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Göteborg, Sweden 2013

Abstract

In this licentiate thesis, I present the design, fabrication, and character-
ization of superconducting parametric resonators, for use in quantum
information processing.

These devices are quarter-wavelength coplanar waveguide resonators
(≈ 5 GHz), terminated at one end by a non-linear inductance pro-
vided by a SQUID (superconducting quantum interference device).
The SQUID acts as a flux-controlled boundary condition, which effec-
tively changes the electrical length of the resonator. This enables the
modulation of the resonant frequency by coupling microwave magnetic
flux into the SQUID, using on-chip transmission lines. The modula-
tion occurs on a timescale much faster than the photon loss out of the
resonator.

The non-linearity provides several different regimes for operating
this device. I focused on the parametric regime, in which the non-
linear element was being modulated (pumped) at or near twice the
resonant frequency. This pumping can lead to amplification and fre-
quency conversion of an incoming signal. It can also give rise to in-
stabilities and self-oscillations ”parametric oscillations” − that is, the
generation of an intense electric field in the resonator (the creation of
photons). Parametric oscillations set in when the pumping strength
exceeds a threshold value, and also depends on the pump-frequency
detuning from twice the resonance and on the static flux through the
SQUID.

I characterized the devices over a wide parameter range by doing
homodyne detection of the reflected signal or of the emitted field os-
cillations. In particular, I investigated the damping and two leading
nonlinearities, dominating in different operating regimes, which influ-
ence the dynamics of the parametric resonator.

First, I extracted the Duffing nonlinearity by studying the line width
of the resonator as a function of the input signal (without pumping the
SQUID). Second, with high pump amplitude, I extracted the pump-
induced nonlinearity by determining the threshold parameters (pump
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amplitude and detuning) for the onset of parametric oscillations; this
nonlinearity leads to the generation of higher-order pump terms that
complicate the system dynamics, but can be mitigated now that they
have been understood. My results validate a recent theoretical model
for the classical, non-linear dynamics of parametric resonance, and
helps determine workable design parameters.

Finally, I helped develop a linearized model − the ”pumpistor” −
describing this device in terms of a flux-controlled impedance. This
will be useful when designing more complex circuits.

One goal of this work is to demonstrate single-shot measurements
on superconducting qubits (quantum bits of information). We will use
the parametric resonator as a threshold discriminator, associating the
qubit’s two energy eigenstates with the parametric oscillations either
turning on or not. This would be a very useful device in the quantum
engineer’s toolbox when designing systems for quantum information
processing and communication.

Keywords: Superconducting circuits, resonators, parametric oscilla-
tors, Josephson junction, SQUID, quantum bit, quantum information,
circuit quantum electrodynamics, pumpistor
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Kintas, Sebastian de Graaf, Niclas Lindvall, Kyle Sundqvist, Ida-Maria Svensson,
Maria Ekström, Astghik Adamyan, Thilo Bauch, Sophie Charpentier, Simon Abay
Gerbrehiwot, Thomas Yager, Andrey Danilov, Samuel Lara Avila, Saroj Prasad
Dash, Sergey Kubatkin, Arseniy Lartsev, Avgust Yurgens, Jan Jacobsson, Staffan
Pehrson, Lars Jönsson, Maria Tremblay, and Susannah Carlsson.

I am also very grateful for all the theory discussions I had with the people
at Applied Quantum Physics laboratory: Vitaly Shumeiko, Waltraut Wustmann,
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Chapter 1

Introduction

1.1 Motivation

In 1982, R. P. Feynman[1] suggested an alternative to using ”classical” computers
when simulating and solving problems of quantum mechanical nature. He argued
that quantum systems could be modeled with much greater efficiency by using a
processor whose architecture, in itself, is based on the laws of quantum mechanics.
This was the starting point for the quest of the so-called quantum computer, where
quantum information would be encoded into quantum bits (qubits). By utilizing
the superposition and entanglement properties associated with quantum objects,
this processor would be able to perform parallel operations, offering new ways to
substantially increase the processing power compared with its classical counterpart.

Even though several algorithms have been created for quantum computation,
the development of its hardware has proven to be a big challenge. The practi-
cal obstacle is due to the issue of isolating qubits from their environment, while
maintaining control to coherently manipulate them. In fact, the field of quantum
information technology has gradually evolved into an engineering field of research
where experimental advances are used to continuously benchmark various hardware
architectures against each other.

In this work, we utilize circuit Quantum Electrodynamics (cQED)[2, 3], where
superconducting circuits fabricated on-chip using microfabrication techniques are
used as a platform for processing quantum information. One advantage of using
lithographically defined circuit elements as compared to other qubit implementa-
tions is their potential of scalability, to integrate a large number of qubits together.
Another very important aspect of quantum computation is to be able to read out
the state of a qubit with good fidelity and on a short time-scale, compared with
the quantum coherence time of the system. A commonly used method is dispersive
read-out, where the qubit is coupled to a superconducting resonator, which reso-
nant frequency is slightly dependent on the state of the qubit.

The long term goal of this work is to develop a single shot readout, where the
state of the qubit is mapped onto the dynamics of a parametric oscillator. This
thesis outlines the properties of a parametric oscillator based on a tunable super-
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Chapter 1. Introduction

conducting resonator. The resonator is parametrically driven by modulating its
resonant frequency at a rate of twice its resonant frequency.

1.2 Superconductivity

In 1911, H. K. Onnes[4] made a ground breaking discovery in physics. He con-
cluded that the electrical resistance of mercury abruptly dropped by several orders
of magnitude when the metal was cooled below a critical temperature, Tc. This
phenomenon, now known as superconductivity turned out to be true also for many
other metals, only at different critical temperatures. In his lectures on physics,
Feynman discusses in short terms the origin to why superconductivity is observed
for many metals [5]. The interaction between the electrons in the metal and the
vibrations of its atom lattice (phonons) give rise to small effective attraction be-
tween the electrons. Therefore, it is energetically favorable for them to form pairs.
This has the remarkable effect that the electrons, which are Fermi particles, will
become Bose particles (bosons) as they appear in such a pair with a total spin of
1. The electron pairs, known as Cooper-pairs, carry the property that if a large
number of pairs are occupying the same energy state, so will nearly all other pairs
since Pauli’s exclusion principle does not apply to the bosons. Now, due to the fact
that the superconducting state of a metal takes place at very low temperatures,
almost all Cooper-pairs will be bound to stay in their lowest energy state. The
Cooper-pair bonds are, however, very weak and are therefore easily broken if only
a small thermal energy acts on them. The thermal energy needed to break up the
Cooper-pairs dictates the critical temperature for the superconductor at hand. The
wave function of the Cooper-pairs in their lowest energy state can be written

ψ(r) =
√
ρ(r)eiϕ(r), (1.1)

where ρ(r) is the pair density and ϕ(r) is the quantum mechanical phase.
The peculiar properties of superconductors that have been discovered during

the past century, has opened completely new fields of research. One of the most
important features is the tunneling of these Cooper-pairs through thin barriers,
separating two superconductors. This element, known as the Josephson junction,
allows for the creation of non-linear, dissipationless circuit elements and is the topic
of next section. For more elaborate explanation of superconductivity, the reader is
referred to textbooks on the topic, such as [6, 7].
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Superconductivity

1.2.1 The Josephson effects

Within the context of the superconducting devices presented in this thesis, as well
as all other theses in circuit QED, the Josephson junction is the most fundamental
building block from which most other non-linear properties originate. In 1962,
about fifty years after the discovery of superconductivity, B. D. Josephson made
the theoretical prediction that when two superconductors were put in close vicinity
of each other, forming a weak link known as a Josephson junction, a zero-voltage
tunneling current of Cooper-pairs could flow through the junction[9], see Fig. 1.1(a).
In order for the tunneling to take place, the thickness of the insulating barrier needs
to be thin enough for the wave functions in Eq. (1.1) of each superconducting
electrode to overlap each other as they decay exponentially into the barrier, see Fig.
1.1(b). Josephson described this tunneling phenomenon in terms of two effects:

The dc Josephson effect relates the tunneling current, I, flowing through the
junction with the phase difference, ϕ, across it

I = Ic sin(ϕ), (1.2)

where Ic is the critical current of the junction, i.e. the maximum super-current
it can support before switching into its resistive branch. The ac Josephson effect
relates the voltage across the junction, V , with the time-derivative of the phase
difference

V =

(
~
2e

)
dϕ

dt
=

(
Φ0

2π

)
dϕ

dt
, (1.3)

where Φ0 = h/(2e) denotes the magnetic flux quantum.
In this thesis, the Josephson junctions are implemented in a parallel pair, form-

ing a so-called Superconducting Quantum Interference Device, (SQUID). We extend
Eq. (1.2) and (1.3) to this case, see Fig. 1.1(c), with the junctions denoted ”1” and
”2”. The first Josephson relation in (1.2) now gets modified to

I = Ic1 sin(ϕ1)− Ic2 sin(ϕ2). (1.4)

Due to the fact that flux in the superconducting loop is quantized[7], we get the
following quantization condition

ϕ1 + ϕ2 + 2π
Φdc

Φ0

= 2πn, (1.5)

where n is the number of flux quantum in the loop. By choosing the case of one
flux quantum, (n = 1), and using relations (1.4) and (1.5), the total current flowing
through the two junctions can be expressed as

I = (Ic1 + Ic2) cos

(
π

Φdc

Φ0

)
sin

(
ϕ1 − ϕ2

2

)
−

(Ic1 − Ic2) sin

(
π

Φdc

Φ0

)
cos

(
ϕ1 − ϕ2

2

)
. (1.6)

For the application throughout this thesis, the critical currents needed allow us
to make the junction areas relatively large as compared with the grain size of the
Aluminum. The two junctions can therefore be fabricated almost identical, yielding
Ic1 ≈ Ic2. Thus, relation (1.6) reduces to only its first term

3



Chapter 1. Introduction

I = Ic cos

(
π

Φdc

Φ0

)
sin (ϕ) , (1.7)

where we have introduced an effective critical current Ic = Ic1 + Ic2 = 2Ic1 and an
effective phase difference ϕ = (ϕ1 − ϕ2)/2.

Ic1 Ic2

Y1 Y2

(a)

(b)

(c)

0 d

|Y
| [

a
.u

]

11 YYYYYYYYY

r

S SI

Φ

1mm

Ic2Ic1

d

Figure 1.1: (a) Schematic drawing of a Josephson junction composed of two
superconducting electrodes, separated by a thin insulating barrier of thickness d.
(b) The wavefunctions of the two identical superconductors in (a). The exponen-
tial decay of the wavefunctions for the electrodes have a small overlap, allowing
a supercurrent to flow through the junction. (c) Scanning electron micrograph of
an Al SQUID. The two Josephson junctions have critical currents of Ic1 and Ic2,
respectively. The substrate has been cut out to guide the eye.
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Microwave theory of transmission lines

1.2.2 The Josephson inductance

Another important feature of the Josephson junction is that it accumulates energy
from the tunneling Cooper-pairs, known as Josephson energy, resulting in a non-
linear inductance. We can derive this Josephson inductance of the SQUID from
the time derivative of the current flowing through it

dI

dt
= Ic

∣∣∣∣cos

(
π

Φdc

Φ0

)∣∣∣∣ cos (ϕ)
dϕ

dt
, (1.8)

where the absolute value of the flux term can be dropped when considering a single
flux quantum. Using Eq. (1.3) and re-arranging the terms of Eq. (1.8), the voltage
across the junction can be related with the time-derivative of the current

V =
~
2e

1

Ic

∣∣∣cos
(
πΦdc

Φ0

)∣∣∣ cos (ϕ)

dI

dt
. (1.9)

Recalling that V = L(dI/dt), the Josephson inductance can by identified as

Ls =
~
2e

1

Ic

∣∣∣cos
(
πΦdc

Φ0

)∣∣∣ cos (ϕ)
=

L0
s

|cos(πΦdc/Φ0)|
(1.10)

where L0
s = ~/(2eIc) = Φ0/(2πIc) is the SQUID inductance at zero applied flux

and zero bias current.

