
 

 

 

 

 

 

 

 

 

 

OSPF Convergence Times 
 

 

 

 
 
Master of Science Thesis in the Programme Networks and Distributed Systems  

 

Yonas Tsegaye ,Tewodros Geberehana 
 

Department of Computer Science and Engineering  

CHALMERS UNIVERSITY OF TECHNOLOGY 

Göteborg, Sweden, 2012 

Master’s thesis _____ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Abstract 
 

Following the merger of telecom and IP networks, there has been a sharp rise in the number and 

types of multimedia applications such as interactive real-time Voice/Video over IP. This has put a 

new service requirement on IP networks and thus has required the IP network solution providers and 

telecom operators to device new techniques and optimizations to meet the needs of these business 

critical applications. One way to address these demands is to implement fast and efficient routing 

mechanism as the data packets are exchanged end to end. Open Shortest Path First (OSPF) is one of 

the widely deployed routing protocols responsible for this. 

 

Most of the important operations of OSPF that contribute to fast convergence such as fast failure 

detection, shortest path computation and flooding are controlled by timers. These timers, as 

specified in RFC2328 are fixed and too conservative for modern networks. Today, there has been an 

increasing effort to make these timers dynamic so that the values are determined based on the 

experienced network load and stability instead of a preset static value. 

 

This thesis is in part a thorough assessment of the state of the art on OSPF timers and fast 

convergence techniques. The other major contribution of this work is the implementation of the Link 

State Advertisement (LSA) throttling algorithm as an adaptive technique to control unwanted LSA 

generations at times of network instabilities. We used two simulators; OPNET Modeler (Academic 

Version) because of its advanced graphical user interface (GUI) and result analysis tools, and the 

open source OMNET++ for its open OSPFv2 source code. The outcome of this thesis therefore the 

work done on literature review which embraces a set of recommended techniques to achieve sub-

second convergence, a simulation supported analysis of the associated stability issues in terms of 

convergence time and CPU load and also the introduction of our own pseudo code and 

implementation of the LSA throttling algorithm, originally introduced in CISCO 12.0(25) S. The 

simulation work has proved the LSA throttling algorithm indeed improves a network’s convergence 

speed and can be deployed on any size OSPF network including large ISP networks consisting of 

thousands of routers. 
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1. Introduction 
 

 

Routing is a process of selecting an optimal path (route) in a network using which data packets are 

transferred from a given source to a destination. The Open Shortest Path First (OSPF) is one of the 

prominent Interior Gateway Protocol (IGP) in IP networks today. It is a link state routing protocol that 

uses the Shortest Path First (SPF) algorithm to determine the current shortest path from a node to all 

other nodes in a network. OSPF makes use of different set of timers that come in to play while 

performing most of the important operations such as SPF computation, Link state Advertisement 

(LSA) generation and flooding. These operations highly impact a networks’ convergence speed. 

 

This literature studies the impact of decreasing the value of traditional OSPF timers on network 

convergence and stability, see [7] [13] to name a few. While these studies generally show that sub-

second failover can be achieved through the use of sub-second OSPF timers, the implementation 

highly depends on the existing network resources, frequency of failures and experience. This report, 

apart from presenting the key techniques on OSPF fast convergence, also discusses the impact of 

decreasing OSPF timers on network stability. The LSA throttling feature [12] as an adaptive timer 

technique to delay LSA generation at times of frequent link flaps is also implemented and discussed. 

 

Ericsson has long been renowned for its world best telecom solutions and customer reputations. It has 

been the leader in the market and the pioneer in its cutting-age researches ever since its inception. 

Between 35 to 40 percent of the world’s mobile traffic passes through the Ericsson’s networks spread 

all over the world. The success comes from the combined effort of extensive researches made in each 

operational elements and levels.  

 

The Ericsson’s Evolved Packet Core (EPC) is a key element in the realization of the mobile 

broadband technology. It’s a flat IP-based core network architecture based on the Third Generation 

Project Partnership (3GPP) standardization. EPC is the main channel between the high speed Radio 

Network (RN) and the external world. The following picture shows the 3GPP EPC architecture. 
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Figure 1.1: The 3GPP EPC architecture  

 

The top three clouds to the left represent the different Radio Access Networks (RAN) and the fourth 

one shows any radio access network such as WLAN or WiMax which is not part of the 3GPP 

specification. The circuit core domain is responsible for all circuit switched services over GSM and 

WCDMA whereas the user management maintains subscribers’ information and also supports 

mobility within the different domains. The last but the main component is the packet core domain that 

takes care of all packet switched services for all the radio access technologies. 

 

The packet core technology in Ericsson provides converged IP routing facilities for all mobile access 

services shown in Figure 1.1 The two basic entities of the Ericsson’s packet core network are Serving 

GPRS Network (SGSN) and Gateway GPRS Network (GGSN) .With the advent of the 3G and 4G 

solutions such as WCDMA and LTE, these entities have seamlessly transitioned to SGSN-MME and 

GGSN-MPG/EPG respectively with no major hardware changes but simple software upgrades. 

SGSN-MME is responsible for providing packet data switching and mobility management services 

for all the radio access networks, whereas GGSN-MPG/EPG is the gateway between the packet core 

and the external network. Its key functions include traffic prioritization, charging, deep packet 

inspection and authentication among others. 

 

The figure shows part of the SGSN in the GPRS network and the MME unit in the EPC, altogether 

referred to as SGSN-MME. The dashed lines represent the internal IP traffic (control traffic) and the 

solid ones represent the external data traffic (payload traffic). 
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Figure 1.2: External Interfaces for SGSN-MME [34] 

 

1.1 IP Routing in SGSN-MME 

The SGSN-MME supports IP routing of IP packets received and sent on all internal and external 

interfaces of the SGSN-MME shown in the above figure. The traffic is separated into a number of 

trusted Virtual Private Networks (VPNs) for enhanced security. The figure below shows the routing 

in SGSN-MME from a logical perspective with two VPNs each with alternative (redundant) routing 

paths. The SGSN-MME architecture allows the same VPN to be configured over multiple Protocol 

Interface Units (PIUs) using the same IP address for load sharing purpose and also a single PIU can 

run multiple VPNs separated by VLANs.        
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Figure 1.3: Logical overview of the routing in SGSN-MME 

 

The IP routing in SGSN-MME makes use of dynamic routing protocols such as OSPF as well as 

static routes where necessary. Static routes with multiple next hop addresses are supported based on a 

reliable load sharing scheme. In such cases, Bidirectional Forwarding Detection (BFD) is typically 

used to monitor the IP gateway addresses for fast switching to a different gateway when the current 

gateway is unreachable. An extended review of BFD can be found in chapter 4. 

 

1.2 Objectives  

The objectives of this project are as follows: 

 Find out the state of the art in OSPF convergence. 

 Check if there are any applicable researches within this area. 

 Investigate what set of traditional and vendor specific timers are in use today. 

 Find out which timers that might be tweaked and find out if there is any algorithms that can be 

used to be adaptive to different levels of stability in the network. 

 Analyze the dependency among CPU run time, network stability and convergence time for 

different set of timers. 

