
A Comparative study of the Cache 
Coherence and Moving Computation to 
Data Approach
Master of Science Thesis in the Programme
Networks and Distributed Systems

ANIMESH BISWAS

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden,  December 2012



The Author grants to Chalmers University of Technology and University of Gothenburg  the 
non-exclusive right to publish the Work electronically and in a non-commercial purpose make it  
accessible  on  the  Internet.  The Author  warrants  that  he/she  is  the  author  to  the  Work,  and 
warrants that the Work does not contain text, pictures or other material that violates copyright 
law. 

The Author shall,  when transferring the rights  of  the  Work to a  third party (for  example a  
publisher or a company), acknowledge the third party about this agreement. If the Author has  
signed a copyright agreement with a third party regarding the Work, the Author warrants hereby 
that  he/she  has  obtained  any  necessary  permission  from  this  third  party  to  let  Chalmers 
University of Technology and University of Gothenburg  store the Work electronically and make 
it accessible on the Internet.

© ANIMESH BISWAS, December 2012.

Examiner: Per Stenström

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden

Department of Computer Science and Engineering
Göteborg, Sweden December 2012



TO MY FAMILY

-ANIMESH BISWAS



Acknowledgements

This thesis could not have been prepared without the excellent supervision of  Per Stenström. 
The  necessary  resources  and  information  have  been  supplied  by  Chalmers  University  of 
Technology. Therefore, I want to thank Per Stenström and Chalmers University of Technology.



Abstract
As multicore computers are gaining widespread use, the main challenge for the future is how to 
design multicore systems that scale to hundreds of processor cores. One of the problems is how 
to implement the so popular shared memory model efficiently for future many-core systems. A 
critical mechanism to realize shared memory is to use cache coherence which allows multiple 
copies of a single memory block to be distributed across the caches attached to each core.  
Unfortunately, it is challenging to scale cache coherence mechanisms to hundreds of cores due 
to  the  latencies  associated  with  communicating  values  and  due  to  the  complexity  of  the 
mechanism. An interesting alternative that has been considered in a recent research project is to 
allow  only  a  single  copy  of  a  shared  data  structure  and  to  force  the  computations  that  
manipulate that data structure to be executed on the core that owns the data structure. While  
some tentative ideas for how to envision such a systems has been isolated, it is not clear how to 
implement  such a system efficiently and whether the performance will  be  competitive  with 
standard cache coherence solutions.

This thesis project aims at implementing a single-copy shared memory model on a Tilera system 
with  64  cores.  In  the  project,  a  run-time  system  is  designed  and  implemented,  parallel 
applications are mapped to it and the performance of the system is established and compared 
with a system employing cache coherence.

Single-copy memory model will perform better than the coherent-based shared memory model  
as long as shared data size is smaller than the primary cache size. Because, in the single-copy 
memory model, core that is responsible for modifying shared data will encounter cache hit each 
time after the first access. On the other hand, in the coherent-based shared memory model, cores  
have to bring shared data from the remote memory for each access. However, coherent-based  
approach will start performing better when shared data size will exceed the primary cache size. 
Because bringing data from the remote cache takes less CPU cycle than from the main memory.

From the  experimental  result  based  on  the  critical  sections  of  different  applications  (linear 
solver equation, Radiosity application of  SPLASH-2 benchmark), I have found that single-copy 
memory model  shows significant  performance improvement  over  the  coherent-based shared 
memory model.  Because,  in the single-copy memory model,  core that  modifies shared data 
structure encounters cache hit most of the time while executing critical section. Cache hit during 
accessing the shared data structures saves substantial amount of CPU cycles. 

Keywords: Cache Coherence, Moving Computation, Shared Memory



Index
1. Introduction............................................................................................................................1
2. Background.............................................................................................................................2

2.1 Shared Memory Multiprocessor Systems..........................................................................................2
2.2 Cache Coherence................................................................................................................................4
2.3 Lock-based Synchronization Protocol...............................................................................................5
2.4 Problem in Cache Coherent Shared memory.....................................................................................6

3. Moving Computation Approach............................................................................................7
3.1 Principle and Paradigm......................................................................................................................7
3.2 Trade off between Moving Computation and Cache Coherence ......................................................8

4. Implementation.......................................................................................................................9
4.1 Overview of the TILE64 Machine.....................................................................................................9
4.2 Tilera-64 Machine Facility for Moving Computation......................................................................10

5. Hypothesis Testing................................................................................................................12
5.1 Hypothesis Statement.......................................................................................................................12
5.2 Testing Methodology........................................................................................................................12
5.3 Test Result........................................................................................................................................14

6. Microbenchmark Modification............................................................................................16
7. Application Case Study........................................................................................................20

7.1 Linear Solver Equation Algorithm...................................................................................................20
7.2 Radiosity Application.......................................................................................................................21

8. Concluding Remarks............................................................................................................23
References.................................................................................................................................24
 



1. Introduction
A shared memory model is the most popular programming model used in mainstream multicore  
computers where each processor has its own private cache. The presence of cache in shared 
memory multiprocessor systems improve performance by reducing memory access time as well 
as memory traffic. When a processor needs certain data for either read or write, it first fetches  
data from remote memory module into its private cache. Further demand of same data by the  
processor  can  be  meet  from  its  private  cache.  Avoiding  same  data  request  over  the 
interconnection network also decreases bandwidth requirement. 

When multiple copies of a shared data block are distributed across caches attached to cores,  
then local modifications to any single cache copy of that data will lead to a global inconsistent  
view of memory. This is known as the cache coherence problem. A hardware cache coherent  
protocol is widely used in order to provide consistent view of shared memory systems. At any 
time a load instruction from a processor will get the most recent updated value and it does not  
depend  on  what  values  are  in  caches  or  main  memory.  The  main  principle  behind  cache 
coherent protocols is the single writer and multiple reader invariant (SWMR) which basically 
means only one core can have write permission when it is in modified (M) state and zero or 
more processor have read permission when they are in the shared (S) state [1]. 

