − b is the residual. The iterative
methods then projects the solution onto a Krylov subspace of increased dimension, in
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this way converging towards the solution in each iteration. Many of the commonly used
iterative methods fall within this Krylov subspace family of methods.

Before diving deeper into the different Krylov subspace methods, a brief overview of
the main idea of projection methods will be given. By utilizing a projection method for
solving Ax = b, A is n x n, we seek to find an approximate solution of the system in a
subspace of the actual solution space R. Let us define K as our search space and L as
our subspace of constraints, both being subspaces of R of size m. The way to proceed
to find an approximate solution x̃ in our search space K, is by iteratively building them
up, ensuring that x̃ ∈ K and that the residual vector of the approximate solution is
orthogonal to our subspace of constraints, i.e.

Find x̃ ∈ x0 +K s.t b−Ax̃ ⊥ L. (5.1)

There are two major classes of projection methods. In orthogonal methods L = K. In
oblique methods L and K are different and may even be unrelated to each other. Krylov
subspace methods can belong to both classes, what defines them is that the search space
is the Krylov subspace

Km = span{r0, Ar0, ..., A
m−1r0}, (5.2)

where r0 = b−Ax0 is the initial residual vector.
In the iterative methods the dimension of the Krylov subspace is increased by one

at each iteration. For certain choices of the constraint subspace the methods can be
proven to converge at latest after n iterations, n being the dimension of the matrix. What
differs between the different Krylov subspace methods is how the constraint subspace L is
chosen. Two common choices resulting in CG and GMRES, respectively, are L = Km and
L = AKm. The underlying idea for building an orthogonal basis of the Krylov subspace
is Arnoldi’s algorithm, see [35] or [32], this idea is used for many of the Krylov subspace
iterative methods.

Before the specific Krylov subspace methods implemented in this thesis is described,
an overview of preconditioning, often used together with iterative methods, is given.

5.1.1 Preconditioning explained briefly

The convergence rate of Krylov subspace iterative methods depends on the condition
number of the coefficient matrix, A, in turn related to the spectrum (range of eigenvalues)
of A [35]. If the coefficient matrix is ill conditioned, the number of iterations can be large.
In these cases, one would like to reduce the condition number of the coefficient matrix.
Instead of considering the system Ax = b, let us consider the equivalent system

M−1Ax = M−1b = Ãx⇔ b̃ (5.3)

where M is a matrix of the same size as A. The condition number of Ã can be much
better than that of A and can result in significantly faster convergence. Transforming
systems in this way is called preconditioning. The least number of iterations would
be achieved if M−1 = A−1, but then the method is just a direct solver, on which it is
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extremely expensive to perform the matrix inversion M−1. The cheapest inversion would
be achieved by choosing M = I, being the identity matrix, but would cause no difference
for the condition number or number of iterations until convergence. The desirable choice
is to have a preconditioner which is cheap to invert (or perform an inversion operation),
while still resembling the main features of A.

There exist different ways to apply a preconditioner. Left preconditioning is the
technique described above, right preconditioning is given by

AM−1x̃ = b, x̃ = Mx. (5.4)

A third variant exist if the preconditioning matrix is given in a factorized form M =
MLMR,

M−1
L AM−1

R x̃ = M−1
L b, x̃ = MRx. (5.5)

Using preconditioners might affect symmetry of the resulting system if the original
matrix A is symmetric. However breaking the symmetry does not necessarily affect
the convergence rate assuming M is symmetric positive definite [35]. There also exists
preconditioners where no explicit matrix M is formed, the preconditioner is instead
an operation, s(A), of the matrix A. The least square polynomials preconditioner
implemented in this work is such a preconditioner.

5.1.2 Conjugate Gradient Method (CG)

The Conjugate Gradient Method (CG) is a popular choice for solving systems where
the coefficient matrix is symmetric and positive definite. As already mentioned, the
constraint space for the CG algorithm in the m:th iteration is Lm = Km. The method
consists in generating a sequence of vectors converging towards the true solution vector.
The vectors are generated by searching a distance along a search direction, resulting in
vectors being conjugate to each other, xiAxi+1 = 0. Associated with every vector xi is an
associated residual vector ri. The preconditioned CG algorithm can be found in general
textbooks such as [32] or [37] and is outlined in Algorithm 6 below. Note that choosing
M = I is equivalent to the non-preconditioned CG algorithm.

Using a preconditioner the symmetry of the resulting matrix Ã might be destroyed.
However, this is not an issue if the matrix is symmetric and positive definite, as was men-
tioned in the previous section. In this case, it is not necessary to split the preconditioner.
It can be proven that splitting the preconditioner or using a modified algorithm of CG
results in the exact same iterates [32].

In the CG Algorithm, Algorithm 6, p is the search direction vector and α the distance
to search along this vector for each iteration. The pi+1’s and ri+1’s of the CG algorithm
are orthogonal to all previous pi’s and ri’s. Moreover the choice of α and β minimizes

(xi − x̂,A(xi − x̂)) (5.6)

in the affine space x0 +Km [36], where x̂ is the exact solution. In general, this minimum is
only guaranteed to exist if A is symmetric and positive definite. In this case the method
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Algorithm 6 Preconditioned CG algorithm.

Set initial guess x0 = 0
Compute r0 = b−Ax0

Solve Mz0 = r0

Copy po ← z0

for i = 1...convergence do
αi = (ri,zi)

Apipi
rj+1 = rj − αjApj
xj+1 = xj + αjpj
zj+1 = M−1rj+1

βj =
(rj+1,zj+1)

(rj ,zj)

pj+1 = zj+1 + βjpj
end for

converges in at most n steps where n is the size of the matrix [37]. There exist upper
limits for the convergence of the i:th iteration. Suppose that A is symmetric and positive
definite, and be aware that ||x||2A = (x,Ax). Note also that the spectral condition number

of A is given by κ2(A) = λmax(A)
λmin(A) , where λ is an eigenvalue of A. Then the following

holds [37]

||xi − x̂||A ≤ 2αi ||x0 − x̂||A , αi =

√
κ2(A)− 1

κ2(A) + 1
. (5.7)

Specifically, for a typical second order elliptic partial differential equations κ2(A) =
O(h−2), where h is the mesh length. Implying that the number of iterations for non-
preconditioned CG will scale proportional to h−1 [36]. However, the actual convergence
rate is usually faster than the worst case and depends not only on the range of the
spectrum, but also on the disitribution of the spectrum. In general, the method converges
fast in the norm ||.||A if k2(A) ≈ 1.

The CG algorithm requires two inner products, three AXPY operations (defined
by y = αx + y), one matrix-vector product, and one preconditioner solve operation
per iteration. The storage requirement is: one matrix (plus preconditioner matrix, if
applicable) plus 6n. The conjugate gradient method is attractive because of its relatively
inexpensive inner loop (computational cost per iteration), and low memory storage
requirements. Only four vectors need to be stored rather than all the krylov subspace
vectors. The time required for solving Poisson’s equation in 2D with CG is O(n3/2),
where n = N2 is the total number of nodes [35].

5.1.3 Generalized Minimal Residual Method (GMRES)

The Generalized Minimal Residual method (GMRES) was first proposed by [38] and is
obtained by choosing the constraint subspace as Lm = AKm. It can be proven, [32] or
[35], that this choice of constraint search space, Lm, minimizes the norm of the residual
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vector in our Krylov subspace, ||b−Axi||. That is,

xm = argmin||b−Ax||2, ∀x ∈ {Km + x0}. (5.8)

Let us clarify the mathematical statement in words, GMRES finds the best solution in
the Krylov subspace built up thus far in aspect of the residual. That is, the method
minimizes the residual rk = b−Axk of the vectors in the Krylov subspace of dimension
k. GMRES is a generalization of a method called MinRES, extending the applicability
from symmetric matrices to general matrices.

There exist a few variations of the GMRES method, the main difference between
them is how to perform the orthogonalization of Krylov subspace vectors. Commonly
one either uses householder transformations or Gram-Schmidt orthogonalization. The
former requires more work, is more stable and has increased convergence rates for ill
conditioned systems, while the latter can utilize a higher degree of parallelism [36]. In the
following the householder variant will be explained, which is the method implemented in
this thesis work.

Each iteration of the method consists of finding a Krylov subspace vector, using
an iteration of the Arnoldi method, orthogonalizing the vectors and then calculating
the vector in the Krylov subspace Km corresponding to the minimal residual as defined
in (5.8). Updating the iterate xi at each iteration i is expensive, however, this can be
avoided using properties of the Hessenberg matrix resulting from Arnoldi’s algorithm.
The Hessenberg matrix can in each iteration be transformed to QR form using Given’s
rotations, from which the residual and the update of the iterate can be obtained. To
obtain the iterate, a least squares problem need to be solved. On the other hand, this
can be postponed until the iterate is needed explicitly. The interested reader is referred
to [32] for derivations.

A drawback with GMRES is that one needs to store the whole Krylov subspace
calculated thus far, requiring a significant amount of memory, and also increasing the
work required per iteration. What one generally does is to restart the GMRES after a
fixed number of iterations, with the current solution as input to the restarted GMRES.
This decreases the memory requirements and deteriorates the convergence rate but works
reasonably well in practice. This further motivates the use of a preconditioner together
with GMRES. The algorithm used in the GPU implementation for the left preconditioned
restarted GMRES method is given in Algorithm 7.

33



CHAPTER 5. ITERATIVE METHODS AND SOLVERS

Algorithm 7 Left preconditioned restarted GMRES algorithm using householder trans-
formations.

initial guess x0

for i = 1...convergence do
solve r from Mr = Ax0

β = ‖r‖2
V:,1 = r/β
for j = 1...m = Iterations before restart do

solve z from Mz = AV:,j

for k = 1...j do
Hk,j = V:,kz
z = z −Hk,jV:,k

end for
Hj+1,j = ‖z‖2
V:,j+1 = z/Hj+1,1

Givens rotations to transform H to its QR factor, residual given by the transfor-
mation

end for
Compute ym as argminy‖βe1 −Hy‖2 by solving upper triangular QR factor {Least
square problem}
Update xm = x0 − V ym

end for

In the algorithm V is an N x m matrix ,where N is the number of equations and
m is the number of iterations before restart, H is an (m + 1) x m Hessenberg matrix
generated as a step in the Arnoldi iteration. The least squares problem can be solved in
a clever way by utilizing that H is a Hessenberg matrix, thereby using Givens rotations
to transform H to QR-form. Also the triangular system need not be solved explicitly
in every iteration step to calculate the residual. It is only solved before restarting the
algorithm or after convergence. See [32] for implementation details. In the ideal case of
non-restarted GMRES, the method will converge within n iterations, where n is the size
of the matrix.

