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Abstract

When sales representatives and customers negotiate, it must be confirmed that the final
deals will render a high enough profit for the selling company. Large companies have
different methods of doing this, one of which is to run sales simulations. Such simulation
systems often need to perform complex calculations over large amounts of data, which
in turn requires efficient models and algorithms.

This project intends to evaluate whether it is possible to optimize and extend an
existing sales system called PCT, which is currently suffering from unacceptably high
running times in its simulation process. This is done through analysis of the current
implementation, followed by optimization of its models and development of efficient
algorithms. The performance of these optimized and extended models are compared to
the existing one in order to evaluate their improvement.

The conclusion of this project is that the simulation process in PCT can indeed
be optimized and extended. The optimized models serve as a proof of concept, which
shows that results identical to the original system’s can be calculated within < 1% of
the original running time for the largest customers.
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Introduction

1.1 Motivation

Omegapoint is an IT consulting company focusing on business development, high quality
system development and information security.

One of Omegapoint’s clients wish to improve and extend their current order system.
This system is called PCT, which stands for Price revenue management Client Tool. PCT
is used by sales representatives to find suitable discount rates for different items when
negotiating with customers. As a central part of this process, a sales representative will
run simulations over different discount rates in order to evaluate their expected profit.

When the system performs a simulation, it starts by making an estimation of the
customer’s future order quantities based on their order history. This estimation serves
as a basis when calculating the expected marginal profit which the given discount rates
will yield. However, running such simulations takes too long time in PCT and as such
an optimization of the simulation process is needed.

1.2 Big data

Big data is a slightly abstract phrase which describes the relation between data size and
data processing speed in a system. A comprehensible definition of the concept is “data
whose size forces us to look beyond the tried-and-true methods that are prevalent at that
time.” [1]. This means that a scenario where innovative optimization of both models
and algorithms is required to handle large amounts of data might well be classified as a
big data problem.

In PCT, the big data challenge arises from the huge amounts of data needed in order
to run simulations for large customers. In some cases more than fifty thousand historical
order rows may have to be handled, with multiple possible conditions and discount rates
applied to every single one of them. While the data set itself is not extremely large by
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today’s standards, the complex operations and calculations which have to be performed
on each one of them adds new dimensions to the simulation procedure. Discounts are for
example inherited through a large tree structure containing tens of thousands of nodes
and the results must be presented to the user within a reasonable amount of time.

The reasonable time limit has been defined as ten seconds for the simulation proce-
dure in PCT. This value is based on research [2, 3] showing that a system user who has
to wait even further for results of complex calculations will lose focus - something which
could prove devastating during a negotiation with a customer.

An ideal simulation procedure would always return the results within just a few sec-
onds, since this would mean that simulations could take place during normal conversation
without requiring any waiting at all.

1.3 Goals and limitations

The first goal of this project is to optimize the existing discount simulation algorithm
in order to reduce its running time. The discount simulation’s purpose is to apply given
discounts to articles and article categories, in order to evaluate whether they will generate
an acceptable profit for the selected customer.

The second goal is to create a model with associated algorithms for a scaling extension
of the system’s simulation functionality. The purpose of this extension is to make it
possible to apply different discount rates depending on the volume of individual orders.
This will encourage customers to place a few large orders every year instead of several
small ones, thus decreasing shipping and warehouse charges for the company without
reducing the sales volumes.

In order to achieve these goals, this report focuses on two possible areas of improve-
ment - optimizations of the models and algorithms themselves and improvements of
the underlying SQL database. Other possible improvements such as hardware upgrades
on machines running the algorithm, implementations of the algorithm in programming
languages other than Java or other database solutions than SQL are not considered.

1.4 Thesis outline

The rest of this report is divided into four chapters - Simulation, Method, Results and
Discussion.

The Simulation chapter begins with a detailed description of how discount rate sim-
ulations work and the problems which the current implementation has introduced. The
second part contains a specification of the scaling simulation functionality and an expla-
nation of the technical difficulties which are introduced by this extension.

The Method chapter describes the models and algorithms which have been developed
in this project. It also contains a theoretical analysis of these and comparisons between
the current implementation in PCT and our solution.

In the Results chapter, the performance of PCT as well as of our solutions for both
the optimized customer discount model and the scaling extension are presented. This
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is split up into a set of test cases, with motivations of their relevance for actual usage

scenarios.
The report is wrapped up with a Discussion chapter. This is where the results are

discussed and conclusions and ideas for future work are presented.



Simulation

When a sales representative negotiates with a customer, one can think of it as a sort
of balancing problem. The sales representative wishes to maximize the profit gained
by keeping discounts at a minimum, while the customer wants to minimize his or her
costs by maximizing the discounts. This is where the simulation process comes in handy
- by simulating the effects of new discounts, it is possible to decide whether they are
profitable enough or not.

When both the sales representative and the customer are satisfied with the results,
they can save the discounts as conditions in the system’s database. Discount rates from
such conditions will then be applied to the customer’s future orders.

This chapter is divided into two main parts. The first one describes how customer
discount simulations work and how these are currently implemented in PCT. The second
part focuses on a scaling extension to the simulation process, which makes it possible to
use different discount rates depending on individual order volumes.

The models and algorithms presented in this chapter are not necessarily identical to
the ones implemented in PCT or the optimized system. They are supposed to be read
as explanations of the expected functionality of an arbitrary implementation, unless
anything else is explicitly stated.

2.1 Customer discount simulation

Customer discount simulations are currently fully implemented in PCT. By running a
simulation over the data described in section 2.1.1, a sales representative will find out
which profit would be gained if the customer bought the same articles as in the historical
period but using current pricing conditions. Even more importantly, new discount rates
can be applied to the simulation meaning that the sales representative can see which
effects they will give and whether they seem profitable enough or not.

The details of the simulation process are described first in section 2.1.2; but reading
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the chapter in the presented order is highly recommended. Understanding of the under-
lying concepts is a great advantage when trying to gain insight into the workings of the
simulation process.

2.1.1 Data needed for a customer discount simulation

A simulation is based on data from the following sources:

e Article tree - A tree structure where branch nodes represent article categories and
leaf nodes represent articles

e Sales history - A set of aggregated order rows, containing information about pre-
vious sales history

e Existing customer conditions - Agreed discount rates from existing contracts, which
set a certain discount rate to a specific node in the article tree

e User input - Various parameters that specify which historical data and discount
rates to use in the simulation

Since the contents of these data sources are very central to the simulation process, a
quick description of each one of them is presented below.

The article tree

The article tree categorizes all of the company’s articles into article groups. These are
in turn grouped together into more general categories in three “price levels”, where level
3 is the most specific and level 1 is the most general category. An example tree using
this structure is presented in figure 2.1.
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ROOT

Price Level 1 ====s=msssmemeecmceenaeeeaa e meae Clothes - Shoes
/ \
PriceLevel 2 =======sscecccmmmmecccmemcaaenas Pants . Shirts
/ \
Price Level 3 ---m-mmmmmmmmmmmea s Jeans . Shorts
/ \
Article Group  ---=--=-----=-- Brand A = Brand Z
/ \
Article  ----- Model A-1 = Model A-n

Figure 2.1: An example article tree containing clothes and accessories

As seen in this figure, leaf nodes contain articles while branch nodes represent article
categories. The most general categories are stored in price level 1 (Clothes and Shoes),
subcategories of these in price level 2 (Pants and Shirts are both subcategories of Clothes)
and so on. In the current article database, each price level 3 node contains exactly one
article group meaning that these two levels are equally specific.

While the tree in the figure is just an example (using made up names of clothes and
accessories instead of the more cryptical category codes from the real system), it should
be enough to explain the concept of the article tree structure used in PCT. The amount
of nodes for each level in the reduced tree provided for this project is shown in table 2.1.
The corresponding numbers for the actual system’s tree are even larger. Since internal
company policies do not allow sharing of the full article tree, this reduced tree has been
used throughout the whole project.
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Node level #Nodes
Price level 1 8
Price level 2 64
Price level 3 802
Article Group 802
Article 9,706

Table 2.1: The amount of nodes for each level of the article tree provided for this project

Sales history

The sales history consists of a database containing a large set of historical order infor-
mation, aggregated on a per month basis. An example aggregated order row is shown

in figure 2.2.
Period Customer ID Article no Actual discount
201207 123456 88084686 257.87
Agreed discount | Avg. target discount | cO Currency
0 184.76 56.25 EUR
Customer level Price Organisation | Target discount
8 422.8 1,000 184.76
Value Volume Weight unit | Market code
82.465 55.44 KG DE

Table 2.2: An example order row from the aggregated sales history database

This example row shows that customer 123456 in the German market bought a total of
55.44 kg of article 88084686 during July 2012. One can also see what the total value of
the sold articles were, which discount the customer received and so on. The fields which
are relevant for the simulation process are described in greater detail in section 2.1.2.
To provide the reader with a perspective of the amount of data stored here, the sales
history database for the German market alone stores around 750,000 such aggregated
order rows during a single year.
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Existing customer conditions

When a sales representative and a customer agree on a discount rate for a certain article
or article category, this is added to a database of customer conditions. An example
condition is shown in figure 2.3.