1.3 Microwave theory of transmission lines

When designing a microscopic superconducting circuit, operated at microwave fre-
quencies, an essential aspect of the work is dedicated to modelling its dimensions.
The transmission lines used in this thesis are coplanar waveguides (CPW), named
after its inventor C. P. Wen[10]. It resembles a flattened coaxial cable with a center
conductor of width, w separated from ground planes on each side by gaps of width,
g, see Fig. 1.2(a). Like the coaxial cable, the propagating microwave photons
in the line give rise to Transverse Electromagnetic (TEM) waves. We can study
the properties of the transmission line using the telegraph equations[11], where the
transmission line is represented by a series of infinitesimally short segments of length
dz → 0, see Fig. 1.2(b). Each segment is composed of a distributed resistance and
inductance represented by a series resistor, Rdz, and inductor, Ldz, respectively.
The dielectric material separating the center conductor from the ground planes is
represented by a shunt resistor with conductance, Gdz and the capacitance by a
shunt capacitor, Cdz. Thus, R,L,G, and C represent the circuit quantities per unit
length dz. The voltage and current at position z along the line can be written as{

V (z) = V +e−γz + V −eγz

I(z) = I+e−γz − I−eγz
, (1.11)

where γ =
√

(R+ iωL)(G+ iωC) is the complex propagation constant at the an-
gular microwave frequency ω. V ±, I± denote the voltage and current amplitudes of
the waves travelling forward (+) and backward (-). From these, the characteristic
impedance of the line can be expressed as
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Chapter 1. Introduction

Zc =
V +

I+
=

√
R+ iωL

G+ iωC
. (1.12)

For a superconducting transmission line, we can assume very small losses. Thus,
the resistors can be neglected and Eq. (1.12) gets reduced to

Zc ≈
√
L

C
. (1.13)

In addition to the magnetic inductance in the transmission line, a kinetic inductance
due to the inertia of the paired electrons contributes if the electrode thickness, t
is approaching the magnetic penetration depth of the superconducting film[7, 12].
The velocity of the propagating wave is then given by the phase velocity

vph =
1√
LC

. (1.14)

(b)

Rdz Ldz

Gdz CdzV(z) V(z+dz)

I(z+dz)I(z)

dz

(a)

E B
t

g w g

Figure 1.2: (a) Cross-section of a coplanar waveguide design with metal thickness
t, center conductor of width w, separated to the ground planes by gaps of width g.
The electric field from the center conductor to ground is marked with red, whereas
the magnetic field surrounding the center conductor is marked with yellow. (b)
Lumped-element representation of a short unit segment of the transmission line.
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Circuit quantum electrodynamics

1.4 Circuit quantum electrodynamics

The theory of Quantum Electrodynamics (QED) was introduced by P. Dirac in
the 1920s[13], and describes the interaction between electromagnetic radiation and
matter. In his work, Dirac pioneered the view of the radiation and atom as a uni-
fied system and computed the coefficient of spontaneous emission of atoms, which
agreed with Einstein’s previously presented theory[14]. Inspired by Dirac’s and
Einstein’s work, S-I Tomonaga[15], J. Schwinger[16], and R.P. Feynman[17] devel-
oped the theory of QED for which they were awarded the Nobel prize in physics
1965.

In nature, the interactions between individual atoms and photons are very weak
due to the large mode volume of the field and small dipole moment of the atom,
presenting an obstacle for studying these phenomena experimentally. This practical
issue was solved as cavity QED evolved[18, 19], where Rydberg atoms with large
moments are stored between two highly reflective mirrors, forming a resonant cavity
with only specific frequency modes as set by the distance between the mirrors, see
Fig. 1.3(a). At the resonant frequency of the cavity, an enhancement of the field
inside the resonator yields a strong photon-atom coupling due to the fact that the
photons get more chances to interact with the atoms. In addition, the mode struc-
ture of the resonator protects the atoms from spontaneous emission of excitations
at off-resonant frequencies. These high quality resonators in combination with the
large dipole moment of the Rydberg atoms thus enable the observation of coherent
energy exchange between the cavity and atoms. In fact, cavity QED offers the
possibility to build the hardware of a quantum processor where the computational
basis is encoded into two eigenstates of the atomic energy spectrum[1]. However,
in order to realize a large scale processor, it is favorable to be able to completely
control and tailor the properties of the atoms as well as storing them for a long
time.

In 2004, cavity QED and quantum optics technologically merged with the ex-
perimental advances of superconducting circuits fabricated using nano fabrication
techniques. The result was the field of circuit QED (cQED)[2, 3], where the opti-
cal cavities were replaced with microwave resonators with resonance frequencies in
the GHz-range, see Fig. 1.3(b). In turn, the atoms were replaced by mesoscopic
artificial atoms with atom-like energy spectra. The quasi one-dimensional architec-
ture of the transmission line resonators give very small mode volume. This allows
the interaction between the atom and resonator to enter into the strong coupling
regime, where the coupling rate is much greater than both the rate at which the
photon leaves the resonator and the quantum coherence time of the artificial atom.

Circuit QED has over the past decade been proven a useful platform for realiz-
ing various building blocks needed to develop a large scale quantum computer.
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Figure 1.3: (a) Cartoon of cavity QED where an atom is stored in an optical cavity
defined in between two highly reflective mirrors. (b) The corresponding picture in
circuit QED, where the resonator is defined by a piece of CPW transmission line,
opened in both ends.(c) The voltage (in blue) and current (in red) as function of
position of the resonator. The artificial atom is capacitive coupled strongest to the
resonator where the voltage has a maximum.
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Structure of the thesis

1.5 Structure of the thesis

The thesis is organized as follows: In Chapter 2, we introduce the necessary the-
oretical framework, starting with the construction of superconducting resonators
and how these are characterized using microwave photons. In the later part of that
chapter, we extend the system to the tunable resonator and introduce the notion
of parametric pumping and the pumpistor model. The system can be coupled to
superconducting transmon qubits, introduced in the last section of the theory chap-
ter. There we also introduce the reader to dispersive read-out of the qubit.

In Chapter 3, the experimental aspects of the projects are outlined. Here, the
reader is first introduced to the methods used to design the parametric device.
Then, the main fabrication methods are described, followed by a description of the
cryogenic measurement techniques used to characterize the samples.

In Chapter 4, the main results from the device characterization are presented.
First, the static characterization techniques, when the resonator frequency is changed
using a dc-coil. Second, the parametric character of the device is revealed using an
on-chip rf line to modulate the resonant frequency of the resonator.

Finally, in Chapter 5 we conclude the work and present an outlook, discussing
future directions of our research.
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Chapter 2

Theory

2.1 Superconducting resonators

One of the fundamental building blocks used in circuit QED is the superconducting
resonator. Throughout this thesis, we use quarter wavelength resonators, realized
by a coplanar waveguide transmission line of length, l = λ/4, see Fig. 2.1(a). In
one end we interrupt the center conductor and thus define a coupling capacitor, Cc,
through which the resonator is probed using reflectometry measurements. In the
other end, the center conductor is shorted to ground. Even though the distributed
resonator has multiple modes, its fundamental resonant frequency, f0 can be mod-
eled using a single-mode lumped element representation of the circuit, see Fig.
2.1(b), when it is probed close to its fundamental mode frequency. The resonance
frequency can be written as

f0 = λ−1vph =
c

4l
√
εeff

, (2.1)

where the phase velocity, vph = c/
√
εeff is expressed in terms of the effective dielec-

tric constant εeff, set by the dielectric environment surrounding the resonator and
the speed of light in vacuum, c.

(a)

l = l/4
Cc

L Cr

(b)

Rr r

Figure 2.1: (a) The quarter-wavelength resonator consists of a CPW transmission
line, shorted in one end and probed through a coupling capacitor, Cc, in the other.
(b) Close to the resonant frequency, the response of the system can be modeled
using a lumped element representation.
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Chapter 2. Theory

2.2 Reflected microwave response

In this section, we will briefly discuss how we can extract the fundamental proper-
ties of the resonator by fitting the measured reflected magnitude, |S11|, and phase,
arg(S11). For the full derivation, the reader is referred to Appendix B.

From the reflection coefficient, S11, we extract the fundamental resonance fre-
quency, f0, and two quality factors of the system, i.e. the resonators ability to store
energy. The total (or loaded) quality factor, Qtot is defined as the ratio between
stored to dissipated energy per radian. Moreover, the photon loss rate can be di-
vided into internal loss rate ΓR = f0/Qi taking into account the photons dissipated
inside the device, and external loss rate Γ0 = f0/Qe referring to the photons leaving
the resonator via the coupling capacitor. The total quality factor can be expressed
in terms of these two contributions as

Qtot =

(
1

Qi
+

1

Qe

)−1

(2.2)

The starting point when deriving a fit function for the reflected response is to
conclude that it is related to the impedance impedance of the lumped element
circuit, Zr and the probe line, Z0 ≈ 50Ω[11] as

S11 =
Zr − Z0

Zr + Z0
, (2.3)

where the total impedance of the coupling capacitor and the RLC resonator in Fig.
2.1(b) is given as

Zr =
1

iωCc
+

(
1

Rr
+

1

iωLr
+ iωCr

)−1

. (2.4)

After some algebra and implementation of appropriate approximations (presented
in Appendix B), the complex reflection coefficient takes the form

S11 =
δf2 + 1

4

(
Γ2
R − Γ2

0

)
+ iΓ0δf

δf2 + 1
4 (ΓR + Γ0)

2 , (2.5)

where δf = f − f0 denotes the detuning away from resonance. From relation (2.5),
the magnitude and phase of the reflection coefficient can be derived as

|S11| =
√

Re [S11]
2

+ Im [S11]
2

=

√(
δf2 + 1

4 (Γ2
R − Γ2

0)
)2

+ (Γ0δf)
2

δf2 + 1
4 (ΓR + Γ0)

2 (2.6)

arg(S11) = arctan

(
Im [S11]

Re [S11]

)
= arctan

(
Γ0δf

δf2 + 1
4 (ΓR + Γ0)

2

)
(2.7)

From Eq. (2.2), we see that there are three possible coupling regimes between the
internal and external quality factors. If Qi < Qe, the resonator is undercoupled
and the photons tend to get dissipated inside the resonator prior to leaking out
via the coupling capacitor, see Fig. 2.2(a). When the two quality factors are
matched, Qi = Qe, the resonator is critically coupled and the magnitude response
deviates from the otherwise Lorentzian line shape and drops down to zero exactly
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Reflected microwave response

at resonance, see Fig. 2.2(b). The third, and usually most preferred regime is
when Qi > Qe and the resonator is overcoupled, see Fig. 2.2(c). In this case, most
photons leave the system through the coupling capacitor and can thus get detected
and measured.
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Figure 2.2: The reflected magnitude and phase responses of the quarter-
wavelength resonator as a function of the normalized probe frequency in its three
different coupling regimes: (a) undercoupled when Qe < Qi, (b) critically coupled
when Qe = Qi, and (c) overcoupled when Qe > Qi.
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Chapter 2. Theory

2.3 The tunable resonator

In this work, we use an extended and well known version of the resonator where
another degree of freedom is introduced by making them tunable in frequency[21,
22, 23, 24]. In the previous section 2.1, we modelled the distributed superconducting
resonator as a lumped element LC-oscillator (close to its resonant frequency). Thus,
a resonator with tunable frequency can be realized if either its total inductance
or capacitance is tunable. Here we choose to introduce a tunable inductance by
shorting the resonator to ground via two Josephson junctions in parallel, forming a
SQUID1. The Josephson inductance will then take part in the total inductance of
the resonator, with a participation ratio, γ0 ≈ 5− 10%, see Fig. 2.3(a). Moreover,
the tuning is accomplished by threading the loop of the SQUID with magnetic
flux, see Fig. 2.3. This has the consequence of tuning the electrical length of the
resonator, see Fig. 2.3(b). The modulated Josephson inductance thus gets mapped
onto a modulated resonant frequency, well approximated as

ωr(F ) ≈
ωλ/4

1 + γ0/ |cos(F )|
(2.8)

where F = πΦdc/Φ0 is the applied dc-flux, and ωλ/4 = ωr|γ0=0 denotes the bare
resonant frequency, in the absence of the Josephson contribution to its total induc-
tance. The shape of the frequency tuning curve as a function of applied magnetic
flux is governed by the participation ratio of the nonlinear Josephson inductance Ls
in Eq. (1.10) to the geometrical resonator inductance, γ0 = Ls(F = 0)/Ll, where
L is the inductance per unit length of the resonator and l its length, see Fig. 2.4.

(b)

π/2π/40
0.0

0.5

1.0 

V
/V

Resonator position [rad]

0

Cc

Cc

Lr Cr

Φ

(d)

(c)(a)

l = l/4

Figure 2.3: (a) CPW quarter-wavelength resonator, terminated to ground via a
SQUID. (b) By changing the dc magnetic flux through the SQUID, the electrical
length of the resonator is varied, yielding a modified fundamental frequency. (c)
Circuit diagram of the SQUID, terminating the device. (d) Close to resonance, the
system can be modelled by an LC-oscillator with nonlinear flux-tunable inductance
and capacitance.

1It turns out that both the effective inductance and capacitance in magnetic flux[51].
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Figure 2.4: The shape of the frequency tuning curve is governed by the inductive
participation ratio, γ0. The black dashed line represents a non-tunable resonator
(γ0 = 0), whereas the dashed blue, solid black, and dashed red show the tuning
curve for γ0 = 4, 9, and 14%, respectively.

