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Abstract. We experimentally study the behavior of a parametrically pumped
nonlinear oscillator, which is based on a superconducting λ/4 resonator, and
is terminated by a flux-tunable superconducting quantum interference device.
We extract parameters for two devices. In particular, we study the effect of the
nonlinearities in the system and compare to theory. The Duffing nonlinearity,
α, is determined from the probe-power dependent frequency shift of the
oscillator, and the nonlinearity, β, related to the parametric flux pumping, is
determined from the pump amplitude for the onset of parametric oscillations.
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Both nonlinearities depend on the parameters of the device and can be tuned in
situ by the applied dc flux. We also suggest how to cancel the effect of β by
adding a small dc flux and a pump tone at twice the pump frequency.
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1. Introduction

Over the past decade, the interest in parametric systems based on Josephson junctions has
been revived substantially since the pioneering discoveries [1–4], due to their implementation
in various amplification schemes used to detect weak microwave photons in quantum
devices [5–9]. One appeal of these circuits is associated with the presence of multistable
regimes, naturally occurring in nonlinear systems [10]. Sharp transitions separate these regimes
(in phase space), making the devices very useful as sensitive probes of quantum dynamics.
When engineering quantum systems in circuit quantum electrodynamics architectures, the
power of the microwave signal to be measured often reaches the single-photon regime, and
consequently the limiting factor of experiments is often the ability to detect and amplify these
weak signals with sufficient signal-to-noise ratio.

A requirement for the implementation of quantum information processing is to read out
the states of quantum bits (qubits) with high fidelity on short time scales compared with the
qubit coherence times. In order to coherently manipulate a superconducting qubit as well as to
protect it from noise, it is placed in an engineered electromagnetic environment often realized
by a superconducting resonator. The combined qubit–resonator system can then be described
by the Jaynes–Cummings Hamiltonian [11]. When the qubit transition frequency ωa is far
detuned from the resonator’s angular frequency ωr, compared to the qubit–resonator coupling
rate g, 1 = |ωa − ωr| � g, the resonator picks up a dispersive frequency shift ωr ± g2/1, with
a sign depending on the qubit state. This provides a way to non-destructively probe the qubit
dynamics through the resonator response and has been extensively used as a qubit readout
method. However, the measurement fidelity is often limited by the weak response signal relative
to the noise added from the cryogenic high-electron mobility transistor (HEMT) amplifier.

The need to overcome this measurement obstacle has boosted interest in parametric am-
plifiers [12, 14], which offer a large signal gain and the possibility of continuously probing
the system without adding a large amount of noise. Building a parametric amplifier requires
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a nonlinearity, which in a resonant circuit has the desirable consequence of introducing insta-
bilities and bifurcation points. These add degrees of freedom and complexity to the resonator
dynamics, which can be used to implement more efficient readout schemes. The natural and
well known candidate as a nonlinear element in superconducting circuits is the Josephson junc-
tion, due to its low dissipation and nonlinear inductance. An example of a Josephson-based
device utilizing this nonlinearity is the Josephson bifurcation amplifier (JBA) [7, 8]. It consists
of a λ/2 resonator with a Duffing nonlinearity, realized by placing a Josephson junction in its
current node, and has been used to perform single-shot read out of a transmon qubit [15]. In
this readout scheme, the two qubit states are brought into correspondence with two oscillation
states of the hysteretic bistable system. By probing the resonator close to its bifurcation thresh-
old, the dispersive shift from the qubit state is used to push the resonator into its bistable state
where a sharp jump in amplitude is observed for one of the qubit states but not the other. This
has enhanced the readout contrast sufficiently to obtain a fidelity of 94% using a single-shot
sample-and-hold pulse sequence of the resonator probe.

In this work, we investigate the experimental manifestation of two types of nonlinearities
occurring in a nonlinear resonator with a parametrically flux-modulated boundary condition.
In addition to the Duffing nonlinearity present in the JBA, the magnetic-flux modulation
of the Josephson inductance adds an additional degree of freedom, and a nonlinearity to
the system dynamics. The flux modulation enters into the Josephson energy term of the
resonator’s boundary condition in the form of a mixing product with the field inside the
resonator [9], 2EJ |cos(π8(t)/80)| sin(φ(t)), where EJ is the Josephson energy, 8(t) and
80 are the magnetic flux and flux quantum, respectively, and φ(t) denotes the phase across
the Josephson junctions directly related to the field in the resonator. Considering the Taylor
expansions of the flux- and phase contributions to the mixing product [13], the number of terms
entering into the dynamics is set by the microwave pump strength and the number of photons in
the resonator.