ID Opt lock Aggvalorvol Channel

abcdef0123456789 0 01

Command Dirty Discount Eff. stop date

1 FALSE 10.5

Freeze enddate Freeze pl date | Freeze start date | New freeze
FALSE

Note End date Start date Status

This is just an example | 201310 201211

Contract ID Created by Customer ID Pricelevel ID

fedcba0987654321 SalesRep01 123456 DEPL3_10

Unfreeze cond. ID

Table 2.3: An example customer condition

In this example, we can see that the sales representative SalesRep01 has agreed to give
customer 123456 a 10.5% discount on all articles in the category DEPL3_10. Other fields
indicate the ID of the condition, the ID of the contract which the condition belongs to,
whether or not the condition is temporarily disabled (“frozen”), an optional note specified
by the sales representative and so on. Once again, the fields that are relevant for the
simulation process are described in greater detail in section 2.1.2.

User input

The final data needed for a simulation is provided by the user. This data consists of a
customer, a path leading from the root down to an arbitrary node in the article tree, a
time period and a set of discount rates for the nodes in the path.

The customer is specified as a reference to the ID of a customer in the customer
database. Each sales representative has a set of assigned customers whom he or she can
choose from.

The path is as a set of selected nodes in the article tree, where the first selected node
lies on price level 1 and any node added afterwards must be a child of the last selected
node. This means that there is always a price level 1 node in the path and that the sales
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representative may choose to add a price level 2 node as well. If a price level 2 node was
added, the user can choose to proceed by adding a price level 3 node and so on. The
shortest possible path has the length 1 (meaning that the path consists of a price level
1 node) and the longest possible path has the length 5 (containing one node each from
price levels 1-3, an article group node and finally an article node), which is equal to the
height of the article tree.

The time period is represented by a start date and an end date, each represented as
a combination of a year and a month. When a simulation is run, historical order data
whose period parameter lies inside of this interval will be used and any data outside of
the interval will be ignored. The end date must of course lie after the start date and
the start date must lie within the last 13 months. This limit ensures that a full year’s
history can always be used, since the sales history database may not contain the current
month’s full history yet.

Finally, the user will specify a discount rate for each node in the path. A discount
rate is a decimal number between 0.0 and 99.9 with one decimal value, representing the
discount percentage. It is also possible to let a node inherit its parent’s value by not
assigning a discount rate to it. Since the price level 1 node does not have a parent node
to inherit from, its discount is set to 0.0% if no discount rate is entered on this level.
The discount rates are typically modified multiple times during the simulation process,
since the sales representative must simulate over multiple configurations in order to find
a suitable set of discount rates to add to a contract.

2.1.2 The simulation process

The sales representative starts by entering which customer he is negotiating with and
selecting a path in the article tree (see section 2.1.1) for which discounts will be entered.
Next up, a start and stop month is specified and now the system is ready to run the first
simulation.

Since no discount rates have been entered at this point, all nodes in the path will
use their existing discount rates if any such exist in the active conditions and 0.0%
otherwise. All price level 1 nodes which are not affected by the existing conditions will
also have their discounts set to 0.0%. Due to the concept of discount inheritance (see
section 2.1.3), all other nodes will inherit their parent’s discount rate top-down if they
do not have an existing condition. This means that the results of the first run will always
show the economical results that will follow if the same item quantities are sold as in
the historical data used for the simulation, taking only currently active conditions into
account.

Conditions may have been added or removed since the historical orders were handled,
so it is not enough to just aggregate the values and profits from the history database.
Instead, the “base value” (which one can think of as the price for the order rows if no
discounts had been applied) must be calculated for each article. By applying discount
rates from existing conditions to these base values, the system finds out how much the
customer would have to pay for the same orders if they had been placed using current
conditions.
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In the next step, the sales representative sets discounts for the nodes in the selected
path and runs another simulation over the same data. Any conditions affecting discount
rates for the path nodes will be overrun by the discount rates set by the sales repre-
sentative, while conditions affecting other nodes will still be taken into consideration.
The user specified discount rates will then be inherited down through the article tree
just like the ones from the conditions. The result will thereby correspond to the profit
which would be achieved if these new rates were added to the conditions database and
the same orders as in the historical data were then placed again by the customer.

This simulation step will typically be run multiple times with different discount rates
for the nodes in the path, until they are balanced in such a way that both the customer
and the sales representative are satisfied with the results. Running multiple simulations
with different discount rates for the same time period and historical data until one gets
satisfying results is referred to as going through a simulation process.

Simulation output

So far, the output of simulations has been described in terms of “profit” and “value”. The
actual values computed during a simulation are of course more specific than that and as
such, the specification of requirements presents guidelines for the output data layout.

The specification indicates that the output should be presented as a table, where
each node in the selected path is represented as a row. There is also a top row labeled
“Total”, which shows the total simulation values of all articles in the whole article tree.

A print screen showing how this looks in the current version of PCT is shown in
figure 2.2. The columns of each row are described in table 2.4.

Actual

Customer Total Volume {(kg) Value (EURO) CD Agreed Discount

Discount

Total 128167 471,233 365,257 774 86.4

Price Level 1 Yolume {(kg) Value Sicsttl:lz:mt Agreed Discount Avg. Agreed Target  Avg. Target

PL1_10 114,635 445,862 355,066 794 ari |44.D [ *00 £F oo 58.8 GB.2

8 Actual 8 :
Price Level 2 Volume {kg) Value Discount Agreed Discount Avry. Target

PLZ_MM 10,349 24,014 15,670 653 are I6?.1 [ +*oo £LF o 66.9 66.9

Actual

Price Level 3 Yolume {(kg) Value Discount Agreed Discount Avg. Agreed Target  Avg. Target

PL3_5751F1 26 187 161 a6.0 781 |12.4 [ *00 £F oo 547 54.7

Figure 2.2: A print screen from PCT showing how simulation output is presented in the
current system

10
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Field name Unit Type | Description
Node name n/a String | The name of the row’s node
Volume kg Integer | The total volume of all orders for articles
under the row’s node in the article tree
Value Euro Integer | The total amount of money which the
customer would have to pay if all historical
orders for articles under the row’s node were
placed again, with the new discounts applied
Co Euro Integer | The profit which the company would gain if
all historical orders for articles under the
row’s node were placed again, with the new
discounts applied
C0% Percent | Decimal | Shows how many percent of the row’s value
number | CO corresponds to, i.e. (Value/C0)*100
Actual discount | Percent | Decimal | The average historical discount for articles
number | under the node in the simulation period
Above target n/a Boolean | A warning flag which shows whether the
agreed discount is higher than the node’s
target discount
Agreed discount | Percent | Decimal | The discount used for the row’s node in
number | the current simulation
Avg Agreed Percent | Decimal | The average agreed discount for articles
number | under the row’s node in the article tree
Target discount | Percent | Decimal | A recommended target discount for the node,
number | based on the customer’s pricing level
Avg Target Percent | Decimal | The average historical target discount of
number | articles under the row’s node

Table 2.4: The columns which are used to structure the output from a simulation

The five last columns are empty for the “Total” row, since these values are considered

irrelevant to display for the whole article tree.

11
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2.1.3 Discount inheritance

Discounts can be applied to nodes on any level of the article tree - from price level 1
down to specific articles. It is intuitive that a discount which is set for a single article
will only affect the price of that specific article. When it comes to discounts set on article
groups or price level nodes, the system uses a concept called “discount inheritance” to
let this affect underlying nodes. In order to determine which discount rate to apply to a
given node, the method presented in algorithm 2.1.1 is used.

Algorithm 2.1.1: findDiscountRate(Node n)
Input: A node n from the article tree
Result: The discount rate which should be applied to n
if n is a node in the path for which a discount rate d is set then
‘ return d
else if n is not a node in the path AND n has an active condition ¢ then
‘ return the discount rate from condition ¢
else if n is a price level 1 node then
‘ return 0.0%
else
parent := n’s parent node in the article tree
return findDiscountRate(parent)
end

© 0w N O A W N

[y
o

The concept of discount inheritance is easy to visualize due to the tree structure of
the article database. An example tree with some existing discount rates is shown in
figure 2.3. Existing discount rates are written directly onto the grey nodes to which they
belong, while nodes without such rates are white. The final result of the discount rate
inheritance in the same tree can be seen in figure 2.4, where arrows show how discount
rates are passed down through the tree.

12
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Price Level 1 =~ ====-===-sccmcmnncmmnonnnnns 20.0%

Price Level 2 ======---cemcnnnnnns |

Price Level 3 ====---mnnnonnn | 12.3% |

Article Group ~ ---------- |

Article  =====-ee-a- | | |2.1%| | | |

Figure 2.3: An example article tree where discount rates have been set for four nodes

Price Level 1 =~ ====-===ssccmcmmncommnnnnnns 20.0%

Price Level 2 ==-=-----mmmmmnnnnnn | 20.0% | | 20.0%
Price Level 3 ---------oonn-- 12.3% | | 20.0% | 20.0% |
Article Group ~ ---------- | 12.3% | | 12.3% | | 20.0% | 6.5%
Y Y / \
Article  ====----a- | 12.3% | | 2.1% | | 20.0% | 6.5% | 6.5% |

Figure 2.4: Discount inheritance in the example article tree from figure 2.3

2.1.4 Current implementation

As mentioned in the project motivation in section 1.1, the current implementation of
PCT suffers from critical performance issues. Since the source code of this system is not
allowed to be included in this report, the problems of its algorithm have to be explained
in terms of bad structure choices and complexity rather than examples and excerpts
from the actual code.