 Measure the CPU run time, SPF computation and flooding times using appropriate tools and 

methods. 

 

The outcome of this work is partly a recommendation of the state of the art techniques on OSPF 

timers and fast convergence (chapter 4). The work includes a simulation supported analysis of a 

network’s stability levels using various set of timers (section 5.1.4). The implementation and analysis 

of the LSA throttling algorithm is also the other major contribution of this work (section 5.1.5). The 

LSA throttling, also known as LSA generation delay is a dynamic technique first proposed by CISCO 
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Systems, Inc [12] to limit excessive and unwanted LSA generations at times of network instability. 

The technique allows fast convergence taking the network’s stability into consideration. As part of the 

implementation, this document also introduces a pseudo code of the LSA throttling feature. The 

experiments and results from this work can be easily scaled up to any size OSPF network including 

large scale ISP networks consisting of hundreds and thousands of routers. 

 

1.3 Problem description 

One of the strongest points of OSPF has traditionally been that it provides a network convergence 

time in a couple of seconds. The convergence time is the time from a topology change until all other 

nodes in the network recalculate their shortest path to all other nodes. The convergence time 

determines how fast the routers adapt their routing tables to topological changes.  

The demands on IP networks have risen over time since OSPFv2 was first introduced due to more 

mission critical use of networks and due to the convergence of the telecom and IP networks. There is 

now demand for sub-second convergence of OSPF networks. Recent advances in OSPF 

implementation shows that this can be addressed through various tweaks of OSPF timers.  But it’s not 

enough to just decrease the different timers; the impact on network stability and on CPU cost has to 

be analyzed as well. 

 

1.4 Scope and Limitations 

The simulation work and results in this thesis are done based on the application of OSPFv2 on point 

to point links according to the RFC 2328. The discussions on fast convergence techniques mainly 

focus on the standard as well as the newly introduced (vendor specific) timers. Optimization 

techniques from traffic engineering (TE) extensions point of view are not part of this work. This 

document doesn’t discuss details of OSPFv3 and/or its application on ipv6. OSPFv3 is discussed in 

comparison with OSPFv2 on some points where we thought was worth mentioning. 

 

The simulation tools used in this project were not readily provided by Ericsson. As part of the thesis, 

we had to make a survey to choose a suitable tool from the open source domain, and that has required 

us a considerable amount of time during the early phase of this project. After a thorough investigation 

of the available choices, OPNET modeler 14.5(education version) and OMNET++ 2.2.1 were found 

suitable for the work .A brief walkthrough of the selected tools is presented in chapter 5. 

 

1.5 Related Work and Contribution  

OSPF is a relatively matured and widely studied routing protocol. A lot of researches and publications 

have been done on how to improve its convergence and stability aspects. Fast convergence deals with 

boosting a network’s speed of information exchange to come to a consistent state whereas the stability 

aspect assures the network won’t break while doing so.    

 

Anindya B. John G. in [9] made an experimental study to find out the optimal hello timer for fast 

convergence. Their simulation results on large ISP network consisting of 292 nodes and 765 links 

shows that the hello interval can be safely reduced to 275 milliseconds for fast convergence without 

impacting the network’s stability. The authors in [7] made a similar investigation on finding an 

optimal value for static hello timers. They argue that it is unsafe to reduce the hello timer below 500 
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milliseconds but instead it’s possible to speed up the convergence by prioritizing the processing of 

hello packets over the other types of OSPF messages. They also suggest the use of a set of 

conservative approaches such as Packet Over SONET (POS) for fast failure detection, dynamic timer 

usages for LSA generation and SPF computation as recommended fast convergence practices. On the 

other hand, the authors in [8] and [36] proposed a dynamic mechanism to tune hello timer based on 

the experienced congestion level. The technique in [8], also explained in chapter 3, works in such a 

way that an OSPF peer increases its hello interval exponentially whenever it experiences a loss of 

hello messages for more than a given threshold. The other similar technique proposed in [36] instead 

uses a scheme called Dynamic Router Dead Interval (RDI) where the RDI is dynamically adjusted 

based on the hello drop rate computed over a certain period of time. Cisco Systems, Inc. has devised a 

technique to dynamically adjust the interval between each LSA generations called the minLSAInterval 

which is one of the OSPF timers that attributes the most for fast convergence. The technique is 

discussed at high level in [12].  

 

One of the main contributions of this project is to implement and evaluate this algorithm in an OSPF 

network using 1 millisecond hello interval and 4 millisecond routerDeadInterval. The original plan 

was to use sub second hello timers but that was impossible due to simulator limitations. As part of the 

implementation, the paper also presents the pseudo code of the algorithm (section 5.1.5.6). The paper 

also contains theoretical discussion of the state of the art techniques on OSPF fast convergence as 

well as an experimental evaluation of the relationship between different sets of OSPF timers and 

network stability issues.  

 

1.6 Structure of the dissertation 

This dissertation is organized as follows:  

Chapter 2 discusses some of the topology change events in an OSPF network and the convergence 

process following the change.  

Chapter 3 presents OSPF fast convergence techniques.  

Chapter 4 gives a mix of the different techniques to achieve sub-second convergence along with 

similar experiences shared from literature review. 

Chapter 5 discusses the work on the selected simulators and the analysis. It starts with a brief survey 

of network simulators and advances further into the work done on the selected simulators. 

Chapter 6 concludes the discussion by summarizing the main points related to OSPF sub-second 

convergence. 

Appendix 1 discusses the basics of OSPF. 
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2. OSPF Convergence Process 

 
This chapter discusses the convergence process and the major factors affecting the convergence 

process. Various types of topological changes as a cause for the convergence process are presented. 

 

2.1 Routers Distributed Architecture 

A router is a device that is responsible for forwarding packets between interconnected devices. A 

routing protocol is a rule that governs how communications should be done between communicating 

devices. Routers relate the IP header of a packet with the entries in their routing table to determine the 

next best hop to forward the packet to. Modern routers have a distributed architecture that works 

independently, the routing engine (control plane) and the packet forwarding engine (data plane). The 

forwarding engine which is a switch fabric is used to forward between the inbound and out bound 

interface of a line card. Therefore, the control plane takes care of the routing protocol and the data 

plane takes care of the forwarding functions. 

 

The control plane is responsible in constructing and maintaining the RIB from which the FIB is 

constructed; the RIB consists of best paths to reach different nodes in a whole network [6]. The data 

plane performs packet switching, route lookups, and packet forwarding. It basically sends out packets 

from port to port based on a longest-prefix match and an access control list that filter out the packets. 

The FIB contains the least required information to forward the IP packet, the next hop and the 

associated outgoing interface.  

. 

 

 

Figure 2.1: The control and data planes 

 

The forwarding process includes checking the IP headers and the TTL (Time to Live) of the incoming 

packet, decrementing the TTL and updating the IP header checksum and look up the destination IP 

address, in the FIB, to decide the next hop address. Routers perform SPF re-computation up on the 

arrivals of LSA updates and the change is reflected on the forwarding table via the RIB. The 
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distributed nature of the router architecture reduces the load on the CPU. It  can also allows the data 

plane to keep forwarding packets to neighbors even when the control plane reboots for some activities 

like updating its software.  