2.4 The flux-pumped parametric oscillator

The concept of parametric oscillations, first introduced by M. Faraday in 1831[34],
is one of the most studied non-linear systems and can be found in many systems
ranging from varactor diodes in electrical circuits to swings in the playground. The
word ”parametric” means that one of the parameters found in the oscillators equa-
tions of motion, e.g. resonant frequency or damping, is modulated (or pumped) in
time at a rate of about twice the oscillator frequency. The consequence of pumping
the system parametrically is that oscillations build up, and the amplitude increases
exponentially in time until it saturates due to nonlinearities[37]. In contrast to the
harmonic oscillator, parametric systems exhibit instabilities which open up possi-
bilities to use these systems as sensitive probes. Although this is a very old field in
physics, this phenomenon was first observed in superconducting circuits based on
the nonlinear inductance of Josephson junctions by Yurke et al. in 1988[35] from
which our implementation originates.

In our case, the quarter wavelength tunable resonator can be operated as a
parametric oscillator by applying a rf-pump tone with angular frequency ωp ≈ 2ωr
to the device in addition to the dc-tuning, see Fig. 2.5(a)[22, 23, 24, 39]. The
choice of quarter-wavelength resonator is favorable since it has no mode at the
pumping frequency 2ωr, preventing the pump from populating the resonator at
the pump frequency. Before the field starts to build up, however, the strength of
the pump needs to compensate for the damping of the system. We refer to this
point as the parametric threshold, separating two operation regimes which will be
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Chapter 2. Theory

under discussion throughout this section. In the next section, we follow the formal-
ism and analysis by C. M. Wilson et al. [40], based on quantum network theory
developed by Yurke and denker[41]. After that, we make the connection to the
field amplitude formalism used in Appended paper I, developed by Wustmann and
Shumeiko[50]2. Finally, we introduce a linearized impedance model developed by
Sundqvist et al.[51] called ”the pumpistor”.

2.4.1 Parametric amplification below the threshold

Before treating the parametric oscillations, some techniques and intuition can be
deployed from first considering the simpler case of small pump amplitude. In
this regime below the parametric threshold, we can operate the system as a para-
metric amplifier, in which small probe signals at the resonator frequency can be
amplified[23]. In this section, we outline how the gain of the amplifier is calculated
by formulating and solving the differential equation describing the dynamics of the
system. We consider the case of degenerate parametric pumping (ωp = 2ωr), which
leads to phase sensitive parametric amplification. For this case, no additional noise
is added to the signal, as oppose to the non-degenerate (phase insensitive) case
where half a quantum of noise is added to the amplified signal.

Cc

LrCr

Φc

Φr

Φin

Φout

Z0

w
r

Figure 2.5: The circuit diagram for the flux-pumped parametric oscillator. The
canonical flux nodes outside the coupling capacitor and inside the resonator are
denoted Φc and Φr, respectively. The microwave pump (in blue) is inductively
coupled to the SQUID of the resonator.

Formulation of the differential equation

The system can be treated in terms quantum network theory and circuit quantiza-
tion [41, 42], by denoting the canonical flux of each node Φi =

∫ t
−∞ Vidt

′, with Vi
being the node voltage with reference to ground, see Fig. 2.5(b). The notion is then
to consider the scattering of the incoming field, Φin(x, t), where x is the position
along the line (with the resonator located at x = 0). Since the dynamics experimen-
tally is observed by probing the outgoing field Φout(x, t), the aim is to relate this
field with the incoming one. The solution takes the form of a one-dimensional wave

2In these two theoretical descriptions, the normalization convention of the pump ampli-
tude differ. In the quantum network framework, we introduce the dimensionless parameter
ε′′, whereas the field amplitude formalism uses ε′ with unit of angular frequency.
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equation due to the small dimensions of the coplanar waveguide center conductor
and gaps

Φc(x, t) = Φin

(
x

vph

+ t

)
+ Φout

(
− x

vph

+ t

)
, (2.9)

where the phase velocity vph = 1/
√
LC denote the speed of light in the line. The

boundary condition can be derived by taking the space and time derivatives of Eq.
(2.9)

− 1

L

∂Φc
∂x

∣∣∣∣
x=0

=
1

Z0

(
∂Φc
∂t
− 2

∂Φin

∂t

)∣∣∣∣
x=0

. (2.10)

Then, recalling that the current through an inductor and capacitor can be written

IL = ∆Φ
L and IC = C d2(∆Φ)

dt2 , respectively, where ∆Φ is the difference in flux across
the element. For node c, Kirchoff’s laws yields

Cc

(
d2Φc
dt2

− d2Φr
dt2

)
= − 1

Z0

dΦc
dt

+
2

Z0

dΦin

dt
, (2.11)

whereas, considering node r yields

Cc

(
d2Φr
dt2

− d2Φc
dt2

)
= −Cr

d2Φr
dt2

− 1

Lr
Φr. (2.12)

Now, rearranging the terms and divide both sides with Cc + Cr gives

d2Φr
dt2

+
1

Lr(Cc + Cκ)
Φr =

Cc
Cc + Cr

d2Φc
dt2

. (2.13)

Expressing the resonant frequency as ωr = 1/
√
Lr(Cc + Cr), and the coupling

parameter as κ = Cc/(Cc + Cr), Eq. (2.13) can be written as

d2Φr
dt2

+ ω2
rΦr = κ

d2Φc
dt2

. (2.14)

We include the parametric pumping at angular frequency ωp and strength ε, to ar-
rive at the final differential equation for the system below the threshold. Assuming
that the coupling remains constant, the equation takes the form

d2Φr
dt2

+
(
ω2
r + ε cos(ωpt+ φ)

)
Φr = κ

d2Φc
dt2

(2.15)

Solving the differential equation

Due to the non-linear nature of Eq. (2.15), it cannot be solved using standard
techniques from Fourier analysis. Instead, the principles of harmonic balance, also
known as slow variables[43], can be used. Consider the following ansatz for the
canonical flux, where we separate the two quadratures

Φi = qi,1 cos
(ωp

2
t
)
− qi,2 sin

(ωp
2
t
)
, (2.16)

where i ∈ {c, r} for the quadrature indices. Due to the complex nature of the out-
put, the quadratures are better represented in the complex plane by reformulating
the ansatz (2.16) as

17



Chapter 2. Theory

Φi =
ui
2

exp
(
i
ωp
2
t
)

+
u∗i
2

exp
(
−iωp

2
t
)
, (2.17)

where ui = qi,1 + iqi,2. Inserting the ansatz (2.17) into equation (2.15) gives two
differential equations{

−Cc
(ωp

2

)2
(uc − ur) = − i

Z0

ωp
2 uc + 2

Z0

ωp
2 u

0
in(

ω2
r −

(ωp
2

)2)
ur + ε

2u
∗
r exp(iφ) = −κ

(ωp
2

)2
uc

, (2.18)

where u0
in denotes the complex quadrature at the input of the resonator. Now, let us

recall the boundary condition in Eq. (2.10) and express it in terms of impedances

uout =
Z0

ZL + Z0
ur +

ZL − Z0

ZL + Z0
u0

in (2.19)

Approximate solution

To analytically solve this problem is hard. Therefore, we find an approximate
solution by assuming that ZL � Z0 at resonance. We define

κQ =
|ZL(ωr)|
Z0

=
1

Z0Ccωr
Q =

Cc + Cr
Z0C2

cωr
. (2.20)

In the limit when κQ� 1, we find the lowest order of the solution for the gain

g =
qout,1 + iqout,2

Φ0
in

= 1− 2
1 + ε′′ sin(φ)− i (ε′′ cos(φ)− δ′)

1 + δ′2 − ε′′2
, (2.21)

where δ′ =
(ωp

2 − ωr
)
/Γ = δ/Γ and ε′′ = εQ/(ωrωp) = ε/2Γωp are the normalized

detuning and pump strength, respectively. In Fig. 2.6, the absolute value of the
gain expression in Eq. (2.21) for the degenerate parametric amplifier (δ′ = 0)
is plotted as function of the phase angle between the signal and the pump for
three different values of the normalized pump strength, ε′′. The zero-gain level
represents the amount of power needed to compensate for the depth of the reflected
magnitude response of the resonator and is thus minimized when the resonator is
highly overcoupled, recall Fig. 2.2.
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Figure 2.6: Voltage gain curves for the degenerate parametric amplifier as a
function of the phase angle between the signal and the pump, φ for three different
normalized pump strengths below the threshold. ε′′ = 0.95, 0.90, and 0.85 in red,
blue, and green solid lines, respectively. The zero-gain line in black will depend
on the magnitude dip of the resonator and can be interpreted as the output power
with the parametric pump turned off.

2.4.2 Parametric oscillations above the threshold

The central phenomenon in this thesis takes place when the pump amplitude ex-
ceeds the damping (ε′′ > 1), where the system starts to build up a field inside
the resonator, known as parametric oscillations. These occur only within a cer-
tain region in the space spanned by the pump-strength, ε′′ and the pump-resonator
detuning, δ′ = (ωp/2− ωr) /Γ. In this section, the conditions needed to build up
parametric oscillations are described.

To capture the dynamics of this regime, we need to add the lowest order (cubic)
nonlinearity to the equations of motion, taking the form of a Duffing oscillator as
described by Dykman[44]

∂2ϕ

∂t2
+ 2Γ

∂ϕ

∂t
+
[
ω2
r + ε cos (ωpt)

]
ϕ− αϕ3 = ξ(t), (2.22)

where ϕ = 2πΦr/Φ0, ε is the amplitude of the frequency modulation, 2Γ = ωr/Q
is the resonance line width corresponding to the damping of the system, and α is
the so-called Duffing term describing the dominant nonlinearity of the system. In
our system, this term is negative having the mechanical analogue of a softening
spring. Finally, ξ(t) on the right hand side of Eq. (2.22) represents the mean-zero
noise that induces activated switching between two meta-stable states of the system.

Solution to the differential equation

Similar to the case of solving the equation of motion below the threshold, we need
to make certain approximations to find analytical solutions to Eq. (2.22). Again,
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to solve this class of weakly nonlinear oscillators, we deploy the technique of slow
variables[43] where the in-phase and quadrature amplitudes are allowed to vary
slowly in time by introducing a slow-time scale, τ , yielding

τ = Γt,
d

dt
= Γ

d

dτ
. (2.23)

The method is then to let the ”constants” of the ansatz be functions of this slow
time scale

ϕ = q1(τ) cos
(ωp

2
t
)
− q2(τ) sin

(ωp
2
t
)

=

=
u(τ)

2
exp

(
i
ωp
2
t
)

+
u∗(τ)

2
exp

(
−iωp

2
t
)
. (2.24)

Now, by assuming small damping (Γ � ωpε
′′) and neglecting second derivatives

due to the slow variables, the first and second derivatives of Eq. (2.24) can be
approximated as

dϕ

dt
≈ iωp

4

(
u(τ) exp

(
i
ωp
2
t
)
− c.c.

)
, (2.25)

d2ϕ

dt2
≈ −

(ωp
2

)2

+ iΓ
ωp
2

(
du

dτ
exp

(
i
ωp
2
t
)
− c.c.

)
. (2.26)

Moreover, the pump- and cubic nonlinearity terms are approximated by neglecting
fast rotating terms

ϕ cos(ωpt) ≈
1

4

(
u(τ) exp

(
−iωp

2
t
)

+ c.c.
)

(2.27)

ϕ3 ≈ 3

8

(
u|u|2 exp

(
i
ωp
2
t
)

+ c.c.
)

(2.28)

Inserting the ansatz along with the approximated terms (2.27) and (2.28) into
the Duffing equation (2.22), we can express the equations of motion for the system
as two coupled differential equations for the in-phase, q1, and quadrature, q2, signals

{
dq1
dτ = −q1 + (ε′′ + δ′)q2 + α′(q2

1 + q2
2)q2 ≡ −q1 + ∂g

∂q2
dq2
dτ = −q2 + (ε′′ − δ′)q1 − α′(q2

1 + q2
2)q1 ≡ −q2 + ∂g

∂q1

, (2.29)

where δ′ = (ωp/2− ωr) /Γ = δ/Γ is the normalized angular frequency detuning
between the pump and the resonator, ε′′ = ε/2Γωp is the normalized pump am-
plitude, and α′ = 3α/4Γωp is the normalized Duffing nonlinearity parameter. The
function g = g(q1, q2) on the right hand side of the two equations in (2.29) is the
Hamiltonian of the system describing the meta-potential landscape of the system.
This function will be the topic of the next section.
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The meta-potential

An intuitive picture for the slow dynamics of the two coupled equations of motion
(2.29) can be gained by studying the meta-potential in the rotating frame

g(q1, q2) =
δ′

2
(q2

1 + q2
2) +

ε′′

2
(q2

2 − q2
1) +

α′

4
(q2

1 + q2
2)2, (2.30)

where the dynamics mimics that of a fictitious particle moving in this meta-potential
with two meta-stable states[38]. When no probe signal is sent to the resonator, the
two states oscillate with the same amplitude, but are separated in phase by π-
radians, see Fig. 2.7. From Eq. (2.30), we see that its shape is governed by the
three normalized parameters δ′, ε′′, and α′, see Fig. 2.7.
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Figure 2.7: Contour plot of the in-phase (q1) and quadrature (q2) components
of the metapotential in Eq. (2.30) for four different operation points in the plane
spanned by the normalized pump-resonator detuning δ′ and pump strength ε′′. The
operation points are marked in the upper right corner of each panel and in the plane
later in Fig. 2.8.
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2.4.3 Region of parametric oscillations

At this point, we know that the parametric oscillations only occur when the pump
amplitude is above the threshold (ε′′ > 1). In addition, the pump frequency needs
to be close to degeneracy (ωp ≈ 2ωr). In this section we will systematically derive
the stability conditions for the parametric oscillations to map out the parametric
region in the plane spanned by δ′ and ε′′.

