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Abstract

The Internet is no longer a web of linked pages, but a flourishing swarm
of connected sites sharing resources and data. Modern web sites are in-
creasingly interconnected, and a majority rely on content maintained by
a 3rd party. Web mashups are at the very extreme of this evolution,
built almost entirely around external content. In that sense the web is
becoming mashed up. This decentralized setting implies complex trust re-
lationships among involved parties, since each party must trust all others
not to compromise data. This poses a question:

How can we secure the mashed up web?

From a language-based perspective, this thesis approaches the ques-
tion from two directions: attacking and securing the languages of the web.
The first perspective explores new challenging scenarios and weaknesses
in the modern web, identifying novel attack vectors, such as polyglot and
mutation-based attacks, and their mitigations. The second perspective in-
vestigates new methods for tracking information in the browser, providing
frameworks for expressing and enforcing decentralized information-flow
policies using dynamic run-time monitors, as well as architectures for
deploying such monitors.
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Securing the mashed up web





Securing the mashed up web

Jonas Magazinius

1 Introduction

The Internet is no longer a web of linked pages, but a flourishing swarm
of connected sites sharing resources and data. Modern web sites are in-
creasingly interconnected, and a majority rely on content maintained by
a 3rd party. Web mashups are at the very extreme of this evolution,
built almost entirely around external content. In that sense the web is
becoming mashed up. This decentralized setting implies complex trust re-
lationships among involved parties, since each party must trust all others
not to compromise data. This poses a question:

How can we secure the mashed up web?

From a language-based perspective, this thesis approaches the ques-
tion from two directions: attacking and securing the languages of the web.
The first perspective explores new challenging scenarios and weaknesses
in the modern web. Identifying and mitigating new attack vectors proac-
tively prevents them from being exploited. The second perspective in-
vestigates new methods of enforcing decentralized policies for monitoring
information flow in the browser. Providing tools for enhancing security
helps in mitigating existing problems.

2 Background

In the early days of the Internet static web pages were served from single
web servers using a stateless protocol. Thereby the security considera-
tions were confined within these boundaries. Since then the Internet has
evolved to a complex patchwork of technologies and applications. Func-
tionality has generally been the driving force behind this evolution and
security has often been a secondary concern.

The most significant technological milestone in the history of the web
is the introduction of JavaScript [15]. Developed in 1995, this highly dy-
namic language greatly boosted the dynamics and responsiveness of web
pages. At the same time JavaScript’s powerful capabilities to access and
manipulate data in the browser opened up for a new era of vulnerabilities.
To address the security concerns introduced by JavaScript, a set of rules
were set up to confine its power. At the very core stands the same-origin
policy (SOP) [19]; the fundament of web security designed to separate
and isolate web pages from each other.
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2.1 The same-origin policy

The same-origin policy classifies documents based on their origins. The
notion of an origin is simple; the combination of the protocol, domain
and port of the URL of the document. According to the SOP, documents
from the same origin may freely access each other’s content, while such
access is disallowed for documents of different origins. However, the SOP
does not prevent from including content of a different origin within a
document. The SOP still applies; it is not possible to read the contents
of a node, e.g., an image or a script, that was loaded from a different
origin, but scripts are executed in the same scope, regardless of origin,
and can access each other’s resources. This allows for including libraries,
developed and maintained by 3rd-parties, that add to the functionality of
the page. Libraries like jQuery [4] and Google Analytics [14] are included
in roughly two thirds of the top 10,000 most popular web pages according
to services like builtwith.com [10, 9]. Including libraries for, e.g., access-
ing information from social networks or gathering statistics, has become
commonplace.

Retrieving or disclosing such information requires relaxing the SOP
to establish a channel for communicating across origins.

2.2 Cross-origin communication

There are multiple methods of relaxing, or even circumventing, the SOP.
Some are by design, some leverage unintended features of the browser.
JavaScript object notation (JSON) [5] and cross-origin resource sharing
(CORS) [3] are two good examples of such features.

JSON was originally a convenient hack, but has become an established
format for delivering data. In web pages the XMLHttpRequest-function
is used by scripts to request new content. The content returned is simply
a serialized JavaScript object, which is then either parsed or evaluated
to access the values.