Our measured devices consist of a distributed λ/4 coplanar waveguide resonator of
length l, with a flux-tunable inductance realized by terminating one end to ground via two
parallel Josephson junctions forming a dc-superconducting quantum interference device (dc-
SQUID) [12, 16–18, 20], see figure 1(a). By threading the SQUID loop with magnetic flux, the
electrical length of the resonator is tuned through the changing Josephson inductance

L s =
80

2π Ic |cos(π8dc/80)|
, (1)

where Ic is the critical current of the SQUID. To operate the device parametrically, we modulate
the flux around a static dc-bias point, 8dc, by coupling the SQUID to an on-chip microwave
pump line [18], yielding a total flux 8(t) = 8dc + 81 cos(ωpt). If this flux pumping is done
at around twice the fundamental resonator frequency, ωp ≈ 2ωr, parametric oscillations build
up the field exponentially in time inside the resonator, above the parametric threshold [9, 19].
The amplitude of the field in the resonator is eventually limited by the Duffing nonlinearity.
The parametric pumping of the boundary condition is the same as that in the dynamical Casimir
effect experiment [22]. However, when the field is confined inside a resonator, certain conditions
are imposed on the pump-resonator detuning δ and the effective strength of the pump ε to
observe parametric effects. Since oscillations occur only within a limited region in the [δ, ε]-
plane, it is possible to use such a parametric oscillator as a new member of the family of
dispersive read-out techniques for superconducting qubits. In this case, the parametric resonator
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, γ0, yielding slightly different frequency–flux curvatures.
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Figure 1. (Continued) (c) Reflected magnitude and phase responses for the three
dc flux-bias points for sample I: F1 = −0.15π , F2 = −0.25π and F3 = −0.35π .
The Duffing term gives rise to a nonlinear shift of the resonant frequency as
the probe power on the chip is increased. The shift gets more pronounced and
affects the resonator at lower probe powers when F → ±π/2, as indicated by
the solid red lines in the reflected phase panels, showing a fit to equation (8) for
parameters presented in table 2.

would work as a threshold detector, in which the two qubit states would be encoded into one
oscillating- and one quiet state. This technique would relate to the bifurcation amplifier [8] in the
sense of utilizing the cavity pull to push the system into a bistable oscillating state. However,
in contrast to the JBA, the resonator can be left empty for one of the two states where the
parametric pumping does not build up an oscillating field in the resonator. Depending on the
choice of operation point, the choice of ‘quiet state’ can be tailored to reduce back action on
the qubit [21], e.g. by encoding the ground state of the qubit into the oscillating state of the
resonator.

The motivation for this work is to facilitate future designs of pumped nonlinear systems by
developing an understanding of these two leading nonlinearities. In particular, when the device
is operated as a parametric amplifier, a large bandwidth is preferable. This has the unwanted
consequence that the system needs to be parametrically pumped at higher pump strength,
introducing higher-order terms in the pump expansion, which we need to account for when
operating the system.

The structure of the paper is as follows. In sections 2 and 3, we introduce the frequency
tunability of the resonator with applied magnetic flux and the theoretical framework for the field
inside the resonator, respectively. Next, in section 4, the Duffing nonlinearity is described and
extracted, whereas section 5 is devoted to the pump-induced nonlinearity.

2. Tunability of the fundamental frequency: a measurement of the Josephson inductance

The first step in characterizing our system’s dynamics is to find its fundamental frequency’s
dependence on the applied dc-flux bias, F = π8dc/80. We measured the devices using a vector
network analyzer (VNA) connected to a microwave reflectometry setup, depicted in figure 1(a),
in a dilution refrigerator with a base temperature of 20 mK. The shape of the frequency
tuning curve as a function of applied magnetic flux is governed by the participation ratio of
the SQUID’s nonlinear Josephson inductance L s in equation (1) to the geometrical resonator
inductance, γ0 = L s(F = 0)/Ll, where L is the inductance per unit length of the resonator and
l its length [12, 17]. The frequency is well approximated by

ωr(F) ≈
ωλ/4

1 + γ0/ |cos(F)|
, (2)

where ωλ/4 = ωr|γ0=0 denotes the bare resonant frequency, in the absence of the Josephson
contribution to its total inductance. Since the nonlinearity originates from the SQUID
inductance [9], the frequency–flux curvature governs much of the rich nonlinear dynamic
properties of the system; γ0 and ωr(0) should therefore be the main design aspects to consider.
To investigate where the nonlinearities enter into the system response, we measured two samples
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Table 1. Extracted resonator parameters for the two measured samples. ωλ/4 and
ωr(0) are the bare- and zero-flux resonant frequencies, respectively. γ0 denotes
the inductive participation ratio and Ic is the critical current of the SQUID.