Steady state solutions

The stability conditions (or bifurcation points) of the system can be derived from
the equations of motion (2.29), by finding their steady state response{

0 = q1 − (ε′′ + δ′ + α′
(
q2
1 + q2

2)
)
q2

0 = q2 − (ε′′ − δ′ − α′
(
q2
1 + q2

2)
)
q1

. (2.31)

The slow variables, q1 and q2 are first converted to magnitude, q, and phase, θ, for
the oscillations using the following substitution[

q1 =
√
α′q cos(θ), q2 =

√
α′q sin(θ)

]
, (2.32)

The trivial solution q = 0 is omitted by dividing both equations in (2.31) with
√
α′q{

0 = cos(θ)−
(
ε′′ + δ′ + α′q2

)
sin(θ)

0 = sin(θ)−
(
ε′′ − δ′ − α′q2

)
cos(θ)

(2.33)

If we solve for zero amplitude q = 0, we find the following solutions

q =

√
± 1

α′

(√
ε′′2 − 1− δ′

)
, (2.34)

By instead putting the amplitude to zero and solving for the normalized drive
strength ε′′, the symmetric bifurcation curve in Fig. 2.8 is obtained

ε′′ =
√
δ′2 + 1 (2.35)

Higher order terms

The region in Eq. (2.35) yields a completely symmetric region which, however, does
not agree well with experiments due to the fact that our frequency modulation is
affected by the cosine nonlinearity of Eq. (2.8), see Fig. 2.4. Therefore, we need
to extend the model to take into account also higher order terms of the mixing
product of the pumped flux in the SQUID, see Appended paper II. This pump-
induced nonlinearity manifests itself as a frequency shift of the region increasing
with pump amplitude, see Appended paper I, which we quantify by introducing a
dimensionless parameter β, defined as

ωr(ε)− ωr(0)

Γ
= −βε′′2, (2.36)

which gives an extended Duffing equation

∂2ϕ

∂t2
+ 2Γ

∂ϕ

∂t
+

[
ω2
r + ε cos (ωpt)−

βε2

4Γωp
(1− cos(2ωpt))

]
ϕ
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The flux-pumped parametric oscillator

−α
[
1− 3λ

4Γωp
ε cos(ωpt)

]
ϕ3 = 0, (2.37)

where we have introduced λ for representing the correction to the Duffing nonlin-
earity due to the fact that α is modulated by the pump. Again implementing the
method of slow variables, we can write down the two coupled differential equations
for the equations of motion

{
dq1
dτ + q1 − (δ′ + ε′′ + βε′′2 + α′(q2

1 + (1 + λε′′)q2
2))q2 = 0

dq2
dτ + q2 + (δ′ − ε′′ + βε′′2 + α′(q2

2 + (1− λε′′)q2
1))q1 = 0

(2.38)

After a while, the system reaches steady state and we can reduce these equations
to {

q1 − (δ′ + ε′′ + βε′′2 + α′(q2
1 + (1 + λε′′)q2

2))q2 = 0
q2 + (δ′ − ε′′ + βε′′2 + α′(q2

2 + (1− λε′′)q2
1))q1 = 0

(2.39)

Next, let us make the same variable substitution as in Eq. (2.32), and omitting
the trivial solution and dropping the next order term of the Duffing nonlinearity
(λ = 0)3, yielding{

−
(
α′q2 + ε′′ + βε′′2 + δ′

)
sin(θ) + cos(θ) = 0(

α′q2 − ε′′ + βε′′2 + δ′
)

cos(θ) + sin(θ) = 0
, (2.40)

which can be written as{
cot(θ)− α′q2 − ε′′ − βε′′2 − δ′ = 0
tan(θ) + α′q2 − ε′′ + βε′′2 + δ′ = 0

. (2.41)

From these two equations we can derive the amplitudes and phases corresponding
to the stable and unstable solutions

q =

√
± 1

α′

(√
ε′′2 − 1− βε′′2 − δ′

)
. (2.42)

Similar to the previous case in Eq. (2.35), the amplitude is put to zero and we solve
Eq. (2.42) for the normalized drive strength ε′′. This gives the bifurcation points
in Fig. 2.8 defining the parametric region, see Appended paper I,

ε′′ =

√
1− 2βδ′ ±

√
1− 4β (β + δ′)

√
2β

. (2.43)

The phase of the parametric oscillations can also be calculated from Eq. (2.41) by
instead eliminating the amplitudes, yielding

θ = arctan
(
ε′′ ±

√
ε′′2 − 1

)
+ nπ n ∈ {0, 1}, (2.44)

where n = 1 gives the π-shifted states in Fig. 2.7.

3We justify this approximation with the argument that the Duffing nonlinearity is not
dominant over the pump-induced frequency shift.
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Figure 2.8: Region in which parametric oscillations build up in the resonator in
the parameter plane spanned by the effective pump strength and pump-resonator
detuning, both normalized to the resonator line width, Γ. The dashed blue line
and the solid red line are the solutions to Eq. (2.43) when higher order terms are
added to the pump. The dashed gray line is the solution to Eq. (2.35), in absence
of higher order pump terms. The four marked points I-IV correspond to the four
quadrature panels in Fig. 2.7, where the shape of the metapotential is calculated
from Eq. (2.30).
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The flux-pumped parametric oscillator

2.4.4 Resonator field amplitude formalism

In the previous sections 2.4.1 and 2.4.2, the differential equations for the equations
of motion of the system were derived using quantum network formalism for the
canonical flux in the resonator. An alternative method, which in some situations is
more illustrative, is to consider the field amplitude A inside the resonator, as well
as an incoming B and outgoing C flow of photons[50], see Fig. 2.9. This is the
method utilized throughout Appended paper I and will here get introduced.

Close to resonance, δ ≡ ωp/2−ωr � ωr, the field amplitude inside the resonator
can be treated as a slow variable compared to all other timescales in the system,
yielding a simplified Langevin equation for the system dynamics

iȦ+ δA+ εA∗ + α |A|2A+ iΓA =
√

2Γ0B(t). (2.45)

|A|2 gives the number of photons in the resonator, whereas B(t) is the probe field

amplitude such that |B|2 has units of photons per second. Γ = Γ0 + ΓR is the total
damping rate of the system, being the sum of the external, Γ0, and internal, ΓR,
damping rates. ε and α denote the effective pump strength and Duffing parameter,
respectively. The full F -dependence of these coefficients can be express in terms of
resonator parameters as[50]

ε ≈
δfωλ/4γ0

2

sin(F )

cos2(F )
(2.46)

α ≈
π2ωλ/4Z0

RK

(
γ0

cos(F )

)3

= α0

(
γ0

cos(F )

)3

, (2.47)

where δf = πΦ1/Φ0 is the ac-flux amplitude, Z0 = 50 Ω is the resonator’s charac-
teristic impedance, RK = h/e2 is the quantum resistance, and α0 = π2ωλ/4Z0/RK .

Cc

LrCr

Z0

w
r

B

C

A

Figure 2.9: In the field amplitude formalism used by Wustmann and Shumeiko[50],
the number of photons in the resonator is denoted A, whereas the incoming and
outgoing flow are denoted B and C, respectively.
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2.5 The ”Pumpistor” model

An alternative and more applied way to think about the parametric phenomena in
the flux-pumped parametric resonator was developed by K. Sundqvist et al., see
Appended paper II. In his model, the SQUID is described as the previously in-
troduced Josephson inductance, see section 1.2.2, in parallel with another element
which arises due to the flux pumping. This impedance was named ”the pumpistor”
and it depends on the phase angle between the probe signal and the pump. In
particular, this classical treatment explains the phase response of the degenerate
parametric amplifier and can be used as a practical tool when analyzing more com-
plicated parametrically driven circuits. In this section, we give a brief introduction
to the theoretical framework of the model. For a more elaborate description, the
reader is referred to the Appended paper II.

2.5.1 Expansion of the mixing product

The fundamental concept behind the model is the frequency mixing product of
the current flowing through the Josephson junctions, i.e. the flux pumped critical
current of the SQUID (flux term) and the phase across the two parallel Josephson
junctions (phase term), recall Eq. (1.7)

I = Ic |cos (πΦp(t)/Φ0)| sin(ϕ(t)), (2.48)

where the flux of the pump can be written in terms of the dc-flux bias and a small
ac-contribution from the pump at angular frequency ωp with phase θp,

Φp(t) = Φdc + Φac cos(ωpt+ θp). (2.49)

The two terms of Eq. (2.48) are then series expanded separately before they are
multiplied together to find an approximation of the circuit impedance. By substi-
tuting Eq. (2.49) into the flux term of Eq. (2.48), we series expand around the
dc-flux point, Φdc, yielding

Ic cos (πΦp(t)/Φ0) ≈ Ic cos(F )− Ic sin(F )δf cos(ωpt+ θp), (2.50)

with F = πΦdc/Φ0 and δf = πΦac/Φ0 denoting the normalized dc and ac flux
quantities, respectively. Moreover, assuming that the Josephson phase takes the
form ϕ(t) = ϕs cos(ωst+ θs), this term is expanded using a Fourier-Bessel series

sin(ϕ(t)) =

∞∑
n=−∞

Jn(ϕs) sin
[
n
(
ωst+ θs +

π

2

)]
, (2.51)

where Jn is the nth-order Bessel function of the first kind. The product is calculated,
retaining only terms at the signal frequency and neglecting other mixing products.
We then define an electrical input impedance at the signal frequency as

ZSQ = iωsLSQ, (2.52)

where the SQUID inductance can be expressed as the Josephson inductance in
parallel with the pumpistor inductance4 L−1

SQ = L−1
J + L−1

P , given as

4The pumpistor is denoted as an inductor because its impedance is proportional to iωs.
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LJ =
LJ0

cos(F )

[
ϕs

2J 1(ϕs)

]
≈ LJ0

cos(F )
, (2.53)

LP =
−2ei∆θ

δf

LJ0

sin(F )

[
ϕs

2J 1(ϕs)− 2ei2∆θJ 3(ϕs)

]
≈ − LJ0

sin(F )

ei∆θ

δf
, (2.54)

with LJ0 = ~/(2eIc) and ∆θ = 2θs−θp. Thus, the SQUID can be represented as the
equivalent circuit in Fig. 2.10(a), with the Josephson inductance in parallel with
the pumpistor as an alternative formalism to the nonlinear differential equations
presented in section 2.4. Next, we will investigate the phase angular dependence of
the pumpistor and how to interpret it in terms of gain of a parametric amplifier.

2.5.2 Phase angle and negative resistance

An important property of the inductance of the pumpistor in Eq. (2.54) is that it
is dependent on the phase angle ∆θ between the signal and pump, which makes it
responsible for the phase sensitivity of the degenerate parametric amplifier when
ωp = 2ωr. When studying the behavior of the pumpistor, we note that the phase
angle puts the device in four different regimes, illustrated in Fig. 2.10(b). When
∆θ = 0 or π, the pumpistor acts as a negative or positive inductance contribution
to the Josephson inductance. However, at ∆θ = π/2, it acts as a resistor which
leads to additional attenuation or de-amplification in the device. Finally, when
the pumpistor reaches ∆θ = −π/2, it acts like a negative resistor, which provides
gain by injecting energy from the pump. Another way to formulate the negative
resistance is in terms of a negative internal quality factor, Qi < 0. For the im-
plementation of a degenerate parametric amplifier, this imposes some guidelines of
operation regime for the amplifier. Maximum squeezing (and thus amplification),
occurs when the system is close to (but below) its parametric bifurcation threshold.
In terms of quality factors, this gives the condition that (−Qe < Qi < 0). Using the
linearized impedance of the SQUID, also the gain of the amplifier can be calculated
and related to the phase angle, see [51].