In the implemented GMRES algorithm in this thesis, all BLAS1 routines and SpMV
operations are performed on the GPU. The Givens rotations are performed on the CPU,
however no heavy memory transfers are necessary as the elements of H is calculated one
per GPU operation and the Givens rotation is not expensive. The triangular solve is also
performed on the CPU, but is not expensive to compute either, as will be seen in the
results section. Thus, all expensive operations are easy to parallelize and performed on
the GPU, making it well suited for GPU computation.

GMRES requires i+ 1 inner products, i+ 1 AXPY operations, one SpMV, and one
preconditioner solve operation for the i:th iteration since restart. The storage requirements
is that of the matrix plus that of the preconditioner matrix plus (i + 5)n, for the i:th
iteration since restart.
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5.1.4 Bi-Conjuage Gradient Stabilized Method (BiCGStab)

The Bi-Conjugate Gradient Stabilized method (BiCGSTAB) is a variation of the CG
method which, in contrast to CG, successfully can be applied to non-symmetric matrices.
The CG method can only keep orthogonal residual vectors if the matrix A is symmetric.
BiCGStab tries to remedy this, with the aim of extending CG to a method for general
matrices without having to keep the sequence of vector iterates (required by GMRES
among others). The idea behind BiCGStab is keeping track of two pair of residual and
search vectors and constants, one for A and one for the transpose of A. The drawbacks
of BiCGStab are that no global minimization is guaranteed, which can lead to irregular
convergence, and that it occasionally can fail to find a solution [36]. The breakdown
seems to occur rarely in practice. Its advantages is that it still posses the attractive
features of CG of constant storage and a relatively cheap inner loop. The algorithm for
the left preconditioned BiCGSTAB method is similar to that of [39] and is presented in
Algorithm 8.

Algorithm 8 The left preconditioned BiCGSTAB method.

Initial guess x0

Compute r = b−Ax0

Set p = r
Set arbitrary r̂
for i = 1...convergence do
ρi = r̂ ∗ r
if i > 1 then
β = ρi

ρi−1
· αω

p = r + β(p− ωq)
end if
Solve Mp̂ = p
q = Ap̂
α = ρi

(r,q)
r = r − αq
Solve Ms = r
t = As
ω = (t,r)

(t,t)
x = x+ αp̂+ ωs
r = r − ωt

end for

The BiCGStab algorithm requires four inner products, six AXPY operations, two
SpMV operations and two preconditioner solve operations per iteration. The storage
required is that required for the matrix and preconditioner matrix plus 10n.
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5.2 Preconditioners

5.2.1 Diagonal scaling

The simplest form of preconditioning is diagonal scaling, also known as Jacobi precon-
ditioning, in which the preconditioning matrix is chosen as D = diag(A). This can be
implemented as a general preconditioner solving the preconditioned system

D−1Ax = D−1b, (5.9)

using a Krylov subspace method. But a more computationally efficient implementation is
to directly apply the diagonal scaling matrix D−1 on both sides of the system and then
solve the resulting system Bx = f , where B = D−1A and f = D−1b. Doing this might
however create a non-symmetric matrix B from a symmetric matrix A. A more stable
way, keeping symmetry in the transformation if any, is solving the transformed system

D−1/2AD−1/2u = D−1/2b, u = D1/2x, (5.10)

resulting in
Bu = f, B = D−1/2AD−1/2, u = D1/2x f = D−1/2b. (5.11)

After the iterative method has converged, the solution x can be retrieved from u by
x = D−1/2u. Diagonal scaling is efficient for diagonally dominant systems.

5.2.2 Incomplete LU factorization

In the incomplete LU factorization the term incomplete means that, for the factorization,
some terms which would be non-zero in the complete factorization matrix, but are zero in
the coefficient matrix, have been set to zero. Recall that storing all elements of a sparse
matrix explicitly requires unfeasible amounts of storage. The incomplete LU factorization
is a LU factorization M = LU but with some elements in the factorization dropped to
zero. Specifically, incomplete LU with zero fill in (ILU0), is the LU factorization where
only elements at positions which are non-zero in the coefficient matrix are non-zero in
the LU factors.

The ILU0 preconditioner was not implemented in this thesis work. Instead the existing
implementation in Nvidia’s cuSPARSE library was used for preconditioning the iterative
solvers. The parallelization method in the implementation is divided into an analysis
and one factorization phase being based on implicit orderings [20]. The implementation
is reported to give an average speedup of 2.7 times for the factorization phase compared
to MKL’s ILU0 implementation. However, this number is not the whole truth, since to
apply the precondtioner the incomplete lower and upper factors have to be computed.
Typically a tridiagonal system has to be solved. The GPU tridiagonal system solver
implementation used is reported to give an average speedup of 2 times compared to the
MKL library [39].
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5.2.3 Least square polynomials

Polynomial preconditioners falls into a category of preconditioners trying to approximate
A−1 by an operation of the original matrix s(A). In this way the preconditioner matrix
M is never formed explicitly, and memory requirements are kept low. The preconditioned
system to solve is s(A)Ax = s(A)b. For the Least Square Polynomial (LSP) preconditioner,
the approximation of A−1 is by a polynomial in A. The polynomials s(A) and A commute
[32], meaning that left or right preconditioning makes no difference. It will be seen that
forming the LSP preconditioner depends on estimating the spectrum of the coefficient
matrix A, i.e. its largest and smallest eigenvalues, λmin and λmax.

The question of how to choose the polynomial s(A) boils down to the fundamental
desirable properties of a general preconditioner. Ideally, one would wish to have s(A)A
as close to the identity matrix as possible. A good and less expensive approximation is to
make its eigenvalues similar to that of the identity matrix. Recall that the convergence
rate for the CG algorithm is greatly dependent on the spectrum of the matrix, meaning
that reducing the range of the spectrum will increase the convergence rate. The following
problem formulation is used to define the least square polynomial s(A) [32]: Let Pk be
the space of polynomials of grade k and lower, and [α,β] the interval containing the
eigenvalue range of A. Then, the aim is to find sk−1 ∈ Pk−1 minimizing

‖1− λs(λ)‖w, (5.12)

where w is some weight and the w norm is defined by ‖.‖w =
√

(.,.) where

(p, q) =

∫ b

a
p(λ)q(λ)w(λ)dλ. (5.13)

The polynomial sk−1 is called the least square polynomial.
The implemented algorithm will now be explained, it is based on the approach

taken by [18]. An approximation of the spectrum of A, λmin and λmax, is obtained by
using a small number of iterations of the Lanczos method, and then using Lapack’s
STEQR routine to extract the eigenvalues of the resulting tridiagonal matrix. Lanczos
algorithm is an iterative algorithm based on the Krylov subspace for finding eigenvalues
and eigenvectors of square matrices. At iteration m the method produces a tridiagonal
matrix T being similar to A. Similar means that T = B−1AB for some invertible square
matrix B. Similar matrices share the same eigenvalues under certain conditions [37].
The Lanczos algorithm is known to, after few iterations, obtain a good approximation
of the extremal eigenvalues, and is thus suitable for our purpose. The STEQR routine
calculates the eigenvalues of a tridiagonal matrix [40].

Heuristically, it is often favorable for the convergence of iterative methods to add an
extra term to the largest eigenvalue found with Lapack [18]. This increase the probability
that the approximated eigenvalues covers the actual spectrum of A. The same term as in
[18] was being used, namely the absolute value of the largest eigenvalue’s eigenvector’s
last element. The Lanczos algorithm implemented is detailed in Algorithm 9. To find the
approximate eigenvalues, Lapack’s STEQR routine was used on the tridiagonal matrix
obtained from the Lanczos algorithm.
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Algorithm 9 Lanczos algorithm

Choose v:,1 so that ‖.‖2 = 1 {for example all random}
β1 = 0, V:,0 = 0
for i = 1...m do
wi = AV:,i − βiV:,i−1

αi = (wi,vi)
w:,i = w:,i − αiV:,i

if i < m then
βj+1 = ‖wi‖2
V:,i+1 = wj/βj+1

end if
end for

Ideally we want to find s(t) for which s(A) = A−1 acts the same when applied to a
vector or matrix. However, it is more efficient to approximate s with a polynomial sk−1

of degree less than k. This polynomial should reassemble s as k →∞. It is chosen to
approximate s in a least square sense according to [41]

sk−1(t) =
k−1∑
i=1

(s,Pi)Pi, (5.14)

in which {Pi} is an orthonormal basis of polynomials in some L2 space, to be chosen later.
For the polynomials a Chebyshev basis was chosen with specific weights to define the
inner product in the L2 space, as was done in [41]. This choice leads to inner products
which can be computed explicitly, avoiding numerical integration, therefore reducing
computational time. The reason is that Chebyshev polynomials are orthogonal on the
interval [−1,1] with respect to the weight w = 1√

1−x2 . Therefore the interval [λ1, λN ]

need to be transformed to [−1,1]. The inner product between Chebyshev polynomials on
the interval [−1,1] using the specified weight is

(Ci,Cj)w =


0, i 6= j

π, i = j = 0

π
2 , i = j 6= 0

(5.15)

The polynomial basis {Pi} can be found using Stieltjes procedure, which satisfies the
following 3-term recurrence [41]

Pi+1(t) =
1

βi+1
(Pi(t)(t− α)− βiPi−1(t)), j = 1...m. (5.16)

In Algorithm 10 a modified Stieltjes procedure used in the implementation is shown. The
modification of the procedure is that γ is calculated explicitly, as it will be used in a later
step. The starting polynomial S0 depends on the basis used, and was chosen as S0 = t.
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Algorithm 10 The modified Stieltjes procedure used [18].

Initialize S0(t)
β1 = ‖S0(t)‖, P0 = 0
P1(t) = 1

β1
S0(t)

γ1 = (s(t), P1(t))
for i = 1...m do
αi = (tPi, Pi)
Si(t) = tPi − αiPi − βiPi−1

βi+1 = ‖Si‖2
Pi+1 = Sj/βi+1

γi+1 = (s(t), Pi+1(t))
end for

At this point, everything required to set up the polynomial preconditioner has been
done. Now the procedure of applying it will be described. Assume that the system to
solve is Ax = b and that the initial guess is chosen as x0, which yields an initial residual
as r0 = b−Ax0 = Ax−Ax0. Then x can be expressed as

x = A−1(r0 +Ax0) = x0 +A−1r0. (5.17)

This in turn can be approximated, using (5.14), as

x = x0 +

k∑
i=1

γiPi(A)r0 = x0 +

k∑
i=1

γivi, vi = Pi(A)r0, γi = (s,Pi), (5.18)

where it becomes apparent why γ was being stored in the Stieltjes procedure. With the
help of (5.16), the following recurrence, yielding the vi’s from α and β computed in the
Stiletjes procedure, can be derived as

vi+1 =
1

β
(Avi − αivi − βivi−1). (5.19)

In the approximation of z from a system Mz = b, the final expression in (5.18)
combined with the recurrence (5.19), is used to iteratively build the solution. The
procedure is described in Algorithm 11. Note that the described operation to apply the
preconditioner consists only of vector-vector and SpMV operations, making it suitable
for parallel architectures such as GPUs.