13
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A (very) rough outline of the algorithm structure used to perform simulations in PCT
is presented in algorithm 2.1.2. While it does not motivate or explain the details of each
step, it does provide enough information to analyse its complexity. To give the reader
some sort of idea of the actual magnitude of the implementation of this algorithm, its
Java source code takes up several hundred kilobytes (not including GUI, server connec-
tions, database handling and other parts which are not directly related to the algorithm).
In other words, a line describing e.g. criteria matching means running a separate algo-
rithm which in turn has a complexity worth mentioning.

Algorithm 2.1.2: Structure of the simulation process in PCT

1 if this is the first run of the simulation process then

2 initialize connection to each input data element in the GUI [O(k)]
3 end

4 foreach price level in the article tree [O(k)] do

5 match condition level [O(k)]

6 match price level [O(k)]

7 foreach item in the customer’s cache [O(n)] do

8 match criteria [O(k)]

9 end

10 retrieve target discount [O(k)]

11 foreach article in the article tree [O(a)] do

12 foreach article in the customer’s cache [O(n)] do
13 match criteria [O(k)]

14 foreach price level in the article tree [O(k)] do
15 retrieve data and calculate results

16 end

17 end

18 retrieve agreed discounts [O(k)]

19 compare discounts to target discounts [O(k)]

20 end

21 end

22 foreach article in the customer’s cache [O(n)] do

23 calculate results for articles under price level 1 nodes ¢ path
24 end

In the pseudo code above, the complexity has been included on each line where O nota-
tion is applicable. The meaning of each occuring variable in the O notation is presented
in table 2.5.
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Variable | Magnitude | Description

a ~ 30,000 The amount of articles in the article tree
(exact numbers for the reduced tree used in

this project can be seen in table 2.1)

k 5 Height of the article tree (constant in
this program, but may vary between
implementations)

n 1 <n <13a | Distinct (month, article) tuples in the

selected customer’s sales history for the

last 13 months

Table 2.5: The meaning of different complexity variables in algorithm 2.1.2

The total complexity of the implementation of the current simulation algorithm is
O(k+k(k+k+nk+k+a(n(k+k))+k+k)+n) = O(k+5k?+nk?+2ank®+n) = O(ank?)
It should also be noted that the complexity of repeated runs of the algorithm is
O(k(k+k+nk+k+a(n(k+k)) +k+k)+n) = O(5k* +nk? + 2ank® + n) = O(ank?)

This is barely an improvement from the first run at all - one single k term is removed
since the initialization step on line 2 does not need to be run again. The total complexity
of O(ank?) is high in itself, since both @ and n can hold quite large numbers and the
k term is used at multiple places. However, this is not the only reason behind the high
running times of the algorithm.

Another big problem is the on-demand usage of database resources. Every time a
set of values from the database is needed, a new connection to the database is opened.
The sought values are then retrieved by an SQL query and afterwards the database
connection is closed again. Repeatedly opening and closing database connections takes
time and this is done in many parts of the algorithm, including the data retrieval methods
mentioned in line 15. This means that O(ank?) database connections and SQL queries
may have to be opened and run in the worst case. Some values are even retrieved from
the database multiple times during a single execution, since they are used in multiple
places in the code but are not saved after being retrieved the first time.

It should however be noted that some actions have been taken in order to reduce the
amount of data retrieved from the database per simulation. Every customer’s order his-
tory for the last year is stored as a list in a hash map indexed by the customer ID, which
thereby works as an in-memory database. This makes retrieval of a customer’s historical
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data (without direct database access) in O(1) time possible. Of course, iterating over
the resulting list will still take O(n) time. This cache is created on server startup and
updated regularly, so creation and updates of the cache do not affect the running time
of the simulation algorithm. Some loops in PCT are still performed over all distinct
values in certain database tables when information from this cache could have been used
instead, leading to even more unnecessary database lookups.

A third cause of the high running time is the redundant calculation of certain values.
The foreach loop on lines 4-21 in the algorithm above runs once for each price level and
calculates the results for all articles under the node on that level. This means that the
results for all articles under the price level 1 node will be calculated first, followed by a
recalculation of all articles under the price level 2 node and so on for a total of up to &
calculations of the same values for some articles.

Let the selected path in the simulation be called P and the path from an arbitrary
article a up to its price level 1 ancestor be called P,. Then, |P()P,| (the amount of
nodes which are both in P and in P,) equals the number of times article a’s results has
to be calculated during each simulation. Calculating the same value more than once is
of course redundant and adds unnecessary running time. This is visualised in figure 2.5.

Nodes in the path P are marked with thick outlines in the figure. Values for articles
within the blue box (A4; — Aj) are calculated once, while articles within the green box
(A; — Ay) are calculated once more and articles within the red box (Ag,As) yet another
time. The purple box (Ag) marks articles that lie under a price level 1 node ¢ P, whose
values are always calculated only once.
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Figure 2.5: Redundant calculation of values in PCT

The combination of a high time complexity, inefficient database usage and redundant
calculations cause the running time of each simulation to grow rapidly for increasing
values of n.

2.2 Scaling simulation

As mentioned in section 1.1, the company wants a scaling extension of the simulation
process and conditions in PCT. The purpose of this extension is to make it possible
to apply different discount rates depending on the volume of each individual order. If
larger order volumes are rewarded with higher discounts, customers will be more likely
to place large orders a few times per year instead of small orders every week or month,
thus decreasing shipping and warehouse charges.

The extension’s specification is built around a concept called “discount stairs”. These
are set by sales representatives on a per customer and node basis, in order to define which
discount rates will be applied to orders of certain volumes. This concept is described in
greater detail in section 2.2.2. The data sources which are needed for scaling simulations
are in turn described in section 2.2.1.
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2.2.1 Data needed for a scaling simulation

A scaling simulation is based on data from the following sources:

The

Article tree - A tree structure where branch nodes represent “price levels” (article
categories) and leaf nodes represent articles

Sales history - A set of order rows, containing information about previous sales
history. The aggregated sales history from the customer discount model is also
required.

Existing scaling conditions - Agreed scaling conditions from existing contracts,
which set a certain discount stair to an article, article group or price level 3 node
in the article tree

User input - Various parameters that specify which historical data to use, which
discount stair to use and various other simulation settings

article tree

This is exactly the same tree as the one used for customer discount simulations, which
is described in section 2.1.1.

Sales history

The sales history used for scaling simulations consists of a database containing a large
set of historical orders. Note that these order rows are not aggregated, as opposed to the
ones used for customer discount simulations. An example order row is shown in table

2.6.

Invoice date | Invoice no Invoice value | Invoice volume
2012-07-03 al38215 40.345 35

Article ID Customer ID | Unit ID ID

DES88001104 123456 kg 379311

Table 2.6: An example order row from the order history database

However, in some situations data from the aggregated database table (described in sec-
tion 2.1.1) is used as well. This means that scaling simulations require both of these
database tables to be present.

18
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Existing scaling conditions

Agreed discount stairs for specific article tree nodes and customers are added to a
database of scaling conditions. An example scaling condition is show in table 2.7.

Price level ID | Customer ID | vO | vl v2 |[v3 | v4

DEPL3_5690F1 | 123456 5 10 20 30 50

v5 do dl | d2 |d3 |d4 |d5
12.1 15.0 | 17.5 | 20.0 | 25.3

Table 2.7: An example scaling condition

In this example, the scaling condition covers the price level 3 node DEPL3_5690F'1
for customer 123456. The stair has five thresholds, whose volume limits are shown in
columns v0 — v4 and their respective discounts in columns d0 — d4. Since there is no
sixth threshold in this example, v5 and d5 are left empty. A description of how these
values are used in a scaling simulation is presented in section 2.2.3.

According to the scaling extension specification, all customers can be expected to
have a total of at most ten active scaling conditions. Most discounts are in other words
still expected to be handled through customer discount conditions when the scaling
extension has been implemented.

User input

The final data needed for a scaling simulation is provided by the user. This data consists
of a customer, a time period, a node and a discount stair.

The customer is a reference to the ID of a customer in the customer database, just
like in customer discount simulations.

The time period is represented by a start date and an end date, which is slightly
different from the time period in customer discount simulations. Since the historical
order rows used for scaling simulations are not aggregated per month like the ordinary
order history, these dates specify a day of the month as well.

The node is a reference to either an article, an article group or a price level 3 node
in the article tree. This is quite different from the path used in customer discount
simulations - not only because only a single node is selected, but also because price level
1 and price level 2 nodes can not be used.

A discount stair is a way of defining different discount rates for the same node,
depending on individual order volumes. This is described in greater detail in section
2.2.2.
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2.2.2 Discount stairs

As mentioned in section 2.2.1, discount stairs make it possible to apply different discount
rates for orders depending on their volumes. Just like in customer discount simulations,
discount inheritance (see section 2.1.3) is applied. However, scaling conditions can not
be set for price level 1 or price level 2 nodes in the article tree. The reason behind this is
that articles who do not share the same ancestor on price level 3 are generally considered
too diverse to share volume limits. In other words, it would not always make sense to
apply the same discount rate for i.e. orders between 20 and 25 kg on two articles of very
different types.