 

2.2 Inbound packet processing in a router 

 

 

 

Figure 2.2: Processing of inbound packets  

 

An incoming IP packet, in most implementations, is first processed by the data plane which may be 

sent to the control plane or the outgoing interfaces based on the nature of the packet. As can be seen 

in Figure 2.2, packets destined for other routers are forwarded directly without the need to send it to 

the control plane. Some special packets like hello packets and routing updates need to be forwarded to 

the control plane. 

 

2.3 Topology changes in an OSPF network 

A topology change in an IP network can result from failures in the network components or addition of 

new network equipment. Failures can occur due to planned maintenance, software and/or hardware 

problems or errors introduced by humans. The impact of a failure can vary based on its nature. 

Topology changes are reflected through LSA updates to all other nodes in a network. When a link 

failure occurs, it is detected through the underlying error detection mechanisms and the change is 

reflected through LSA update that is flooded across the network. The SPF calculation is scheduled up 

on the arrival of updates in a node, which leads to the ultimate goal of installing a new alternative 

route in the network. A router’s OSPF convergence process starts from the time an error is detected 

until a new alternative route is installed in the router. The duration that takes a router to adapt the 

change is termed as the convergence time of the router. 

 

 

http://wiki.nil.com/wk/images/f/f8/Control_Data_PacketFlow.png
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2.4 Associated problems with OSPF convergence 

Topology changes in a network are usually followed by one or more of the following issues until the 

network adapts the change. Data packet losses or unordered deliveries, CPU/memory consumptions 

due to extra packer processing and routing table calculations can be mentioned as examples. Such 

excessive usage of resources, in the worst case might have the potential to meltdown the whole 

network.  

 

2.5 OSPF convergence process  

OSPF is an interesting protocol since it involves a small time to install new route and re-route traffic 

once a failure occurs. The OSPF convergence process is composed of the following processes. 

 Detecting changes in network status 

 Generating a new LSA to reflect the change  

 Flooding the LSA in the OSPF network 

 Performing SPF calculations on each router that receives the update information 

 Updating the RIB/FIB on each router 

It is a requirement for all routers affected by topological changes to go through the process of 

convergence and the time involved depends on how large and complex a network can be. In the 

convergence process, the desirable effect is to achieve a faster convergence time. As routers converge 

quickly it is relatively easy to avoid the problems mentioned in section 2.4.  

 

2.6 Adding node to a converged network  

Assuming a converged network in the first place Figure 3.3, adding a new router called New_node 

results in the topology change of the network .As a result, the network is required to go through the 

steps mentioned below so as to maintain a synchronized information about the network topology.  

 

 

 

Figure 2.3: Adding router to a converged network 
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The following steps are involved in the convergence process. 

1. The new node (New_node) sends a hello packet to R1. R1 reply using a hello packet to confirm 

the discovery. The two nodes then decide to form adjacency. 

2. The new node and R1 exchange Database Description Packets. R1 had the latest LSA of all the 

Routers in the network except the LSA of the node New_node. The New_node has only 

information about itself. 

3. The new node sends a Link State Request packet to R1, requesting the LSAs of all the routers and 

receives it in the form of Link State Update from R1. 

4. R1 sends a Link State Request packet to New_node and New_node sends its LSA to R1 as a Link 

State Update packet. The two nodes have now synchronized their LSDBs, followed by SPF tree 

calculation and both install their new routing tables. 

5. R1 sends a link state update packet to its adjacent routers R2 and R3, after synchronized with 

New_node. The update packet contains the LSA learned from New_node. R2 and R3 perform 

SPF tree calculation after receiving the update from R1. 

6.  R2 and R3 flood the update to R4 and R5 respectively, then both receiving routers performs their 

own SPF tree calculation and install their own respective routing tables. 

 

2.7 Factors that affect the OSPF convergence process 

A network’s convergence process consists of the following major operations [5] [7]. 

1. The time it takes to detect the change that occurred in the network. 

2.  The time it takes to propagate the event in the network this includes both the LSA origination 

and flooding. 

3. The time it takes to perform SPF tree calculations. 

4. The time it takes to build the forwarding table in each router. Hence, the total convergence time 

for an OSPF network is given by the formula. 

 

Convergence Time = Failure_Detection_Time + Event_Propagation_Time + SPF_Run_Time + 

RIB_FIB_Update_Time 

 

The convergence speed can be affected by a number of factors including the type of error detection 

method used , network congestion, diameter of the network, processors load due to routing 

protocols, and the SPF parameter used in the convergence process. Figure 2.4 shows the timers 

involved in the convergence process. 
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Figure 2.4: Timers in an OSPF network convergence [8] 

 

The above figure shows the different timers that are involved in the OSPF convergence process. Some 

of the timers are specified in the RFC 2328 and others are vendor specifics. The hello protocol works 

with its associated HelloDeadInterval to detect failures. The MinLSInterval and the MinLSArrival 

timers are used to determine the rate at which LSAs are generated or received respectively. Since LSA 

flooding is a reliable process, it involves sending acknowledgments up on the receptions of LSAs. 

Unacknowledged LSAs are resent upon the expiry of the Rxmtinterval Timer. The SPF computation 

includes SPFholdTimer and SPFdelayTimer that are used in commercial routers to prevent frequent 

computation of the SPF at times of stormy LSA generations. The pacingTimer is vendor specific and 

is used not to overwhelm a neighbor during the flooding process. The RIB/FIB update is the ultimate 

goal of the convergence process after a successful SPF computation. This process takes the maximum 

share in the convergence process and is mainly depends on the number of updated prefixes and the 

network size. 

 

2.7.1 Fast Failure Detection Methods  

In order to achieve a faster convergence speed in a network the failure detection mechanism in OSPF 

network plays a great role; the faster a change is detected in a network topology, the better 

convergence speed the network achieves. Failures in a network can be detected with the help of the 

hello protocol, BFD (see chapter 3) or using hardware based failure detection mechanisms like packet 

over SONET that can provide error detection mechanism in tens of milliseconds, though its 

implementation might be uneasy [7]. 

 

Periodic hello packets are exchanged among neighboring routers. A router maintains an inactivity 

timer for each neighbor it is adjacent to and this value is reset upon the reception of a hello packet 

from its neighbor. If a failure occurs at a neighbor after the reception of the last hello packet, a router 

can detect the failure using its HelloDeadInterval time which in this case is 40 sec (the inactivity 

timer). Using a HelloDeadInterval time of 40 seconds is one of the drawbacks of the hello protocol 

implementation in areas where VOIP (Voice over IP) and PWS (Public Warning System) are 

deployed. The expiration of the inactivity timer causes the braking down of the adjacency between 

neighbors and results in the generation of a new LSA. Therefore, the HelloDeadInterval timer is the 

time that plays one of the major roles in the OSPF failure detection time which highly attributes to the 
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convergence speed. By reducing this timer to an optimal small value, the failure detection time can be 

improved. 