In  parallel  programming,  cache  coherence  allows  threads  to  access  shared  data  and  the  
synchronization  mechanism  (e.g.lock)  ensures  the  correct  behavior  of  a  parallel  program. 
Conventional  lock-based techniques are the most  widely used synchronization technique.  In 
lock-based  synchronization  mechanism,  one  process  is  allowed  to  enter  a  critical  section 
grabbing the lock. Allowing one thread in a critical section at a time ensures correct behavior of  
a parallel program. Other threads must wait until the thread that executing critical section exits  
and release the lock. When a thread that enters the critical section, it needs to bring copies of the  
shared data structure from the remote memory into the private cache. Bringing shared data from 
the remote memory takes a significant amount of CPU cycles. The situation is even worse when 
hundreds of threads tries to access the same shared memory. 

A new ”single-copy” shared memory model has been recently proposed in [3], which allows 
only a single copy of a shared data structure in one private cache and moving computation to the 
core which can only access the shared data structure. In short, it means that requested operations 
for manipulating shared data should be executed by the core who owns that data structure on 
behalf of threads that actually needs to access the shared resources. As there will be only one  
and the same core who actually modifies the data then loading shared data from remote memory 
should be done only once. Unlike a lock-based approach, further remote memory access is not  
needed. Because there will always be a cache hit after the first time. This is the  main benefit of  
this approach in comparison with the lock-based approach. 

The objective of this thesis is to find out under which conditions the single copy shared memory 
model performs better than the cache coherent shared memory model. In order to do this, first I  

1



have  formulated  a  hypothesis and  then  I  have  setup  a  number  of  experiments  to  test  the 
hypothesis through measurements.

I have hypothesized that moving computation to the data approach will be inferior than the lock- 
based approach as long as shared data size is smaller than the primary cache size. When data 
size exceeds the primary cache size, lock-based approach starts performing better than moving 
computation approach.  

Several critical sections of different applications (linear solver equation, Radiosity application 
of SPLASH-2 benchmark) have been considered in order to test the hypothesis. By measuring 
execution time of different critical sections, I have found that moving computation approach 
shows significant performance improvement. Because core that is responsible for modifying 
shared data structure, encounters cache hit  most of the time during execution of the critical 
section. But in the lock-based approach, shared data must be fetched from the remote cache in 
order to manipulate the data. Cache hit during shared data access, saves substantial amount of 
CPU cycle. 

Advantage of single copy shared memory over cache coherent shared memory can be achieved 
as long as shared data structures of applications is being fit into L1 cache. In this way, overall  
execution time of applications can be reduced with the moving computation approach. 

In Section 2, overview of the shared memory multiprocessor system, cache coherence protocol 
and lock-based synchronization mechanism are discussed briefly. Section 3 describes principle  
of  the  moving computation approach.  Section  4 contains  Tilera-64 machine  facility  for  the 
moving computation to the data approach and overview of the Tilera-64 machine. Section 5  
describes hypothesis statement, testing methodology and the testing result. Section 6 provides 
the  details  descriptions  of  the  microbenchmark  modifications.  Section  7  contains  parallel  
application case study results. Finally, Section 8 concludes the thesis by summarizing overall  
findings from the experimental result and providing the direction for the future work.

2. Background 

2.1 Shared Memory Multiprocessor Systems
Cache  coherent  shared  memory  systems  are  widely  used  in  today’s  commercial  multicore 
architectures[1].  Parallel  machines  based  on  shared  memory  architecture  are  gaining  wide 
spread acceptance in both research and commercial use. This architecture dominates not only in  
high performance computing system but also in end user systems (e.g. laptops, desktops and 
mobile devices).

Figure 1 shows a shared memory multiprocessor system organization where each processor has 
its own cache.  Processors and shared memory modules are connected by a inter-connection 
network (e.g. Bus). Private caches attached to each processor help to reduce average memory 
access time and memory traffic.

2



In shared memory multiprocessor systems, processors interact via simple load and stores to the 
shared memory.  This  memory model  also provides  the  facility  of  automated migration and 
replication of shared data structures in private caches [5]. But the replication of shared data in 
one or more caches at the same time can make the memory system incoherent. Cache copies of  
the shared  memory needs to be consistent in order to ensure a coherent view of the memory. 
This problem is known as the cache coherence or cache consistency problem. Cache coherency 
is normally enforced by invalidate or update based cache coherence protocols.

Even though cache coherence allows threads to access shared data structures simultaneously, 
but  only  the  synchronization  mechanism  provides  the  guarantee  of  correct  execution  of  a 
parallel program. Synchronization mechanisms enforce threads to satisfy certain condition first  
before executing a sequence of actions so that operations associated with the shared data can be 
executed  in  one  atomic  step.  Several  synchronization  mechanisms  exist  in  today's 
multiprocessor system (e.g. lock, semaphore etc). In lock-based approach, a thread is allowed to 
modify shared data only when it can successfully grab the lock. After finishing the modification,  
a thread should release the lock so that other thread can modify the shared data. This way, lock-
based techniques ensure that only one thread is allowed to modify shared data at a time. 

                                    Figure 1 : Shared memory architecture                        

3



Cache coherence and synchronization mechanisms are described briefly in the following two 
sections. 

2.2 Cache Coherence
Cache plays a vital role to reduce average memory access time in shared memory systems. The 
principle of locality allows caches to satisfy most of the memory request issued by a processor.  
Moreover, it does not require to inject memory request into the interconnecting network when 
requested data is available in the primary cache. In this way, the bandwidth requirement can also 
be greatly reduced. However, the presence of cache in the shared memory architecture raises the 
cache coherence problem.

Cache coherent  memory allows to have  copies  of  same memory block  present  in  different  
caches of processors. If one processor modifies a copy of the shared memory location that exists  
in its private cache, then the other processors will still be able to read stale copies from their  
caches unless appropriate action is taken.