It is possible to use JSON to communicate across origins, then referred
to as JSON with Padding (JSONP). Unlike JSON, JSONP uses dynamic
script inclusion, i.e., dynamically adding a script node to the document,
for communicationand the padding part of JSONP is a call to a predefined
callback function. It is considered to be insecure because using dynamic
script inclusion implies that any JavaScript code in the response will be
executed, not just the callback function. The callback function could also
be overridden by another script, known as JSON Hijacking [16, 11], which
would then receive the data. If the data contain sensitive information, a
script could, intentionally or not, leak that information.

CORS allows an origin to list a set of trusted origins that are allowed
to request certain data despite being of different origin, thereby inten-
tionally relaxing the SOP. When using XMLHttpRequest to access data
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across origins, it will first request the CORS policy file, before proceed-
ing with the actual request. CORS enables using, e.g., JSON or XML,
in communication across origins, without compromising the security of
the page. One issue that has been brought up is that CORS policies are
very coarse grained. As an example, there is no way of specifying how
the data may be used once it has been delivered.

Cross-origin attacks As mentioned in Section 2.1, scripts in a doc-
ument are executed in the same scope and have access to each other’s
resources. Also sensitive information, such as cookies, personal user infor-
mation, and session tokens, live in this scope. Therefore it is a constant
target for attackers to try to get code executing in the scope of an origin.

There are several classes of cross-origin attacks that circumvent SOP.
A classical XSS attack exploit vulnerabilities to injects a malicious script
into the code of a document. A more recent class of attacks abuse common
languages and formats on the web other than JavaScript. Two noteworthy
examples are GIFAR [8] and cross-origin CSS attacks [13]. In a GIFAR
attack, the GIF and JAR (Java archive) formats are combined to create
a file that appears to be a benign image but can be interpreted as a
malicious JAR file that can bypass SOP. In a Cross-origin CSS attack
fragments of CSS code are injected into an existing web page to extract
information from the existing web page.

Despite being well known and thoroughly researched, cross-origin at-
tacks continues to plague the web. The OWASP top 10 list [17] places
both injection and cross-site scripting (XSS) attacks among the three
top security risks for web applications.

2.3 Web mashups

According to the directory services programmableweb.com [1] there are,
at the time of writing, more than 7,000 mashups. A mashup consist of
a hosting page, usually called the integrator, and a number of 3rd-party
components, often of different origins. Mashups are interesting to study
because they are decentralized in the sense that the only responsibility of
the integrator is to coordinate the components. The integrator does not
control the interaction or flow of information between components, nor
does it have leveraged privileges compared to the other components. As
discussed, including libraries implies that the integrated components will
all execute in the same context under the integrating origin. Mashups,
by nature, involve interaction between components and executing in the
same context opens up a platform to do so. However, this does not nec-
essarily mean that the components are aware of each other’s existence
within a page and components have ample opportunity to covertly leak
each other’s data. To put this into context, we proceed with two scenarios.
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Mashup scenarios The following two scenarios illustrate two security
issues that may arise when building a mashup.

Secure cash transportation Consider a company specializing on cash trans-
portation services. The company require tracking of their armored trucks
at all times in the event that a truck is hijacked. To minimize the risk of
a truck being hijacked, the company randomizes the order of the pick-up
points to vary the route of each truck.

The company intends to create a private web application to keep track
of their armored trucks. However, visualizing the location of a truck on a
map is beyond their capabilities and therefore they have decided to build
a mashup where this service is provided by a 3rd-party.

At this point a problem arises, because of the coarse-grained nature
of mashup composition they have to fully trust the mapping service with
their confidential information. The route of a truck is highly confidential,
and so is the exact location of the truck. The mapping service could either
unknowingly or deliberately leak the route or location, or intentionally
misrepresent the location to the operator. Even if the mapping service
itself has no malicious intentions, a result of this integration is that the
security of the web application, as a whole, now also rely on the security
of the mapping service.

TweetFace.com In this scenario, a mashup is combining the APIs of Twit-
ter and Facebook to aggregate the users social network information in one
place. The integrator is responsible for initializing the libraries, load the
network feeds, and aggregate the data. However, the integrator has no
idea about the inner workings of the libraries, and there is nothing pre-
venting either one of the libraries from doing the same aggregation. Either
one of the libraries could be aware that it will be used in this context and
covertly abuse the privileges of the integrator to extract as much users
information as possible from the other social network. The malicious li-
brary will piggyback on the privileges that the integrating application
has in the non-malicious network.