A discount stair consists of between one and six volume thresholds and a discount
rate for each one of these. The thresholds indicate boundaries between weight intervals,
meaning that ¢ thresholds define i+ 1 intervals. A set of such thresholds is shown in table
2.8 and its resulting interval limits are shown in table 2.9. Since there are six thresholds
in this example, there are seven discount intervals.

Threshold volume | Threshold discount (%)
) 12.1
10 15.0
20 17.5
30 20.0
20 25.3
70 30.1

Table 2.8: An example set of discount thresholds

Volume v | Discount (%)
v <5H 0.0

s <v <10 12.1

10<v <20 | 15.0

20<v <30 | 17.5

30 <wv <50 | 20.0

50 <v <70 | 25.3

70 <wv 30.1

Table 2.9: The resulting discount intervals from the thresholds in table 2.8
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From the last table we can easily see that an order with e.g. volume v = 4 would get
0.0% discount if this stair is used, while an order with volume v = 27 would receive a
17.5% discount.

2.2.3 The scaling simulation process

The general workings of scaling simulations are similar to those of customer discount
simulations, but some differences are of course present. A scaling simulation begins with
a sales representative selecting a customer. In excess of this, a price level 3 node, article
group node or article node in the article tree (see section 2.1.1) is selected and a time
interval specified. Furthermore, a set of one to six volume thresholds is specified. Note
that only volumes are entered before the first run - actual discount rates for these are
not entered until later. The system is now ready to run the first scaling simulation.

During the first run, the selected node n will use the discount rate 0.0% for each
volume interval specified in the input step. After each run, the user can modify the
discount rates for each interval of n’s discount stair, apart from the lowest one which is
always locked to 0.0%. The values for all articles are calculated according to the method
described in algorithm 2.2.1.

Algorithm 2.2.1: getValues(Node n,)

Input: An article node n, from the article tree

Result: Total simulated cost, value and volume for article n,

current := ng

repeat

if current s the selected simulation node with discount stair ds then
‘ return scalingSimulation(n,, ds)

else if current has an existing discount stair d, in a scaling condition then
‘ return scalingSimulation(n,, d,)

end

current := current’s parent in the article tree

© 0 N & bk W N

until current is a price level 3 node
return Total cost, value and volume from aggregated (i.e. not scaling) history
database for n, during selected time period

=
o

As line 10 in the algorithm above shows, values for articles that are not affected by the
scaling node or scaling conditions are retrieved directly from the aggregated database
table (which is also used for customer discount simulations). This works since the ag-
gregated data for a month per definition equals the sum of all individual orders from the
same month.

Even if only a part of the month is covered by the selected time interval for the
simulation, the whole month’s history will still be used in this case. It should also
be noted that the calculation of base prices and application of customer discounts are
ignored - the aggregated values are used directly in order to lower the scaling simulation’s
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complexity.
Algorithm 2.2.2 shows how the scalingSimulation() function which is called in algo-
rithm 2.2.1 works.

Algorithm 2.2.2: scalingSimulation(Node n,, DiscountStair d;)

Input: An article node n, from the article tree and a discount stair dg
Result: Simulated values (cost, value and volume) for article n,

1 totalCost := 0

2 totalValue := 0

3 totalVolume := 0

4 orderRows := all order rows from the scaling sales history (see section 2.2.1) for
article n, within selected time period

5 foreach row r in orderRows do

6 rowVolume := r’s volume

7 aggrPrice := price for n, in 7’s month in the aggregated history database

8 aggrCost := cost for n, in r’s month in the aggregated history database

9 aggrVolume := volume for n, in r’s month in the aggregated history database

10 listPrice := aggrPrice / aggrVolume
11 listCost := aggrCost / aggrVolume

12 rowDiscount := The discount from dg whose volume interval covers row Volume
13 rowCost := rowVolume * listCost

14 row Value := rowVolume * listPrice * (1 - rowDiscount*0.01)

15 totalCost := totalCost + rowCost

16 totalValue := totalValue + rowValue

17 totalVolume := totalVolume 4 rowVolume

18 end

19 return (totalCost, totalValue, totalVolume)

Since the specification of historical order rows does not include any columns for price
and cost, these values have to be calculated from the aggregated historical data. First
off, the article’s “list price” and “list cost” are calculated as a sort of base values on
the form currency unit/volume unit (e.g. Euro/kg) for the specified article and month.
These values are then multiplied by the current order row’s volume in order to get its
price and cost.

Next up, the row’s simulated value is calculated. The row’s volume is matched to
a volume interval in the discount stair (as seen in section 2.2.2) and the corresponding
discount is applied to the row’s price in order to find its value.

Finally, the sum of all row’s costs, values and volumes are returned. The simulation
results are obtained by aggregating the resulting values for all articles, including the
ones where values are retrieved from the aggregated historical database.
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2.2.4 Scaling simulation output

The output of a scaling simulation should be presented just like the output of a customer
discount simulation, which is described in section 2.1.2. The bottom row covers the
scaling node, all of its ancestor nodes have a row each in the middle and the top row
contains the total values for the whole article tree.

2.2.5 Technical difficulties

Scaling simulations have not yet been implemented in PCT. Adding this functionality
has been considered impractical, since scaling simulations run over far larger data sets
than customer discount simulations (which already have problems with high running
times). The non-aggregated data is even too large to be held in an in-memory database
cache, which means that every historical order row will have to be retrieved from an
ordinary database. This slows down the data handling even further.

Customers are estimated to place orders for the same article up to once a week and
the time period used for a scaling simulation can be at most one year. This means that
one can assume a maximum of 52 order rows per article in a single scaling simulation.

As shown in table 2.1, the reduced article tree contains 9,706 distinct articles while
the full article tree has around 30,000 nodes. It is deemed possible that a single customer
buys up to a thousand different articles regularly.

Scaling simulations can only be run over article nodes or price level 3 nodes in the
article tree, but if scaling conditions are specified for other such nodes than the selected
scaling node, these require separate scaling simulations on their own. The running time
of a scaling simulation over an arbitrary node for a customer will thereby increase for
every scaling condition added for the same customer. Price level 3 nodes have an average
of 12.3 and a maximum of 172 underlying articles, so adding a single condition could
increase the number of required historical order rows by almost 9,000.

This means that running a scaling simulation can require multiple separate scaling
simulations for articles with existing scaling conditions. In total, these could require
computations over as many as 52,000 historical order rows.
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Method

This chapter explains the optimized models and algorithms which we have developed
during this project. Just like the previous chapter, this is divided into two parts. The
first part shows how the customer discount model can be optimized and the second part
describes an efficient model for scaling simulations.

3.1 Customer Discount Model

If we examine the current simulation process described in section 2.1.2 and remember
the issues from section 2.1.4, we note that the major bottlenecks in the existing imple-
mentation are that:

e Simulations suffer from a high time complexity
e Data retrieval from the database and in-memory cache is done in an inefficient way

e The same data is redundantly calculated and aggregated several times in the sim-
ulation process

Intuitively, a good place to start in order to reduce the time complexity is to eliminate
redundant calculations in the simulation process. Doing this would not only improve the
performance of single simulations, but also lead to shorter running times for repeated
simulations. An example of this is to save the parts that remain constant during repeated
simulations, in order to avoid reaggregation and recalculation of the same values in each
run.

Apart from the three bottlenecks there is another issue which can be addressed, i.e.
the structure of the article tree. From table 2.1 we can see that there is an equal number
of price level 3 and article group nodes in the article tree. As one might suspect, each
price level 3 node categorizes exactly one article group. This means that the article
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group level does not fill any function and can be entirely removed from the article tree.
The resulting article tree will as such consist of four levels, i.e. price level 1-3 and the
article level.

A rough outline of our optimized model is to first construct a path tree, where we
aggregate parts of the sales history prior to actually performing any simulation calcu-
lations. Since we know which articles will be used in the simulation process after the
simulation path has been selected, it is a simple matter to tag the articles whose values
will remain constant and the ones which will be affected by the simulation. This means
that we only need to iterate over the articles in the article tree once. After this, it is a
simple and relatively fast procedure to apply the user set discounts and merge the results
of the simulation. In order to avoid redundancy, we will use a bottom up approach to
merge the results of the simulations.

Our solution consists of two major parts. In the first step, we perform the expensive
part of tagging and aggregating the data needed for the simulation. In the second step
we perform a small series of calculations on the aggregations to run the simulations and
merge the results.

3.1.1 Preparation step

The preparation step consists of retrieving the sales history for the selected customer
and time period and merge this with the existing article tree to construct a path tree,
which is shown in figure 3.1. Here all the necessary data for the simulation will be
aggregated without any user specified discounts applied. This means that we can apply
the discounts and calculate the results in a later procedure.