Algorithm 11 Applying least square preconditioner

input: x0, b, α, β
v0 = 0, v1 = r0/β
for i = 1...m do
xi = xi−1 + γivi
vi+1 = 1

βi+1
(Avi − αivi − βivi−1)

end for
xm+1 = xm + γm+1vm+1
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There are two parameters to specify when using LSP preconditioning: the number of
iterations in the Lanczos step, and the degree of the preconditioning polynomial. The
more Lanczos iteration steps, the tighter bound of the spectrum of A is given, speeding
up convergence. The higher degree polynomial, the more exact the preconditioner will
be, generally resulting in fewer iterations, but in turn applying the preconditioner will be
significantly slower. Caution should be taken when using a polynomial of a high degree, as
experiments suggest that numerical errors tend to increase for higher degree polynomials
[42]. Usually polynomials of small degree < 15 are most efficient. Advantages of the least
square polynomial preconditioner is that a three term recurrence formula can be used for
building and applying the preconditioner, and that applying the preconditioner can be
efficiently parallelized.

To conclude, three steps need to be implemented to use least square polynomial
preconditioning, whose procedure is given in Algorithm 9, 10 and 11 respectively:

• Get an approximate bound of the spectrum of A, preferably using a few steps of
Lanczos method, Algorithm 9, combined with Lapacks STEQR routine.

• Calculate the coefficients α, β, and the product γ using Stieltjes procedure, Al-
gorithm 10, preferably using Chebyshev polynomials transformed to the interval
[−1, 1].

• Implement the routine for carrying out the preconditioning operation, Algorithm
11, i.e. approximating z from Mz = b.

5.3 Other methods

In addition to the Krylov subspace iterative methods and preconditioners there exist two
other popular techniques for solving sparse linear systems. The first one is to use the
Fast Fourier Transform (FFT). This technique is hard to use for complex geometries and
boundaries and will not be further discussed in this thesis. The other one is multigrid
methods. These methods can be highly efficient if used properly. Multigrid methods are
often used for solving the Poisson pressure equation derived when solving the Navier-
Stokes equations. It can be implemented to be optimal in complexity for solving sparse
linear systems, i.e. with complexity O(n) [35].

Recall that the iterative methods tend to smoothen high frequency errors rather quick
while taking a much longer time, ∝ (h−1), to get rid of low frequency errors. To overcome
this, multigrid methods have been developed. In the methods, the full grid of the solution
domain is transformed to coarser grids recursively in different levels. The problem on
the coarser grids are solved and smoothed using direct methods and iterative solvers,
since low frequency errors in the finer problem will appear as high frequency errors on
the coarser grids. The procedure could be as follows, but varieties exist: i) Perform a
few steps of an iterative method. ii) Project the grid into a coarser grid with a subset of
the original grid points, recursively go back to step i) until the grid is coarse enough. iii)
When going back up the recursion tree, interpolate the solution obtained for the coarse
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grid points to the finer grid and perform a few steps of an iterative method to smooth
out the errors.

There exist two varieties of multigrid methods, Geometric MultiGrid (GMG) and
Algebraic MultiGrid (AMG) methods. In GMG methods, the starting point is the
coarse geometrical mesh, subsequently refining the grid. While in AMG methods the
starting point is the algebraic system of equations, coarsening the grid on purely algebraic
foundations. AMG can thus be used as a black box solver. Multigrid techniques exist
both as a solver and as a preconditioner.

The difficulties with multigrid lies in being able to handle complex domains efficiently
and that they have many dependent parameters. Implementing multigrid methods are
not in the scope of this thesis. Due to its difficulty in constructing a general solver and
the complexity. However, the implemented Navier-Stokes solver was compared to the best
available CPU implementation, which uses AMG to solve the pressure Poisson system of
equations.

5.4 Implementation considerations of iterative solvers and
preconditioners

The iterative solvers were implemented to a large extent using elementary operations
from existing software libraries. Most notably Nvidia’s GPU linear algebra libraries
cuSPARSE and cuBLAS, but also a Lapack [40] routine were used. Several functions for
combined operations were implemented in CUDA as part of this thesis work. This was
the case when no efficient implementation was available for the desired operation or when
there existed a potential performance increase when combining several operations to one.
The algorithms are built up using elementary operations of the discussed libraries as
building blocks, combined to an algorithm in this thesis work. The motivation of using
existing routines to a high extent was that of productivity and increased performance,
due to highly optimized code by the Nvidia developers. The Nvidia libraries were faster
than the open source alternatives for the tested libraries, as could be seen inTable 4.1
and 4.2.

The operations implemented in CuSPARSE and CuBLAS are a subset of the BLAS
elementary linear algebra routines such as SpMV, AXPY, dot nrm2 etc. The only iterative
method or preconditioner method used in this thesis not implemented by the author is
the Incomplete LU factorization, instead Nvidia’s implementation in cuSPARSE was
used. However as it turns out, the LU factorization was only evaluated for performance
and not actually used in the flow solver implementation as other methods were faster.

The main CUDA optimization consideration for the implementation of linear algebra
routines was using vectors and matrices aligned in appropriate order, and ensuring
memory accesses were aligned in the implemented functions.
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5.5 Results

The implemented iterative solvers and preconditioners were validated and tested for
various aspects, such as comparison with CPU and other GPU accelerated linear algebra
packages. They were validated on different matrices relevant to CFD and the discretization
used. The hardware used to test the solvers were an Intel Xeon E5-2650 CPU and an
Nvidia Geforce GTX 660 Ti GPU, see Table 2.1 for details. A relative residual of 10−9

was set as convergence criterion, which is a fairly tough restriction.
The CPU solvers tested against were solvers from Intel’s Math Kernel Library, MKL

[43]. MKL includes the restarted GMRES method, the CG method as well as ILU0 and
Jacobi preconditioners among others. The implementation is threaded to use all CPU
cores available. The MKL library is a standard choice for many applications and highly
optimized.

The implemented solvers and preconditioners were tested on two different external
GPU libraries to ensure their implementation efficiency. One of the libraries was CUDA
ITSOL [33], a CUDA accelerated linear algebra and sparse solver library developed by
Ruipeng Li under supervision of Yousef Saad. The other was Paralution-0.1.0 [34] a
multi/many core CPU/GPU powered sparse solver library developed by Dimitar Lukarski
from Uppsala University.

5.5.1 Performance of the implemented solvers

The implemented solvers and preconditioners, BiCGStab, GMRES, CG, diagonal scaling
and least square polynomials along with Nvidia’s implementation of an ILU0 precondi-
tioner were tested on a set of four test matrices. The test matrices were chosen with
respect to the purpose of this thesis, namely CFD matrices resulting from FVM discretiza-
tion of the Navier-Stokes equations: uniform grid momentum matrix and pressure matrix,
and refined grid momentum matrix and pressure matrix were tested. The matrices as
well as their characteristics are tabulated in Table 5.1.

Table 5.1: Properties of the validation matrices.

Matrix Rows nz/row Properties

momentum1M 1 000 000 6.94 -

momentumR1.7M 1 760 792 7.12 -

pressure1M 1 000 000 6.94 sym. pos def

pressureR1.7M 1760792 7.12 sym. pos def

5.5.2 Properties and timings of the implemented solvers

To get an idea of the time consuming parts of the iterative solvers, the time distribution
per iteration of the algorithms was evaluated. The results can be seen in Figure 5.1. CG
requires least time per iteration, about half that of BiCGStab, while GMRES requires

42



CHAPTER 5. ITERATIVE METHODS AND SOLVERS

most. Note that the time per iteration shown in the figure for GMRES is an average of
the time per iteration for a complete restart cycle. Earlier iterations of the cycle, when
the Krylov subspace stored is small, are less time consuming than later iterations. The
large time contribution from BLAS-1 routines in GMRES comes from the loop required
to build the Hessenberg matrix. GMRES is also the only of the three methods where
some non-negligible operations are performed on the host, which can be seen by the “Misc”
column in the figure. This also tells us that the total time required for CPU routines is
relatively small. The time distribution plot reveals that a performance improvement of
SpMV would achieve a significant speedup. It also tells us that optimizing the BLAS1
operations might be worth considering.

Figure 5.1: Time per iteration without preconditioner for the implemented iterative solvers,
evaluated on the pressureR1.7M matrix. For GMRES, the timing is the average time required
per iteration for a Krylov subspace of size 40.

In Figure 5.2 the computational time for several of the implemented solver and
preconditioner configurations for the four test matrices from Table 5.1, can be seen. Note
that a logarithm scale for time on the y-axis have been used. The timings vary considerably
for different configurations. Worth to notice is that the Jacobi preconditioned methods
were best in the case when an efficient solver for the specified matrix has been chosen.
BiCGStab was best for the momentum matrices while CG was most efficient for the
pressure matrices. As a slight surprise it seems that the tradeoff in extra computational
time versus decrease in condition number/number of iterations required for convergence
when using an advanced preconditioner, does not seem to payoff for the tested matrices.
The exception is for some cases when the matrix is ill-conditioned or not well suited for
the specific iterative method. An example being ILU0 preconditioned GMRES against
Jacobi preconditioned GMRES for the pressure matrices, which may imply that for
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even larger cases advanced preconditioners can perform better. Specifically the least
square polynomial preconditioner applied to CG appears to perform worse than Jacobi
preconditioned CG. In the case of the ILU0 preconditioner, one can think that the
difficulty in effectively parallelizing it makes a couple of extra iterations more efficient
than using the preconditioner. The GMRES solver, however, seems to benefit more from
preconditioning than CG and BiCGStab. One should also note that the least square
polynomial might be an alternative preconditioner even for the momentum matrices, even
though it is only guaranteed to reduce the condition number if the matrix is symmetric.

A scaling study was made on a uniform grid to see how the GPU solvers scale to
larger grids. The results can be seen in Figure 5.3, where nominal times and iterations
are plotted versus the size of the matrix. The matrix is taken from a 3D uniform pipe
flow CFD problem with a sphere located in the middle. The number of iterations scales
linearly to the number of nodes, which is in accordance with the theory. The solution
times, being a product of a linear increase in the number of iterations and a linear increase
in the amount of work performed per iteration, increase super linearly.

It should also be noted that the number of iterations of the momentum matrices are
significantly fewer than those required for the pressure matrices, thus indicating that the
setup of the preconditioner are not as efficient on the GPU as on the CPU.