(a) (b)

Φac
Φac

L P
L J

The 

Pumpistor

Josephson

inductance

Figure 2.10: (a) The equivalent circuit of the SQUID as a Josephson inductance
in parallel with the pumpistor. (b) The impedance of the pumpistor is govern by
the phase angle ∆θ = 2θs − θp. When ∆θ = −π/2, it acts like a negative resistor
where the pump injects energy into the resonator, providing gain.
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2.6 The transmon superconducting qubit

2.6.1 The Cooper-Pair Box

Today, there are several flavors of superconducting qubits, including charge, phase,
and flux qubits (and combinations thereof). The names refer to the respective quan-
tum mechanical degree of freedom, utilized to encode the states of the qubit. One
of the most commonly used is the transmon qubit[25], a combination of a charge
and a phase qubit derived from the Cooper-pair box (CPB) charge qubit[26, 27, 28].
To understand the physics of the transmon, it is therefore pedagogic to start out
from the CPB.

The CPB consists of a small aluminum island, connected to a superconducting
reservoir through a Josephson junction on one side and biased by a gate capacitance
Cg and a gate voltage Vg on the other side, see Fig. 2.11(a). When the junction is
in its superconducting state, Cooper pairs can tunnel to- and from the island. The
potential of the island can be controlled through the gate voltage.

(a) Cg

Vg Ic ,C J

(b) Cg

Vg

Cs

Figure 2.11: (a) The circuit diagram of the Cooper Pair Box. The island (in red)
is biased with a gate voltage Vg through a gate capacitance Cg and separated from
the reservoir by two parallel Josephson junctions of critical current Ic and junction
capacitance CJ . (b) The corresponding circuit diagram for the transmon qubit, in
which two shunt capacitors, Cs have been introduced to reduce the charging energy,
EC.

The system is characterized by two energies; the Josephson energy, EJ is the
accumulated potential energy in the junctions as a super current passes through it,
given as

EJ =
Φ0Ic
2π

=
RQ∆

2Rn
, (2.55)

where RQ = h
4e2 and Rn are the quantum and normal state resistances, respectively.

∆ is the superconducting energy gap related to the critical temperature of the
material5. Whereas the charging energy is the (generalized) kinetic energy needed
to transfer one electron across the capacitor

EC =
e2

2CΣ
, (2.56)

5The critical temperature for bulk aluminum is Tc = 1.176 K [29]. However, the
effective Tc for a thin film is slightly higher than for bulk material ≈ 1.4K. According to
BCS theory [8], ∆ = 1.76kBTc.
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where CΣ = Cg + CJ represents the total capacitance between the island and its
circuit environment. In addition the system is characterized by the reduced gate
charge ng = CgVg/2e. In most practical implementations of qubits, it is convenient
to be able to tune its transition frequency. This is obtained in the same way as
for the tunable resonator in Sec. 2.3, by adding another Josephson junction is in
parallel with the first one, forming a dc-SQUID with flux-tunable Josephson energy,
EJ → EJ(Φdc). The effective Josephson energy is then given as

EJ(Φdc) = Emax
J

∣∣∣∣cos

(
πΦdc

Φ0

)∣∣∣∣ , (2.57)

where Φ0 = h/2e is the flux quantum. For further information about the SQUID
the reader is referred to textbooks such as [31]. The Hamiltonian of the CPB can
now be written in terms of these two energies in the charge basis

ĤCPB = 4EC

∞∑
n=−∞

(n− ng)2|n〉〈n| − EJ

2

∞∑
n=−∞

[|n+ 1〉〈n|+ |n〉〈n+ 1|] . (2.58)

By doing the transformation n → −i ddφ the Hamiltonian in Eq. (2.58) takes the
form of a quantum rotor in phase space

ĤCPB = 4EC(−i d
dφ
− ng)2 − EJ cosφ. (2.59)

The exact solutions to the Hamiltonian in Eq. (2.59) are obtained using Mathieu
functions [25], plotted in Fig. 2.12. In order to operate the system as a qubit,
it is essential that it can be considered a two-level system, i.e. the two lowest
eigenenergies must be well-separated from any higher energy levels of the system.
In Fig. 2.12(a) the charge dispersion relations for the three lowest eigenenergies are
plotted as a function of the reduced gate charge ng and EJ/EC. The bands form
a periodic structure where the energy required for transitions between the ground
state |0〉 and the first excited state |1〉 is smallest when the gate charge ng = m+ 1

2 ,
for integer numbers of m. The CPB is thus mainly characterized by the energy
ratio EJ/EC. The two limiting regimes where EJ/EC � 1 and EJ/EC � 1 are
referred to the charge- and phase limits, respectively, shown in Fig. 2.12 (b) and
2.12(c). However, even though the goal of obtaining an effective two-level system is
fulfilled, the CPB has one major drawback in its dependence of keeping the charge
constant at the sweet spot. Due to the environment, the qubit will be subject to
fluctuations of the gate charge, known as charge noise. This means that the level
spacing between the two levels will fluctuate and lead to short quantum coherence
times. In 2002, Vion et al. [30] demonstrated that these half-integer values of
the reduced gate charge (so called sweet spots) serve as optimal working points for
operating the qubit.
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Figure 2.12: a) Calculated energy band diagram for the three lowest energy
levels as a function of reduced gate charge and ratio of EJ/EC. (b) The charge
limit diagram when EJ/EC = 0.2 for the CPB. (c) The phase limit or transmon
regime, plotted for the case when EJ/EC = 20.

30



The transmon superconducting qubit

2.6.2 The transmon regime

To overcome the sensitivity to charge noise of the CPB, the transmon qubit was
proposed by Koch et al. [25] and is today one of the most popular qubit designs. As
compared with its ancestor, the charging energy of the transmon is reduced. This is
obtained by increasing the sizes of the two islands, see Fig. 2.11(b), thus introducing
a dominant capacitance in parallel with the two Josephson junctions, recall the
expression in Eq. (2.56). This has the consequence that EJ/EC is taken away from
the charge limit and instead entering a new regime, known as the transmon regime.
The frequency needed to drive transitions between the transmon’s ground state |0〉
and first excited state |1〉, can be well approximated as

ωa/~ ≈
√

8EJEC − EC. (2.60)

Two essential quantities need to be introduced in the energy band diagram in
Fig. 2.12(a), namely the charge dispersion and the relative anharmonicity. The
charge dispersion is defined as εm = Em(ng = 1

2 ) − Em(ng = 0), i.e. the peak-to-
peak value of the variation of eigenenergy of the mth level. The smaller the charge
dispersion gets, the less the qubit frequency will change in response to gate charge
fluctuations. Thus, the charge dispersion is a measure of the qubit’s sensitivity to
charge noise.

The relative anharmonicity is defined as the level spacing between the energy
levels of the system and is given as αr = (E12 − E01)/E01, where E01 and E12

are the energy level spacings of the system. Too small anharmonicity leads to the
risk of driving unwanted higher transitions if too strong pulses are used. Thus,
the transmon no longer act as a qubit but rather a multi-level system. Both the
charge dispersion and the anharmonicity has a common dependence in the ratio
of the Josephson and the Coulomb energies EJ/EC. As Koch et al. derived, the
charge dispersion decreases exponentially when EJ/EC is increased and becomes
almost flat when EJ/EC & 20. However, the prize to pay for the reduced charge
dispersion is that the anharmonicity of the energy levels also decreases. Fortunately,
the latter has only a weak power dependence on EJ/EC. Thus, it is possible to
enter into a regime where the transmon is virtually insensitive to charge noise,
maintaining a sufficiently large anharmonicity for the system to act as an effective
two-level system. This range of EJ/EC & 20 for which the transmon has sweet
spots everywhere is known as the transmon regime, see Fig. 2.12(c). The transmon
can also be regarded as an unbiased phase qubit.

2.6.3 Dispersive readout of qubits

The interaction between the quantized field inside the resonator with frequency ωr
and the two-level artificial atom with transition frequency ωa can be described by
the Jaynes-Cummings model[32, 33]. In this model, the resonator is described by
the Hamiltonian of a harmonic oscillator in terms of the creation and annihilation
operators, â† and â, respectively. If we only allow the qubit (or atom) to be in two
states, we use the Pauli z-matrix notation for a spin-1/2 system, σ̂z = σ̂00 − σ̂11 =
|0〉〈0| − |1〉〈1|. The Hamiltonian of the coupled system is given as

Ĥ = ~ωr
(
â†â+

1

2

)
+

~ωa
2
σ̂z + ~g (σ̂+ + σ̂−)

(
â+ â†

)
, (2.61)
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where σ̂+ = σ̂01 = |0〉〈1| and σ̂− = σ̂10 = |1〉〈0| describes the processes of de-
exciting and exciting the atom, respectively. The last term of the Hamiltonian in
Eq. (2.61) denotes the interaction between the atom and the resonator and consists
of four terms. Two of these, σ̂−â

† and σ̂+â, share the property of conserving energy
since the excitation is moved between the two systems. The two other terms, i.e.
σ+â

† and σ−â can be dropped when the coupling rate is much smaller than the
transition frequencies, g � ωa, ωr. This operation is known as the rotating wave
approximation and yields the common form of the Jaynes-Cummings Hamiltonian,
representing an important tool when analyzing system dynamics in most quantum
optics experiments

ĤJC = ~ωr
(
â†â+

1

2

)
+

~ωa
2
σ̂z + ~g

(
σ̂+â+ σ̂−â

†) . (2.62)

Within the framework of the Jaynes-Cummings model, there are two very distinct
regimes which we will describe next.

The resonant regime of vacuum Rabi oscillations

When the resonator and atom are close to resonance with each other (ωr ≈ ωa),
the photon number state of the resonator, n̂ = â†â, and the two states |0〉 and |1〉
of the qubit are no longer eigenstates of the Hamiltonian in Eq.(2.62). Instead, the
system takes eigenstates on the form of entangled states between the resonator and
qubit states

|n,±〉 =
|0〉 |n〉 ± |1〉 |n− 1〉√

2
, (2.63)

where the splitting between the symmetric and anti-symmetric superposition states
are split by

√
n2g~. At the point when the two systems are exactly on resonance,

ωr = ωa, energy will get coherently swapped between the two systems at a rate
ΩR =

√
ng/π, known as the vacuum Rabi frequency. By measuring the size of the

avoided level crossing, the coupling rate g can be experimentally extracted.

The dispersive regime of cavity pull and ac-Stark shift

The next important regime is when the atom and resonator are far detuned from
each other, such that ∆ = |ωa − ωr| � g, no atomic transitions can exchange
photons between the systems. However, fortunately for quantum information tech-
nology, there is still a dispersive coupling present, which gives rise to small frequency
shifts. In this so-called dispersive regime, the Hamiltonian can no longer be solved
analytically. Instead, by using second order time dependent perturbation theory in
terms of g/∆, it can be approximated by

ĤDISP = ~
(
ωr +

g2

∆
σ̂z

)(
â†â+

1

2

)
+

~ωa
2
σ̂z, (2.64)

where the resonator frequency has picked up a term which is dependent on the state
of the atom, ω̃r = ωr ± g2/∆. This shift allow us to perform dispersive read-out by
projecting the qubit state onto |0〉 or |1〉 , without decohering the state (since no
photon is needed for the process).

Another way to analyze the dispersive Hamiltonian in Eq. (2.64) is obtained by
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re-arranging the terms, moving the shift to the atomic transition frequency, such
that

ĤDISP = ~ωr
(
â†â+

1

2

)
+

~
2

(
ωa +

2g2

∆
â†â+

g2

∆

)
σ̂z. (2.65)

Now, instead of letting the qubit pull the resonator, we see that the photon number
in the resonator, n̂ give rise to a shift of the qubit transition frequency by an amount
of 2g2/∆ per photon, known as the ac-Stark shift. In addition, it is shifted by a
constant frequency of g2/∆. This shift originates from the zero-point energy of the
resonator and is known as the Lamb shift.
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Chapter 3

Experiments

3.1 Device modeling

3.1.1 Bare resonator design

The starting point when designing a parametric quarter wavelength resonator is
to match its characteristic impedance to the outside world, (Zc =Z0 = 50 Ω). As
we recall from section 1.3, the characteristic impedance of the transmission line is
governed by the inductance and capacitance per unit length through the relation
Zc =

√
L/C. Thus, to match impedances, we need to simulate L and C for

a given dielectric environment of the planar structure using conformal mapping
techniques[46] in a Mathematica script based on the tailored equations resembling
the cross-sectional geometry of our device, in Fig. 3.1(a), see Appendix C. The
implemented model can be used for both single and bilayer substrates. In our
case, the silicon wafer with relative dielectric constant of ε1 = 11.68 and thickness
h1 = 380µm, is coated with h2 = 400 nm of wet grown oxide with ε2 = 3.9. In
Table 3.1, the geometrical input parameters are presented, whereas the generated
output parameters, illustrated in Fig. 3.1(b), are presented in Table 3.2.

w g h1 h2 h3 h4 ε1 ε2

10.00 5.500 380.0 0.400 380.4 500.0 11.68 3.900

Table 3.1: Input dimension parameters for the conformal mapping script, all
length dimensions are given in units of µm.