 

2.7.2 Event Propagation  

In an OSPF network an LSA can be used to reflect the status of a network, a router LSA describes the 

link states of a router in a network. Once a failure is detected in a network, propagating the change to 

all routers in the network is another factor that affects the OSPF convergence speed. To control the 

frequency of the LSAs generated up on changes in a network,  RFC 2328 recommends that every two 

LSAs should be sent within  5 seconds interval; the so called MinLSInterval . 

 

The event propagation can be affected due network congestion that may be caused by LSA storms or 

other timer effects associated with LSA generation and flooding.  For a router affected by change to 

generate an LSA, it relies on the time of the underlying error detection mechanism and the chosen 

MinLSInterval value. The flooding process includes the delay that occurs at the receiving routers 

which is the MinLSArrival value (the inter-packet arrival time) plus the pacingTimer applied by the 

sending routers and the delay that may be introduced at the time of propagation. Depending on the 

nature of the network, an LSA storm can result due to any of the following factors. 

 A flapping Link/router. 

 Fiber cuts resulting in one or more link failures 

  Software version change resulting in refresh of all LSAs in the system or  

  Due to the periodic, 1800-second, LSA refreshes time in the network. 

 

The flooding scope of a topology change can vary depending on the type of the topology change that 

occurred. A router, network and summary LSAs are flooded throughout a single area where as a new 

AS External router LSA might be flooded to all the areas within an AS. Having a small MinLSInterval 

value can help achieve fast convergence but keeping it to zero is not recommended as it highly affects 

the routing stability and consumes resource. To balance the need for both convergence and the 

stability of a network, different vendors like Cisco and Junipers have implemented exponential back 

off algorithm for LSA generation called LSA throttling (see chapter 3 for details). 

 

2.7.3 SPF Calculation 

LSAs that reflect topological change are followed by a route table calculation and updating the FIB 

on the line cards. In an OSPF network each node making itself as a root node, constructs the SPF tree 

using the Dijkstra shortest path first algorithm. The Shortest path resulting from the SPF calculation is 

the optimal shortest distance from a source to a destination. At the end of the SPF calculation the 

optimal routes are populated in to the routing table and this result is reflected to the Forwarding 

Information Base (FIB), depending on the router’s architecture. The SPF computation is the function 

of the number of nodes in the network and the number of prefixes advertised.  

 

Some implementations follow the traditional approach in which SPF is calculated on every new LSA 

arrival which requires a high CPU utilization. To avoid a continuous route calculation and minimize 

the router’s processor consumption, commercial routers introduce the SPFholdTimer and the SPF- 
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delayTimer (see Figure 2.4 above).The SPFholdTimer specifies the time gap between two consecutive 

SPF calculations. The SPFdelayTimer specifies the time that a router should wait to perform the SPF 

calculation after receiving the first LSA in an attempt to include more LSAs in to the calculation. 

 

In a stable network, it is desirable to have the SPFholdTimer to be small to achieve fast convergence, 

since there is not that much topological change that may occur in the network. In unstable network, 

where there are frequent changes in the network topology, having a small value of SPFholdTimer 

could result in a frequent SPF calculation. As a result, in such network large intervals in the SPF 

calculation is preferable to accumulate several changes and execute them at once. 

 

Both the SPFholdTimer and the SPFdelayTimer help achieve stability in a network but reduce the 

speed in which a network converge to a new topology. The Cisco routers, after 12.2(14) version, 

implements a simple exponential back-off timers to balance the need for fast convergence and 

stability of a network under any circumstance. In order to optimize the routing table calculation 

another alternative method of scheduling the route table calculation such as LSA correlation and iSPF 

calculation methods have been suggested. 

 

2.7.4 Routing Information Base (RIB)/ Forwarding Information Base (FIB) 

Update 

RIB also named as routing table, contains reachable information and the associated cost for each 

route. Routes are installed either in static or dynamic way. To reflect changes in a topology OSPF 

performs RIB updates following the SPF calculations. Depending on the type of router architecture 

the RIB can be propagated further to the forwarding table.  

 

The RIB contains the destination network ID, the costs associated with the interface and the next hop 

address that is going to be used as a gateway to forward incoming packet. Forwarding information 

Base is a copy of the routing table but it contains the least required information to forward an IP 

packet. The FIB may not be required to track the whole paths and their corresponding metrics to 

reach a network. The FIB is optimized for forwarding efficiency or for fast lookup of destination 

addresses. When packet meant for other nodes arrive at some router the FIB tries to quickly forward 

the packet to the next hop. 

 

A successful SPF calculation is followed by the RIB/FIB update, which is the ultimate goal. The 

update time is linearly dependent on the number of modified prefixes that can greatly affect the 

convergence time of a network [8]. The impact can take a considerable amount of time in large 

networks. To improve the update time some routers use a proprietary method called iFIB that reflects 

only the changed part than to construct the FIB from a scratch.   
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3. OSPF Fast Convergence Techniques 

 
As discussed in the previous chapters, it is generally possible to achieve fast convergence by setting 

the timers to a lower value. However, it’s equally important to analyze the associated impact on 

network resources (CPU, memory, bandwidth, etc.), especially on networks with frequent 

instabilities. Knowing the optimal settings of these timers has always been a challenge for one reason 

that it’s highly dependent on a number of generic factors including the network’s expected 

traffic/congestion level, number of nodes/links and other physical link constraints. 

 

This challenge has led to the evolution of what we call dynamic timers; timers that can change 

adaptively with the experienced network behavior. Nowadays, most of the optimizations in OSPF lay 

on the implementation of dynamic timers which can be preferably introduced at various operational 

levels; starting from hello packet origination to LSA generation, Shortest Path First (SPF) 

computation, flooding and FIB updates. This chapter assesses some of the state of the art techniques 

on the use of dynamic timers and also a few other optimization techniques. 

 

3.1 Dynamic Hello Timers  

Hello timers are one of the integral components of many routing solutions. They help discover 

neighbors and detect failures. The OSPFv2 implementation based on RFC 2328 specifies a fixed hello 

interval of 10 seconds which is quite large according to modern researches and experience [7] [9]. 

With the rapid increment of modern day routers computing power, it has now become a common 

sense to lower the hello interval to a millisecond range. While it’s generally safe to do this on stable 

networks, it might have some undesirable effects on unstable networks with frequent link/node flaps 

and congestions. In these and similar situations where the CPU is kept busy, the hello timers may not 

be timely processed and assumed to be lost (hello omission). The frequent omission of hellos makes 

the neighbor relationship to go up and down and the neighboring routers to generate LSAs that reflect 

this. This in turn forces all routers in the network to add and delete a particular route every now and 

then, causing a network wide route flap and disruption. Therefore, In the presence of such flaps, an 

implementation might prefer to temporarily break the communication between adjacent neighbors 

over the unstable link in an attempt to discourage the availability of the route and avoid the resulting 

route flap. Dynamic hellos are designed with that in mind; to suppress the route flaps caused by link 

flaps in point to point OSPF networks. 