5.5.3 Performance comparison to a CPU library and other GPU li-
braries

Speedup of the implemented GPU solvers compared to CPU equivalents of the same
iterative method and preconditioner configuration can be seen in Figure 5.4. The
equivalent solvers are taken from Intel’s MKL library. The implemented GPU solvers
without preconditioners was around seven times faster for the iterative methods. When
the ILU0 preconditioner was used the speedup was only around a factor two to four,
indicating that the implementation of ILU0 on the GPU does not gain as high speedup
as the iterative methods alone.

In order to ensure the effectiveness of the implemented solvers, they were tested
against the CUDA ITSOL and Paralution iterative solvers open source libraries. In the
comparison, the most efficient solver and preconditoner configuration found for each test
matrix and solver library was chosen. Often the optimal choice of solver was the same
for the different solver libraries. In Figure 5.5, the speedup of the implemented GPU
solvers against CUDA ITSOL and Paralution can be seen. Note that the measured times
are including the setup of a preconditioner (if applicable). Therefore, a fast solver which
require a long time for preconditioner setup time, might be more efficient if systems
with the same matrix is solved for several right-hand-sides. The solvers implemented in
this thesis was faster than the open source libraries. Ensuring the efficiency of chosen
methods, algorithms and implementations. The advantage of the implemented solvers
over the open source libraries can find some explanation in the following. The BLAS
kernels in cuSPARSE and cuBLAS might be better optimized for the specific GPU tested.
The other libraries are more general, which requires extra overhead. Observe further
that even though the testing of different solvers and preconditioner combinations were
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Figure 5.2: Comparison of solution times for individual matrices for the implemented
iterative methods and preconditioners. The staples are in the same order as the legend says.
When there is an empty staple it means that the solver was not used due to wrong matrix
type or it did not converge.
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Figure 5.3: Scaling of solution times and number of iterations required for CG and BiCGStab
methods on the momentum and pressure matrices, respectively, originating from a uniform
grid 3D pipe flow problem around a sphere.

Figure 5.4: Speedup of the GPU solvers compared to CPU implementations of the same
solver and preconditioner configurations in Intel’s MKL library.
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extensive, there is no absolute guarantee that the optimal combination was found for all
tested libraries.

Figure 5.5: Speedup of the implemented GPU solvers compared to the CUDA Itsol and
Paralution-0.1.0 open source libraries. The iterative method and preconditioner found most
efficient for each library and test matrix is shown.
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Chapter 6

The Navier-Stokes equations
solver

The Navier-Stokes equations describes the motion of fluids. Its application in physics and
engineering applications are many. It is used in the modeling of weather systems, blood
flow, cooling systems for computers, design of cars, boats, and airplanes, to name a few.
Mathematically, Navier-Stokes equations and simplifications of it usually belongs to a
classification of PDEs called parabolic or hyperbolic, depending on coefficients and what
simplifications are made [44], but with particular simplifications it can also be elliptic.

For many applications, simplifications to the general Navier-Stokes equations can
be made. In this thesis, a solver for the incompressible Navier-Stokes equations is
implemented. In incompressible flow, the density is assumed to be constant, ∂ρ

∂t = 0,
which is equivalent to a divergence free velocity field. It is generally a valid assumption
for fluid flow at low speeds, more specifically for Mach numbers Ma = v

vsound
< 0.3.

Following is the incompressible Navier-Stokes equations in conservative form

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ µ∆u + f , (6.1)

∇ · u = 0, (6.2)

where µ is the dynamic viscosity, ρ the viscosity, u velocity, p pressure, and f =
fgravity + fdrag + fnatural is the force term accounting for external forces. The force term
is sometimes also called the source term. The first equation (6.1) is called the momentum
equation. It describes conservation of momentum of fluid flow. The second equation
(6.2) is called the continuity equation. It describes the conservation of mass. The first
term on the left hand side of the momentum equation is called the transient term and
the second the convective term. On the right hand side of the momentum equation, the
first term describes forces from a change in pressure and the second the diffusion. Notice
that the momentum equation is a vector relation and can in 3D be split up into three
scalar equations, one for each velocity component u, v and w. The four unknowns of the
Navier-Stokes equations are u, v, w, and p.

A general procedure for solving the Navier-Stokes equations is to, in each time step,
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converge towards the solution via an iterative procedure. The implementation in this
report is essentially: 1) Make a guess of the pressure. 2) Solve u from (6.1). 3) Correct
the pressure and velocity such that (6.2) is exactly satisfied. 4) Go back to step 2 until
convergence. The specific method used is the SIMPLEC coupling scheme, it will be
described in detail in later sections. Let us now discretize the terms in the momentum
equation (6.1), first individually and then obtaining the full discretization by summing
them together.

The domain discretization, discretization schemes and boundary treatment adopted
in this thesis is inspired by the work [45], even though there are significant differences.
Furthermore parts of the high level code structure is inspired by FCC’s IBOFlow. IBOFlow
has also been used to validate the code during development.

The outline of this chapter will be as follows. First, the momentum equations will
be discretized, describing the schemes used and difficulties. Then, the velocity-pressure
coupling scheme and discretization of the resulting pressure equation will be detailed
followed by a brief motivation and discussion of the methods used. Next, boundary
treatment will be explained. General and CUDA implementation considerations is
described after. Finally, validation and performance results of the implemented solvers,
and comparisons to CPU and a commercial solver will be presented.

6.1 Discretization

There exist several general methods to discretize the Navier-Stokes equations (6.1) and
(6.2. In the Lagrangian formalism, the fluid is treated as particles while in the Eulerian
formalism the rate of change in discretized volumes, often called Control Volumes (CV),
is studied. The Eulerian approach is most common and also the one chosen in this thesis.
Two common choices using the Eulerian formulation are the Finite Element Method
(FEM) and the Finite Volume Method (FVM). FVM is a mix between FEM and Finite
Difference Methods, taking advantage of FEM’s geometrical flexibility while using FDM’s
discretization of variables. FVM is employed in this thesis due to its relative simplicity
over FEM, speed considerations and intuitive modeling. Its drawback is that it lacks
higher order accuracy due to difficulties in exact approximations of derivatives, while in
FEM on the other hand more accurate basis functions can be used and the use of a weak
formulation can transform higher order derivatives to lower ones. However the accuracy
of FVM is sufficient for the purposes of this thesis.

6.1.1 The finite volume discretization

In the Finite Volume Method the domain of interest is split up into small control volumes,
sometimes denoted cells. The idea is to ensure that the conservation equations are
satisfied in control volume. This is done by integrating (6.1) over each control volume
and solving the resulting system of equations. In this thesis, the control volumes were
chosen as squares in a Cartesian grid, see Figure 6.1.

In general two techniques are used when assigning pressure and velocity values to
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nodes. In a collocated grid arrangement, pressure and velocity are assigned in the same
nodes, in a staggered grid the velocities are defined on the faces of the pressure cells and
vice versa. Staggered grids have an advantage over collocated arrangements originating
from numerical issues in the discretization. If one were to do a simple linear interpolation
of ∇p in a cell with a colocated grid, the resulting expression is independent of the
pressure in the actual cell itself. This can lead to oscillations of the pressure field in
the solution, a so-called checkerboard pressure. Checkerboard pressures do not arise on
staggered grids. There exist techniques to prevent pressure oscillations also in collocated
grid arrangements, described in detail later on. In this thesis, a collocated grid setup is
being used.

Figure 6.1: The collocated grid arrangement used, projected onto 2D. Each square represents
a cell in the finite volume discretization. Properties are stored at the cell centers, denoted
by capital letters. Properties required on cell faces are interpolated from the stored ones,
denoted by lower case letters.

6.1.2 Discretization of the transient term

In this and the following sections, the different terms of the 3D momentum equation will
be discretized in the x direction over a control volume. The y and z directions follow
analogously. Each term is integrated over the control volume, see Figure 6.1, and a time
window. The expression for the transient term becomes∫ t+∆t

t

∫ t

b

∫ n

s

∫ e

w
ρ
∂u

∂t
dxdydzdt = ρpV [u]t+∆t

t = ρpV (Up − U0
p ). (6.3)

U0
p is the velocity from of previous time step and Up the velocity of the next time step, i.e.

the velocity sought for. The density, ρ, has been approximated to be constant over the
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control volume with the value chosen at the cell center. The integration over a dimension
of the volume is approximated by the value in the midpoint times the integration length.
This is known as the midpoint rule or rectangle rule. For more on quadrature rules
consult [46] etc. For a quantity Φ(x) then,∫ e

w
Φ(x)dx = Φ

(
e+ w

2

)
(e− w) +O((e− w))2, (6.4)

putting it in our grid notation and throwing away higher order terms we get∫ e

w
Φ(x)dx = ΦP∆x. (6.5)

The midpoint quadrature rule is second order accurate, it will be used without further
notice wherever applicable for the rest of the derivations in this chapter.

6.1.3 Discretization of the pressure term

The pressure term describes pressure forces in the momentum equation. Integrating the
pressure term over the control volume and over a time window results in∫ t+∆t

t

∫ t

b

∫ n

s

∫ e

w
−∂p
∂x
dxdydzdt = −∆t∆y∆z[p]we =

−∆t∆y∆z

(
PE + PP

2
− PP − PW

2

)
=

−∆t∆y∆z

(
PE + PW

2

)
= −∆tDPP , DPP = ∆y∆z

(
PE + PW

2

)
.

(6.6)

Simple linear interpolation have been adopted to approximate the pressure at the faces.
Note that the expression is independent of the pressure in the actual cell. A problem we
will come back to, and find a solution to, when coupling the momentum equations with
the pressure equation.

6.1.4 Discretization of the source term

The source term describes the effect of external forces on the flow. General forces are
buoyancy forces coming from the gravity, drag forces if there exist an interface between
different flows (multi phase flows), and other natural forces. It is integrated over a control
volume and time window∫ t+∆t

t

∫ t

b

∫ n

s

∫ e

w
Sdxdydzdt = Sp∆x∆y∆z∆t, (6.7)

where S denotes the interpolation of S to the current node.
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6.1.5 Discretization of the diffusive term

The diffusive term describes the diffusion of momentum as a consequence of viscous forces.
Integrating it over a control volume and over a time window yields∫ t+∆t

t

∫ t

b

∫ n

s

∫ e

w

(
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

))
dxdydzdt =

∆t

(
∆y∆z

(
µ
∂u

∂x

)e
w

+ ∆x∆z

[
µ
∂u

∂y

]n
s

+ ∆x∆y

[
µ
∂u

∂z

]t
b

)
.