Sample ωλ/4/2π (GHz) ωr(0)/2π (GHz) γ0 Ic (µA)

I 5.645 5.200 0.0898 2.18
II 5.626 5.344 0.0563 3.48

with parameters listed in table 1. We extracted resonant frequencies and are plotted as a function
of magnetic flux in figure 1(b).

3. Differential equation for the intracavity field

The intracavity dynamics of the underdamped, parametrically driven nonlinear oscillator can be
mapped onto the Duffing oscillator, studied in detail by Dykman [5]. To investigate the resonator
response upon parametric pumping of the flux at frequency ωp, we adopt the formalism
developed by Wustmann and Shumeiko [9]. Close to resonance, δ ≡ ωp/2 − ωr � ωr, the field
amplitude inside the resonator, A, can be treated as a slow variable compared to all other
timescales in the system, yielding a simplified Langevin equation

i Ȧ + δA + ε A∗ + α |A|
2 A + i0A =

√
200 B(t). (3)

|A|
2 gives the number of photons in the resonator, whereas B(t) is the probe field amplitude

such that |B|
2 has units of photons per second. 0 = 00 + 0R is the total damping rate of the

system, being the sum of the external, 00, and internal, 0R, damping rates. ε and α denote the
effective pump strength and Duffing parameter, respectively. The full F-dependence of these
coefficients can be express in terms of resonator parameters as [9]

ε ≈
δ f ωλ/4γ0

2

sin(F)

cos2(F)
, (4)

α ≈
π 2ωλ/4 Z0

RK

(
γ0

cos(F)

)3

= α0

(
γ0

cos(F)

)3

, (5)

where δ f = π81/80 is the ac-flux amplitude, Z0 = 50 � is the resonator’s characteristic
impedance, RK = h/e2 is the quantum resistance and α0 = π2ωλ/4 Z0/RK . In the following two
sections we will investigate the Duffing nonlinearity as well as the next order pump-induced
nonlinearity.

4. Duffing nonlinearity

The first nonlinearity that we investigate is the effective Duffing parameter, denoted by α in
equation (3), which we study by probing the resonator with an incoming field B at frequency
ωB , but without parametric pumping, ε = 0. This term is also known as the effective Kerr
nonlinearity [15, 24] and is associated with the cubic term of the intracavity field, related to
the current flowing through the SQUID junctions. The magnetic flux dependence of the critical
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current of the SQUID is therefore projected onto the parameter α. The Duffing term gives rise to
a nonlinear frequency shift, yielding a resonator lineshape deviating from the linear Lorentzian
magnitude response, which can be obtained for weak enough probe power.

Experimentally, this nonlinearity can be extracted by measuring the frequency shift of the
resonator by probing it with incrementally increasing powers, but far below the parametric
instability threshold at which the system bifurcates [23, 24], see figure 1(c). In order to extract
the parameter α with high precision, a careful calibration of the intracavity field A is necessary.
One way to effectively calibrate the field amplitudes and setup attenuation is to use the ac-
Stark shift of a sensitive field probe, using a superconducting qubit [24]. Here, we will instead
estimate the field by determining the resonator damping rates and from that obtain a quantitative
understanding for how α depends on the flux bias. The intracavity field can be expressed in terms
of the probe field amplitude and the resonator damping rates as

A =

√
200

ζ + i0
B, (6)

where ζ = δω + α|A|
2 is the effective resonator–probe detuning, and δω = ωB − ωr denotes the

detuning between the probe signal and the frequency of the fundamental resonator mode. The
reflected power can then be written in terms of this effective detuning

|C |
2

|B|2
= 1 −

4000R

ζ 2 + 02
, (7)

using the amplitude relation C = B − i
√

200 A. The reflected signal in equation (7) assumes
its minimum at ζ = 0. Thus, we see that the resonance undergoes a nonlinear frequency shift
from δω|A=0 = 0 to δω|A 6=0 = −α|A|