Mashup security Due to the apparent limitations of mashups, mashup
security has been discussed intensively in recent years. A number of ap-
proaches have been proposed and a recent survey by De Ryck et al [20]
summarizes the state-of-the-art in mashup security. The survey identifies
key challenges in mashup security and categorizes the proposals based
their contribution to each challenge. Rather than summarizing the cate-
gories identified by De Ryck et al, we will list the general techniques used
in the proposed approaches.

JavaScript subsets A number of approaches involve using well-behaved
subsets of JavaScript. By syntactically filtering the language, problem-
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atic language features can be disallowed. This technique is unnecessarily
coarse-grained, as it must reject programs that uses, potentially harmful,
restricted language features, even when used in a benign way.

Code rewriting Code rewriting is another popular technique, where pro-
gram code is parsed and rewritten to a semantically equivalent, but re-
stricted program. Apart from ensuring that the code adheres to a subset,
this technique supports making decisions in run-time, making it more
fine-grained. However, it lacks support for writing dynamic policies, i.e.
for controlled release of information.

Relaxing the SOP Other techniques rely on relaxing the SOP to allow
partial cross-domain interaction, either by existing ways of bypassing the
SOP, or by modifications to the browser. When information is commu-
nicated in this manner, the principal sharing the information looses all
control over how it is used on the receiving end.

What these techniques generally lack is being able to define and en-
force policies for fine-grained control over the flow of information within
the application. In other words, To be able to specify and control where
information is allowed to flow within a program.

2.4 Information flow security

Language-based information-flow security [21] considers programs that
manipulate pieces of data at different sensitivity levels.

As an example, the first sample mashup from Section 2.3 operate
on sensitive (secret) data such as the routes and locations of armored
trucks and at the same time on insensitive (public) data such as 3rd-
party mapping services.

A key challenge is to secure information flow in such programs, i.e.,
to ensure that information does not flow from secret inputs to public
outputs. Or to relate to the samples, that routes and locations is not
leaked via map coordinates sent to the map service.

Policies for information flow allows us to define, in a precise manner,
the security and integrity level of data, as well as how it can be shared
with other principals. Declassification policies describe the intentional
release of information, i.e., from a more secret level to a less secret or
even public level.

Information flow policies can be enforced either statically or dynam-
ically. Static enforcement analyses the program, identifying information
sources and sinks, and determines from the structure of the program
whether it will respect the policy or not. Dynamic enforcement instead
monitor the execution of the program, making runtime decisions whether
to proceed with an action or not.
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The driving force for using the dynamic techniques is expressiveness:
as more information is available at runtime, it is possible to use it and
accept secure runs of programs that might be otherwise rejected by static
analysis. Dynamic techniques are particularly appropriate to handle the
dynamics of web applications, where scripts can utilize dynamic code
evaluation to parse strings to code at runtime.

Already in 1996 the browser vendor Netscape were thinking along
these lines when they considered replacing the same-origin policy by in-
troducing taint tracking in their flagship browser Netscape Navigator
3 [2]. Taint tracking taints secret variables and propagates this taint
through any operation that does computation on a tainted variable. The
project did not succeed seeing that taint tracking fails to take into ac-
count implicit information-flows, and the method turned out to be less
secure than the existing policy.

Mozilla’s ongoing project FlowSafe [12] aims at empowering Firefox
with runtime information-flow tracking, where dynamic information-flow
reference monitoring [6, 7] lies at its core.

Looking at the second sample mashup from Section 2.3, there are mul-
tiple principals, e.g., Facebook and Twitter, each with their own sensitive
information. Each of them also has a security policy that determines what
data is secret or not. Using language-based tools for tracking information
flow in the browser, it is possible to track how sensitive inputs prop-
agate as scripts are executed. Initially we build a security lattice over
all involved origins, and use this inferred lattice for labeling inputs to
their respective origins. Whenever secret information is used in an op-
eration, the result is labeled with a label that is at least as restrictive.
When this secret information, or information derived from it, reaches
a public output, such as to be communicated to a different origin, the
monitor inspects the label and decides how to proceed, i.e., if the label
is less-or-equal than the target origin, it is allowed, otherwise execution
is stopped. This allows for secure collaboration on secret data without
the risk of compromising data. In addition, declassification allow for con-
trolled release of information and can be used to share the minimum of
information a collaborator requires.

3 Thesis contributions

As stated in the introduction this thesis explores two perspectives on the
modern web, hence, the contributions can be structured in two main cat-
egories; attacking and securing languages. The first category contributes
new attack vectors and approaches for mitigating these attacks. The sec-
ond category can be further decomposed into the work on the definition
of decentralized policies, and the work on enforcing such policies. It con-
tributes formal definitions for declassification in a decentralized setting,
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Fig. 1. Contribution overview

new techniques for enforcing policies and architectures for deploying se-
curity monitors.