A mechanism is needed to ensure that updates are being propagated throughout the systems 
when modification of shared memory location is  done so that  copies  of the  memory block 
remain consistent in different caches as well as in main memory. Update propagation can be  
done by invalidating copies of memory blocks which are present in caches or updating copies 
with the newly modified value. The mechanism that ensures memory to be consistent is called a 
cache coherence protocol.

                                Figure 2 : Cache coherence problem 

4



Figure 2 illustrates a shared memory system where M is the main memory and each processor  
Pi has a private cache Ci. In order to understand the coherence problem, let us assume that Pi  
and Pj brings the same variable X from the main memory M in their respective caches. If Pi 
modifies X which located in Ci then copy of X in Cj will become inconsistent. Invalidation 
based cache coherence protocol can be used to maintain consistency among caches. 

Invalidation based cache coherence protocol ensures that there should be one valid copy of a 
memory block at  any time.  More specifically,  a copy that  has been modified most  recently 
would be considered as the valid copy. Before modifying a cache copy, other copies of the same 
block should be invalidated. According to the Figure 2, a copy of X in Cj should be invalidated 
before Pi modifies X. A subsequent read request from processor Pj will cause a coherence miss. 
Pj needs to bring a recent modified version of the memory block from the remote cache Ci. In 
this  way,  any  read  request  returns  the  latest  write  (which  is  the  principle  of  the  memory 
coherence). This is how invalidation based protocol keeps memory consistent. 

2.3 Lock-based Synchronization Protocol 
A synchronization  mechanism refers  to  the  coordination  of  threads  that  guarantees  correct  
execution  of  a  program  and  avoid  unexpected  race  conditions.  A conventional  lock-based 
technique provides safe access to resources shared among multiple processors. But the resources 
must  be  protected  by  locks.  The  main  purpose  of  a  lock  is  to  ensure  serial  access  to  the 
protected resources. Without programmer's effort it is hard to write correct parallel programs 
using the lock-based technique. Because  improper use of locking can make a system deadlock.

Simultaneous access to shared data structures which are not guarded by locks can lead to race  
condition. In that case, correct behavior of the program can not be expected. Necessity of using 
synchronization mechanism can be observed from the example in Figure 3.

                       Thread 1                                                                            Thread 2

                                                                  Counter = 0 

                                                               Counter 1 

                                       Figure 3 : Unexpected behavior of a parallel program

5



For the above example, let us assume that two thread named P1 and P2 each wants to increment 
the shared variable named counter by 1 and the sequence of instructions are executed according 
to the arrow direction. In that case, the final value of counter is 1 instead of the expected result 
of 2. This situation happens because the operations are interleaved. To get the correct value of  
the counter variable, the increment operations needs to be executed without interleaving. Lock- 
based technique enables a thread to execute instructions atomically (in one step). This way,  
synchronization mechanism ensures correct behavior of a parallel program. 

2.4 Problem in Cache Coherent Shared Memory
Figure 4 demonstrates a simple shared counter update example where each thread increments 
shared  counter  by  1  after  successfully  grabbing  the  lock.  This  example  highlights  the  key 
problem of the coherent-based shared memory system.

Let us assume that thread 1 has accessed the shared data before thread 2. Thread 1 should first  
bring  the shared counter  variable  in  L1 cache  from remote memory in  order  to  modify  it.  
According to the invalidation based cache coherence protocol, thread 1 invalidates other copies  
(if any exist) of the counter located in different caches of other processors after modifying its  
own cache copy of the counter. Invalidation prevents other processor to read old value of the 
shared counter. When thread 2 wants to access the same shared data, it will bring a copy from 
thread 1 cache where this shared data has been accessed recently. In this way, threads spend 
huge  amount  of  CPU cycle  for  bringing  shared  data  structure  in  the  private  cache.  If  we  
consider the scenario when hundreds of thread wants to increment the shared counter,  then 
thousand of CPU cycles will be needed for only fetching shared data from remote cache.

                           Thread 1                                       Thread 2 

                           Lock()                                            Lock()

                           Counter++                                     Counter++

                           UnLock()                                       UnLock()

                          Figure 4 : Shared counter update

But if we assume that there is a dedicated processor who has only exclusive access of the shared  
data and other threads who want to increment counter value are enforced to send request to that  
processor so that it can update the counter variable on behalf of them. In that case, the shared 
counter should be brought only once into the private memory of the dedicated processor. After 
that, when the dedicated processor wants to access the counter again, then this counter will be a 
cache hit each time. Thousands of cycle for bringing shared data in the case of cache coherent 
shared memory system does not need any more for this model. This is the main benefit of this  
new memory model called moving computation to the data [2] over the coherent based shared 
memory system.

Next section describes the details description of the moving computation approach.

6



3. The Moving Computation Approach 

3.1 Principle and Paradigm

The basic principle of this approach is that the shared data area should be accessed by only one 
and the same core. This core is the owner of that shared data structure. Other cores who need to  
access (read/modify) the shared data structure will send request to the owner core. The owner  
core sends the acknowledgement back to the requester after modifying the shared data based on 
the request. Strict serialization of the accesses to the shared memory location can be ensured by 
allowing only one processing entity to do modification of the shared resources[7]. According to 
the principle, cores will have the following primary roles [2].

 •User Processing Entity (UPE): a processing entity who executes a normal application (non-
CS) code. 
 •Resource Guardian (RG): a processing entity that has the exclusive access to a shared data 
area and executes critical sections based on requests received from UPE instances.

In the conventional lock-based technique, a thread modifies a shared data structure with the  
computation only when it is allowed to enter critical section. Unlike this approach, a thread is 
enforced to send the computation to  the  resource guardian who has the authority to access  
shared data structure  and thread waits  until  it  receives acknowledgement  from the resource  
guardian.  When  resource  guardian  (RG)  receives  the  computation  from  UPE  instances,  it  
applies computation to the shared data structure. After finishing execution of the critical section, 
RG sends acknowledgment to the user processing entity (UPE). 

In order to understand the whole procedure, we can consider the following simple example.