 

The dynamic hello techniques, as detailed by the authors in [8] makes use of the hello_tune timer 

assigned for each active interface. The router monitors the presence/absence of instabilities (route 

flaps, in this case) within the hello tune interval. If, within the hello tune period, a routers experiences 

a neighborDown event (due to the firing of the inactivity timer) more than a given threshold amount, 

the router doubles its hello interval. In doing so, the router presumes the presence of a route flap due 

to a link flap and the doubling of the hello interval causes a hello mismatch with its neighbor. As two 

OSPF neighbors should have the same hello interval, this variation causes the neighbor relationship to 

be temporarily suspended until the other neighbor also doubles its hello interval, which is more likely 

to happen before the first router doubles its hello interval for the second time because the former  has 

a smaller routerDeadInterval . Once the other neighbor has doubled its hello interval, the adjacency 
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will recover once again with an increased routerDeadInterval this time. If the flap continues for the 

next hello_tune interval, the router once again doubles its hello interval (exponential growth) and the 

whole process continues once more. With the absence of such flaps within the hello_tune period, the 

hello timer is reset to its default value. The main objective behind this technique is to avoid route 

flaps by masking link flaps within the increased routerDeadInterval. The maximum threshold for the 

hellos is set to 10 seconds and the initial value is set to 1 second in the experiment.  

We have tried to illustrate one possible way of this technique in the following figure. 

 

 

 

Figure 3.1: The Dynamic Hello Scheme. 

 

Amir Siddiqi and Biswajit Nandy [36] have proposed a similar technique to mitigate route 

instabilities by dynamically tuning the OSPF failure threshold at times of congestion. This technique 

instead uses a fixed hello interval but varies the routerDeadInterval (RDI) based on the experienced 

network congestion level. The congestion levels are determined by monitoring the history of the 

number of hello packets received over a certain period of time and then determining the hello drop 

rate based on which the RDI values are dynamically assigned. Network interfaces are classified as 

master and slave based on their router ID .Only the master can changes the RDI value but the slave 

can propose a change when it experiences congestion. Simulation results of this technique under a 

highly congested network show a significant reduction in the number of adjacencies lost compared to 

the standard OSPF implementation. 
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3.2 Bidirectional Forward Detection (BFD) 

Failure detection time is one of the factors that delay the convergence process as discussed in the 

chapter 2. In traditional OSPF implementations, this time is dictated by the routerDeadInterval 

(4*hello). Achieving sub-second convergence using native hellos or fastHellos is challenging if not 

impossible for a simple fact that even fastHellos do require a minimum of 1 second to detect failure 

[10]. And on top of this, using fast hellos may not be a good choice for the operation highly consumes 

CPU cycle. The best alternative for most of the IGP implementations today is BFD (RFC5880) which 

is based on sub-second keep-alive timers. BFD is a light weight failure detection protocol designed to 

detect fault quickly in the bidirectional path of two routers including the interfaces, data links, and 

forwarding planes[7] [10]. It is designed to be implemented on the data plane of distributed router 

architecture independently of media, data and routing protocols. 

Unlike point to point links that have a hardware failure detection mechanism, layer 2 technologies 

such as Ethernet that mainly rely on hello protocol to detect failures require fast failure detection 

mechanisms like BFD.  BFD in its best-scenario provides comparable failure detection time as the 

expensive layer1/2 technologies such as packet over SONET/SDH which normally requires a few 

tens of milliseconds [7] [10]. 

 

3.2.1 BFD Neighbor Relationship Formation and Tear Down 

BFD relies on the configured routing protocol to discover its peer. As an OSPF process discovers a 

neighbor, it sends a request to the BFD running locally to form a BFD neighbor relationship with the 

neighbor. BFD neighbors create BFD session and negotiate the time in which the control packets are 

sent and received to detect connectivity problems.  

 

 

 

 

 

 

                 

Figure 3.2: BFD neighbor relationship formation (Asynchronous mode)  

 

 

 

 

 

Figure 3.3: BFD Error Detection Mechanism (Asynchronous mode) 

 

When failures occur in a network as shown in Figure 3.3, control packets are not received on both 

sides. As a result, the BFD session is torn down and the BFD reports to the OSPF that the neighbor is 

unreachable. This helps the OSPF to detect failures quickly and find an alternative path if available. 
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Two main modes of operation are supported by BFD, asynchronous and demand modes. The 

asynchronous mode is the main mode of operation that involves a periodic exchange of control 

packets (just like hellos). Most of Cisco’s IOS systems support asynchronous mode BFD. The 

demand mode that works over demand circuit like ISDN does not involve a periodic exchange of 

BFD control packets after the BFD session is established. A short sequence of BFD packets is 

exchanged instead when a device needs to check connectivity explicitly and it can operate 

independently in each or both directions [11] [7]. BFD also support echo function that works with 

both asynchronous and demand modes.  The echo function allows a device to send echo packet to its 

neighbor by setting its own address as the destination address (self-destined packets); the neighbor 

immediately forwards the echo packet without processing it and this reduces the round-trip time jitter. 

BFD echo packets are encapsulated in UDP packet and destination port 3785 and detect failures 

between directly connected neighbors. If the echo packets sent are not received within the BFD 

detection time interval then the device can declare that session is over. Since Echo function can 

independently provide a faster detection mechanism, the rate in which the BFD control packets are 

exchanged between devices can be reduced. The disadvantage of BFD is that it cannot detect failures 

on control plane as it is implemented on the data plane .However, it can be used with fast hellos to 

achieve that. Details about the BFD protocol can be found on RFC 5880. 

 

3.3 Fine-Tuning Delays in LSA generation, SPF computation and Flooding 

This section discusses various optimization techniques for LSA generations, SPF computations and 

Flooding. 

 

3.3.1 LSA Throttling (dynamic minLSAInterval) 

The implementation details of this technique, as part of our project, are discussed in chapter 5. Here 

we will brief how the technique works. Topology changes in an OSPF network are communicated 

using LSAs. RFC 2328 mentions the following topological changes as possible causes of LSA 

origination. 

 An Interface's state changes(Up/Down) 

 Designated Router(DR) changes(Broadcast, NBMA networks) 

 Neighboring routers change to/from  FULL state 

In general, a change in any of the contents of an existing LSA results in a new LSA that reflects the 

new change. For safety reasons, the origination of any two consecutive LSAs should be at least 

minLSAInterval apart. MinLSAInterval (default 5s) is a router’s built in mechanism to safeguard the 

router’s CPU at times of large scale topology changes or persistent link/node flaps. However, for 

today’s modern CPUs, this delay seems too conservative and intolerable. Instead, as argued in [7], it 

can be set to a smaller initial value for fast convergence to changes and made to adaptively increase 

with the network load. LSA throttling is one such approach to adaptively increase/decrease the LSA 

origination interval using exponential back off algorithm. It was introduced in Cisco IOS Release 

12.2(27) SBC and documented in [12]. 

 

LSA Throttling makes use of initial interval, hold, and max_wait timers. If an LSA is to be generated 

for any of the above reasons, it will be first delayed for an initial amount of time, and when the initial 

delay timer expires, the hold timer starts with a given hold interval. Any subsequent events within the 

hold interval will not generate an LSA; instead they are accumulated until the hold time expires and a 
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single LSA is generated as a result. And, so long as the flap continues, the process also continues 

increasing the hold interval exponentially (2^t*hold) until it reaches a certain preset max_wait value. 