Taking a bird’s-eye view on the thesis, Figure 1 visualizes how the
papers relate to each other and the aforementioned categories. Paper I
introduces the section on exploitation and connects to Paper II, as they
both identify new attack scenarios. Paper III spans all categories as it
involves both attacks on security monitors, their mitigations, and work
on defining ”sane” policies. From there on the focus is on policies and
monitoring, which is introduced in Paper IV, and further elaborated in
the two following papers Paper VI and Paper V. Here, Paper VI ex-
plore run-time monitoring, while Paper V expands the work on policies
from Paper IV. Finally, Paper VII ties the knot on the thesis, evaluating
architectures for distributing monitors to the end user.

3.1 Exploiting languages

In our efforts to secure the web, we tend to focus solely on JavaScript and
forget about the full complexity of the browser and all the languages and
formats it is built to handle. This opens up for new attack vectors, outside
the scope of current research. In Paper I and Paper II two such attack
vectors are identified, and concrete suggestions for mitigation measures
are presented. In Paper III attacks against a class of monitors, i.e., mon-
itors that execute in the same scope as the code they are monitoring, are
identified and proceeds to contribute practical solutions to these attacks.

Polyglot attacks Paper I paper is the first to present a generalized de-
scription of polyglot attacks. It also provides characteristics of what con-
stitutes a dangerous format in the web setting and identify particularly
dangerous formats, with PDF as the prime example. An in-depth study
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of PDF-based injection and content smuggling attacks, unfortunately, it
shows that several major web sites do not protect against polyglot at-
tacks. Several mitigation approaches for polyglot attacks are suggested,
both general and specific to particular components and formats. The fore-
most candidate among these approaches is an expected type declaration,
where the browser informs the web server what type of content it expects
to retrieve based on the context it will be interpreted in. The web server
can then interrupt the request if there is a mismatch in the expected and
actual content type.

Mutation-based XSS attacks Paper II contributes several attacks based
on mutation of HTML in the browser, and evaluates of the prevalence
of mutation patterns. The pattern, serializing and re-interpreting HTML
content, turns out to be common and can be found in multiple JavaScript
libraries as well as in web pages around the web. Paper II also provides
mitigations against mutation-based attacks and proposes trueHTML –
HTML free from mutations.

Monitor attacks Another consideration is how to make monitors tamper
resistant, when executing in an environment under attacker influence.
Paper III highlights weaknesses in Lightweight Self-Protecting JavaScript,
developed by Phung et al [18]. It identifies several attacks that affect
all monitors that execute alongside the code they are monitoring. Each
attack is mitigated and a ”safe” wrapper is presented, able to withstand
all identified attacks.

3.2 Securing languages

This part of the thesis focuses on dynamic decentralized web applica-
tions, such as web mashups, and the problems encountered when several
principals collaborate and share resources. We consider the problems of
defining policies (Paper , and ) and enforcing them (Paper , and ) in
this decentralized setting.

Policies Paper IV proposes a lattice-based approach to mashup security.
The security lattice is built from the origins of the mashup components
so that each level in the lattice corresponds to a set of origins. The key
element in the approach is that the security lattice is inferred directly
from the mashup itself. The classified information is given a label that
correspond to the origin from which it was loaded. The labels are used
to track information flow within the browser and to prevent information
flowing from a higher level in the lattice to a lower, i.e., from a secure
context to a less secure context.

Relating this to the first example in Section 2.3, this would prevent the
mapping service from being able to leak the route or current location of



Securing the mashed up web 9

the trucks. Client-side interaction within the boundaries of the browser,
e.g., plotting the route on the map or displaying the current position, is
still possible, but cannot be communicated back to the service provider.
Herein lies a problem, unless the entire database of images is included
in the library, the map service must know at the very least the corner
points of the map in order to provide the map associated with that area.
This requires a mechanism to release certain specific, less secret, data to
the map service; it requires declassification.

Paper IV brings up declassification and how individual release policies
of each origin can be combined in a composite policy. It extends previous
work on delimited release to a setting with multiple origins and provides
a formal definition of composite delimited release.