                    Thread 1                                 Thread  2

                    Lock()                                    Lock()

                    x  = x+C                                 x = x+C

                    UnLock()                               UnLock()

                   Figure 5 : Shared update with constant

Thread 1 and Thread 2 want to increment shared variable x by constant C. Either one of them  
will be able to modify the value of x at a time as the critical section is protected by lock. In 
moving  computation  approach,  threads  will  send  constant  (C)  to  the  RG  who  is  actually 
responsible for manipulating shared data. After receiving the constant from the threads RG will 
increase value of x by C. However, critical section code is kept permanently in the RG and  
necessary parameter (e.g. C) for that code has been moved to the RG.   

A general programming structure for the moving computation approach can be defined based on 
the above description.

7



             UPE instances                                Resource Guardian

            1. send computation                       2. receive computation

                                                                    3. apply computation to the shared data 

             5. receive Ack                                4. send Ack

                               Figure 6 : Basic programming framework

Cache coherence will not be needed any more for the moving computation approach because  
accessing shared data is only performed by the resource guardian. Moreover, if the shared data  
is kept permanently in the private cache of the resource guardian then memory traffic will be  
reduced significantly [7].

3.2  Trade-off  between  Moving  Computation  and  Cache 
Coherence 

This section describes benefits and limitations of the moving computation approach with respect  
to invalidation based cache coherence protocols. Performance improvement mainly depends on 
the shared data size and L1 cache size. Following two cases highlight this issue more briefly.

(a) Shared data size  =  2 x L1 Cache Size : 

Let us assume that two processors P1 and P2 want to access a shared data structure (e.g. array,  
linkedlist,  etc.)  and  P1 will  access  the  shared  data  before  P2.  The  size  of  the  shared  data  
structure is two times bigger than L1 cache size. According to the assumption, half of the shared 
data would be enough to fill the L1 cache.

In the case of the invalidation based cache coherence protocol, P1 will bring first half of the 
data into L1 cache from the main memory. After accessing the first half, P1 will have to bring 
second half of the data structure from the main memory. As half of the shared data fills the L1 
cache, second half of the data will replace the present content (first half) of the primary cache of 
P1. When  P2 wants to access the first half of the data structure, it will bring this portion from 
the main memory and second half of the  data should be brought from the cache of  P1.

In the moving computation approach, RG will bring first half of the data from the main memory 
when it will receive first request to manipulate the shared data either from P1 or P2. RG will  
then bring second half  of  the data from main memory after  modifying the first  half.  When 
satisfying the second request, resource guardian will encounter a cache miss due to presence of 
the second half of the shared data instead of the first half in L1 cache. In that case, resource  
guardian will have to bring the first half of the data from the main memory. Again, this portion 
of the data will replace second half of the data. In order to modify the second half of the data, 
RG will have to bring the second half from the main memory.

8



When data size exceeds the cache size, processor brings data from the remote memory in both  
cases. Resource guardian have to bring data from the main memory two times (first and second 
half). But in the cache coherence protocol based shared memory, a processor will bring part of  
the data from the main memory and will bring other part from the remote cache. It is costly to  
bring data from the main memory than remote cache in terms of CPU cycles. That's why cache 
coherence performs better than moving computation approach in this particular situation.

(b)  Shared data size  <  L1 Cache Size :

Resource guardian will fetch the data from main memory during first access. After that it will be 
a cache hit each time. But according to the coherence based approach, a thread brings the data  
from the remote cache for each access. CPU cycle used for bringing purpose does not need in 
the case of moving computation approach. I have described benefit of the moving computation 
approach more briefly in Section 2.3.  

4. Implementation

4.1 Overview of the TILE64 Machine

The Tile processor architecture consists of 64 identical general purpose computers connected by 
five 8x8 mesh networks. Figure 7 shows the diagram of the 64-tile  TILE64 processor.  

9



Figure 7: High level overview of the 8x8 grid of processors. I/O devices and memory 
controllers connect around the edges of the network (picture taken from “wikipedia”).

Tile is the basic unit  of Tile processor architecture. Each core is a fully featured computing  
system and capable of running entire operating system independently. Processor engine, cache 
engine and switch engine are the components of a tile. Each processor has a processor engine of 
32-bit 3-stage VLIW pipeline with 64 registers. Processor runs at 1GHz clock speed and can 
perform 192 million 32-bit operations per second. 

Each  tile  has  a  two  level  hierarchy  cache  system.  L1(16KB)  consists  of  a  two-way  set  
associative L1(8KB) data cache and a L1(8KB) instruction cache. L2(64KB) cache is a two-
way set associative unified cache. A distributed L3 cache is formed by the L2 cache of each  
tiles.  This  cache is  shared  among all  the  tiles.  Cache coherence for  the  shared memory is  
maintained in the following way.

A block of main memory is mapped on the L2 cache of a tile. This tile is called the home core 
for the particular memory address block. Core brings data block from the home L2 cache in the 
case of L1 cache miss. If the data is mapped into the local L2 cache then it simply fetches the  
data from the local L2 cache. If the data is mapped into the remote L2 cache, then core normally 
sends message over the dynamic network to the home tile in order to fetch the particular data  
block.  Each home core maintains a directory of cores who are sharing the cache lines. If a  
remote core modifies a copy of shared cache line which is located in the private cache, it sends 
updated copy to the home core. After receiving the updated copy, home core sends invalidation 
message to the other core are currently sharing the the cache line. 

Parallel threads running in different tiles can exchange messages, streams of data and scalar 
operands  through  the  User  Dynamic  Network  (UDN)  [8].  More  specifically,  this  network 
provides the facility of transferring data (integer, double, structure, etc.) between tiles. In this 
thesis,  moving  computation  from  the  UPE  instances  to  RG  as  well  as  transferring 
acknowledgement from RG to UPE instances is done by the UDN.  