2, where |A|
2 is the number of photons in the resonator

and α represents the frequency shift per photon. By now substituting this into equation (6), the
nonlinear shift can be expressed in terms of the probe power and the resonator damping rates

δω = −
2α00

02
|B|

2. (8)

We see that to extract α, we also need to determine the two damping rates for minimum probe
power, at the given flux bias point. Equation (8) shows us that the resonator undergoes a
nonlinear frequency shift with increased probe power. However, perhaps more interesting is
that the choice of dc-flux bias point, F , allows us to tune the Duffing parameter α in situ within
a range from α0γ

3
0 and upwards.

We extract the Duffing parameter α using equation (8) at three bias points of sample I,
plotted along with the measured reflected phase response in figure 1(c) and listed in table 2.

5. Pump-induced nonlinearity

The next nonlinear effect enters the dynamics when the parametric pumping gets sufficiently
strong for higher order terms of the mixing product expansion to affect the resonator. To
investigate this nonlinearity, we minimize the Duffing nonlinearity by turning off the probe
signal. We then parametrically pump the flux around a bias point a bit higher up on the flux
curve where the Duffing influence is weaker, compare table 2. The first higher-order term is
proportional to the square of the pump strength and has the effect of shifting the resonator down
in frequency as a consequence of rectification in the flux–frequency transfer function. We reveal
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Table 2. Extracted parameters from sample I . ωr is the resonator frequency at the
three different flux-bias points. 00 = ωr/Qext and 0R = ωr/Q int are the external
and internal damping rates, respectively, related to their corresponding quality
factors Qext and Q int, extracted at low probe power. α represents the Duffing shift
per photon.

Flux bias ωr/2π 00/2π 0R/2π α/2π α/α0

(GHz) (kHz) (kHz) (kHz photon−1) (×10−3)

F1 = −0.15π 5.1558 429 354 108 0.996
F2 = −0.25π 5.0427 344 310 215 1.99
F3 = −0.35π 4.7785 482 299 813 7.53

this effect by detecting the region of parametric instability in the parameter-plane spanned by
the pump–resonator detuning δ and the effective pump strength ε, see figure 2. The energy of the
field inside the resonator originates from the pump, and starts to build up exponentially in time
when ε is sufficiently strong to compensate for the total damping rate of the resonator: ε = 0.
After pumping for some time, the field saturates to a steady state set by the Duffing nonlinearity
at the given point in the (δ − ε)-plane, which we expect to shift the resonator frequency out from
the degenerate parametric pumping condition, ωp ≈ 2ωr.

In this section, we will investigate the pump conditions that need to be fulfilled to
observe parametric oscillations. The boundaries represent the bifurcation threshold at which the
resonator enters into the parametric bistable regime, where oscillations in one of two metastable
states of the system Hamiltonian occur [19]. The thresholds are obtained analytically by finding
the steady-state, zero-field solutions to the intracavity field differential equation (3) [5, 9]. This
yields a threshold symmetric in δ, plotted as the gray dashed line in figure 2(a) and defined by
the relation

ε =

√

02 + δ2. (9)

However, this symmetric region does not take into account the pump-induced frequency
shift, adding to the detuning of the boundary. This is clearly observed in experiments, see
figure 2(b). This effect is a result of the higher pump strength needed to drive parametric
oscillations when the first derivative of the frequency–flux curve in figure 1(a) is small compared
with the more linear response closer to F = ±π/2. This introduces a quadratic, higher order
pump term in equation (9), and the resonator becomes red detuned, which can be understood as
a rectification from the deviation from pure sinusoidal pumping of its frequency. We characterize
this effect using a dimensionless parameter β [9]

ωr(ε) − ωr(0) = −
βε2

0
. (10)

When this pump-induced shift is taken into account, we obtain two solutions for the enclosed
parametric region, together forming the skewed threshold to the parametric oscillation region in
figure 2. The lower and upper parametric instability boundaries follow the relations