(6.8)

Using central differencing to evaluate the derivatives on the faces, giving for the x
derivative ∂ue

∂x = UE−UP
δx , yields

∆t(µe
UE − UP

δx
∆y∆z − µw

UP − UW
δx

∆y∆z+

µn
UN − UP

δy
∆x∆z − µs

UP − US
δy

∆x∆z+

µt
UT − UP

δz
∆x∆y − µb

UP − UB
δz

∆x∆y),

(6.9)

Introducing the coefficients

aE,d = µe
∆y∆z

δx
, aW,d = µw

∆y∆z

δx
, aN,d = µn

∆x∆z

δy
, aS,d = µs

∆y∆z

δy

aT,d = µt
∆x∆y

δz
, aB,d = µb

∆x∆y

δz
, aP,d =

∑
NB={E,W,N,S,T,B}

aNB,d,
(6.10)

reduces the expression (6.9) to

∆t

 ∑
NB={E,W,N,S,T,B}

aNB,dUNB − aP,dUP

 . (6.11)

In the simplified case of uniform grid of cell side length, L, with constant viscosity, µ,
the coefficients in (6.10) are reduced to

aE,d = aW,d = aN,d = aS,d = aT,d = aB,d = µL. (6.12)

An important detail which has been swept under the carpet in the discretization, is
how the quantities u, p, and S should be interpolated in the temporal dimension. Recall
that an integral over a time window, [t,t+ ∆t], was introduced. This requires a way to
approximate U during this time interval. A simple linear interpolation in time would
yield

U = cU t+∆t + (1− c)U t, (6.13)

with c chosen as 0.5. This particular time discretization scheme is called a Crank-
Nicholson scheme. It is second order accurate in time. Choosing c = 0 gives a fully
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explicit scheme U = U t, which is first order accurate and often unstable. Choosing c = 1
yields a fully implicit scheme, which is first order accurate in time and unconditionally
stable. Unconditionally stable means that large time steps can be taken without loss
in stability, but large time steps still give poor accuracy. One can also think of higher
order schemes. In this derivation and the following, the fully implicit scheme will be
used. This is partly because of its relative simplicity of expressions, but also because of
its robustness and common use in CFD codes.

6.1.6 Discretization of the convective term

The convective term accounts for the presence of convective acceleration, which is an
effect of spatially varying velocity. Recall from (6.1) that the convective term is non
linear, being a product of two linear terms. For this reason the term is linearized in order
to be able to solve it from a linear system of equations. It is linearized by assuming
that the first factor in the product u∂u∂x is known, let us denote this quantity by a hat, û.
Integrating the x component of the convective term over the control volume and over a
time window using this assumption yields∫ t+∆t

t

∫ t

b

∫ n

s

∫ e

w
ρ(u

∂u

∂x
+ v

∂u

∂v
+ w

∂u

∂z
) =

∆tρ([ûu]ew∆y∆z + [v̂u]sn∆x∆z + [ŵu]bt∆x∆y) =

∆tρ{ [(ÛU)e − (ÛU)w]∆y∆z + [(V̂ U)n − (V̂ U)s]∆x∆z+

[(ŴU)t − (ŴU)b)]∆x∆y},

(6.14)

where a fully implicit time discretization scheme have been used for the velocities U ,
V and W . The explicit velocities Û , V̂ and Ŵ are taken to be those of the previous
iteration step. These are, for now, interpolated by simple linear interpolation such that

Ûe = ÛE+ÛW
2 .

Figure 6.2: The velocity interpolation stencil. Assuming the flow is from left to right, U,
D, and A denotes the upwind, donor and acceptor cell respectively.

The implicit velocities U , V and W are interpolated to the faces by a convective
scheme, which is just a family of interpolation schemes. Suppose the flow is in the
direction shown in Figure 6.2. With the same notation the face velocity can now be
interpolated as
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Uf = cAUA + cDUD + cUUU , (6.15)

where the subscript A denotes the acceptor cell, D the donor cell and U the upwind cell.
A common and very simple scheme is the upwind scheme, where cA = 1, cD = cU = 0,
similarly the downwind scheme is given by cD = 1, cA = cU = 0 and the central scheme
by cA = 0.5, cD = 0.5, cU = 0. The first and second are first order accurate while the
third scheme is second order accurate.

Using the first order upwind scheme for interpolation of the implicit face velocities,
assuming the flow is in positive x, y and z directions respectively, and linear interpolation
for the explicit “hat” velocities the discretization of the convective term becomes

∆tρ

((
ÛE + ÛP

2
UE −

ÛP + ÛW
2

UP

)
∆y∆z+(

V̂N + V̂P
2

UN −
V̂P + V̂S

2
UP

)
∆x∆z+(

ŴT + ŴP

2
UT −

ŴP + ŴB

2
UP

)
∆x∆y

)
.

(6.16)

6.1.7 Resulting discretization of the full momentum equations

Let us now add the discretization of all terms, group together terms and divide by ∆t.
Then the full discretized form appears as

aPUP −
∑

NB=E,W,N,S,T,B

aNBUNB = ∆V S −DPP + a0
PU

0, (6.17)

where aP = a0
P + aP,d + aP,c, a

0
P = ρ∆V

∆t and aNB = aNB,d + aNB,c. a.,c and a.,d are the
coefficients for a velocity at a grid point coming from discretization of the convective and
diffusive terms respectively. This is a system of equations where dependent variables are
on the LHS and the explicit terms are on the RHS for each control volume. For the whole
domain the resulting system is of the form AU = b where the velocity in the center of
each cell is the value of U in that cell. Analogously systems for the V and W velocities
can be derived.

6.1.8 Pressure and velocity correction equations

Recall that for the expressions of the momentum equations, a guessed pressure field was
used which might be far from correct. This results in an error in the continuity equation,
which leads to a non-divergence free flow. To correct the velocity and pressure, the
continuity equation is used. In this thesis, a variation of coupling algorithm originating
from the SIMPLE, Semi-Implicit Method for Pressure Linked Equations, algorithm [47]
called SIMPLEC, SIMPLE-Consistent, is being used. In the scheme, the continuity
equation is exactly satisfied after the correction step. Other correction schemes exist.
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Originating from the SIMPLE family are SIMPLER (SIMPLE-Revised), and PISO
(Pressure Implicit with Splitting Operator). Another method sometimes used is a
projection method called Fractional Step Method. The pros and cons of different schemes
will be discussed in the next section. For a complete description of their implementation
the reader is referred to educational textbooks such as [44].

The correction introduced to satisfy the continuity equation will make the momentum
equation be dissatisfied. The SIMPLEC algorithm is therefore an iterative procedure,
converging towards the solution. The resulting correction equation will be a Poisson
equation for pressure. The continuity equation is a first order spatial derivative of velocity,
while the velocity used contains a first order spatial derivative of pressure, together with
known terms.

Denote the approximate velocities obtained when solving the momentum equations
by u∗,v∗, and w∗ and the guessed pressure used by p∗. The correct velocities can be
written as

u = u∗ + u′,

v = v∗ + v′,

w = w∗ + w′,

p = p∗ + p′,

(6.18)

where the prime terms are the correction terms. Subtracting the starred momentum
equation, u∗, from the actual momentum equation u, i.e. u∗ and u in (6.17), results in

aP (U − U∗)−
∑

NB=E,W,N,S,T,B

aNB(UNB − U∗NB) = −(DPP −DP ∗P ), (6.19)

where we recall that DPP = PE+PW
2 . Substituting the expressions for the corrections

(6.18) into the above equation yields

aPU
′ −

∑
NB=E,W,N,S,T,B

aNBU
′
NB = −DP ′P . (6.20)

If we at this point neglect the neighboring velocities in (6.20), we end up with the
expression used in the SIMPLE algorithm. However, a less severe approximation would
be to approximate the neighboring velocity in (6.20) with the velocity at the current
node, U ′NB = UP ∀NB. Doing this yields the expression for the SIMPLEC algorithm,

U ′ = −
DP ′P

aP −
∑

NB=E,W,N,S,T,B aNB
. (6.21)

The update formula for the U velocity component now becomes

U = U∗ −
DP ′P

aP −
∑

NB=E,W,N,S,T,B aNB
= U∗ −

DP ′P
aP,Sum

, (6.22)
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where the coefficient aP,Sum = aP −
∑

NB=E,W,N,S,T,B aNB have been introduced. The
equations for the y and z directions are derived analogously with expressions being

V = V ∗ −
DP ′P
aP,Sum

, (6.23)

W = W ∗ −
DP ′P
aP,Sum

. (6.24)

Note that the velocity corrections are dependent on the pressure correction p′ through
DPP .

Now the equations for the pressure correction equation will be derived. Starting from
the continuity equation (6.2), integrating it over a control volume and time step, yields∫ t+∆t

t

∫ t

b

∫ n

s

∫ e

w

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dxdydzdt = 0⇔

(ue − uw)∆y∆z + (vn − vs)∆x∆z + (wt − wb)∆x∆y = 0.

(6.25)

Assuming ∆x = ∆y = ∆z, the area expressions in (6.25) can be substituted by an
area A. At this point the velocities need to be coupled with the velocities derived
from the momentum equation. Recall that in the collocated grid arrangement pressure
oscillations might occur if linear interpolation is adopted. The issue is solved by adopting
Rhie-Chow interpolation. However, due to simplicity of expressions we will stick to linear
interpolation for now and describe the Rhie-Chow interpolation afterwards. Inserting
the expressions for the velocity corrections (6.22), (6.22), (6.23), and (6.24) in (6.25),
adoptting linear interpolation and using DPP = PE+PW

2 A results in[(
U∗P + U∗E

2
− (P ′E − P ′P )A

1

2
(

1

aE,Sum
+

1

aP,Sum
)

)
−(

U∗W + U∗P
2

− (P ′P − P ′W )A
1

2
(

1

aP,Sum
+

1

aW,Sum
)

)]
A+[(

V ∗P + U∗N
2

− (P ′N − P ′P )A
1

2
(

1

aN,Sum
+

1

aP,Sum
)

)
−(

V ∗S + V ∗P
2

− (P ′P − P ′S)A
1

2
(

1

aP,Sum
+

1

aS,Sum
)

)]
A+[(

W ∗P +W ∗T
2

− (P ′T − P ′P )A
1

2
(

1

aT,Sum
+

1

aP,Sum
)

)
−(

W ∗B +W ∗P
2

− (P ′P − P ′B)A
1

2
(

1

aP,Sum
+

1

aB,Sum
)

)]
A = 0.

(6.26)

The expression above can be rearranged to get the final expression for the pressure
correction

a′PP
′
P −

∑
NB=E,W,N,S,T,B

a′NBP
′
NB = b′, (6.27)
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identifying the coefficients as

a′E =

(
1

aP,sum
+

1

aE,sum

)
1

2
A2, a′W =

(
1

aP,sum
+

1

aW,sum

)
1

2
A2,

a′N =

(
1

aP,sum
+

1

aN,sum

)
1

2
A2, a′S =

(
1

aP,sum
+

1

aS,sum

)
1

2
A2,

a′T =

(
1

aP,sum
+

1

aT,sum

)
1

2
A2, a′B =

(
1

aP,sum
+

1

aB,sum

)
1

2
A2,

a′P =
∑

NB=E,W,N,S,T,B

a′NB

b′ =
1

2
[(U∗E − U∗W )A+ (V ∗N − V ∗S )A+ (W ∗T −W ∗B)A] .