εeff vph [ms−1] C [pFm−1] L [µHm−1] l [µm]

6.34 0.397×c 165 0.426 4960

Table 3.2: Output parameters from the conformal mapping script.
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After establishing the cross sectional design, the acquired knowledge about the
effective dielectric constant can be used to calculate the fundamental frequency
mode of the resonator using Eq. (2.1) for a certain physical length l

fλ/4 =
c

4l
√
εeff

, (3.1)

3.1.2 Coupling capacitor

The next important design aspect for the resonator is to engineer its coupling to
the microwave probe line, which is set by the coupling capacitor, Cc. Often, it is
convenient to design the coupling capacitor having in mind the external quality
factor (and consequently the external damping rate, Γ0) which refers to the loss
rate of photons through the capacitor. The external quality factor can be related
to the coupling capacitor using the lumped element representation of the resonator
connected to a load impedance Z0 as

Qe =
(1 + (ωλ/4CcZ0)2)(Cl/2 + Cc)

ωλ/4C2
cZ0

≈

≈ Cl/2 + Cc
ωλ/4C2

cZ0
=

√
Lr/Cc
Z0

(
1 +

Cl/2

Cc

)3/2

, (3.2)

where the bare angular frequency of the resonator is given as

ωλ/4 = 1/
√
Lr(Cl/2 + Cc). (3.3)

Eq. (3.2) thus allows us to calculate the coupling capacitance needed to obtain a
certain external quality factor. For instance, if we aim for an external quality factor
of Qe = 5000, this corresponds to a coupling capacitance of Cc = 4.9 fF for a bare
resonator frequency ωλ/4 = 2π × 5.5 GHz.

The next, and perhaps more challenging question to address is what physical
design of capacitor will result in the desired capacitance for our dielectric envi-
ronment at hand. We calculate the capacitance of the interdigital finger capacitor
using an electromagnetic simulator in MicroWave Office. A micrograph of a cou-
pling capacitor and the four-port simulation setup are illustrated in Fig. 3.1(b),
with resulting output parameters.

3.1.3 Non-linear SQUID inductance

After the bare resonator has been designed, we turn our attention to the non-linear
contribution to its total inductance, dictating its frequency tunability as well as
parametric properties. From section 1.2.2, we recall that the Josephson inductance
is governed by the critical current of the two parallel junctions according to the
relation

Ls =
Φ0

2πIc |cos(πΦdc/Φ0)|
. (3.4)

From the theory section of the parametric oscillator in section 2.4, we know that
the dynamics of the device is governed by the amount of nonlinearity present in the
system. Since the nonlinearity originates from the Josephson inductance we can
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choose its involvement by designing the participation ratio of Josephson inductance
to geometrical inductance of the coplanar waveguide, given as

γ0 =
Ls,0

Ll
Ls,0

∣∣
Φdc=0 =

Φ0

2πIc
. (3.5)

Therefore, we recall the outcome of the inductance per unit length from the confor-
mal mapping model in Fig. 3.1(b), which tells us the total geometrical inductance of
the resonator, Lr = Ll and provides guidance when choosing Josephson inductance
given that we aim for a certain value of γ0. Experimentally, a reliable estimate
of the Josephson inductance can be obtained by measuring the normal state resis-
tance of identically fabricated test structures, placed within four-point measurement
sites on-chip, see Fig. 3.1(c). From the measured normal state resistance, Rn, the
Josephson inductance can be calculated as

Ls,0 =
Φ0Rn
π2∆

, (3.6)

where ∆ ≈ 0.2 meV denotes the superconducting gap of Al. As we will discuss
in the next section, the Josephson junctions are fabricated by oxidizing the Al
during the two-angle evaporation sequence. It is intuitive that a longer oxidation
time and higher pressure will generate a thicker insulating barrier between the
two superconducting Al electrodes. Therefore, the tuning of Josephson inductance
can in part be done during the clean room processing by tuning the two-angle
evaporation and oxidation parameters after a certain design has been exposed in
the e-beam lithography.
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Figure 3.1: Overview of the modeling and design processes. (a) Cross section
dimensions of the coplanar waveguide geometry. The thicknesses of each layer are
denoted h1-h4 to the left. The superconducting metal (in dashed blue), is placed
on top of a bilayer substrate with dielectric constants ε1 and ε2, and is surrounded
by top and bottom enclosures separated by vacuum from the device. The output
parameters are the inductance and capacitance per unit length as well as the effec-
tive dielectric constant from which the characteristic impedance can be calculated.
(b) Micrograph illustrating how the capacitance of the interdigital finger capaci-
tor is extracted using a four-port electromagnetic simulation in MicroWave Office.
The output parameter of the simulation is the coupling capacitance, which via Eq.
(3.2) gives us the external quality factor.(c) Micrograph of one of the four-point
resistance test structure sites on the samples. A current is injected between the
left most pads, whereas the voltage across the junction is measured on the other
side, allowing for cancellation of the probe resistance. The output parameter is the
normal state resistance, leading to the Josephson inductance through Eq. (3.6).
Finally, using Eq. 3.5, the participation ratio, γ0 can be calculated.
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3.2 Fabrication

To fabricate devices containing features on the nano-scale requires a delicate mix-
ture of science and art. The scientific aspect of the work tells us that it needs to
be carried out within a clean and well controlled environment, whereas the art lies
in the fact that passion as well as experience are key ingredients in any successful
clean room process. All fabrication was done in the Nanofabrication Laboratory
at Chalmers University of Technology. Throughout this section, we will introduce
the main clean room techniques used for fabricating the parametric resonators on
3” p-doped silicon wafers with 400 nm of wet grown oxide. For the detailed recipe,
the reader is referred to Appendix A.

3.2.1 Photolithography

Due to the large variations in feature dimensions and resolution requirements, pro-
cessing time can be saved by first using photolithography to define the large features,
e.g. contact pads and ground planes. The main steps in this process are described in
Fig. 3.2(a)-(e). After cleaning the wafer, it is coated with a lift-off resist (LOR3B)
and a positive photoresist (S1813)1, see Fig. 3.2(a). Using a mask aligner, the
coated wafer is then exposed to UV-light through a soda-lime photomask, see Fig.
3.2(b). To develop the exposed pattern, the wafer is immersed into a water-based
solvent (MF319), which dissolves the exposed resist, while leaving the parts cov-
ered by the mask. The top resist acquires edges with high resolution, whereas the
bottom resist has the property of forming an undercut, see Fig. 3.2(c). After the
development, organic residues from the resists are etched away in oxygen plasma
before the wafer is placed in an electron-beam evaporator with high vacuum. For
contact pads, a trilayer metal stack is evaporated. First, 3 nm thin layer of Ti is
deposited as a sticking layer to improve the SiO2/Au adhesion. Then, 80 nm of
Au is evaporated as contact material, followed by 10 nm of Pd acting as a stopping
layer to prevent diffusion between the Au and Al, see Fig. 3.2(d). Finally, the
excess metal is lifted-off using S1165 Remover, dissolving all remaining resist, see
Fig. 3.2(e).

3.2.2 Electron beam lithography

Due to the limited resolution of photolithography, as well as our need for design
flexibility, a JEOL JBX-9300FS electron beam lithography machine is used to de-
fine the resonators as well as Josephson junctions. This process is described in Fig.
3.2(f)-(h). Since we want to evaporate Al, we spin coat the wafer with a bilayer
resist system of MMA/ZEP, see Fig. 3.2(f). As the name e-beam lithography sug-
gests, the pattern is then directly transferred into the resist by a beam of electrons
with an acceleration voltage of 100kV. The dose used for the ZEP on silicon wafer is
set to 150 µCcm−2, see Fig. 3.2(g). In order to avoid the so-called proximity effect
due to back scattering of electrons from the substrate, the pattern is divided into
16 different doses based on the surroundings to correct for this effect. A script in
the software PROXECCO is used to calculate the proximity correction where small

1Positive resist refers to the polymer property that the parts exposed by UV-light can
be dissolved in solvent during the development.
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features are given a higher dose. After the exposure, the top layer is developed
selectively in 96% o-xylene, see Fig. 3.2(h). Finally, just prior to the evaporation
of Al, the bottom resist is developed using a mixture of isopropanol and deionized
water, 1:4. It is here very important to investigate the undercut properly at the
point in the design where it is most critical, i.e. where the Josephson junctions will
be formed.

3.2.3 Two-angle evaporation

After defining the smallest features in the electron beam lithography, the Joseph-
son junctions are created using two-angle evaporation (shadow evaporation) of
aluminum[45] in an electron beam evaporator from Plassys. A sequential descrip-
tion of this process is shown in Fig. 3.2(i)-(l). First, a bottom layer of Al is
evaporated under an angle η of the stage on which the sample is mounted. Typ-
ically, this layer is between 20-50 nm thick. After finishing the first Al layer, the
acceleration voltage of the source electrons is ramped down, and the load lock is
filled with O2-gas at a PID-regulated pressure, Pox. This forms a thin insulating
barrier of amorphous AlxOy, see Fig. 3.2(j). The oxygen is pumped out after a
desired oxidation time, tox has elapsed. To define the top electrode, a second layer
of Al is evaporated from the opposite angle, −η as compared with the bottom layer,
see Fig. 3.2(k). When choosing the thickness of the top electrode, it is essential to
keep in mind which thicknesses the evaporated film need to have step coverage to.
In this case, this layer needs to be thicker than the first layer. In addition, since
we also use Ti/Au/Pd contacts, the total Al thickness needs to exceed that of the
contact layers. Finally, the resist is lifted off, and we are left with the Josephson
junctions, see Fig. 3.2(l). In addition to the design dimensions of the two tunnel
junctions, its critical current can be tuned using the two oxidation parameters, tox

and Pox.
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Figure 3.2: The main steps of the fabrication processes. (a)-(e) describes the
photolithography process used to define and deposit the contact metals for bond
pads, ground planes, and test structures. In (f)-(h), the electron beam lithography
process is used to define the Josephson junctions, as well as the superconducting
resonator. Finally, the junctions are evaporated using two-angle evaporation, shown
in (i)-(l).
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3.3 Cryogenic measurements

Measurements involving superconducting devices rely on our ability to create a low
noise environment for the samples by cooling them far below the critical tempera-
ture of the superconducting materials T � Tc. Therefore, we perform the measure-
ments in a 4He/3He cryogen-free dilution refrigerator with a base temperature of
15 mK. The cooling mechanism is based on a phase separation that occurs when a
mixture of 4He and 3He is cooled down to low temperatures (T<0.86K), giving rise
to two different concentration phases of 3He, since this isotope is the lighter one a
3He rich phase (concentrated phase) collects on top of the 4He-rich phase (diluted
phase). The cooling takes place when the 3He is transported from the concentrated
phase to the diluted phase through a phase boundary. This process takes place
inside the mixing chamber (M/C) and is the coolest part of the cryostat. However,
before this cooling effect can happen, we need to be able to condense the helium,
which can be done in a few different ways depending on the type of cryostat. The
measurements contained in this thesis were done in three different cryostats. At
Chalmers, an Oxford 400 HA wet dilution refrigerator was used, where a 1K pot is
used to condense the mixture in the system. At MIT and Queensland cryogen-free
dilution cryostats from Leiden and Bluefors were used where there is no need for
a bath of 4He to pre-cool the system. Instead, a compressor is used to pump on
a pulse tube, transferring 3He gas back and forth inside the core of the cryostat,
cooling the system down to 3K.

3.3.1 Measurement setup

Prior to the cryogenic characterization, the samples were mounted in a home-made
sample box. The box consists of four parts, each computer numerical control (CNC)
milled out from oxygen-free copper. In order to improve thermal anchoring as well
as electrical conductivity, a few micron of gold was electroplated on each part,
see Appendix A.2. Next, the box is connectorized with SMA connectors and fed
through the box walls using glass beads. Inside the box, microstrip launchers are
threaded onto the glass beads and soldered on the center conductor of a printed
circuit board (PCB) made from Rogers RO3010 with an effective dielectric constant
of εr ≈ 10, matching the effective dielectric constant of silicon and sapphire at
cryogenic temperatures. The sample is glued into a milled hole in the PCB to get
thermal anchoring from the box on the backside and align the edge of the sample
with the top of the circuit board. The sample is then bonded to the PCB using gold
wire of diameter 25 µm. It is important to fit as many bonds as possible in order
to improve the microwave transmission and reduce the inductance of the wire. The
device is then mounted on the M/C tail of the cryostat.