εl,u

0
=

1
√

2β

√√√√1 − 2β
δ

0
±

√
1 − 4β

(
β +

δ

0

)
, (11)
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Figure 2. (a) Theoretical parametric-oscillation region (PO) in the (δ − ε)-plane.
The dashed blue and solid red lines are the two solutions to equation (11),
whereas the dashed gray line indicates the symmetric region in equation (9),
in the absence of a pump-induced frequency shift β. The two filled theoretical
regions are plotted for β0 = 0.22. (b) Measured amplitude response around half
of the pump frequency at bias points F4 = −0.15π (top) and F5 = −0.25π

(bottom) for sample II, see figure 1(b). The faces of the data are interpolated
to guide the eye.

where the parameter β can be approximated in terms of characteristic resonator parameters,

β ≈
0

ωλ/4γ0

cos3(F)

sin2(F)
=

β0

γ0

cos3(F)

sin2(F)
, (12)

where β0 = 0/ωλ/4. We can develop an intuition for this shift by finding the pump power at
which the onset of parametric instability is obtained. This takes place when the pump exactly
compensates for the damping and the resonator is empty of photons. The slight shift of the
parametric threshold from zero detuning tells us that this is a different effect than the Duffing
nonlinearity, which is proportional to the field inside the resonator. Instead, the higher-order
pump shift can be understood by considering the curvature of the flux-tuned frequency curve
in figure 3(a), plotted for three different values of γ0. The effective, pump-shifted resonator
frequency is lower than the actual static bias point if the second derivative of the curve starts to
dominate over the first derivative. Another way to think about this effect is rectification, since
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Figure 3. (a) The resonator frequency as a function of magnetic flux from
equation (2) for a bare non-tunable resonator (γ0 = 0) (black dashed line)
and three values of the inductive participation ratio γ0 = 0.040, 0.090 and
0.14, in dashed blue, solid black and dashed red, respectively. (b) Magnetic-
flux dependence of the normalized Duffing nonlinearity parameter, α/α0 from
equation (5) (left axis) and pump-induced frequency shift parameter, β/β0 from
equation (12) (right axis), shown in red and blue regions, respectively. The three
different traces correspond to the same values of γ0 as in (a).

the resonator, on average, spends longer time at a lower effective frequency upon parametric
pumping due to the steeper curvature on the low-frequency side of the static flux bias point.
This is in agreement with the approximation of β, which diverges as we approach zero flux bias
and goes to zero at F → ±π/2. This also agrees with the lower pump strength required to drive
parametric oscillations for dc-flux bias points at lower frequencies.

In figure 3(b), we summarize the flux bias dependence of the Duffing nonlinearity
parameter, α in equation (5), described in section 4 and the pump-induced nonlinearity
parameter, β in equation (12). In fact, it is possible to cancel both the rectification and the
skewed threshold by adding a dc-component and a second pump tone with a frequency of 2ωp.
This is shown in the appendix.
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6. Conclusions

In conclusion, we have shown how the two different nonlinear effects manifest themselves
in superconducting parametric resonators and presented methods to quantify both of them.
Firstly, we extracted the Duffing nonlinearity associated with the current flowing through the
SQUID by fitting the nonlinear frequency shift as a function of the probe power, using extracted
damping rates of the resonator. Secondly, we studied the parametric response in the absence of
a probe signal for two different magnetic-flux points. We conclude that the Duffing nonlinearity
dominates at F → ±π/2, whereas the pump-induced nonlinearity dominates as F → 0 as a
consequence of the fact that the system there needs to be pumped more strongly in order to
drive the parametric oscillations, introducing higher order pump terms into the system response.
Finally, we see that the interplay between these two nonlinear effects is governed by the
inductive Josephson participation ratio, γ0. For a small Josephson contribution, the system is
more robust against the Duffing shift, but more susceptible to pump-induced nonlinearity and
vice versa. With this interplay in mind, more advanced circuits with tailored nonlinear dynamics
can be realized.
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Appendix. Optimization of parametric pumping

The frequency of a tunable resonator is not linear with respect to the applied magnetic flux.
Thus, when supplying a sinusoidal flux, the nonlinear element will experience additional
frequency pumping on top of the harmonic base tone. In this appendix, we will demonstrate
how this pump-induced deviation from a sinusoidal pump tone effectively can be canceled out
by adjusting the pump accordingly. We start out by approximating the frequency tuning using
polynomial Taylor expansion around the static dc-flux bias, Fdc = π8dc/80