(6.28)

The only thing dependent on how the face velocities are interpolated is b′. The general
expression, using unspecified face interpolation, would be (6.28) but with

b′ = [(u∗e − u∗w)A+ (v∗n − v∗s)A+ (w∗t − w∗b )A] . (6.29)

To finalize the discretization scheme, the face velocity interpolation for the pressure
correction equation will now be addressed. Having a collocated grid makes the velocity at
the cell center independent of the pressure at its center. This can give rise to an oscillating
pressure field, often referred to as a checkerboard pressure, see [44] for further reading.
As proposed by Rhie and Chow in their paper [48] this can be remedied by using a wisely
chosen interpolation of the face velocities for the pressure correction, called Rhie-Chow
interpolation. The method is often used together with collocated grid arrangements. For
the east cell, the expression used for interpolating the u face velocity is given by

ue =
UP + UE

2
− 1

2

(
1

aP,Sum
+

1

aE,Sum

)
(PE − PP ) +

1

2

(
DPP
aP,Sum

+
DPE
aE,Sum

)
, (6.30)

the other face velocities are given analogously.
By expanding the pressure dependent terms of the Rhie-Chow interpolation and

comparing it to the third derivative of pressure across a face, it can be proven that these
are equal up to third order. Effectively meaning that Rhie-Chow interpolation adds a
third derivative of pressure to the linear interpolation of velocity, thereby damping out
pressure oscillations.

Using the Rhie-Chow interpolation (6.30) for all face velocities in the pressure
correction equation (6.27) with the general form (6.29) results in the final discretized
pressure correction equation.

The algorithm for one time step of the SIMPLEC pressure-velocity coupling scheme
is summarized in Algorithm 12.
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Algorithm 12 Iteration procedure for the implemented SIMPLEC algorithm.

1. Guess an initial pressure field, and calculate pressure gradients
while not converged do

2. Store source terms for momentum equations
3. Assemble u, v and w momentum equations according to (6.17), store aP,Sum for
each cell
4. Solve u, v and w momentum equations with an iterative solver (GM-
RES/BiCGStab)
5. Assemble the pressure correction equation according to (6.27)
6. Solve pressure correction equation with an iterative solver (CG)
7. Correct pressure and update pressure gradients according to (6.18) and (6.6)
8. Correct u, v and w velocity fields according to (6.18)
9. Calculate errors and check for convergence

end while
10. Update old velocities and pressures
11. Continue to the next time step with the current pressure field as initial pressure
guess

6.1.9 Motivation and discussion of the used discretization schemes and
methods

Mentioned earlier in this section was that a fully implicit time scheme was used when
discretizing the temporal term. To motivate this choice let us briefly discuss other
common choices. The explicit method also discussed puts a severe restriction on the
maximum time step possible to ensure stability, being proportional to ∆t ∝ ∆x2 [44]. The
limitation originates from that one want a positive coefficient for the temporal velocity
from the previous time step. Even the Crank-Nicholson scheme suffers from such a
drawback, but with a less restrictive proportionality constant. Note that both conditions
are depending on ∆x2, implying that an increased accuracy in spatial discretization
comes with a expense in a decrease of time step. These methods are consequently not
well suited for general purpose codes, but might be beneficial in some applications, for
example where objects are moving very fast requiring such a small time step for this
reason. However, there also exist higher order explicit time schemes which are more
accurate and stable, but with higher memory requirements and complexity introduced.
The implicit scheme on the other hand is unconditionally stable, meaning that large
time steps can be taken and still retaining stability. On the other hand it is only first
order accurate, implying that a small time step is needed for good accuracy. The implicit
scheme is nevertheless well suited for codes aimed at general unsteady problems.

As one might have noticed from the previous work chapter. Many existing reports
are all using some kind of explicit scheme, leading to that the usage of an implicit time
scheme is one factor that makes the work in this thesis significantly different. The explicit
time scheme is less involved than the implicit, no linear system needs to be neither
assembled nor solved. One can march forward in time by solving a single equation for
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each momentum equation instead of having to solve a large system of equations as in
the implicit case. The discretization of the momentum equations, in contrast to the
pressure Poisson equation, generally does not produce a matrix either symmetric or
positive definite, making the use of a relatively simple method such as CG unsuitable.

Implemented and tested convective schemes in this thesis are the first order upwind-,
first order downwind-, and the Central scheme. These proved to be sufficient during
the tests and simulations performed, but one can also think of higher order convective
schemes, such as the second order upwind scheme. However, these require velocity
values implemented from nodes further away than nearest neighbor, requiring larger
discretization stencils, i.e. more non-zero elements in the resulting matrix. Which is
also the main reason why such schemes were not implemented. The same broadening of
stencil applies if higher order schemes in the discretization of the diffusive terms (and
times) is used. Which is why such schemes were not implemented either. Implementing
higher order schemes could be a topic for future research.

The pressure-velocity coupling scheme in this thesis was chosen to be SIMPLEC. There
is no simple answer as to which of SIMPLE, SIMPLEC and SIMPLER pressure coupling
schemes is the best [44]. SIMPLER and SIMPLEC introduce some extra complexity, but
there is no guarantee that their convergence rates are improved compared to SIMPLE.
Even though they often do. The SIMPLE, SIMPLER and SIMPLEC schemes are robust,
and since they do not end until convergence, are always within some error bound. The
drawback of the iterative procedure is increased simulation time. A limitation of the
convergence rate of SIMPLE and SIMPLEC is that the velocity fields do not longer
satisfy the momentum equation after correcting pressure. An algorithm which improves
on this point is the PISO scheme [49], which performs a neighbor correction and skewness
correction in each iteration in addition to those of SIMPLE and SIMPLEC. In the
commercial general purpose flow solver Fluent’s users manual [50], PISO is recommended
for transient flow problems, especially when the time step used is large. However PISO
introduce some increased complexity by taking into account neighbor interaction requiring
the solution of additional systems of equations. In general textbooks such as [44], no
absolute conclusion of which of the SIMPLE, SIMPLEC, or PISO algorithms that is best
for general steady state problems is made. However for unsteady problems [49] showed
that the temporal accuracy of the PISO algorithm’s predictor corrector step is ∆t3 and
∆t4 for momentum and pressure respectively. This in turn makes a single iteration step
enough for the majority of all applications, since often the time discretization schemes
errors are of lower order. Thus, PISO becomes a non-iterative method requiring only one
iteration. Interesting future research could be comparing the use of PISO and SIMPLEC
in the code.

6.2 Boundary conditions and their treatment

Boundary conditions can be treated in different ways and affect the properties of the
resulting linear systems and assembly routines. In CFD, one usually describes boundary
conditions from their physical property, while in mathematics one usually speaks of
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general forms of boundary conditions. In the collocated cell centered grid arrangement
used in this thesis, the boundary lies on the faces of the control volumes. Ghost nodes
can be introduced, lying at the imaginary cell on the other side of the boundary, see
Figure 6.3. This leads to a neat way of folding the boundary nodes into the linear system
by modifying the RHS and the coefficients of the coefficient matrix for neighboring nodes.
For Dirichlet and Neumann boundaries, only the coefficients at the cell center and right
hand side is modified, preserving symmetry if any.

Figure 6.3: A representation of an east boundary in 2D. The white squares represent cells
in the finite volume discretization, and the grey area is outside the computational domain.
The ghost node on the other side of the boundary is denoted by G and the property on the
boundary by b.

6.2.1 Robin boundary condition

Let us denote the property being evaluated across the boundary by ψ, then the general
Robin boundary condition is given by

Aψb +B
∂ψ

∂n
= C. (6.31)

Choosing A = 1, B = 0 results in a Dirichlet boundary and A = 0, B = 1 in a Neuman
boundary. Using first order differencing for the derivative and linear interpolation of the
value at the face, an expression for the value at the ghost node can be obtained as

ψG =
C − ψP

(
A
2 −

B
∆x

)
A
2 + B

∆x

, (6.32)

which ensures the boundary condition is being satisfied. Now the coefficient for the
imaginary node at the other side of the boundary can be assembled like any other node,
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and then folded into the coefficient of the node at the cell center and the right hand side.
The corrections to be made at the end of assembly can be summarized as

aP = aP − aG
A
2 −

B
L

A
2 + B

L

, (6.33)

b = b− aG
C

A
2 + B

L

, (6.34)

aG = 0, (6.35)

where overline variables denote the values before correction.

6.2.2 Extrapolation boundary condition

The extrapolation boundary condition describes an extrapolation of the property value
across the boundary

∂ψb
∂n

=
∂ψw
∂n

. (6.36)

Applying a first order discretization on the derivatives, the value at the ghost node can
be expressed as

ψG = 2ψP − ψW . (6.37)

In the same way as for the Robin boundary condition, the boundary condition is folded
into the coefficients of its neighbors and right hand side, resulting in a correction of the
form

aP = aP + 2aG, (6.38)

aW = aW − aG, (6.39)

b = b, (6.40)

aG = 0. (6.41)

6.3 Properties and solution methods for the resulting lin-
ear systems

The discretized momentum equation (6.17) is non-linear. It was discretized such that
the coefficients are dependent on the velocity from the previous time steps and previous
SIMPLEC iterations, leading to a non symmetric system. When solving such a system we
need to choose a solver algorithm suitable for such matrices. This makes CG unsuitable,
leaving us with GMRES and BiCGStab. BiCGStab proved to be most efficient for matrix
types relevant to this thesis, see Figure 5.2, both regarding memory requirements and
solution time. However, in a general and robust code it could be wise to fall back to
GMRES when, if ever, BiCGStab fails.

The pressure equation is symmetric and positive definite, at least for Neumann and
Dirichlet boundaries. CG was discovered to be the fastest and most memory efficient
choice, see Figure 5.2.
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6.4 CUDA considerations for the flow solver implementa-
tion

Major CUDA optimization techniques have already been discussed in Chapter 2. As
well as difficulties and differences to serial CPU implementations. Recall that the main
difference between CPU and GPU lies in the SPMD structure of the GPU programs,
together with higher requirements of manually obtaining good data locality. Threads
within blocks can communicate via shared memory and barrier synchronization but
threads from different blocks cannot. This leads to that all variables read by all threads
need to be known before a call. Subsequently the GPU code must be split into several
smaller programs with synchronization on the CPU side between the calls. Note though,
that the memory resides on the GPU during execution of the program, and that the CPU
mostly acts as flow control, possibly doing computations parallel to the GPU kernels.
The flow of the Navier-Stokes solver specified by GPU kernels is detailed in Algorithm 13.