To characterize the samples, a microwave setup was installed in the cryostat, see
Fig. 3.3. Several aspects need to be taken into account when wiring up the cryostat.
First, due to the limited cooling power of the fridge, the cables and components
need to be well thermally anchored at each temperature stage not to heat up the
system. The coaxial cables are therefore chosen to have poor thermal conductivity
between the higher temperature stages while still not attenuating very much, see
Fig. 3.3. At the lower temperatures, however, superconducting coax-lines are used
with the properties of low attenuation but still with poor thermal conductivity.
Since the cryostat cooling power is very different at the various stages, attenuators
are attached to the lines, thermalizing their inner conductors. The amount of
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attenuation is chosen such that the resulting noise temperature matches the stage
at which it is mounted.
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Figure 3.3: Schematic of the cryogenic microwave setup used in the Leiden cryo-
stat at MIT.
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Chapter 4

4Results

In this chapter, the experimental characterization sequence of a parametric res-
onator is presented. First, we show how the fundamental behavior of the device
can be extracted by studying the line width as well as the frequency tuning curve.
By doing a power sweep, we extract the Duffing parameter from the shift in resonant
frequency. Second, the probe signal is turned off to suppress the Duffing influence
and instead study the parametric oscillations upon modulation of the flux at twice
the resonant frequency. From the region of parametric oscillations we extract in-
formation about the pump-induced nonlinearity as a consequence of rectification
of the frequency tuning curve. Finally, the chapter is concluded by describing the
interplay between the two dominant nonlinear effects as a function of magnetic flux
bias.

4.1 Static characterization

4.1.1 Frequency tuning curvature

The first important step when characterizing the parametric resonator is to mea-
sure its resonance frequency dependence on static dc-flux bias, F = πΦdc/Φ0 using
a vector network analyzer. However, since the device exhibits the behavior of a
Duffing oscillator, the line shape of the resonator magnitude response as well as
its resonant frequency is dependent on the probe power. This effect is more pro-
nounced when the critical current of the Josephson junctions is reduced, i.e. when
the resonator is far detuned from its maximum frequency F → ±π/2. In Fig.
4.1(a), the Duffing response is shown and we can find a power level below which
the line width is more linear showing a Lorentzian response1. This is important
when extracting quality factors and damping rates since Eq. (2.5) only is valid for

1The traces shown in Fig. 4.1(a) are taken from a device containing transmon qubits
and is thus not listed in Table 4.1, due to dispersive shifts of the resonator frequency, see
section 2.6.3.
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a Lorentzian line shape.
After identifying a power level below which the resonator exhibits linear re-

sponse, we continue by sweeping the magnetic flux, F , and measure the magnitude
and phase of the reflection coefficient, S11. In Fig. 4.1(b), the resonant frequencies
for two devices, with slightly different participation ratios γ0, are extracted for each
point in flux and fitted to the function in Eq.(2.8) we recall from section 2.3

ωr(F ) ≈
ωλ/4

1 + γ0/ |cos(F )|
. (4.1)

Besides the participation ratio, we can also extract the bare resonator frequencies,
ωλ/4 in absence of the SQUID inductance. The extracted parameters for these two
devices are presented in Table 4.1.
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Figure 4.1: (a) The reflected magnitude response for incrementally increase of
the probe power for a sample with a more pronounced Duffing nonlinearity. (b)
Extracted resonant frequencies for the two devices in Table 4.1, fitted to Eq. (4.1),
with different inductive participation ratios, γ0, yielding slightly different frequency-
flux curvatures.

Sample ωλ/4/2π [GHz] ωr(0)/2π [GHz] γ0 Ic [µA]

I 5.645 5.200 0.0898 2.18
II 5.626 5.344 0.0563 3.48

Table 4.1: Extracted resonator parameters for the two measured samples. ωλ/4
and ωr(0) are the bare- and zero-flux resonant frequencies, respectively. γ0 denotes
the inductive participation ratio and Ic is the critical current of the SQUID.
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4.1.2 Duffing nonlinearity

After extracting the participation ratio from the frequency tunability, we investigate
the effective Duffing parameter, α which relates to both γ0 and the magnetic flux
bias recalling Eq. (2.47)

α ≈ α0

(
γ0

cos(F )

)3

, (4.2)

with α0 = π2ωλ/4Z0/RK and RK = h/e2 being the quantum resistance. We can
extract the Duffing parameter by measuring the frequency shift of the resonator by
probing it with incrementally increasing powers at a fixed bias point, see Appended
paper I, but far below the parametric instability threshold at which the system
bifurcates[48, 49], see Fig. 4.2. The resonance undergoes a nonlinear frequency

shift from δω|A=0 = 0 to δω|A6=0 = −α|A|2, where |A|2 is the number of photons
in the resonator and α represents the frequency shift per photon. This nonlinear
shift can be expressed in terms of the probe power |B|2 (in units of photons per
second) and the resonator damping rates,

δω = −2αΓ0

Γ2
|B|2. (4.3)

We extract the Duffing parameter α using Eq. (4.3) at three bias points of
sample I, see Fig. 4.1, plotted along with the measured reflected phase response in
Fig. 4.2 and listed in Table 4.2.

Flux bias ωr/2π Γ0/2π ΓR/2π α/2π α/α0

[GHz] [kHz] [kHz] [kHz/photon] [×10−3]

F1 = −0.15π 5.1558 429 354 108 0.996
F2 = −0.25π 5.0427 344 310 215 1.99
F3 = −0.35π 4.7785 482 299 813 7.53

Table 4.2: Extracted parameters from sample I. ωr is the resonator frequency at
the three different flux-bias points. Γ0 = ωr/Qe and ΓR = ωr/Qi are the external
and internal damping rates, respectively, related to their corresponding quality
factors Qe and Qi, extracted at low probe power. α represents the Duffing shift per
photon.
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Figure 4.2: Reflected magnitude and phase responses for the three dc flux-bias
points for sample I: F1 = −0.15π, F2 = −0.25π, and F3 = −0.35π, in Fig. 4.1(b).
The Duffing term gives rise to a nonlinear shift of the resonant frequency as the
probe power on the chip is increased. The shift gets more pronounced and affects
the resonator at lower probe powers when F → ±π/2, as indicated by the solid
red lines in the reflected phase panels, showing a fit to Eq. (4.3) for parameters
presented in Table 4.2.
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4.2 Parametric characterization

4.2.1 Pump induced nonlinearity

The second nonlinear effect we study enters the dynamics when the parametric
pumping is turned on and gets sufficiently strong for higher order terms of the
mixing product expansion to affect the resonator[51, 52]. To investigate this non-
linearity, we minimize the Duffing nonlinearity by turning off the probe signal. We
then parametrically pump the flux degenerate around a bias point a bit higher up
on the flux curve where the Duffing influence is weaker, compare Table 4.2. As we
recall from Eq. (2.36), the first higher-order term is proportional to the square of
the pump strength and has the effect of shifting the resonator down in frequency
as a consequence of rectification in the flux−frequency transfer function. As with
the Duffing parameter, the pump-induced nonlinearity parameter can be expressed
in terms of γ0 and F as

β =
β0

γ0

cos3(F )

sin2(F )
, (4.4)

with β0 = Γ/ωλ/4. We reveal this effect by detecting the region of parametric in-
stability in the parameter-plane spanned by the pump−resonator detuning δ′ and
the effective pump strength ε′, see Fig. 4.3. The energy of the field inside the res-
onator originates from the pump, and starts to build up exponentially in time when
ε′ is sufficiently strong to compensate for the total damping rate of the resonator:
ε′ = Γ. After pumping for some time, the field saturates to a steady state set by
the Duffing nonlinearity at the given point in the (δ′ − ε′)-plane, which we expect
to shift the resonator frequency out from the degenerate parametric pumping con-
dition, ωp ≈ 2ωr. The boundaries represent the bifurcation threshold at which the
resonator enters into the parametric bistable regime, where oscillations in one of
two metastable states of the system Hamiltonian occur[38]. In Fig. 4.3, the theo-
retical prediction from Eq. (2.43) is compared with the experimental observation
of the parametric region.
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Figure 4.3: (a) Theoretical parametric-oscillation region (P.O.) in the (δ′ − ε′)-
plane. The dashed blue and solid red lines are the two solutions to Eq. (2.43),
whereas the dashed gray line indicates the symmetric region in Eq. (2.35), in the
absence of a pump-induced frequency shift β. The two filled theoretical regions are
plotted for β0 = 0.22. The top and bottom traces are plotted for magnetic flux
bias points F4 = −0.15π and F5 = −0.25π, respectively. (b) Measured amplitude
response around half of the pump frequency at the same bias points as the theo-
retical curves F4 = −0.15π (top) and F5 = −0.25π (bottom) for sample II, see Fig.
4.1(b). The faces of the data are interpolated to guide the eye.
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4.2.2 The metapotential

Now, let us look at a method used to monitor the metapotential of the parametric
resonator[38]. By collecting histograms of the in-phase and quadrature voltages, at
different operation points in the [ε′, δ′]-plane, the shape of the metapotential gets
reflected, recall section 2.4.2. In Fig. 4.4, collected histograms at four different
values of ε′, δ′ are shown. As shown in ref. [38] and explained in the figure caption
there can be one, two, or three stable states in the system.
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Figure 4.4: Collected histograms of in-phase and quadrature voltage pairs at four
different points in the [ε, δ]-plane. (a) Outside of the parametric oscillation region
the background noise yields the centered gaussian distribution. (b) Below the
parametric threshold, the distribution get elongated as it starts to get sqeezed in a
certain direction set by the pump−signal phase angle. (c) Inside the P.O. region,
the two meta stable states, separated by π-radians are equally populated. (d) Due
to the pump-induced nonlinearity, operation points to the left of the degenerate
pump frequency, result in co-existence of the ”quiet” and ”populated” states.

4.3 Interplay between nonlinearities

After studying the Duffing- and pump-induced nonlinearities, there are some im-
portant connections to make between the nonlinear effects, magnetic flux bias, and
participation ratio, γ0. In Fig. 4.5(b), the interplay between the two nonlinearities
is plotted as a function of the magnetic flux bias, for three different values of γ0.
From the plot, it is clear that the two nonlinear effects contribute differently at
different flux bias regimes. When the resonant frequency is close to its maximum,
(F → 0), the Duffing nonlinearity is suppressed, whereas the pump-induced nonlin-
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earity dominates. On the other hand, when the resonator is far detuned from the
top, (F → ±π/2), the pump-induced nonlinearity is suppressed and the Duffing
nonlinearity dominates.

To summarize we have determined the participation ratio, γ0 by studying the
flux tuning of the resonance frequency. We have extracted the Duffing parameter,
α from the power dependent frequency shift of the resonator and we extract the
pump nonlinearity β from the other parameters according to Eq. (4.4).
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Figure 4.5: (a) The resonator frequency as a function of magnetic flux from
Eq. (4.1) for a bare non-tunable resonator (γ0 = 0) (black dashed line) and three
values of the inductive participation ratio γ0 = 0.040, 0.090, and 0.14, in dashed
blue, solid black, and dashed red, respectively. (b) Magnetic-flux dependence of
the normalized Duffing nonlinearity parameter, α/α0 from Eq. (4.2) (left axis) and
pump-induced frequency shift parameter, β/β0 from Eq. (4.4) (right axis), shown
in red and blue regions, respectively. The three different traces correspond to the
same values of γ0 as in (a).
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5Conclusions & Outlook

In this work we have fabricated and characterized superconducting quarter wave-
length resonators with tunable frequency. We have extracted and analyzed two
leading nonlinearities in the system. By tuning the resonant frequency of the res-
onator, we extracted the amount of nonlinearity reflected in the participation ratio.
At three different bias points, the Duffing nonlinearity was extracted and analyzed
by studying the Duffing response of the resonator line shape as the probe power was
gradually increased. Then, the parametric properties of the device was investigated
by studying the region of parametric oscillations in the plane spanned by the pump
detuning and the pump strength.

The main conclusion from the measurement and analysis is that both nonlin-
earities originates from the curvatures of the frequency tuning curve, which in turn
is governed by the inductive participation ratio of the Josephson inductance, γ0.
The two nonlinear effects originate from different effects and are dominant in dif-
ferent regimes of magnetic flux bias. The Duffing nonlinearity scales with the first
derivative of the tuning curve, and is therefore maximum when F → ±π/2, but
suppressed for F → 0. The opposite is true for the pump-induced nonlinearity,
which is dependent on the second derivative of the tuning curve. This allow us
to in-situ tailor both nonlinearities. However, the minimum value of the Duffing
parameter α0γ

3
0 is set by the participation ratio, but it can be tuned upwards.