The hold time will no longer increase beyond the max-wait but maintain that value even if the flap 

continues. When no flap is detected within the duration of 2*max-wait delay, the hold timer is reset to 

its initial value. It’s important to note that the hold interval should roughly equate to the total 

convergence time explained in chapter 2 so that all routers would have already reflected the new 

change before the next comes. Cisco’s default configuration uses 10 100 5000 milliseconds for these 

three timers respectively and recommends that the hold interval should be set greater than or equal to 

minLSArrival so that other routers receiving the update do not miss/drop valid LSAs. 

 

3.3.2 SPF Throttling/SPF hold-down  

Unlike modern high speed routers that take in the order of milliseconds to a few seconds to complete 

SPF computation [13] [14], older systems of the 1980s and 90s took tens of seconds to complete the 

operation. One factor for this, apart from the then smaller CPU power is the inefficiency of the 

original dijikstra's algorithm. The original dijikistra's algorithm with an average complexity of nlogn 

(even n2 for full mesh) is considered to be inefficient and less scalable in light of its modern variants 

that take an average complexity of logn [15]. However, for modern ISP networks that maintain 

hundreds of thousands of routes, SPF calculation has remained one of the CPU-intensive operations 

that need to be optimized.  

 

RFC 2328 specifies SPF computation immediately following the reception/origination of a new LSA 

i.e., it was pure LSA-driven. If a router is scheduling SPF computation for every single LSA it 

receives, that might ultimately locks the CPU only for SPF computation and all other useful tasks 

would be stranded. A somewhat conservative approach of this uses a fixedHoldTime [16][17] 

between successive SPF computations, but that too doesn't scale well and delays convergence. SPF 

throttling is a modern SPF scheduling scheme that uses the same technique and procedure as LSA 

throttling but it works on delaying the SPF computation after the LSA has already been 

originated/received via flooding. 

 

Three parameters namely spf-start interval, spf-hold timer and spf-max-wait timer are used in this 

technique. The spf-hold controls the number of SPF iteration and it should be set optimal to the 

convergence of the network. Likewise, spf-start should be kept as minimum as possible to allow for 

instant reaction to changes like transient faults and occasional topology changes but large enough to 

allow for successful flooding of the originated/received LSA before SPF starts. 

Juniper's implementation of this differs a little in that it has two modes of operation namely slow 

mode and fast mode, and unlike Cisco's exponentially increasing hold period it uses a linear 

increment. If the number of SPF runs exceeds a preset limit called rapid runs within a certain check 

period; the SPF computation switches to slow mode starting the hold-down timer. All subsequent SPF 

events within the hold-down timer won't trigger SPF computation until the hold-down timer expires. 

The following figure illustrates Cisco's implementation of SPF throttling which recommends 10 100 

500 ms. A similar pattern can be inferred for LSA throttling as well. 



19 

 

 

 

 

Figure 3.4:  SPF throttling timers in action 

 

As can be seen from the figure, at the third iteration the spf-hold is scheduled to 4*increment but as 

that exceeds the spf-max-wait threshold, it will be truncated to spf-max-wait and with the absence of 

flap for two more such iterations, it will be reset back to start.  

 

3.4 OSPF packet-pacing delays 

Cisco IOS Release 12.2(14) S have also introduced three types of OSPF packet-pacing delays to optimize the 

flooding procedure. Similar implementations also exist in junOS. Packet-pacing delays are used to rate limit 

the flooding /retransmission of LSA update packets with an intent to reduce the CPU or buffer utilization. 

While helping achieve fast convergence at times of occasional topology changes, these techniques instead 

follows a controlled flooding procedure for networks containing a large link state database (LSDB). 

 

3.4.1 Flood packet-pacing timer 

If a router has a large number of LSAs to be flooded out an interface one after the other, this timer 

dictates the rate at which this happens. The flood pacing timer is a timer set per interface and is in 

effect only if a router has more than one LSA. 

 

3.4.2 Retransmission packet-pacing timer 

As part of the OSPF’s reliable transmission, all LSAs sent to a neighbor are kept in a retransmission 

list for later retransmission in the absence of acknowledgment. Retransmission packet-pacing timer 

works in the same way as the flood pacing timer by controlling the rate at which LSAs are sent from 

the retransmission queue. A more advanced implementation of the retransmission timers, as suggested 

in RFC 4222[18], is to have a dynamic RxmtInterval just like the dynamic minLSAInterval technique 

discussed in section 3.3.1 so that RxmtInterval exponentially increases whenever the number of 

unacknowledged packets in the retransmission list rises above a given threshold (e.g. at times of 

congestion).The interval is again reset to its initial values when no sign of congestion is detected. 
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3.4.3 Group packet-pacing timer 

Prior to this feature, Cisco’s OSPF implementation [19] used to have a fixed 30 minute refresh 

interval after which all the self-generated LSAs of a router are refreshed. The refresh applies to all 

such LSAs at a time despite their current respective ages. Such a schedule creates a periodic spike of 

LSAs flooded to the network and that would require a considerable amount of CPU processing and 

buffer utilization. 

 

The OSPFv2 specification according to RFC 2328 instead applies an individual refresh time for each 

self-generated LSAs so that an LSA is flooded when it hits its 30 minute limit (which is its half-age). 

This on the other hand makes the flooding more frequent and inconvenient. A more recent 

implementation of Cisco adds a delay called group pacing delay (default 240ms) to each refresh times 

in an attempt to contain several LSAs into a single LSA update packet. This would make the flooding 

more efficient and reduce the load on the sender as well as on the receiving neighbors, but this 

somehow delays the convergence process. Details can be found in [7] [20]. 

 

3.5 IP Event Dampening 

IP event Dampening or BGP dampening (for BGP, rfc2439) is also a widely used technique to ensure 

global routing stability by reducing the effect of route flaps which are caused by high-frequency 

interface/link flaps. Almost all routing solutions of Cisco [21] since IOS release 12.0(22) S and 

junOS’s BGP implementation [22] include this feature in their distributions. We will brief Cisco's 

implementation of this below. 

Cisco's IGP implementation of this  is used to punish a persistently flapping interface by hiding its 

state transitions(UP/Down) from upper layer protocols and hence from the network. This helps to 

temporarily shut down the link and freeze all routes through it until it stabilizes. This technique is 

very similar in effect with LSA throttling but is a bit conservative and may not be enabled if a router 

is already using LSA throttling or the other way round. Every time an interface flaps (goes down), it 

is assigned a penalty value according to the formula Pn =Pn-1*2^ (-t/H) +Pn-1. If this accumulated 

penalty value exceeds a maximum threshold value called the suppress threshold, the interface is 

suppressed. It’ll be unsuppressed when the penalty drops below the re-use value. 

 

 

Figure 3.5: IP Event Dampening [21]  
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The algorithm makes use of the five parameters; penalty (figure of merit as junOS calls it), 

suppress/cut-off threshold, half-life period, reuses threshold and max- suppress time. The explanation 

follows the definitions of these parameters. 