Algorithm 13 Process flow of GPU Navier-Stokes solver specified by GPU kernels

1. Allocate GPU memory and initialize variables.
2. GPU kernel: Connect grid to its neighbors using a cell structure.
while not converged do

3. GPU kernel: Assemble u, v and w momentum matrices and corresponding RHS’s,
fold boundary conditions into system, store aP,Sum for each cell.
4. Call iterative solver: solve u, v and w momentum equations (Calculated on GPU
through an iterative method).
5. GPU kernel: Assemble the pressure correction matrix and RHS, fold boundary
conditions into system.
6. Call iterative solver: solve the pressure equation (Calculated on GPU through an
iterative method).
7. GPU kernel: Correct pressure using an axpy operation.
8. GPU kernel: Calculate pressure gradient.
9. GPU kernels: Correct u, v and w velocity fields according to (6.18), using modified
axpy operations.
10. GPU kernel: Calculate errors and check for convergence using several kernels
involving reduction operations: finding maximum of array, summing elements of an
array.

end while
11. GPU kernel: Update old velocities and pressures
12. Continue to the next time step with the current pressure field as initial pressure
guess

Note that all calculations of the implementation are implemented on the GPU. No
costly memory transfers between the CPU and the GPU are required. All parts can
effectively be parallelized on the GPU.

The implemented finite volume method discretization adopted in this thesis is memory
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intensive. For most calculations, a property value of a neighboring node is read with only a
single arithmetic operation performed on it. For this reason, the main optimization effort
was put on optimizing memory throughput. Recall that to achieve full global memory
bandwidth coalesced memory fetching need to be used. For this reason, each thread
was assigned to handle/assemble/calculate one row of the matrix or element of a vector
corresponding to one cell. The threads were assigned to consecutive cells. Cell values
for different properties were stored in the same order for all properties: consecutive cell
properties in consecutive positions in memory, without other cell properties in between.
In this way complying to the useful advice: use struct of arrays, not arrays of structs.

Further improvements on memory limitations can be done by reducing the number
of accesses to global memory. This was done by using the lower level memory spaces
and reusing data. Registers were used for properties being accessed or read multiple
times per thread to as large extent as possible. But as has been mentioned, using more
registers than available on an SM reduces the number of threads launched by it. To limit
the number of registers used, the registers were reused within a thread where possible.
The constant memory was used to store constants, such as density and time step etc.,
offloading registers and speeding up accesses. The constant memory was not used fully,
some potential for improvement lies in making more use of it.

Shared memory and texture memory were not used extensively in the assembly
routines. It is in utilizing these memory spaces better the highest speedup potential
for future work lies. The potential for shared memory lies in using the technique called
tiling. This technique was used by [26], but without comparison to a non-tiled algorithm.
For implementation of tiling for the assembly routines, the idea is to let each block of
threads be responsible for one spatial cube of cells in the spatial domain. The great
benefit is that properties used by neighbors only need to be fetched from global memory
once for the whole thread block and can then be fetched from the shared memory. An
inner node property only need to be fetched once instead of up to seven times, one for
each neighboring cell and the middle cell itself. Due to shared memory size limitations
per SM, the number of variables beneficial in storing in shared memory is limited. The
other caution to consider with shared memory is bank conflicts, but this is not expected
to be an issue for the assembly routines. Texture memory or in modern GPUs, read only
memory, can speedup in an analogous way since textures are cached effectively for spatial
locality. In [28], an average speedup of 1.5 times when using texture memory for finite
difference stencils is mentioned.

Reusing data is usually implemented by letting the same thread calculate properties
for multiple elements or cells. In this thesis, it was used by correcting for boundary
conditions in the same kernel as the general assembly was being performed. In this way
being able to reuse register variables and reducing memory fetches from global memory.

6.5 Results and validation

The implemented Navier-Stokes solver has been validated and performance tested by
simulating a lid-driven cavity problem. The CPU used is an Intel Xeon E5-2650 and the
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GPU used is a Nvidia Geforce GTX 660 Ti, see Table 2.1 for hardware details. Double
precision floating point numbers have been used for both GPU and CPU computational
results presented in this chapter.

6.5.1 Lid-driven cavity validation

A common benchmark and validation case for CFD code is the lid-driven cavity case.
It models an idealized recirculation flow with applications to environmental modeling,
geophysics and industry. The reason for its popularity as validation case is due to its
simple domain description and that it nevertheless exhibits fluid flow behavior of complex
nature, such as counter rotating vortices.

The flow is characterized by its Reynolds number, defined by

RE =
vLρ

µ
, (6.42)

where L is the length of the domain, v velocity, ρ density, and µ dynamic viscosity. In
3D, the flow is modeled by a cubic regime surrounded by 6 walls. One of the walls is
set to a constant velocity while the others are set to be stationary. Mathematically,
Dirichlet boundary conditions are used for the velocity at all walls, while Neumann is
used for the pressure. The interested reader is referred to [51], where the lid-driven
cavity flow is extensively discussed. A good source for tabular data for flows with various
Reynolds numbers of the lid-driven cavity case is [52]. This data set is commonly used
for validating and benchmarking CFD code. The data was used also in this thesis work
to validate the flow solver.

The 2D lid-driven cavity case was simulated and validated to the data provided by
[52] for laminar flow with Reynolds numbers of RE = 100, RE = 400 and RE = 1000. A
2D grid of 129x129 grid points was used. The velocity stream lines for RE = 1000 can
be seen in Figure 6.4, color coded by velocity magnitude. Observe the main vortex in
the middle and the small ones in the lower corners. The validation plots can be seen in
Figure 6.5. The validation is seen to have satisfactory precision for all different validated
Reynolds numbers.

6.5.2 Performance results

The performance of the implemented GPU Navier-Stokes solver was evaluated against
CPU implementations for the lid-driven cavity case. The GPU version was compared
to a CPU ported version of it in 2D, and further to a general purpose flow solver in 3D.
The full simulation results presented correspond to the simulation of 100 time steps of
equal step size.

To have a truly fair comparison of the GPU implementation to an equivalent optimized
CPU version for all aspects of the program, the GPU flow solver was ported to an almost
identical OpenMP threaded CPU implementation in 2D.

Performance comparison between the CPU and GPU implementations for different
sizes of a 2D square lid-driven cavity domain can be seen in Figure 6.6. In the figure, the
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Figure 6.4: Stream lines color coded by velocity magnitude for the 2D lid-driven cavity
case with RE = 1000.
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Figure 6.5: Validation of the 2D lid-driven cavity case with Reynolds numbers of 100, 400
and 1000, respectively, to the data of [52].
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speedup of the total solution time and assembly time is shown. The time distribution
of the total solution time divided between the time required for iterative solvers and
assembly routines respectively can be seen in Figure 6.7, while the time distribution
between the different assembly routines and time distribution between different linear
algebra solvers respectively is shown in Figure 6.8. It is seen that the speedup increases
as the problem size grows larger. At small problem sizes, the GPU is not fully utilized
and the CPU’s larger caches effectively stores most parts of the data on high speed low
latency memories. As the problems grows larger the speedup increases. It is unknown
why the speedup grows more for full simulation, i.e. the iterative methods, than for
the assembly routines, but the details of implementation of the MKL library remains
unknown and the assembly routines are not fully optimized. As is seen in Figure 6.7, the
time required for assembly routines is negligible compared to solving the resulting linear
systems. The speedup for the assembly routines is up to a factor of slightly less than six.
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Figure 6.6: Speedup of the GPU implementation compared to the OpenMP threaded CPU
implementation. Speedup for solving the whole problem is plotted in blue crosses, while the
speedup for the time required for assembly routines is plotted with black circles.

The GPU implementation was further evaluated against a general purpose flow solver
developed at FCC, IBOFlow, with the purpose of giving an insight into the expected
speedup if the whole Navier-Stokes solver was to be implemented on the GPU. Two
choices of sparse linear systems solvers in IBOFlow were tested, an algebraic multigrid
method (AMG) and the MKL library solvers. The motivation for choosing AMG was to
see the speedup compared to one of the fastest methods available for CPUs. MKL was
tested to see the speedup of equivalent GPU-CPU implementations. The evaluated test
case was the lid-driven cavity on a cubic 3D domain of different sizes.

In Figure 6.9 the speedup of the implemented GPU solver over a CPU solver with
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Figure 6.7: Fraction of total time required for the linear algebra solvers and assembly
routines, respectively, for the lid driven cavity case in 2D. The grid size tested is of 6402 =
409600 cells.

(a) Fraction of total time required for assembly
routines divided between the different assembly
routines.

(b) Fraction of total time required for the Lin-
ear Algebra solvers divided between the differ-
ent routines.

Figure 6.8: Time distribution of assembly routines and linear algebra routines for the lid
driven cavity problem of grid size 6402 = 409600 cells.

GMRES/AMG sparse system solver and a CPU solver with GMRES/CG sparse system
solver can be seen, respectively. To clarify, GMRES/AMG refers to that MKL’s GMRES
method was used to solve the momentum matrices while an AMG method was used to
solve the pressure matrix system. The speedup for the assembly routines are up to an
astonishing factor of 150 times, however, the CPU implementation for those routines was
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not parallel. The overall speedup is more moderate, especially when the asymptotically
much more effective AMG method for solving the Poisson pressure equation in IBOFlow.
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Figure 6.9: Speedups of the implemented GPU flow solver compared to a general purpose
flow solver for the 3D lid-driven cavity problem.

A natural question, looking at Figure 6.9, is how the total solution time is distributed
between different operations. To identify bottlenecks in the implemented GPU solver,
the distribution of execution time between different routines for the case of a domain
with 1203 cells was tested. In Figure 6.10, the time distribution between linear algebra
solve time and assembly time can be seen. In Figure 6.11, the time distribution between
the assembly routines and linear algebra solvers can be seen.

For the GPU solver, the time required for assembly routines is in practice negligible.
Further, the time required for solving the momentum equation is small compared to that
of solving the pressure Poisson equation. Speeding up the solution time for the pressure
Poisson equation is the key to speeding up the GPU Navier-Stokes solver.
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Figure 6.10: Time distribution between linear algebra routines and assembly routines
for the general purpose CPU solver with AMG solver for pressure and the GPU solver
respectively. The tested case is the 3D lid-driven cavity problem on a square domain of size
1203 = 1728000.

(a) Time distribution of assembly routines for
the GPU and CPU.

(b) The distribution of linear algebra solvers for
GPU, CPU with CG for pressure and CPU with
AMG for pressure.