UDN consists of four hardware queues and one catch-all queue. A receive side buffer of a tile  
(128 words) is shared between the hardware queues. Tilera provides hardware demultiplexing 
based on a tag associated with a data packet. When a packet is reached at destination end, then a 
tag match occurs. Based on the matching, hardware demultiplexes the data into the appropriate  
queue. Data packet is stored in the catch-all queue if the tag does not match with the tag that the 
receiver is interested in [8]. 

4.2 Tilera-64 Machine Facility for Moving Computation 

The main intention behind using this machine is that it provides facility to transfer computation 
from core to core. Tilera has built in C library functions which can be used to send and receive  
computation from processors to processors. For example,

                       tmc_udn_send_1(header, UDN2_DEMUX_TAG,data);

                             Figure 8 : Sending one word data packet. 

10



This function call  can be used to send one word (4 byte) size data packet.  There are three  
parameters  used in this  function which are header,  a demux tag and data.  Header  acts like  
address of a processor to whom the data is to be sent. There are five hardware FIFO queues  
associated with each processor where data is actually stored after being reached at destination 
processor. When data is available either one of the queues, processor  fetches the data  from that  
queue. Sender should specify the queue number on which data will be stored at the receiving  
end. Figure 10 describes a common scenario of sending and receiving computation between one 
core to another core in the Tilera-64 machine.  According to Figure 8,  UDN2_DEMUX_TAG 
indicates that data will be available in the second queue. The final parameter is the data that will 
be sent. There are also functions for receiving packets. For example,

                                   data0 = tmc_udn2_receive();

                                  Figure 9 : Fetching one word from 2nd demux queue.

A core that wants to receive data packets, should execute the above receive statement and will  
wait for the data to be available in the demux queue. According to Figure 9, thread will listen in  
the second demux queue for the data. A thread can fetch at most one word size data packet by 
calling the receive function once. More specifically, receive procedure should be called N times 
to get N packets from the queue. Receive statement is a blocking function call. A thread can not 
be allowed to execute next instruction until a receive function call returns data. Programmer 
should be aware while calling the receive function. If the proper sending statement is not found 
against receive call then the system will become deadlock. This situation happens often when  
queue number is mentioned wrongly in either sending or receiving statement.

            Figure 10 : Transferring computation between core to core of Tilera-64 machine

The following functions have been used in this thesis for sending and receiving computation.  

Data Type Size Sending Functions Receiving Functions

One word size data type tmc_udn_send_1() tmc_udn0_receive()

Type size more than one word 
(double)

tmc_udn_send_buffer () tmc_udn0_receive_buffer()

11



Pair  of  one  word  size  data 
type (Integer,Integer) 

tmc_udn_send_2 () Word1 = tmc_udn0_receive ()

Word2 = tmc_udn0_receive ()

             Table 1 : Sending and receiving functions used for modifying critical sections.

5. Hypothesis Testing

5.1 Hypothesis Statement

Moving computation to the data approach will perform better than the lock-based approach as 
long as shared data size is smaller than the primary cache size. When data size exceeds the  
primary  cache  size,  lock-based  approach starts  performing better  than  moving computation 

approach. 

5.2 Testing Methodology

Critical section execution time (CSET) is measured using Tilera’s built in C library function 
called get_cycle_count(). This function call returns CPU cycles that have been spent so far.

Figure  11  shows  the  CSET  measurement  procedure  for  the  lock-based  approach. 
totalcycleCount is the difference between CPU cycles spent before beginning of the critical 
section execution and CPU cycle is needed until the end of the critical section execution. 

      start = get_cycle_count()

          Lock

            C S 

         UnLock()

      end = get_cycle_count()

     totalcycleCount = end-start

               Figure 11 : Lock-based critical section execution time

Several factors need to be considered to measure CSET for the moving computation approach. 
Total execution time is the summation of the following factors.

• Sending computation time

• Receiving computation time

12



• Critical section execution time (RG applies computation to the shared data)

• Sending Acknowledgement (If any) time 

• Receiving Acknowledgement (If any) time 

• Header (processor address) creation time 

Processor who wants to receive computation should wait until the computation is reached at its 
end. When a computation arrives at destination processor, it is first stored in one of the built in 
hardware queues of the receiver. After that, the processor fetches the computation from that 
queue.  In  Tilera-64  machine,  waiting  time  of  a  processor  for  receiving  computation  is 
proportional to amount of time that a computation sender spends before sending computation.  
Because  processor  that  wants  to  receive  computation,  starts  spinning  over  a  queue  until  it  
receives  computation.  In  Figure  12,  we see that  amount  of  time that  a  receiver  spends for 
spinning is almost equal time that a sender spends before sending computation. The same thing 
happens  in  the  case  of  receiving  acknowledgement  from  the  RG.  Spinning  for  receiving 
computation or acknowledgement wastes substantial amount of CPU cycles. Waiting time to  
receive computation or acknowledgement completely depends on the how long a sender spends 
time  before  sending  computation.  It  basically  varies  from  application  to  application.  For 
example, in the linear solver equation, each processor spends huge amount of CPU cycles to 
manipulate a set of rows of an array before entering into the critical sections. In this particular  
case,  RG has  just  spent  the  same amount  of  time  for  spinning  over  the  queue  (on  which 
computation will arrive) in order to receive computation. If we consider this huge amount of  
waiting time then only the waiting time dominates the total execution time of the lock-based  
approach. Moreover, during measuring the execution time of the critical sections of the radiosity 
application, I have found that each critical sections has different amount waiting time associated 
with it.  

In the moving computation approach, resource guardian starts waiting for a computation from 
the beginning of a program execution. If we start measuring the receiving computation time 
from the beginning, then we are actually measuring the time that all UPE instances spend before 
sending computing to the resource guardian for modifying shared data. But for the lock-based 
approach, we have measured CSET time only when a thread enters into the critical section. 
Moreover, if we count waiting time for receiving acknowledgement from the resource guardian,  
then we are actually counting shared data modification time twice. Because the time of shared 
data modification done by resource guardian is proportional to the waiting time for receiving 
acknowledgement. But execution time of shared data access is already counted once (3rd factor)  
in  the  total  CSET measurement  time.  Waiting  time  for  receiving  computation  is  ignored 
completely for measurement of the moving computation approach. For the moving computation 
approach, receiving mechanism should be implemented in such a way that waiting time can be 
minimized as much as possible.  However,  this  thesis does not  solve the efficiency issue of  
receiving mechanism.