The interplay between these nonlinearities also open the possibility to design
more complicated devices with desired nonlinear response. One interesting device
to realize would be to use the parametric oscillations to encode quantum informa-
tion by using it as a read-out for a transmon qubit coupled to the center conductor.
The read-out would then be based on the dispersive cavity pull that is dependent
on the state of the qubit. By operating the parametric resonator close to its para-
metric region, the dispersive shift can be used to push the system between the
oscillating- and quiet states. The signal-to-noise ratio of the parametric oscilla-
tions ought to be sufficient to discriminate the ground state from the excited in a
single-shot measurement, necessary for quantum information technologies.
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Appendix A

AClean room processes

A.1 Recipe for parametric resonators

In this appendix, we present the clean room recipes used for fabricating the parametric resonators.
All devices were fabricated on p-doped 3”-silicon wafer with a 400 nm wet grown oxide in the
Nanofabrication Laboratory at Chalmers.

1. Cleaning the wafer

1165 Remover 60− 70◦C, 10 min
Rinse in IPA and blowdry with N2

Ultrasonic bath 100%, 1 min
IPA bath Circulation 2 min
QDR bath Rinse in IPA and blowdry with N2

2. Photolithography to define alignment marks and bonding pads

Stripping plasma 250 W, 40 sccm O2, 1 min
Pre-bake on hotplate 110◦C, 1 min
Spin lift-off resist LOR3B 3000 rpm, 1 min, tacc = 1.5 s (t ≈ 350nm)
Softbake on hotplate 200◦C, 5 min
Spin photoresist S1813 3000 rpm, 1 min, tacc = 1.5 s (t ≈ 150nm)
Softbake on hotplate 110◦C, 2 min
Expose pattern MA6 mask aligner, Lo-vac mode, Pvac = 0.4 bar

6 W/cm2, texp = 8.5
Develop in MF319 45 s (Lift up and rinse after 20 s.)
QDR bath Rinse in IPA and blowdry with N2

3. Electron beam evaporation of metals in Lesker PVD225

Ashing in O2-plasma 50 W, 20 s
E-beam evaporation Pch ≤ 10−7mbar

Sticking layer (Ti), 30Å, 1 Å/s
Contact layer (Au), 800Å, 1-2 Å/s
Stopping layer (Pd), 100Å, 1 Å/s

Lift-off in 1165 Remover 60− 70◦C, t ≈ 30 min
Rinse in IPA and blowdry with N2
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4. Semi-dicing of wafer from backside

Spin protective resist S1813 3000 rpm, 1 min, tacc = 1.5 s (t ≈ 350nm)
Softbake on hotplate 110◦C, 3 min
Alignment cuts (frontside) One cut in each axis for backside alignment
Semi-cuts (backside) Dice the wafer with sample sized pitches

Leave ≈ 170µm.
Strip resist in 1165 Remover 60− 70◦C, t ≈ 10 min

Rinse in IPA and blowdry with N2 (× 3 times)

5. Electron beam lithography to define resonators and Josephson junctions

Ashing in oxygen plasma 50 W, 20 s
Spin lift-off resist MMA(8.5)EL10 500 rpm, tacc = 2 s for 5 s

2000 rpm, tacc = 5 s for 45 s (≈ 570 nm)
Softbake on hotplate 170◦C, 5 min
Spin e-beam resist ZEP 520A(1:1) 3000 rpm, tacc = 1.5 s, 1 min (≈150 nm)
Softbake on hotplate 170◦C, 5 min
Expose JEOL JBX-9300FS 100kV, 2nA (70nA) for small (large) features,

Nominal dose: 150µC/cm2,
16 proximity corrected layers.

Cleave wafer Divide the wafer into rows smaller pieces
Develop top resist O-xylene, 96%, 2 min

Dip in IPA and immediately blowdry with N2

6. Two-angle evaporation of Josephson junctions in Plassys

Develop bottom resist H2O:IPA 1:4, 4 min 50 s (undercut ≥ 0.2µm)
Ashing in oxygen plasma 50 W, 20 s
Electron beam evaporation Pch ≤ 3× 10−7mbar
Bottom layer of Al 40 nm, 5Å/s, α = 28◦

Dynamic oxidation Pox = 0, 2 mbar, tox = 30 min
Top layer of Al 65 nm, 5Å/s, α = −28◦

Lift-off in 1165 Remover 60− 70◦C, ≈20 min
Rinse in IPA and blowdry with N2
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Electroplating of gold

A.2 Electroplating of gold
Preparations

1. Pour the BDT 200 gold solution in a plastic beaker and heat it up by placing it in heated DI
water bath. Set the bath temperature set point to 80◦C and monitor the BDT temperature
using a stick thermometer. When it has reached 58◦C, reduce the set point of the water
bath to 60◦C.

2. Heat up another glass beaker of water to 55◦C on a hotplate. This water is for rinsing the
goldplated pieces.

3. Prepare a plastic beaker of copper etch solution.

4. Place the magnet stirrer on the bottom of the beaker and make sure it can rotate freely.

5. Measure the surface area of all the pieces.

6. Stick down the metal grid into the gold solution such that the surface area is the same as
the work piece.

7. Mount the workpiece on a metal wire or clamped with tweezers and attach it to the other
electrode.

Gold plating procedure

1. Turn on the plating and carefully ramp up the current such that the current density (≈ 2
mA/cm2) matches the size of the work piece.

2. Monitor the surfaces to ensure that the gold sticks to the work piece. If not, turn off the
current and re-mount the work piece. This can also be needed if the gold has not reached
all surfaces of the work piece.

3. Let the piece be in the plating bath for about 20 min in total.

4. Ramp down the current and turn off the power supply.

5. Dip the mounted workpiece in the 55◦ C water beaker and then rinse it with the DI-water
gun.

6. Blowdry with N2.

57



A. Clean room processes

58



Appendix B

BResonator !tting function

In order to extract the quality factors of the resonator (driven in its linear regime),
we derive an expression for the lumped element representation of the resonant
cavity, see Fig. 2.1(b), valid close to resonance. The reflection coefficient, S11 can
be related to the impedance of the probe line, Z0 and the resonator, Zr as[11]

S11 =
Zr − Z0

Zr + Z0
(B.1)

where the impedance of the lumped element resonator circuit is

Zr =
1

iωCc
+

(
1

Rr
+

1

iωLr
+ iωCr

)−1

=
1− ω2Lr(Cr + Cc) + iωLr

Rr

iωCc(1− ω2LrCr)− ωCcLr
Rr

(B.2)

Substitution of (B.2) into (B.1) yields

S11 =
1− ω2Lr

(
Cr + Cc

(
1− Z0

Rr

))
+ iω

(
Lr
Rr
− Z0Cc

(
1− ω2LrCr

))
1− ω2Lr

(
Cr + Cc

(
1 + Z0

Rr

))
+ iω

(
Lr
Rr

+ Z0Cc (1− ω2LrCr)
) (B.3)

Assuming that Rr � Z0 and introducing ω0 = 1/
√
Lr(Cr + Cc) and x = ω/ω0

yields

S11 =
1− x2 + ixω0

(
Lr
Rr
− Z0Cc

(
1− x2ω2

0LrCr
))

1− x2 + ixω0

(
Lr
Rr

+ Z0Cc (1− x2ω2
0LrCr)

) (B.4)

The aim is to express the resonator impedance in terms of the internal and external
quality factors as well as the resonance frequency. We can relate these to the circuit
elements
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Qi = ω0Rr(Cr + Cc) (B.5)

Qe =
Cr + Cc
Z0C2

cω0
(B.6)

S11 =
1− x2 + ix

(
ω2

0Lr(Cr+Cc)
Qi

+ x2Cr−(Cr+Cc)
CcQe

)
1− x2 + ix

(
ω0

2Lr(Cr+Cc)
Qi

+ (Cr+Cc)−x2Cr
CcQe

) (B.7)

Next, we introduce the coupling parameter as the ratio of the coupling capacitance
to the total capacitance κ = Cc/(Cr + Cc) � 1 and emphasize that the frequency
is in close vicinity from the resonator frequency

ω = ω0 + δω (B.8)

S11 =

1−
(

1 + 2 δωω0

)
+ i
(

1 + δω
ω0

)(
1
Qi
−

1−(1−κ)
(

1+2 δωω0

)
κQe

)
1−

(
1 + 2 δωω0

)
+ i
(

1 + δω
ω0

)(
1
Qi

+
1−(1−κ)

(
1+2 δωω0

)
κQe

) =

=

−2 δωω0
+ i

(
1
Qi
− 1

Qe
+

2(1−κ) δωω0

κQe

)
+ i

(
δω
ω0

Qi
−

δω
ω0

Qe
+

2(1−κ)
(
δω
ω0

)
2

κQe

)
−2 δωω0

+ i

(
1
Qi

+ 1
Qe
−

2(1−κ) δωω0

κQe

)
+ i

(
δω
ω0

Qi
+

δω
ω0

Qe
−

2(1−κ)
(
δω
ω0

)
2

κQe

) (B.9)

Now, we multiply with −ω0/2 and assume small frequency detuning

κQi, κQe � 1 (B.10)

S11 =

δω − i
(
ω0

2Qi
− ω0

2Qe
+ (1−κ)δω

κQe

)
− i
(

δω
2Qi
− δω

2Qe
+

(1−κ) δω
2

ω0

κQe

)
δω − i

(
ω0

2Qi
+ ω0

2Qe
− (1−κ)δω

κQe

)
− i
(

δω
2Qi

+ δω
2Qe
−

(1−κ) δω
2

ω0

κQe

) ≈

≈
δω − i

(
ω0

2Qi
− ω0

2Qe

)
δω − i

(
ω0

2Qi
+ ω0

2Qe

) (B.11)

Finally, we can introduce the linewidths (damping rates) associated with the two
quality factors Γi,e = ω0/(2πQi,e) and express the reflection coefficients on the form

S11 =
δf2 + 1

4

(
Γ2
i − Γ2

e

)
+ iΓeδf

δf2 + 1
4 (Γi + Γe)

2 (B.12)

The magnitude and phase of the reflection coefficient are thus
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|S11| =
√

Re [S11]
2

+ Im [S11]
2

=

√[
δf2 + 1

4 (Γ2
i − Γ2

e)
]2

+ [Γeδf ]
2

δf2 + 1
4 (Γi + Γe)

2 (B.13)

arg (S11) = arctan

(
Im [S11]

Re [S11]

)
= arctan

(
Γeδf

δf2 + 1
4 (Γi + Γe)

2

)
(B.14)
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Appendix C

CConformal mapping

To simulate the inductance and capacitance per unit length we use conformal
mapping[53], where the electric field lines between the center conductor and ground
planes are mapped onto those of a parallel plate capacitor. The dielectric environ-
ment of the sample layers is taken into account by deriving a capacitance assosiated
with each dielectric layer. In this section, we go through the equations used to sim-
ulate the characteristic impedance.

We start out from the capacitance of the partial dielectric regions, C1 and C2

is expressed as

Ci = 2ε0 (εr,i − 1)
K(ki)

K(k′i)
, (C.1)

where ε0 and εr,i are the vacuum and relative perimittivity, respectively, and K
denotes elliptic integrals with modulus, ki and k′i, defined as

ki =
sinh (πw/4hi)

sinh (π(w + 2g)/4hi)
k′i =

√
1− ki i ∈ [1, 2], (C.2)

where w and g are the widths of the center conductor and gaps, respectively. Next,
the capacitive contribution from the vacuum in absence of the dielectric layers below
the conductor is given by

Cvac = 2ε0

[
K(k3)

K(k′3)
+
K(k4)

K(k′4)

]
(C.3)

with corresponding modulus

kj =
tanh (πw/4hj)

tanh (π(w + 2g)/4hj)
k′j =

√
1− kj j ∈ [3, 4]. (C.4)

We can now define an effective dielectric constant
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εeff = 1 + q1(εr,1 − 1) + q2(εr,2 − 1) (C.5)

where q1 and q2 are the partial filling factors, defined as

qi =
K(ki)

K(k′i)

[
K(k3)

K(k′3)
+
K(k4)

K(k′4)

]−1

i ∈ [1, 2] (C.6)

Moreover, the phase velocity and characteristic impedance can be expressed in
terms of the effective dielectric constant

vph =
c
√
εeff

(C.7)

Zc =
1

cCvac

√
εeff

=
60π
√
εeff

[
K(k3)

K(k′3)
+
K(k4)

K(k′4)

]−1

(C.8)

Inductance and capacitance per unit length

After calculating the cross section geometry, we can use the same conformal map-
ping to obtain information about the inductance and capacitance per unit length
of the coplanar waveguide transmission line

L =
µ0

2

[
K(k3)

K(k′3)
+
K(k4)

K(k′4)

]−1

(C.9)

C = 2ε0εeff

[
K(k3)

K(k′3)
+
K(k4)

K(k′4)

]−1

(C.10)
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