This new tree structure consists of the selected simulation path nodes with dependent
and constant parts attached to each node. The dependent part contains the values of ar-
ticles under the path node that will be directly affected by the discount set at that node.
Respectively, the constant part contains the values of articles under the path node that
will remain constant regardless of the discount set at the node. This includes articles
that lie under another price level one node and articles covered by existing conditions.
In the figure we note that the total level does not have a dependent part, since we can
only simulate up to price level one. Similarly, the article level does not have a constant
part since articles cannot have any underlying nodes.
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Total _——— = - - TOTAL CT
Pn Node in chosen path
cn Constant part on level n
Price Levell — — — D1 P1 C1l
Dn Dependent part on level n
Price Level2 @— — — D2 P2 Cc2
Price Level|3 — — — D3 P3 C3
Article @— — — D4 P4

Figure 3.1: Path tree with aggregated sales history

The aggregation of the relevant history from the in-memory cache into the correct de-
pendent or constant node in the path tree is described in algorithm 3.1.1.

By aggregating the customer’s historical data from the PCT cache (which was de-
scribed in section 2.1.4) into a temporary customer cache, a smaller set of historical
rows is obtained without affecting its total values. The idea here is to have the order
history aggregated for each article and customer on a time period basis. This is a big
improvement from the original solution, since we can now access the total aggregated
sales history for an article in constant time. Previously, this would have required itera-
tion through the customer’s entire sales history each time data for an article was needed.
We also created a cache for all of the conditions for the selected customer, in order to
make fast lookup of discounts from conditions possible.
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Algorithm 3.1.1: Prepare simulation
Data: An empty path tree treepath with the same number of levels as specified
from user input
Result: treepath populated with aggregated sales history
history populated with all sales history for the selected customer and
time period
conditions populated with all conditions that exist for the selected
customer
1 Construct and populate a hash map history that contains aggregated sales history
for the selected customer and time period, with the article number as key
Construct and populate a hash map conditions that maps nodes in the article
tree to existing conditions for the customer
3 foreach AggregatedSalesHistory art in history do
4 (index,isConstant,discount) := findDiscountAndDependency (art)
5 current := chosen path node at level index in treepath
6 if isConstant then
7
8
9

N

constVal := apply discount to sales history for art
add constVal to current’s constant node

else
10 ‘ add sales history for art to current’s dependent node
11 end
12 end

The function call to findDiscountAndDependency that is used in algorithm 3.1.1 finds
which node in the path tree to add the article’s sales history to and which discount
to apply. This is done by traversing the original article tree upwards from the article,
examining if there are any conditions present for the current node in each step. For each
article there are three possible outcomes:

e The article’s discount is dependent on a node in the simulated path
e The article is in another price level 1 subtree without a condition

e The article’s discount is inherited from an existing condition

When the article’s discount depends directly on the simulated path, we simply aggregate
the sales history into the correct dependent node in the path tree. We don’t have to find
a discount in this case, since we will use the one specified by the user. If the article is in
another price level one subtree and we do not have a condition specified, we aggregate
the sales history to the total constant node with a discount of 0%. Finally, if the article’s
discount depends on a node with a specified condition we begin by finding the condition
and retrieving its discount. We then locate the path node which this constant article’s
data should be aggregated to. Pseudo code for this is presented in algorithm 3.1.2.
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Algorithm 3.1.2: findDiscountAndDependency(AggregatedSalesHistory art)
Input: Aggregated sales history for an article art
Result: Returns a tuple consisting of
e the discount that should be applied to the article
e a boolean indicating whether the article is constant
e the level in the path tree which art should be added to

1 discount := 0.0

2 isConstant := false

3 foreach node n in the path in the article tree from art to price level 1 do
4 for i from 1 to 5 do

5 if n equals the node at level i in path tree then

6 ‘ return (i,isConstant,discount)

7 end

8 end

9 if n has an existing condition in the conditions hash map then
10 discount := existing condition of n

11 isConstant := true

12 end
13 end

/* Node lies under a price level 1 node outside of the path */
14 return (0, true, 0.0)

3.1.2 The simulation step

After running the preparation step, the heavy computations have been performed and
all that remains is to apply the discounts to the dependent nodes and merge the results.
We apply a bottom up strategy as shown in figure 3.2, where arrows show how values
propagate upwards in the path tree. This is far more efficient than calculating from the
top down, as was the case in PCT (see section 2.1.4).
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Total — — — — — — |[TOTAL |« cT
Pn Node in chosen path
A
cn Constant part on level n
Price Levell — — — D1 > P1 <« C1l
A Dn Dependent part on level n
Price Level|2 — — — D2 > P2 < Cc2
A
Price Leve|3 — — — D3 > P3 <« Cc3
A
Article — — — D4 > P4

Figure 3.2: Propagation of simulated values

The simulation calculations consist of applying the discount from the path node to the
data values in the dependent node and calculating the values specified in table 2.4.
The next step is to add the values from the constant and child nodes to the simulated
dependent value and reiterate this process for each path node until the total level is
reached. A high level description of the propagation of the simulated values and the
mathematical formulas used to perform these calculations are shown in figure 3.3.

Vi = da(Dy) Vi The values of path node i

Vs = d3(D3)+ Cs+Vy | di(D;) The discount applied to dependent of node i
Vo = dao(D2)+Co+ Vs | Cy The constant values of node i

Vi = d&i(D1)+C1+WVe

Vp = Cr+Wy

Figure 3.3: Customer discount simulation formulas

The procedure used when running a simulation is presented in algorithm 3.1.3.
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Algorithm 3.1.3: Customer discount simulation
Data: A populated path tree
Result: Calculates the values of all simulation path nodes
1 foreach node n in the simulation path tree from lowest to highest level do

2 if n is on lowest level in path then

3 child := null

4 constant = null

5 else

6 child := path node on the next level

7 constant = n.constant

8 end

9 if n is on highest level in path then

10 ‘ dependent := null

11 else

12 ‘ dependent := n.dependent with n’s discount applied
13 end

14 calculate n.values based on constant, dependent and child
15 end

To summarize the customer discount model, we have made four major changes to the
original model from PCT. The first is that we perform all of the data aggregation from
the in-memory cache in a prepare step and aggregate the data from each article into
the correct node in the simulation path. The second change is that the path tree is
also stored between simulations to allow for faster repeated simulations. The third one
is that article groups have been removed from the article tree. The last change is that
we merge the results of the simulations in a bottom up fashion, in order to remove the
redundancy caused by recalculation of values for each level in the path.

3.1.3 Complexity analysis

In section 2.1.4 we performed a complexity analysis of the PCT implementation. In order
to get an idea of how this model relates to PCT, we will perform a complexity analysis
of our model as well and compare them. Since the preparation step is where the heavy
calculations occur in our model, it is most suitable to compare the complexity of that
part to the original model. A very rough outline of the preparation step’s complexity in
our model is given in algorithm 3.1.4.
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Algorithm 3.1.4: Structure of the prepare simulation step

1 Build article cache [O(n)]

2 Build condition map [O(c)]

3 foreach article in article cache [O(u)] do

4 foreach price level in path from article to price level 1 [O(k)] do
5 Find discount from possible existing condition

6 end

7 Find path node to aggregate article to [O(k)]

8 end

9 Calculate initial values [O(m)]

10 Set target and agreed discounts [O(k)]

The pseudocode above contains the complexity in O notation on each line where it
is applicable. A description of each variable is presented in table 3.4.

Variable | Magnitude | Description

a ~ 30,000 The number articles in the article tree
(exact numbers for the reduced tree used in
this project can be seen in table 2.1)

k 4 Height of the article tree

n 1 <n < 13a | Distinct (month, article) tuples in the

selected customer’s sales history for the

last 13 months

C < 50 The number of active conditions for
the selected customer

m 1 <m <k | The height of the selected simulation path

u 1<u<a The number of distinct articles in the customer’s

sales history for the selected period

Figure 3.4: Explanation of the complexity variables in algorithm 3.1.4
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From algorithm 3.1.4 we can deduce that the complexity for the preparation step is
On+c+ulk+k)+m+k)=0mn+c+2uk+m+k)=0O(uk)

Once the preparation step has been executed, simulations will have a complexity of
O(m). The analysis of the original implementation in section 2.1.4 showed that the time
complexity for each simulation in PCT is O(ank?), where a is the number of articles, n
is the number of articles with sales history and k is the height of the article tree. The
complexity is the same both for single and repeated simulations in PCT.

By comparing the complexity of the preparation step in our model to PCT, we can see
that there is a factor of O(nk) difference in favor of our model. In repeated simulations
there is a difference of factor O(ank), since m is bounded by k. This means that at least
in theory, our model should work significantly faster than PCT.

3.2 Scaling model

As we saw in section 2.2, the scaling functionality requires an extension and a restructur-
ing of the existing simulation procedure. There are however several aspects that remain
the same from the customer discount model. The user will still have to choose a path
in the article tree to simulate over and it must be possible to run repeated simulations
over the same chosen path. Discount inheritance still applies, with the difference that
we now have to apply a discount stair (see section 2.2.2).

In order to organize the results, we can reuse the path tree from figure 3.1. This
method has already proven efficient in the customer discount model and could as such
be used to make quick repeated simulations possible in the scaling model as well.

The main difficulty of the scaling feature is that we now need to work with individual
order rows instead of using data aggregated on a per month basis. This means that we
can no longer rely solely on the in-memory cache, but that we rather have to retrieve
most of the data needed for a simulation directly from the database. The reason for this
is that the scaling simulation applies different discounts based on the volume of each
specific order row and that this data is too large to be kept in a cache.