The ideas of composite delimited release is further extended in Pa-
per V which focuses on declassification policies, i.e., policies for intended
information release. Here decentralized delimited release is introduced, a
decentralized language-independent framework for expressing what in-
formation can be released. The framework enables combination of data
owned by different principals without compromising their respective se-
curity policies. A key feature is that information release is permitted only
when the owners of the data agree on releasing it. While composite de-
limited release requires that the principals syntactically agree on escape
hatches, Paper V removes this limitation, allowing principals to instead
agree semantically. This is a great advantage as principals is no longer
required to know the exact syntax of collaborating components.

Again relating this to the sample mashup, declassification allows the
transportation company to define a fine-grained policy to, e.g. reveal the
corner points of the required map to the map service but not reveal
sensitive information about the route.

The issue of writing “sane” declarative policies is discussed in Pa-
per III. Sane in the sense that the inner workings of the policy should
not be influenced by the input it inspects, and declarative in the sense
that the policy declares what it expects to inspect via inspection types
and the monitor ensures that the input adheres to the declared inspection
types.

Enforcement Paper VI presents a framework for on-the-fly inlining
of dynamic information-flow monitors. Inlining means transforming the
source code, adding monitor checks at critical points in the program.
We consider a source language that includes dynamic code evaluation of
strings whose content might not be known until runtime. To secure this
construct, our inlining is done on-the-fly, at the string evaluation time,
and, just like conventional offline inlining, requires no modification of
the hosting runtime environment. This is done by inlining a call to the
transformation function where ever code evaluation can occur, rewriting
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the argument on-the-fly. Paper VI also discusses practical considerations,
experimental results based on both manual and automatic code rewriting.
Paper V provides a reference implementation for a subset of JavaScript,
that builds upon the inlining techniques described in Paper VI, which is
then applied to two sample scenarios.

Phung et al [18] describe a method for wrapping built-in methods of
JavaScript programs in order to enforce security policies. The method is
appealing because it requires neither deep transformation of the code nor
browser modification. Unfortunately the implementation outlined suffers
from a range of vulnerabilities. Paper III deals with a number of prob-
lems encountered in the approach, but that could be generalized to other
enforcement techniques. The techniques applies whenever the code of the
monitor is required to be executed in the same context as the code it is
monitoring. In this setting, the monitored code has ample opportunity
to influence and subvert the monitor and thereby execute unmonitored.
The paper enumerates a number of attack patterns and how they can be
mitigated.

Paper VII brings up monitors that enforce policies by replacing the
ordinary execution environment, e.g., by substituting the JavaScript en-
gine of the browser. Replacing the ordinary execution environment with
one that enforces policies that are otherwise not supported, effectively
protects against a wider range of attacks.

As the main contribution, Paper VII proposes architectures for de-
ploying security monitors for JavaScript: via browser extension, via web
proxy, via suffix proxy (web service), and via integrator. Our evaluation
of the architectures explores the relative security considerations.

4 Summary

In a web of constant evolution, the problem of keeping user data confined
within the boundaries of the browser is a moving target. Web pages of
today thrive on dynamicity and are built around 3rd-party content, with
mashups being the prime example. A side-effect is that each origin in
turn depends on the security of all 3rd-party code it includes. The result
is a web of trust, where security depends on the weakest <a></a>.

In the beginning of this chapter we posed the question: how can we
secure the mashed up web?

As is shown in this thesis, such dynamicity requires fine-grained con-
trol over how information flows within the browser. By utilizing language-
based tools such as information-flow control and declassification, it is
possible to enforce fine-grained policies on individual data elements to
prevent information leakages. Dynamic information-flow monitors allows
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us to track secret information as it is being manipulated by an execut-
ing program. Declassification allows for controlled release of information,
at the exact time, but not earlier, it is required to be released. Com-
bined they provide the necessary means to confine secret information in
the browser, while at the same time allowing the full dynamicity of the
mashed up web.

5 Statement of contribution

Paper I – Polyglots: Crossing Origins by Crossing Formats
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and Communications Security
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My co-authors and I contributed equally to the technical material and
the writing of this paper. I provided the technical knowledge behind some
of the attacks described and together with my co-author Phu H. Phung,
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Paper VI – On-the-fly Inlining of Dynamic Security Monitors

Published in Journal of Computers & Security
My co-authors and I contributed equally to the technical material

and the writing of this paper. I wrote the formal proofs and provided a
prototype implementation.

Paper V – Decentralized Delimited Release

Published in Proceedings of Asian Symposium on Programming Languages
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My co-authors and I contributed equally to the technical material and
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