13



         Figure 12 : Waiting time proportional to execution time before sending computation

5.3 Test Result

In order to test the hypothesis, a shared array is accessed in the critical section. Execution time 
is measured for the following two cases.

I) Array Size  < L1 Cache Size 

II) Array Size  > L1 Cache Size 

According to the Section 3.2, moving computation approach will perform better than lock-based 
approach when array size is smaller than the primary cache. Because RG will encounter cache 
hit each time after the first access. On the other hand, lock-based approach will start performing 
better when array size will exceed the cache size. Because bringing data from the remote cache 
takes  less  CPU  cycle  than  from  the  main  memory.  CSET  is  measured  according  to  the 
procedures described in Section 5.2. 

14



Shared Array manipulation :

             Figure 13.a Array Length  < L1 cache size. Bold line indicates moving computation 
approach and the thin one represents lock-based approach.

X-axis represents the array length and Y- axis represents the execution time (CPU cycle) in  
Figure 13(a&b). Here, we can see that moving computation approach always takes less CPU 
cycles than the lock-based approach. Even though, distance between two approach decreases in 
two points (e.g. 600, 900), but these two approaches never intersects with each other. When the 
array size (900) is increased enough to almost fill out the L1 cache size, then we see that lock-  
based approach starts to decrease significantly.     

             Figure 13.b  Array Length  > L1 cache size.Bold line indicates moving computation 
approach and the thin one represents lock-based approach. 

15



From the above graph, we can see that two approaches shows almost opposite characteristics 
than Fig. 13.a. Difference between two approaches increases proportionally with respect to the 
array size (X-axis). Starting point of the graph (array size is 1000) is the threshold point for the  
moving computation approach. After that, moving computation approach grows linearly over 
time.

Next section describes how modification of microbenchmark is done.

6. Microbenchmark Modification

This section describes the microbenchmark that has been modified according to the moving 
computation approach. Before discussing the modifications, we have to remember that access to 
the shared data structure should only be done by the resource guardian. A thread who executes  
normal application code and wants to access the shared data structure, should send request to 
the resource guardian. When a thread sends a request to the resource guardian, it should send  
necessary computations that a resource guardian needs to modify the shared data structure. After  
finishing execution of  the critical  section,  resource guardian sends acknowledgement to  the 
requesting processor.

Shared Array Modification                

   for(i=0;i<N;i++)

shared_array[i]+= constant(C)

                                         Figure 14 : Shared Array Modification critical section 

When a thread enters the critical sections, it adds constant (C) with each element of the shared 
array.  In  the  moving  computation  approach,  a  thread  sends  constant  (C)  to  the  resource 
guardian.  When a  resource  guardian  receives  the  constant,  it  adds  that  constant  with  each 
element  of  the  shared array.  Each thread sends the constant  (one word size)  by calling the  
following functions.

                              tmc_udn_send_1(header,  UDN0_DEMUX_TAG, (unsigned long) (c))

                                      Figure 15 : Sending one word size data

The first  parameter  of  this  function  call  is  the  address  of  the  resource  guardian  processor. 
Second parameter is the queue number of the resource guardian where words will be stored 
when it is reached at the receiver end. The third parameter is the data that is sent to the resource  
guardian.                                             

Resource  guardian  receives  the  constant  by  calling  the  tmc_udn0_receive()  function.  This 
blocking function returns one word data when it is available in the first  queue of the resource 

16



guardian. After receiving the constant, resource guardian executes the code mentioned in Figure 
14. 

Linear Solver Equation 

In the lock-based technique, a thread adds local_sum to the shared variable called total_sum 
after entering the critical section. Both total_sum and local_sum are double type data.

total_sum += local_sum

                            Figure 16 : Linear Solver Equation critical section 

In Tilera-64 machine, sending and receiving a packet of words (data size more than one word) is 
typically  done  by  calling  tmc_udn_send_buffer()  and  tmc_udn0_receive_buffer()  functions. 
These functions takes memory reference of the data structure as parameter instead of value.  
However,  before sending the double  type local_sum,  each thread puts the local_sum in the 
structure called “Sum”. A thread sends the memory reference of the structure by calling the 
following function.

              tmc_udn_send_buffer (header, UDN0_DEMUX_TAG, val, struct_size_in_words);

                             Figure 17 : Sending double type data

Resource  guardian  receives  the  “Sum”  structure  by  calling  tmc_udn0_receive_buffer(recv, 
struct_size).  Third  parameter  of  the  receive_buffer()  is  the  memory  reference  of  a  “Sum” 
structure and fourth parameter is the size of the structure in words. When packet of the structure  
is  reached  in  the  first  demux  queue  of  the  resource  guardian,  then  the  resource  guardian 
dereferences  the  “recv”  memory  reference  to  get  the  local_sum value.  After  that,  resource  
guardian executes the code stated in Figure 18 (a).

total_sum  += 

recv->local_sum;

typedef struct{ 

      double  local_sum; 

}Sum ; 

          Figure 18: (a) Fetching local_sum value by resource guardian. (b) “Sum” structure. 

Radiosity Benchmark Application

The following four critical sections have been modified according to the moving computation 
approach.

17



Element* p = global->free_element ; 

global->free_element = p->center ;   

global->n_free_elements-- ; 

                                    Figure 19 : Get Element critical section

Get Element 

Each thread sends a request to the resource guardian to get memory reference of the “Element” 
type structure. A thread sends the Id (processor number which is one word size ) to the resource  
guardian by using the tmc_udn_send_1() function. When resource guardian receives a request, it 
basically executes the code mentioned in Figure 19 and sends the memory reference “p” to the  
requesting thread as an acknowledgement.  Resource guardian sends memory reference (one 
word size data ) by calling the tmc_udn_send_1() function. Before sending the “Element” type 
memory reference, resource guardian takes the address of the requesting thread by using the 
processors Id as the index from the address array. This array contains all  the address of the 
processors.  Address  of  a  destination  processor  should  be  specified  as  a  argument  of  the 
tmc_udn_send_1() call.                           