Since it is generally slower to read from disk than from memory, one bottleneck in
this model is the number of accesses to the database. This means that two of the main
optimization goals are to improve the performance of the database and to minimize the
number of accesses to it.

As the specification dictates, we can only have one scaling node in a scaling simu-
lation. Articles that do not depend directly on this node can be treated in the same
way as constant article values were treated in the customer discount model. Since the
dependent nodes in the path tree have been replaced by this single scaling node, the
path tree used in the scaling model will have the structure shown in figure 3.5.

32



3.2. SCALING MODEL CHAPTER 3. METHOD

Total — — — TOTAL CcT
Pn Node in chosen path
Cn Constant part on level n
Price Levell — — — P1 Cl
S Scaling node
Price Level2 — — — P2 C2
Price Level3 — — — P3 C3
Article — — — S

Figure 3.5: Path tree with scaling functionality

3.2.1 Model overview

Since the new functionality demands an extension of the old model, we can originate
from our optimized customer discount model. We then need to modify some of its steps
and add some new features. The scaling model consists of these three steps:

e (Calculate the constant values of the article tree
e Perform precalculations for the scaling node
e Run a simulation over the scaling node

The constant values can be calculated in a manner similar to the prepare simulation
step from the customer discount model. The main difference is that scaling conditions
are used instead of customer conditions.

The primary idea of the precalculation step is to create an on-demand cache, which
will hold all of the order rows needed for a scaling simulation over the scaling node. This
new cache will then be used to speed up repeated simulations when the step volumes
are changed between runs. After the step volumes have been set, the order rows will
be aggregated into the correct step in preparation for an actual simulation. When the
discounts in the discount stair have been set as well, a simulation can be run in close
to no time in a fashion similar to the method from the customer discount model. This
means that repeated simulations with the same step volumes will have very low running
times.

33



3.2. SCALING MODEL CHAPTER 3. METHOD

3.2.2 Calculate constants

The constant calculation step is quite similar to the preparation step used in the cus-
tomer discount model. We iterate over each article in the in-memory sales cache for the
selected customer and aggregate the article’s values to the correct path node in the path
tree. The difference is that we ignore the articles that are used in the scaling part of the
simulation, because we need to use the individual order rows of these articles. The basic
outline of the simulation preparation is shown in algorithm 3.2.1.

Algorithm 3.2.1: Prepare scaling simulation

Data: An empty converted tree treepath with the same number of levels as
specified from user input plus one for the “Total” level
Result: treepath populated with aggregated sales history with discounts applied
conditions populated with all scaling conditions that exist for the
selected customer
1 Construct a hash map history that will contain aggregated sales history for the
selected customer and time period with the article number as key
Construct a hash map conditions that contains the discount stairs for the nodes
that have scaling conditions with the node as key
3 foreach AggregatedSalesHistory art in history do
4 (values,pathlevel) = getValuesAndPathLevel(art)
5 current := node at pathlevel in treepath
6 add wvalues to current’s constant node
7
8

N

end
prepareScalingNode()

The algorithm described above is very similar to the one that we saw in the customer
discount model, but with one major difference. In the customer discount model, the
calculation of the constant parts was a simple and fast method where the discount could
be retrieved from the condition and then applied to the aggregated data. However, using
scaling conditions is not that straightforward.

As we saw in section 2.2.2, a scaling condition consists of a scaling stair where the
discount of the correct step needs to be applied to each of the affected articles’ order
rows. First we need to find the concerned order rows in the database, then retrieve the
correct discounts for each such order row and finally apply the discounts to them. The
major downside with this method is that each time we encounter a scaling condition,
we more or less need to perform a scaling simulation on all articles that the condition
applies to.

Having to handle scaling conditions also means that we need to redesign the algorithm
that finds the discount and corresponding node in the simulation path (algorithm 3.1.2).
The reason for this is that we can no longer apply the condition discount to aggregated
values of each article but must apply different discounts depending on the volume of each
individual order. To solve this, we have redesigned the previously developed algorithm
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to one that calculates the values of all constant articles and places the result in the
correct node in the path tree. This is described in algorithm 3.2.2.

Algorithm 3.2.2: getValuesAndPathLevel(artAgg)

© 0 N O oA~ W N

e
AR W N R O

15
16
17
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24
25

26
27
28

29
30
31
32

Input: Aggregated sales history for an article artAgg
Output: A tuple consisting of the values of the article and the path level in the
path tree which the article’s values should be added to.
conditionFound := false
pathLevelFound := false
art := article of artAgg
foreach node n from art to highest ancestor of art in article tree do
if conditionFound and pathLevelFound then
break loop
end
if n equals scaling node then
pathLevel := scaling node level
pathLevelFound := true
conditionFound := true
break loop
end
foreach node m in tree path do
/* nis in tree path */
if n equals m then
pathLevel := level of m
pathLevelFound := true
break loop

end

end

/* n has a scaling condition */
if not conditionFound and conditions has an entry for n then

values := scaling condition applied to the artAgg

conditionFound := true

end
end
/* Node lies under a price level 1 node outside of the path */
if not pathLevelFound then
‘ pathLevel := 0
end
/* No condition found; use values without any new discounts applied */
if not conditionFound then
‘ values := values from artAgg
end
return (values, pathLevel)
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The algorithm on the previous page is used to calculate the values for all articles that
do not depend on the scaling node’s discount stair. This procedure has three cases to
consider:

e The article is affected by the scaling node’s discount stair
e The article is affected by an existing scaling condition
e The article’s values do not depend on any scaling features

When an article inherits its discount stair from the scaling node, we ignore the article
altogether and leave it for the prepare scaling method to handle. Otherwise, we need to
apply the scaling condition by performing a separate simulation for the article using its
discount stair. Finally, if the article does not depend on either the scaling simulation or
a previous condition we use the data from the in-memory cache and add its values to
the correct node.

3.2.3 Prepare scaling node

The scaling node preparation is a two step procedure. In the first step we create a cache
of all order rows that are relevant for the simulation and in the second one we place the
order rows in the correct discount step after the step volumes have been set by the user.
The reason for creating the first cache is to speed up repeated simulations if the user
decides to change the step volumes. If the first cache had not been created, all order
rows would have to be retrieved from the database each time the step volumes were
changed by the user. This would drastically decrease the system’s overall performance
in such cases.

Apart from simply storing the order rows as they are in the cache, we use the fact that
different articles with the same volume will be placed in the same step in a simulation
regardless of the volume steps. This means that all order rows with the same integer
volume can be preaggregated in the cache. An example of this is shown in figure 3.6.

36



3.2. SCALING MODEL CHAPTER 3. METHOD

Scaling Node
X Article x
A B c b Xy Order row belonging to article x
with volume y
a3 b2 cl d5
a5 b5 5 da Y
a2 d2 wy Cache entry y for volume y with
Xy entries for article w, x and z
a4 2y
Cache content
1 2 3 4 5
cl a2 a3 ad a5
b2 d4 b5
d2 c5
d5

Figure 3.6: Aggregation of order rows for the cache

After the user has chosen the step volumes, the cached order rows are placed in the
correct discount step in the manner described in section 2.2.2. Assuming that the cache
looks like the one described in the figure above and that the user sets the volume steps
to three and five, all cached order rows with a volume less than three would be placed
in the lowest step. Order rows with volumes three or four will be placed in the second
step and finally, order rows with a volume of five will be placed in the last step.

In order to effectively perform this sorting procedure, we need a fast method for
finding the correct volume interval for each order volume in the cache. Luckily, this is
a well-known problem called one-dimensional range search [4] which can be solved in
O(logn) time for a set of n intervals using binary search.

The scaling preparation is performed according to the procedure described in algo-
rithm 3.2.3.
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Algorithm 3.2.3: Prepare scaling node

Data: An empty scaling node sim
Result: A scaling node ready for simulation
Create a cache rowCache of all relevant order rows
Let user define step Volumes
Create a scaling step for each volume in step Volumes
Create a scaling step for order rows with volumes less than min(step Volumes)
foreach entry e in rowCache do
Place e in correct scaling step of sim using binary search
end
return sim

o g O otk W N -

Once all of the order rows have been placed in the correct steps along with the dis-
counts we are ready to perform the actual simulation.

3.2.4 Scaling simulation

The actual simulation of a scaling node works as described in section 2.2.3. For each
step in the discount stair, the step discount is applied to the order rows and the result
is aggregated to a result for the entire stair. The outline of the procedure is specified in
algorithm 3.2.4.