Figure 6.11: Time distribution of the total time required for different assembly routines
and linear algebra solvers respectively. The tested case is the 3D lid-driven cavity problem
on a square domain of size 1203 = 1728000 cells.
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Chapter 7

Discussion, conclusion and
outlook

7.1 Discussion

7.1.1 Complementing discussion of results

Let us address the reason for the huge speedup of 150 for the assembly routines of the GPU
solver and the general purpose flow solver tested, IBOFlow, seen in Figure 6.9. These
numbers need to be considered with a few things in mind. The GPU implementation
is more optimized, whereas the CPU implementation has been developed with higher
focus on clear and reusable code. The CPU implementation is serial, parallelizing it to 8
cores would give an estimated speedup of up to 8 times for large enough problems. The
CPU assembly routines are more general, including the possibility of handling locally
refined grids and more complex boundaries. Implementing these into the GPU solver
would likely increase the time slightly, however, the expected increase in time is relatively
small. Another thing to keep in mind, being an advantage for the GPU implementation,
is that the GPU tested on is not particularly expensive compared to the CPU tested to.
If memory is the only limiting factor, as is likely the case, then a GPU upgrade to an
Nvidia Geforce Titan, which has twice the memory bandwidth over the GTX 660 Ti,
would give an additional estimated speedup with a factor of two.

The curious reader might have asked himself/herself, why bother to implement a full
Navier-Stokes solver on the GPU when most potential of achieving speedups comes from
speeding up the iterative solvers? This is a legitimate question, and preliminary tests
of this kind were done initially in the project. Recall the issue with slow CPU-GPU
transfers mentioned in Chapter 2, this will likely slow down a heterogenous program.
Therefore to evaluate the full potential, the whole Navier-Stokes solver was implemented
on the GPU.
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7.1.2 Performance bottlenecks and possible solutions

From Figure 6.10 and Figure 6.11 it is obvious that to further improve the performance
of the GPU solver significantly, the solution of the pressure Poisson equation must be
speeded up. Several possible ways of achieving this exist. The initial pressure guess
for every SIMPLEC iteration could be better. Another is assembling a matrix with
better convergence properties, which might be achieved by using another pressure-velocity
coupling scheme. Other methods such as PISO, SIMPLE and SIMPLER have been
discussed and also the projection method Fractional Step Method, FSM. All of these
could be evaluated for this reason, even though the accuracy of solution for the FSM
should be worse than for the others. Further, since SIMPLEC is iterative and PISO, for
example, is not, the number of pressure and momentum equations needed to be solved
per time step might be reduced by using such a method.

The most obvious way to speed up the solution of the pressure Poisson equation is
by looking into the solution method used for the linear system. One way could be to
look into alternative preconditioners. A popular preconditioner, the ILU0, was tested
as a part of this thesis along with the least square polynomial preconditioner, the latter
which have reported good performance in the literature [18, 42]. Neither of them was
found to be particularly efficient for the tested matrices and solvers. Thus the potential
to find good speedups using traditional preconditioners are likely limited. One thing to
be tested, though, could be using variable preconditioning, where the preconditioner is
allowed to change between iterations.

Best potential for improvement of the solution is by using some kind of multigrid
method, either as a preconditioner or as a solver. Multigrid methods were described
in Chapter 5 and can be optimal, of order O(n), for solving sparse linear systems. It
was seen that for the CPU, the AMG multigrid method was superior to the iterative
methods, Figure 6.9. Further efficient examples of multigrid implementations on GPUs
exist in the literature, [22] and [23]. The first reports of a simple implementation,
mainly demonstrating multigrids potential on the GPU, while the second could serve as
inspiration for future developments. Multigrid methods are involved and hard to develop
for complex domains, and requires parameter fine tuning to work efficiently. Furthermore
the author does not know of any efficient commercial implementation, hinting that writing
such a method is probably a challenge.

To further speed up the iterative methods with a small amount, kernel fusion could
achieve speedups if implemented successfully [21]. A technique which could be considered
for fine tuned optimization in the future. A related method is to enable the possibility of
solving several right hand sides simultaneously. For solving the momentum equations in
the discretized 3D Navier-Stokes equations, it is required to solve the system of equations
for 3 right hand sides using the same coefficient matrix. Specifically, the SpMV can allow
for multiplying many vectors at the same time.
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7.1.3 Further GPU techniques and considerations

The techniques used to optimize the assembly routines of the Navier-Stokes solver were
mentioned along with possible future optimizations. Due to the spatial locality of access
patterns, each cell requires properties from neighboring cells, there is a potential speedup
in using either or both of tiling and texture/read only memory. These optimizations are
interesting from a GPU perspective, but much less interesting from the perspective of
speeding up the Navier-Stokes solver. It was seen in Figure 6.10 that the time required
for assembly routines is negligible compared to the time required for solving the pressure
Poisson equation.

An issue not explicitly addressed earlier is how large problems that can be solved
on the implemented GPU Navier-Stokes solver using only a single GPU. The memory
limit was hit when using 139 x 139 x 140 = 2704940 cells, with a GPU memory of
3GB. There exist GPUs on the market with 6GB memory. If even larger simulations are
desirable, a multi-GPU system need to be used. The newer CUDA GPUs have multi-
GPU support and the GPU-GPU communication can be done with an MPI interface.
Also, GPUs in the same system can directly access each others memory through high-
bandwidth connections. A flow solver on a multi-GPU system has been implemented
in [27], reporting reasonable scaling for several GPUs. Since GPU kernels are naturally
massively parallel and the model used is scalable, porting a single GPU application to
multi-GPU should be relatively straight forward. Especially, the algorithms often do not
need to be fundamentally changed. Splitting of vectors and matrices for the iterative
solvers likely requires some coordination though.

7.1.4 Single vs. double precision floating point numbers and bandwidth
limitations

Another question relevant to GPGPU applications is the use of single and double precision.
On graphics oriented GPUs, such as the GTX 660 Ti used for the tests in this thesis,
the single precision processors, and theoretical maximum GFLOPS, greatly outnumber
the number of double precision processors and theoretical maximum GFLOPS. Whereas
on computationally oriented GPUs the single and double precision processors are of the
same number (these GPUs are more high end and more expensive though). The question
arises whether the number of double precision processors is a limiting factor on graphics
oriented processors such as the Nvidia Geforce GTX 660 Ti, or if it still is memory
bandwidth limiting the performance. If the the number of double precision processors
is the limiting factor, then using a computationally oriented GPU would increase the
performance of the solver. Preliminary tests for using single precision with the solvers
have been performed, but the loss in accuracy is sometimes too significant. Often the
overall time when using single and double precision is about the same. This is due to
that the reduced accuracy in single precision makes the single precision solvers require
more iterations to converge than the double precision ones. Concluding that using single
precision is not an alternative for the target application. Observe though, that if the
allowed error criteria is lowered, using single precision might be beneficial.
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The limiting factor in the iterative solvers was studied by two tests, timing the
matrix-vector kernel for double and single precision and solving a complete linear system,
on two different test matrices. Timings for single and double precision can be seen in
Table 7.1. The timing for double precision is slightly less than double that of the single
precision in all cases, except for the HYB format matrix-vector operation in the case of
63604 elements. Why this differs might be due to efficient caching of small matrices, but
the larger cases are more interesting. An almost doubling of time for double precision is
expected since double precision requires 8 bytes of storage while single precision requires
4 bytes. This means that the required memory bandwidth is twice for double precision as
compared to single precision. The iterative solvers seem to be bandwidth bound, meaning
that using a graphics card with increased memory bandwidth would likely speed up the
iterative solvers by the same amount.

Table 7.1: Timings for single and double precision cuSPARSE hybmv operation (SpMV
operation in the HYB sparse format) and a solve phase for the CG solver on a CFD pressure
matrix. Notice that the timings for double precision is almost double that of the timings for
single precision.

Operation and # cells Precision Time [ms] Iterations time/iteration

hybmv 63604 single 1.3e-4 N/A N/A

hybmv 63604 double 3.7e-4 N/A N/A

hybmv 1289454 single 1.69e-3 N/A N/A

hybmv 1289454 double 3.1e-3 N/A N/A

CG Solve 63604 single 0.067 359 1.87e-4

CG Solve 63604 double 0.0103 424 2.43e-4

CG Solve 1289454 single 1.204 575 2.10e-3

CG Solve 1289454 double 2.31 589 3.9e-3

7.2 Conclusion and outlook

In this thesis work, the applicability of GPUs for solving the incompressible Navier-
Stokes equations has been assessed. The sparse linear algebra iterative methods CG,
GMRES and BiCGSTAB have successfully been implemented on the GPU. The sparse
linear algebra preconditioners least square polynomials and diagonal scaling have been
implemented on the GPU. The 3D incompressible Navier-Stokes equations have been
discretized, implemented and solved on the GPU using CUDA.

The suitability of different sparse formats for the iterative solvers has been evaluated.
For the kind of matrices produced in this thesis, the HYBrid format proved best suited,
see Table 4.1 and 4.2. The iterative solvers implemented performed better than other
GPU accelerated open source libraries, see Figure 5.5. The solvers also achieved an
average speedup factor larger than six compared to the parallel CPU solvers from the
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MKL library on an Intel Xeon-E5-2650, see 5.4.
The implemented Navier-Stokes solver was successfully validated on the lid-driven

cavity problem to the tabular data of Ghia et al. [52]. The GPU implementation achieved
an average speedup of a factor six for the assembly routines and up to fifteen for the full
simulation, compared to an identical OpenMP threaded CPU implementation written
in this thesis work. Compared to a commercial general purpose CPU CFD code, the
implemented GPU solver achieved an average total speedup of over a factor twelve when
equivalent linear algebra solvers were used by the two programs. When an algebraic
multigrid method was used for solving the pressure equation on the CPU, an average
total speedup of 2.5 was achieved. In the comparisons, an Nvidia Geforece GTX 660 Ti
GPU, 300$, and an Intel Xeon E5-2650 8-core CPU, 1000$, was used.

The time consuming part of the solution phase for the implemented solver was
identified to be solving the pressure Poisson equation using the CG algorithm. Time
required for assembly routines, and for solving the momentum equations are negligible in
comparison. It is in trying to improve the solve time for the pressure Poisson equation
the potential for speedup for future work lies. Experimenting more with preconditioners,
implementing a multi-grid method on the GPU, and using the PISO coupling scheme
instead of SIMPLEC were techniques discussed for achieving this.

Furthermore the Navier-Stokes solver could be extended to be more general in the
future. Attractive features would be the possibility of a locally refined grid and to include
immersed boundaries for handling complex geometries and objects in the solution domain.

The GPU has been evaluated and proven to be able to achieve significant speedups
of almost an order of magnitude over CPUs for the iterative solvers as well as for the
assembly routines of the Navier-Stokes equations. The scalable architecture of CUDA
GPUs will likely make the implemented GPU solver amenable to larger speedups when
new generations of GPUs hit the market.
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