Get Patch 

Getting a patch  is similar like the above “Get Element” critical section. The only difference is 
that  thread  enters  into  the  critical  section  to  get  memory reference  of  the  structure  named 
“Patch” instead of the “Element” type memory reference. For this reason, this critical section  
has also been modified  in the similar way. 

Get Interaction and Free Interaction 

Thread  enters  into  the  “Get  Interaction”  critical  section  to  take  a  memory  reference  of  a  
“Interaction” type structure and returns a “Interaction” type memory references by entering the 
“Free Interaction” critical section. Both critical sections are protected by the same lock. This is  
why, resource guardian executes both critical sections on behalf of the threads who want to get  
“Interaction” type memory reference as well as who want to return “Interaction” type memory 
reference.

tmc_udn_send_2 (RG address,  UDN0_DEMUX_TAG, senderId,  0)  function is  used to send 
request for getting “Interaction” type structure. Resource guardian uses this senderId to send 
acknowledgement back to the requester after executing the critical section.

In “Free Interaction” critical  section, thread returns “Interaction” type memory reference by  
calling the tmc_udn_send_2 (RG address, UDN0_DEMUX_TAG, senderId, memory_address). 
Parameters of the function call is similar to the above function. Fourth parameter is memory 
reference of “Interaction” type structure that a processor wants to return.

18



In order to receive one of the above requests (either getting or returning a interaction memory 
address), resource guardian will call the  tmc_udn0_receive(). This receive function call returns 
one word data. For this reason, resource guardian have to call this receive function twice to get  
two words (senderId, memory_address/0). Execution of a critical section depends on the second 
word which either memory_address or 0. I have used “0” as the fourth parameter for the getting  
interaction  request  function call  in  order  to  differentiate  requests.  However,  if  the  resource  
guardian receives a “0” then it will execute “Get Interaction” critical section. Otherwise it will  
execute “Free Interaction” critical section. More specifically, when resource guardian receives a 
memory address from the free interaction request, it adds the reference to the “Interaction” type 
memory reference linked list. In the case of getting interaction request, it returns the head of the 
linked list to the requesting core. 

Resource guardian sends acknowledgement back to the requesting thread in both cases (get and  
free).  Sending  acknowledgement  is  done  by  calling  the  tmc_udn_send_1()  function.  If  the 
resource guardian receives “Get  Interaction” request  then it  sends memory reference to  the  
requesting core. For free interaction, it just sends a dummy value to notify the requesting thread 
that the memory reference has been added to the linked list of the “Interaction” type memory 
reference. To understand the whole procedure, consider the following pseudo code based figure.

UPE  instance  -  sends  get/free  interaction 
request

Resource guardian

Send2 (thread id, memory_address/0)

//Both memory_address and 0 have one word 
size

Ack = receive() 

// Either returns memory reference or dummy 
value.

  thread id  = receive() 

  second_word = receive()

 if (second_word == 0) 

    {

        // execute get interaction critical section

          // send memory reference as Ack        

        }  else{

       // execute free interaction critical section

    // send dummy value as Ack to notify the 
//requester that  CS-execution is finished.

          }     

                     Figure 20 : Get Interaction and Free Interaction pseudo code  

19



Task Counter 

After entering the critical section, thread executes the below code in order set the flag value 
either by 0 or 1. In the moving computation approach, a thread sends request to the resource 
guardian by calling tmc_udn_send_1 (RG_address, UDN0_DEMUX_TAG, threadId) function. 
When resource guardian  receives the request, it executes the above code illustrated in Figure 
21.  After  executing  the  critical  section,  it  sends  the  flag  value  to  the  requesting  thread  as 
acknowledgement.  tmc_udn_send_1  (thread_address,  UDN0_DEMUX_TAG,  flag_value)  is 
used to send flag value to the requesting processor. 

  Long flag = 0;  

 if (task_counter == 0) 
flag = 1 ; 

   task_counter++ ; 

if( task_counter >= 
n_processors ) 

        task_counter = 0 ;

                                                Figure 21: Task counter critical section

 

7. Application Case Study
In  this  section,  experimental  result  of  critical  sections  of  different  parallel  application  are  
discussed. Moving computation approach shows significant performance improvement over the 
lock-based  approach  for  all  of  the  critical  sections.  The  term  “Improvement%”  denotes 
performance improvement (%) of moving computation approach over lock-based approach.

7.1 Linear Solver Equation Algorithm

In the linear solver equation algorithm, threads manipulates set of rows of an NxN matrix in  
order to calculate local_sum. After entering the critical section, they add the local_sum with 
shared variable called total_sum.

Iteration count Improvement(%)

21 81%

                   Table 2 : Performance improvement of linear solver equation

20



Linear solver equation algorithm normally terminates when it reaches certain threshold point.  
For this experiment, i have considered fixed number of iterations (21) instead of letting this  
algorithm to  converge.  I  have  found that  moving computation  to  the  data  approach shows 
drastic improvement (81%) than lock-based approach. 

7.2 Radiosity Application 

Critical section Improvement(%) 

Get Element 74%

Get and Free Interaction 82 %

Get Patch 41%

Task Counter 61%

   Table 3 : Performance comparison of different critical sections of Radiosity Application

Table  3  describes  CSET  improvement  of  moving  computation  approach  over  lock-based 
approach.  Each  critical  sections  mentioned  in  the  above  table  are  measured  individually. 
Performance improvement depends on the number of times a critical section is executed. For 
example, both “Get Element” and “Get Patch” critical  sections are almost  similar.  But  total 
number execution of “Get Patch” critical section is much more less than “Get Element” critical  
section.  For  this  reason,  “Get  Patch”  shows  less  improvement  ratio  than  “Get  Element”.  
However, highest improvement ratio is found in “Get and Free Interactions” critical sections 
and the lowest one is in “Get Patch“.