Algorithm 3.2.4: Scaling node simulation

Data: A discount stair ds with corresponding order rows
Result: The values of all steps aggregated with the correct discounts applied
Initialize stairValues vector holding cost, value and volume
foreach step s in ds do
stepValues := Calculate simulated cost, value and volume of s by applying its
discount
Aggregate values from step Values into stairValues

w N =

I

end
return stairValues

[=2 0

After the simulation of the scaling node has been performed, the result is propagated
upwards in the tree in a fashion similar to the one used in the customer discount model.
The full procedure of the tree propagation is shown in figure 3.7. In this example, it is
assumed that we are simulating on the article level.
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Total — —

Price Levell — —

Price Level 2 — —

Price Level3 — —

Article —

TOTAL [«€ CT
Pn Node in chosen path
1
Cn Constant part on level n
P1 <€ c1
A S Scaling node
P2 <€ C2
A
P3 <€ C3

Figure 3.7: Overview of scaling simulation procedure

Just as in the discount model the simulation over the path tree is done in a bottom up
fashion where the values of each child node is aggregated into the parent node according
to the figure above. The scaling simulation can be summed up in the following formulas:

Vy
V3
Vo
Vi
Vr

Vs

C3+Vy
Co+ Vs
Ci+ Vs
Cr+W

V;  The values of path node i
Vs  The values from the scaling node

C; The constant values from node %

Figure 3.8: Scaling simulation formulas

The procedure used to perform a scaling simulation is shown in algorithm 3.2.5.
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Algorithm 3.2.5: Scaling simulation procedure

Data: An aggregated article tree
Result: Calculates the values of all simulation path nodes

1 foreach node n in the simulation path from lowest to highest level do
2 if n is on lowest level in path then

3 ‘ n.values := result of scaling node simulation

4 else

5 ‘ calculate n.values based on n.constant and child

6 end

7 child :=n

8 end

3.2.5 Database indexing

Since we can not get away from the fact that we need to continually access the database
during a scaling simulation, some optimizations on the database are needed. An effective
method for improving the performance of a relational database is to use an index, in
order to lower the running time of lookups [5].

A database index makes it possible to find a set of rows in a database table sharing
a set of common properties, without having to examine each row in the table. Since
we are only interested in sales history data for a certain customer during a simulation,
an index over the customers in the table is suitable. Every query to the database from
our model is also limited to a specific article id. By creating an index over the tuple
(Customer 1D, Article ID) in the sales history table, it is possible to retrieve the set of
all order rows with a given article ID and customer ID pair in significantly shorter time
than before.
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Results

This chapter contains tables and plots showing the performance of actual simulations
run in the different systems described in earlier chapters. Since correct results are always
required from both PCT and our implementations, the interesting part is the running
time in different scenarios rather than accuracy or correctness.

The first section contains running times of customer discount simulations. Running
times for our implementation are shown together with corresponding running times for
PCT for the same underlying data.

In the second section, running times of our implementation for scaling simulations
are shown. This feature is not yet supported by PCT, so this part does not have any
reference values from the original system.

4.1 Customer discount results

This section contains running times for customer discount simulations. Every test case
in this section has been run under the same conditions using both our implementation
of our own model and PCT on the same server, in order to get comparable results.

Test case one - Live data

The first test case shows how the running time of the first simulation changes as the num-
ber of distinct articles in the customer’s sales history grows. The “live” data used comes
from PCT’s real database, meaning that these simulations represent actual scenarios
which sales representatives could encounter in PCT. The amount of distinct articles and
corresponding running times are plotted in figure 4.1 and the actual values are shown in
table 4.1.
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Comparison of first simulation
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Figure 4.1: Comparison of running time for first simulation between PCT and our model

#articles | Running time | Running time
PCT [ms] our model [ms]

1 723 130

10 876 156

40 741 89

105 1,142 91

206 1,879 118

366 4,671 131

483 6,473 148

789 9,141 161

Table 4.1: Running time for first simulation in PCT and our model
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Test case 2 - Repeated simulations

The second test case is based on the same historical data as the previous one, but shows
how running times change during three repeated simulations for each customer. Since
repeated runs are very common in the simulation process, any improvements for repeated
runs directly affect the time such processes take to complete. Performance changes for
repeated runs in PCT only depend on database caching, while the improvements in our
model depend on the fact that the preparation step has already been run. Running
times for PCT are shown in figure 4.2 and corresponding times for our model are shown
in figure 4.3.

It is worth mentioning that the Y axis magnitude differs a lot between the two plots.
Exact running times can be seen in table 4.2.

Multiple simulations - PCT
10000
8000
8000
= 7000 N #articles
< 6000 — #7809
E 483
> 000 —  +366
= 4000 —— +206
= 3000 +40
2000 p > ="
1000 = = A
0
1 2 3
simulation number

Figure 4.2: Running time for repeated simulations over the same datasets in PCT

43



4.1. CUSTOMER DISCOUNT RESULTS CHAPTER 4. RESULTS

Multiple simulations - Our model
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Figure 4.3: Running time for repeated simulations over the same datasets in our model

Running time [ms] PCT Our model
#articles Runl | Run2 | Run3 || Run1 | Run 2 | Run 3
40 741 782 692 89 <1 <1
206 1,879 1,801 1,707 118 <1 <1
366 4,671 3,879 4,665 131 <1 <1
483 6,473 6,773 4,240 148 <1 <1
789 9,141 6,780 6,087 161 <1 <1

Table 4.2: Running time for repeated simulations in PCT and our model
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Test case three - Large data sets

In the third test case, running times of simulations over large sets of sales history entries
for the same customer are measured. Due to the large amounts of order history required
for this test, the database had to be filled with generated data. Thus, this test does
not focus on the performance of realistic scenarios but rather on the performance of
simulations over large data sets.

As can be seen in figure 4.4, the running time for PCT increases rapidly compared
to the running time of our model. A separate plot which only shows the running time
of our model (whose increase is impossible to see in the previously mentioned figure) is
presented in figure 4.5. Exact running times are shown in table 4.3.

Running time based on number of sales history entries
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33000
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23000
20000
13000
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0
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0 3000 10000 13000 20000 23000 30000 33000 40000 43000

number of sales history enfries

Figure 4.4: Comparison of running time for first simulation between PCT and our model
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Running time based on number of sales history entries
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Figure 4.5: Running time for first simulation using our model

F#articles | Running time | Running time
PCT [ms] our model [ms]
100 736 150
500 1,295 161
1,000 1,694 157
1,500 1,835 153
2,000 2,161 150
3,000 2,884 152
5,000 4,335 146
10,000 8,463 166
20,000 20,314 192
30,000 33,671 210
40,000 45,892 253

Table 4.3: Running time for first simulation in PCT and our model over generated data
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Test case four - Article distribution

In the fourth test case, a constant amount of 2,400 historical order rows is used (cor-
responding to 200 articles, which have all been sold at least once to the customer each
month during the last year). However, the distribution of these articles has been changed
between every run. In the first run, all articles belong to a price level 1 category outside
of the path. In the second run, 25% of the articles lie under the price level 1 node in the
path and the remaining 75% under other price level 1 nodes and so on.

It is common for customers to buy articles lying under different price level 1 nodes,
so even though this data has been generated it shows how different realistic data distri-
butions affect the simulation’s running time. The results of this test are shown in figure
4.6 and the measured values can be seen in table 4.4.

Sales history distribution
2300
2000
E 1500
@ B PCT
-E B Our model
2 1000
E
Z
B L
0
0% 25% 0% 7% 100%
distribution of data on path PL1 vs other PL1s

Figure 4.6: Comparison of running times depending on the proportion of sales history
under the chosen price level 1 node
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% of articles under | Running time | Running time
PL1 node € path PCT [ms] Our model [ms]
0 786 156

25 1,206 144

50 1,830 151

75 2,051 157

100 2,265 150

Table 4.4: Running time for different history distributions in PCT and our model
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Test case five - Conditions

The fifth test case shows how the amount of existing conditions in the database affect
the simulation’s running time. The data is generated so that the same sales history
(covering 12 order rows each for 300 articles, for a total of 3,600 historical order rows)
is used in each run. The only thing that changes is the amount of these articles which

are covered by existing conditions. The exact values are shown in table 4.5.

Conditions on running time
2300
2000
E 1500
o =PCT
£ -+-0Our model
@ 1000
500
+—b = * +
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0 20 40 80 100 120 140 160
number of aticles affected by condifions
Figure 4.7: Comparison of running times where conditions affect the specified number of

articles

#articles covered | Running time | Running time
by conditions PCT [ms] Our model [ms]
0 2,181 150

10 2,178 148

50 2,172 145

100 2,162 152

150 2,333 146

Table 4.5: Running time depending on the amount of articles covered by existing conditions
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4.2 Scaling results

Unlike the customer discount model where we could compare the results of our implemen-
tation to PCT, the scaling model does not have an existing implementation to compare
our results to. Instead we have tested the implementation on a non-PCT server, which
means that the running time of the scaling results are not directly comparable to the
results in section 4.1.

Since no implementation of the scaling functionality exists in PCT there is no data
in the database to test our implementation on. Subsequently, this means that all data
used for the scaling tests has been generated specifically for this purpose.

Test case six - Large number of order rows

The sixth test case consists of simulations where the number of order rows for the
customer increases. The test runs from 40 order rows up to and beyond the maximum
number of 8,944 order rows for a simulation. The result of this test is shown in figure
4.8.

Scaling with increased number of order rows
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Figure 4.8: Running time for scaling simulations where the number of order rows increases
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Test case seven - Sales history distribution

This test case shows how the running time of a simulation changes as the proportion of
a customer’s sales history affected by the scaling node’s discount stair increases. Two
hundred articles are used, with exactly twelve order rows per article for the customer.