ω(t) ≈ ω (Fdc) +
∂ω

∂ F

∣∣∣∣
F=Fdc

(F − Fdc) +
1

2

∂2ω

∂ F2

∣∣∣∣
F=Fdc

(F − Fdc)
2 + · · · . (A.1)

Using a pure harmonic pump tone F = Fdc + δ f1 cos(ωpt), yields a frequency–flux relation on
the form

ω(t) ≈ ω(Fdc) + ω′(Fdc)δ f1 cos(ωpt) +
δ f 2

1

4
ω′′(Fdc)

(
1 + cos(2ωpt)

)
. (A.2)

We see that apart from the fundamental frequency, a dc-rectification contribution, i.e. a pump-
induced frequency shift proportional to the square of the pump flux amplitude, δ f1, is added.
We also get a second rf tone at twice the pump frequency.
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Next, we will use this knowledge to adjust the parametric pump signal in such a way that
these two higher order pump effects are canceled out. Consider a pump signal ansatz on the
following form:

F(t) = F ′

dc + δ f1 cos(ωpt) + δ f2 cos(2ωpt), (A.3)

where F ′

dc = Fdc + Frec. Next, we insert the flux ansatz (A.3) into the frequency relation in (A.1)

ω(t) ≈ ω(F ′

dc) +
δ f 2

1 + δ f 2
2

4
ω′′(F ′

dc) + δ f1

(
ω′(F ′

dc) +
δ f2

2
ω′′(F ′

dc)

)
cos(ωpt)

+

(
δ f2ω

′(F ′

dc) +
δ f 2

1

4
ω′′(F ′

dc)

)
cos(2ωpt) + · · · . (A.4)

Using harmonic balance, the second order tone can be canceled if we satisfy the following
condition:

δ f2 = −
δ f 2

1

4

ω′′(F ′

dc)

ω′(F ′
dc)

. (A.5)

By inserting the second order cancelation condition in (A.5) into the actual pump signal,
neglecting higher order, as well as, fast rotating terms7, we get

ω(t) = ω(F ′

dc) +
δ f 2

1

4
ω′′(F ′

dc) + δ f1 cos(ωpt)ω′(F ′

dc). (A.6)

Finally, the dc-rectification component can be evaluated from the ansatz in equation (A.3)

ω(F ′

dc) +
δ f 2

1

4
ω′′(F ′

dc) = ω(Fdc). (A.7)

Now, we substitute back the relation for the flux F ′

dc = Fdc + Frec into equation (A.7)

Frec = −
δ f 2

1

4

ω′′(F ′

dc)

ω′(F ′
dc)

. (A.8)

In conclusion, to cancel out the second order pump-induced frequency shift, the parametric
pumping should be done using the following adjusted signal:

F(t) = Fdc + δ f1 cos(ωpt) −
δ f 2

1

4

ω′′(F ′

dc)

ω′(F ′
dc)

(1 + cos(2ωpt)). (A.9)

Let us now evaluate the cancelation scheme for a tunable resonator with the resonance
frequency well approximated by equation (2), where the inductive participation ratio of the
system is small (γ0 � 1). To find the compensation terms, we derive the first and second
derivatives of the frequency with respect to magnetic flux, plotted in figure A.1, together with
the ratio of the second derivative to the first, given by

ω′′(F ′

dc)

ω′(F ′
dc)

=
3 + 2γ0 cos(F ′

dc) + cos(2F ′

dc)

2 sin(F ′
dc)(γ0 + cos(F ′

dc))
. (A.10)

7 The harmonic balance cancelation condition can be extended to arbitrary order of pumping.
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Figure A.1. (a) The first derivative of the frequency tuning curve with respect
to magnetic flux, ω′(F), plotted for the same three values of the inductive
participation ratio γ0 = 0.040, 0.090 and 0.14, plotted with dashed blue, solid
black, and dashed red lines, respectively. (b) The second derivative of the
frequency with respect to magnetic flux, ω′′(F). (c) The ratio of the second
derivative in (b) to the first in (a), given in equation (A.10).

In conclusion, the pumping needed to compensate for the second order pump-induced
nonlinearity in a tunable resonator can be written on the following form:

F(t) = Fdc + δ f1 cos
(
ωpt

)
−

δ f 2
1

4

(
3 + 2γ0 cos(F ′

dc) + cos(2F ′

dc)

sin(F ′
dc)(γ0 + cos(F ′

dc))

) (
1 + cos(2ωpt)

)
. (A.11)
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