Shared data size of linear solver equation algorithm and “Task Counter” critical section of the 
Radiosity  application  are  smaller  than  the  private  cache  size.  For  this  reason,  RG always  
encounters cache hit after the first time access. But, in the lock-based approach, threads have to 
bring the latest copy of the shared data from the remote cache each time. That's why moving 
computation shows performance gain for these critical sections. 

In the “Get Element”, “Get Patch” and “Get and Free Interactions” critical sections, size of the  
shared data structure (linkedlist) is much more larger than the primary cache. Unlike the shared 
array modification,  thread manipulates one or two elements of the linkedlist  in each access 
instead  of  modifying  the  whole  shared  data  structure  at  a  time.  For  example,  during  the 
execution of  the “Get  Element”,  “Get Patch” critical  sections,  threads take the head of  the  
shared linkedlist and set the next adjacent element of the head as the head of the linkedlist. In 
order to do this, cores bring the head of the linkedlist from the remote cache of a core where this 
linkedlist was accessed recently. But the next adjacent element of the head should have to bring 

21



from the main memory. Because this element will be accessed for the first time. The adjacent 
element of the head will be the next head of the linkedlist for the next execution. On the other  
hand, RG will bring head and the next element form the main memory during first execution.  
For the second request, RG will encounter a cache hit for the head (second element in that case). 
However, RG have to bring the third element from the main memory which will be the head of 
the linkedlist. As we can see that resource guardian will encounter cache hit for the head of the 
linkedlist  but  cores  have  to  bring  the  head  from the  remote  cache  for  each  access  in  the 
coherent-based shared memory model. 

“Get Interactions” and “Free Interactions” critical section are protected by the same lock. This is  
why, resource guardian executes both critical section on behalf of the threads. “Get Interactions” 
behaves similar like “Get Element” and “Get Patch”. Thread enters “Free Interaction” critical 
section to put back a element in the shared linkedlist. Returned element is actually inserted in  
front of the linkedlist and its next pointer points to the current head of the list. In this way,  
returned element becomes the head of the linkedlist. In the lock-based approach, cores that want  
to return a element, have to bring the current head from the remote cache. But, in the moving  
computation  approach,  resource  guardian  encounters  cache  hit  for  the  current  head  of  the 
linkedlist. Because resource guardian brings the head node in early access (because of either 
“Get interaction” or “Free Interaction” critical section execution). Encountering cache hit for the 
head  node  of  the  linkedlist  improves  performance  substantially  in  the  case  of  moving 
computation approach.     

 

22



8. Concluding Remarks
The performance trade-off between lock-based approach and moving computation to the data 
approach is discussed in this thesis.  From the hypothesis testing result, it can be said that a 
significant amount of performance gain can be achieved by the moving computation approach 
as long as data structure fits into the private cache of the resource guardian.  But, when the 
shared data size exceeds the primary cache size, lock-based approach starts performing better  
than the moving computation approach. Because bringing data from the remote cache takes less 
CPU cycles  than from the main memory.  This is  the limitation of the moving computation 
approach. 

By analyzing the different critical sections of the Radiosity application, we can see that moving 
computation approach will also be beneficial when resource guardian will be able to reuse the 
cached shared data for processing future requests of the UPE instances. Moreover, benefit of the 
moving computation to the data can be achieved by increasing the L1 cache size of the resource 
guardian. Because hit ratio of the shared data will also be increased in this way.      

Sending  and  receiving  primitive  of  computation  should  be  implemented  in  such  way  that  
waiting time  for  the  receiving  computation  can  be minimized as  much as  possible.  I  have 
ignored  waiting  time  completely.  But,  in  reality,  it  is  not  possible  to  ignore  waiting  time 
completely. Because certain amount of overhead is associated with receiving procedure of a 
computation  which  is  ignorable.  This  is  why,  further  investigation  is  needed  for  efficient  
sending and receiving procedure implementation. 

23



References
[1] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin.  "Why On-Chip Cache Coherence Is 
Here to Stay". Communications of the ACM, vol 55, no 7, July 2012.

[2]  BA Hong. ”Hardware-based Synchronization Support  for Shared Accesses in Multi-core 
Architectures”. ACST '08  Proceedings  of  the  Fourth  IASTED International  Conference  on  
Advances in Computer Science and Technology. 

[3]  Vajda,  A.  ”Handling  of  Shared  Memory  in  Many-core  systems  without  Locks  and 
Transactional Memory”. Accepted at the  3rd Workshop on Programmability Issues for Multi-
core Computers (MULTIPROG), with HiPEAC 2010 conference.

[4]  www.Tilera.com.  ”Application-Libraries-Reference-Manual-UG227”.

[5]  David E. Culler, Anoop Gupta, Jaswinder Pal Singh.  ”Parallel Computer Architecture: A  
Hardware/Software Approach”, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1997, 
ISBN 1558603433. 

[6]  James  Archibald,  Jean  Loup  Baer.  ”Cache  Coherence  Protocols:  Evaluation  Using  a 
Multiprocessor Simulation Model”. ACM Transactions on Computer Systems (TOCS), Volume 4 
Issue 4, Nov. 1986.

[7] Vajda, A. ”The Case for Coherence-less Distributed Cache Architecture ”. 4th Workshop on 
Chip Multiprocessor Memory Systems and Interconnects, with HPCA 2010 conference.

[8] D Wentzlaff. ”On-Chip Interconnection Architecture of the Tile Processor”. IEEE Micro 
Volume 27, Issue 5, September 2007.

24


	1. Introduction
	2. Background
	2.1 Shared Memory Multiprocessor Systems
	2.2 Cache Coherence
	2.3 Lock-based Synchronization Protocol
	2.4 Problem in Cache Coherent Shared Memory
	7. Application Case Study

	8. Concluding Remarks
	References