In the first case, 0% of the customer’s sales history is used in the scaling simulation,
in the second case 25% and so on. Figure 4.9 shows the result of the test, where the
blue part marks the constant calculations and the red part marks the scaling simulation.
The data points used for the plot are displayed in table 4.6.

Scaling distribution

300

230
= 200
E B Scaling simulation
2 10 W Constant calculation
s
£
E 100
=

30

0
0% 25% 0% 7% 100%

Figure 4.9: Running time of scaling simulations where the percentage of total sales history
used for scaling increases
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Distribution | Running time Running time
Constant calculation [ms] | Scaling simulation [ms]

0% 95 15

25% 110 62

50% 126 62

75% 142 94

100% 157 110

Table 4.6: Running time for the constant and scaling parts of the simulation
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Test case eight - Scaling conditions

The final test case investigates how the number of articles affected by conditions will
influence the running time of a simulation. This test was run both prior to and after the
introduction of the database index. The result of the test is shown in figure 4.10.

Scaling conditions
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Figure 4.10: Correlation between the number of articles that are affected by conditions
and running time, prior to and after the introduction of an index
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Discussion

The purpose of this chapter is to analyse the project’s results and to discuss how our
solution can improve the simulation process in PCT.

The first two sections discuss the results from chapter 4 and how these correlate
with our optimizations. This is followed by some ideas about possible future work and
a summary of the conclusions from this project.

5.1 Customer discount simulation

As specified in section 2.1.4, the long running times of customer discount simulations in
PCT are caused by three major problems. These are the current algorithm’s high time
complexity, its inefficient usage of database resources and the redundant calculations
caused by PCT’s inefficient model. This section aims to explain how these problems are
handled in our model and how this can be seen in the results.

Time complexity

The improvements of the time complexity are easy to identify due to the complexity
analysis of PCT in section 2.1.4 and of our model in section 3.1.3. PCT’s complexity of
O(ank?) should be compared to our model’s O(uk), where u is limited by a and u < a
in any realistic scenario. This indicates that the calculations in our model are performed
in a far more efficient way.

The actual decrease of the running time caused by the reduced complexity is of course
present in all simulations, but it is very easy to see in test cases one and three. In the
latter of these, the running time for the largest data set using our model was roughly
99.4% lower than the one for PCT. If we compare the running times for the smallest
data sets in test case one instead, we can see that the improvement is still 82.0%.

It is therefore reasonable to assume that simulations run using our model will in
general be > 80% faster than the same simulations run using PCT and that the relative
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improvement will get even larger as the underlying simulation data grows.

Database usage

As described in section 2.1.4, PCT suffers from an ineffective method of retrieving data
from the underlying database. The same data is often retrieved multiple times during a
single simulation and loops are sometimes run over database rows instead of the cache
entry for the customer. In the worst case scenario, PCT has to run O(ank?) SQL queries.

When developing and implementing our model, we have made sure to avoid these
problems by saving data which has to be used multiple times and by using values from
the in-memory cache as often as possible. All active conditions for the chosen customer
are retrieved using a single query and stored in a hash map using the condition nodes as
keys. Any succeeding checks against the user’s conditions can then be performed in O(1)
time, without accessing the database at all. This means that the increased simulation
time caused by increasing numbers of conditions are barely noticeable - something which
is indeed reflected in the results of test case five.

Test case five also shows that the amount of conditions in PCT make a negligible
impact on the running time; at least in realistic scenarios where customers have far less
than a hundred conditions. The reason behind this is that other (about equally slow)
calculations are performed instead for articles without existing conditions.

The removal of the article group nodes from the original model decreased both the
article tree’s height and the maximum path length from 5 down to 4. Because of this,
iterations over these parameters run faster using our model even if the actual code would
otherwise look identical.

Furthermore, our model never iterates over a list of articles retrieved directly from
the database. Such loops are instead run over the key set of another hash map, whose
keys represent only the articles which the customer has bought during the specified
time period. This means that fewer database queries are needed, plus that unnecessary
iterations are ignored which in turn improves our solution’s complexity as well.

The total amount of database queries per simulation in our model is one for the
conditions plus an additional query for every node in the path to retrieve their respective
target discounts, for a total of 2—5 queries. The difference between this low number and
the O(ank?) queries for the worst case scenario in PCT mentioned above is obviously
very big.

Redundant calculations

PCT often calculates the exact same values multiple times during a simulation, as de-
scribed in section 2.1.4. Furthermore, it does not reuse results between repeated runs in
any way - it simply runs all calculations again (in the same redundant way as before).

The main idea of our model and its associated algorithms was to avoid calculating
the same value more than once, as described in section 3.1.2. By calculating from the
bottom up in the selected path, higher nodes can inherit their children’s values directly
instead of having to recalculate them.
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The removal of redundant article value calculations reduces the complexity of the first
simulation (or rather, the preparation step) for any data set. It is thereby very closely
connected to test cases one and three, as mentioned in the time complexity section
above. Test case four shows how our model behaves in a scenario where an increasing
quota of articles is moved in under the price level 1 node in the path, thus increasing
the redundancy of PCT’s calculations. As expected, our running time remains more or
less constant regardless of this distribution.

Since repeated simulations are only carried out over the path tree in our model,
repeated simulations always take less than one millisecond to perform. This can be seen
in test case two.

5.2 Scaling simulation

The PCT developers originally deemed the scaling functionality presented in section 2.2
too complex to be implemented with a reasonable running time.

The main issue that the scaling model suffered from was that scaling requires the
use of each individual order row instead of monthly aggregated sales history. Because of
this, it was impossible to use the in-memory cache solution from the customer discount
model with the scaling extension for two reasons. The first was that the data size of
all order rows was greater than the cache can hold. The second was that it should be
possible to switch between the two simulation types, so the in-memory cache needed to
remain in its existing state. This meant that instead of reading in all of the sales history
once and storing it in a cache, the database had to be accessed each time that sales data
was needed.

There was also the issue of having reasonable running times of the system. Research
has shown that the general threshold for the time that a user is willing to wait for
feedback from a system is ten seconds [2, 3]. Therefore, a running time lower than this
is required for any implementation.

Since there is no existing implementation of the scaling functionality, each test will
use the reasonable response time as a reference point to assess the quality of our imple-
mentation.

Test case six shows that the running time of scaling simulations with as many as
10,000 order rows does not exceed 900 ms. Since a scaling simulation can only be
performed at the article level or price level 3, the maximum number of order rows that
can be used in a simulation is 8,944. This number comes from the maximum number
of articles under a single price level 3 node and the maximum number of order rows
for a single article, as explained in section 2.2.5. This means that a scaling simulation
for a customer with maximum sales history for a greater number of articles than the
specification requires can be run in a reasonable time.

Test case seven shows how the running time of the simulation will change, based on
the distribution of sales history for articles that depend on the scaling node. When the
percentage of sales history affected by the scaling node’s discount stair increases, so does
the total running time of the simulation. In order to keep the running times low, there
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are no existing conditions on any of the articles.

Test case eight shows how the running time will be affected by the number of articles
that have scaling conditions. To show the actual impact of indexing on the running time,
this test was done both with and without indexes on the database tables.

In figure 4.10 the blue graph illustrates the results of the unindexed tests and the
red graph shows the same tests with indexes. When there are no indexes, we can see
that a simulation with no affected articles takes almost twice as long time to run than
it does with indexes and the running time for each added article grows faster than the
running time of the same test with an indexed database. We also note that at 100
affected articles, the test with database indexes still runs in a reasonable time, whereas
the unindexed tests will hit the reasonable time limit at approximately 10 articles.

This is an adequate result, since the specification from section 2.2 states that a cus-
tomer should have a maximum of 10 existing scaling conditions. Depending on whether
the conditions are set for article nodes or price level 3 nodes, these will on average affect
10 to 123 articles.

These tests show that our model sufficiently solves the scaling problem in a reasonable
running time. In fact, they even demonstrate that the implementation will often perform
beyond the scope of the specification.

5.3 Future work

The optimized models described in this report are all implemented in Java, just like the
original PCT system. Further studies of performance gain for implementations written in
other programming languages would be interesting - perhaps a functional programming
language would be able to run simulations even faster?

Another interesting approach would be a comparison between the performance of our
models using different database solutions. NoSQL database systems could prove effec-
tive in handling the big data problems introduced by the scaling extension. Particularly,
an implementation using a graph database would be interesting due to this technology’s
great performance when dealing with tree structures. For example, the graph database
Neo4j has shown promising results in multiple studies such as [6], where Neo4j is con-
cluded to be up to ten times faster than MySQL for traversals and [7], where the results
show that running times for MySQL increase much faster than for Neo4j as the data
magnitude grows.

5.4 Conclusions

This project has consisted of analysis, optimization and implementation of the existing
simulation algorithms in PCT as well as modelling and implementation of its upcoming
scaling extension. The results show that the implementation of the optimized customer
discount model provides large enough performance improvements to guarantee reason-
able running times even for the largest customers. The results for the scaling extension
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prove that implementation of the desired functionality in PCT is possible as well, as long
as the big data issue is handled in an efficient way.

A final conclusion of this project is that optimization of existing algorithms is not
always sufficient in order to improve the performance of a system. Creating new, opti-
mized models and developing fast algorithms for these can prove far more efficient than
optimization of existing algorithms based on improficient models.
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