 

Suppress threshold (default 2000) - Is the maximum accumulated penalty value after which the link 

is suppressed.  If the penalty counter is >1 in the half-life period, the penalty keeps on increasing by 

P*2^ (-t/H) + P.   

 

With the absence of flap in every half-life period, the penalty follows exponential decay according to 

the formula P(t)=P(0)*2^(-t/H); whereas if the flap counter  is >1 in the half-life period ,the penalty  

keeps on increasing by  P*2^(-t/H)+P .   

 P (t) stands for the penalty (initially 1000) at time t and H for the half-life period defined below.  
 

Half-life period (5s) - Is the duration of time after which the penalty is exponentially decayed 

according to the above formula (determines how fast the penalty decreases exponentially).This time 

has to be carefully chosen based on the frequency of the flap. Generally, the derivation from the 

above formula holds H >= T/log2 (P/(S-P). 

 

Reuse Threshold (default 1000) - Is the lower limit of penalty. If the penalty value falls below this 

value, the interface is unsuppressed/ reused. 

 

Max-suppress-time (default 4*half-life) - Refers to the maximum time a route can be suppressed. It’s 

recommended to have this feature deployed specially on networks with redundant links, which are 

typical of large service providers, due to the fact that routers start to use an alternative link stably unt il 

the flapping link settles. 

 

3.6 SPF  enhancements 

3.6.1 Incremental SPF (iSPF) 

SPF computation using the old Dijkstra's algorithm, aka static dijkistra [23] is now believed to be 

inefficient in many aspects. One of these limitations is that a full SPF computation is undergone over 

all LSAs in the LSDB for every new LSA received. Nevertheless, it may be the case that such an LSA 

won’t affect/change the existing Shortest Path Tree (SPT) tree or it may only changes part of it.  

This happens for example, when the LSA describes the failure of a link which is not part of the saved 

SPT (every new SPT has to be saved for iSPF). Such topology changes should simply be ignored if 

identified properly.  

 

 iSPF is a more sophisticated approach that avoids such unnecessary computations by carefully 

examining the newly arriving LSAs against the saved SPT before triggering a new SPF. iSPF also 

enables fast RIB updates [23] by avoiding redundant RIB updates and this contributes a lot for the 

convergence speed. 

The feature is available in Cisco IOS Release 12.0(24) S and later. Please refer the description 

following figure 3.6 for this and some more properties of iSPF.  
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Figure 3.6: Sample Topology (left) and spanning tree (right)  

 

property1. If the topology change is the addition of new leaf node like node R8 in the fig above, 

simply extend the SPT from R6 and its cost would be the cost to R6 plus the interface output cost to 

R8. This property is similar to the partial route computation discussed in section 3.6.2. 

Property2. If a link that wasn't previously in the saved SPT, say R4-R5 is down, and then this 

wouldn't trigger a new SPF. 

Property3. If any link in the current SPT tree fails say the link between R1 and R5, then that would 

trigger an SPF computation from the root to R5, R6, R7 and R8; that is to all the nodes in the sub tree 

of the failed link.  

 

iSPF proves more effective on topologies with fewer number of interconnections (less dense) and  the 

farther away the failure is from the root ,the simpler would the computation be  and this  compensates 

for the longer propagation delay resulting from such distant failures. 

 

3.6.2 Partial Route Computation (PRC) in ISIS 

As pointed in the previous section, OSPFv2's inherent way of handling information in its LSAs has 

some inconvenience when it comes to PRC. IP prefix information (the connected subnet information) 

is an integral part of an OSPF type 1 or type 2 LSAs which also carries topology information. So 

whenever an IP prefix or the status of a stub link changes in the area, the same LSAs are generated 

like for any other topology change that must trigger SPF. OSPF has no way to identify that such 

changes are only of IP prefix and not of topology, as a result of which it schedules a normal full SPF. 

Should it detect such changes, only PRC over the changed prefixes will be computed which is way far 

simpler task to do. But OSPF does so only for type3 and type5 LSAs both of which carry IP prefix 

information for external routes. 
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PRC is an integral part of ISIS due to the fact that ISIS’s handling of information in its LSP is more 

suited to such optimizations. It has a separate TLV (Type-Length-Value) to carry the IP reachability 

information and another one for IS (Intermediate System) Neighbors information (i.e. topology 

information) out of which the SPF is computed independent of IP prefix information. Every IP 

network in ISIS is considered as external and end up being a leaf; so whenever a stub link or a leaf 

node is added/removed, ISIS does PRC just like a distance vector addition/removal and only transient 

link failures that might potentially affect the whole topology do trigger a full SPT.  That said, major 

vendors like Cisco have managed to find a way out to this problem in OSPFv2 also, in such a way  

when leaf nodes are added/removed from the network, the routes are redistributed just like type3 or 

type5 LSAs instead of the normal case where they are advertised as type 1/2 LSAs. This trick has 

enabled OSPF to do PRC on stub/leaf links, with a little more associated CPU overhead. However 

with the introduction of iSPF to both OSPF and IS-IS this is no longer an issue. Please consult [18] 

for more and associated issues on this and [25] for more explanation and difference between OSPF 

and ISIS. 

 

3.6.3 Partial Route Computation (PRC) in OSPFv3 

OSPFv3 for IPv6 does this in a more smarter way by introducing a new type 9 LSA called an intra-

area prefix LSA that carries a separate intra-area network prefix information[26] (with no IP 

addressing semantics).  Router /Network LSAs are carried in separate LSAs that carry only topology 

information.  

In OSPFv3, LSA identifiers such as router Ids, Area Ids and Link-state Ids are all 32 bit numbers 

written in dotted decimal representation but they are not actually IPv4 addresses but just numbers. 

These numbers uniquely identifies each router in a given area; unlike OSPFv2 which identifies 

neighbors by their interface IP addresses (BR and NBMA networks) or an IPV4 router Ids (point to 

point and other).  

 

Type1 or Type2 LSAs do not carry IP addressing semantics information and are only transmitted 

when information pertinent to SPF calculation exists. Otherwise simple IP prefix or stub link changes 

only generate intra-area-prefix LSAs for which SPF would not run. This has made it easy to modify 

IP prefix information without affecting SPT tree. Consult OSPFv3 RFC 5340[26].  

 

3.7 LSA  Correlation 

LSA correlation is another SPF optimization technique proposed by the authors in [27].The authors 

believe that the hold-time based SPF calculation that uses fixed/exponential back off algorithm has 

unnecessary delays and is inefficient in some circumstances. They argue that individual LSAs are 

only symptoms of a topology change and should not always trigger SPF computation. Instead, each 

received link states in the update packets need to be collected over a period of time and correlated for 

possible topology changes. The correlation process identifies possible similarities between link states 

over adjacencies by thoroughly inspecting mainly the link ID, link Data, and link Type fields of the 

LSA. And if any topology change is noticed during the correlation process that will immediately 

trigger SPF calculation.  The idea seems smart on one hand due to the fact that LSAs describing the 

same change could be generated by multiple routers adjacent to each other, each of which possibly 

requiring SPF runs when received by a destination. 
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Part of the processing in LSA Correlation is of course already specified in RFC 2328 and the authors 

have noted that. The RFC clearly states that every received LSA should be checked for changes 

against the previously stored LSAs unless it is the first time it is received, and SPF computation is 

scheduled if and only if there is a difference in topology. However, as to our observation and the 

authors claim, the original OSPFv2 specification doesn't differentiate similarities over adjacencies.  

 

In the simplest case, when a link between two adjacent routers in a point to point network fails, both 

the routers generate an LSA describing the change. A router receiving these LSAs possibly over a 

period of time may schedule SPF for each despite the fact that they talk about the same thing. To give 

another example, suppose a central node that carries multiple adjacencies in point to point network 

crashes, as a result of which each of the adjacent routers generate an LSA describing this. Suppose a 

distant router receiving each of these LSAs. The traditional implementation might schedule SPF for 

each LSA it receives. The question is can we make this smarter? The author’s claim this can be made 

smarter if the receiving router could somehow analyzed the nature of the link states in these LSAs. 

For the first received LSA, it immediately schedules SPF (to reflect changes immediately, considering 

it as an occasional topology change) but if a second LSAs is received from a different router 

announcing the loss of adjacency with the same central node , then this might be a sign that the 

central router is going down, so  it waits for a while before running SPF hoping  to see more such 

announcements from the remaining adjacent routers also(its assumed that the calculat ing router keeps 

track of all adjacency information of a router through their router's LSAs) and once  it makes sure that 

it has got hold of all the LSAs from all adjacent routers ,it schedules an SPF (the second SPF) . This is 

in contrary to the pure LSA driven /fixed hold-time or an exponential bakeoff scheme which requires 

more SPF runs may be one for each such instance in the worst case. Further details including the 

pseudo code are found in [27] [23].  

 

The three main steps in LSA Correlation are: 

Step 1: Identify an up, down or cost change sub-event by carefully examining the contents of the new 

LSA and its saved version.  

Step 2: Correlate the sub-events to identify a topology change.  

Step 3: Post processing following the topology change.  

 

 

Figure 3.7: The overall LSA correlation procedure [35] 
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3.8 Graceful Restart (supported by both Cisco IOS and JunOS ) 

At times, it may necessitate that a router be down temporarily as part of a planned 

maintenance/upgrade activity or due to unplanned events such as power cut or crash. Nevertheless, an 

operator may still demand that the existing network communication should not be disrupted in the 

meantime. This need can be addressed by a procedure called graceful restart or non-stop forwarding, 

as documented in RFC 3623[28] [7]. Graceful restart makes use of the separate architecture of the 

control and the data planes of modern routers. This distributed architecture has given a rise to the 

possibility that the control plane, which takes care of all the OSPF operations, be restarted safely 

leaving the data forwarding operation to the forwarding plane/data Plane. The procedure goes as 

follows. 

 

The restarting router called the initiating router sends a special message called grace LSA which is a 

link local Opaque LSA to all its adjacent neighbors called helpers before it restarts (it does so after it 

restarted before sending hellos, for unplanned reboots). The grace LSA is not to be flooded by the 

helpers but is just a signal that the initiator is restarting so that the helpers should not break their 

adjacency but instead pretend that the router is still up and continue advertising it in their LSA. The 

initiator has to flush the grace LSA after a successful restart. In the meantime, the helpers enter in to a 

helping mode. 

 

In order to avoid possible mismatch, the initiating router saves its sequence number in a non-volatile 

memory before it restarts and when it restarts, it re-introduces itself by re-originating its 

router/network LSA, re-rerunning SPF and updating its forwarding table (it has to flush the grace 

LSA before this). However, should any topology change occur during the restart period, the initiator 

couldn't reflect this change in its forwarding table and that may potentially create a routing loop. In 

such cases, its helpers would no longer hide its restart and break their adjacency (exit the helping 

mode) by omitting the adjacent link from their LSAs. This time, both the initiator and its helpers 

assume a normal restart and this is of course unwanted. For planned reboots, the network 

administrator has to issue the appropriate command along with an estimated grace period which 

should normally be less than 1800s (in order to avoid the LSAs being aged out during the restart 

period). Graceful restart  is not recommend at times of unplanned reboots due to that fact that the 

router would not have enough time to prepare for it and this option should normally be disabled by 

default, more on the RFC [28].  

 

3.9 Incremental FIB Updates 

FIB update times vary between routers depending on the nature of the failure and depending on the 

number of routing prefixes affected by the failure. As experimental results show in [14] [13], FIB 

update time contributes the most to the convergence delay. Recent improvements [29] suggest a 

technique called incremental FIB update (iFIB). This technique, instead of dumping the whole routing 

table on the line cards whenever a topology changes, it rather selectively updates only the routes or 

the prefixes affected by the change. This approach works best with iSPF technique discussed in 

section 3.6.1 and is proved to significantly reduce the convergence time as well as saves bandwidth. 
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4. Sub-second convergence and the associated challenges 

 
OSPF has a better convergence time than a distance vector routing protocol like RIP. As mentioned in 

chapter 3, a convergence speed can be affected by different factors. Today there is a high demand for 

a sub-second convergence speed in a network, but the associated challenges of CPU utilization and 

the network instability that can result need to be addressed as well. It is common to see 10 gigabit link 

between two devices in core networks of services providers’. The failure of such links for a few 

seconds can result in loss of information before the network fully converges, and it can impact 

customers’ service. Here are some of the main reasons why sub-second convergence is very crucial. 

 The high importance of services uptime 

 The wide spread deployment of real time applications such as VOIP 

 Deployment of PWS like the Earthquake and Tsunami warning system (ETWS) as well as  

 Real-time mission and critical applications, from controls that are being used in industry to 

different sophisticated battlefield communication systems.  

 

As mentioned in chapter 2, network convergence time is the sum of the durations that takes to detect 

failures, propagate the event, perform SPF calculation and update the RIB/FIB on each router. To 

achieve a sub-second convergence, each step involved in the convergence process need to be 

completed in milliseconds. Fast reaction to a perturbed network environments can lead to a network 

that will not converge for certain period of time. While trying to achieve fast convergence, network 

instability can be introduced on the other hand. Depending on how frequent the network component’s 

status flaps, an excessive reaction by the underlying network’s protocol in some troubled environment 

can consume high CPU and bandwidth, which even can have the potential to melt down the whole 

network. As a result, stability is a key property of a recovery mechanism that needs to be addressed in 

fast convergence. 

 

In disturbed environments stability of a network can be maintained through controlling the way a 

network recovery mechanism reacts up on changes. Dampening techniques that can be implemented 

at different layers in a network are the basic methods to maintain stability in perturbed network 

conditions. Interface dampening using an exponential decay algorithm and exponential back-off 

algorithm both in LSA generation and SPF computations are some of the important techniques 

available. Large convergence time, high routing load on routers and many route flaps within short 

period of times can be taken as indicators for instability in a network. 

 

4.1 Suggested methods to achieve fast failure detection mechanisms 

As mentioned in the previous chapters, fast convergence is achieved through a quick discovery of 

failures in a network. Sub-second error detection mechanism is one of the requirements to achieve 

sub-second convergence. A quick discovery of failures in a network can be achieved using a reduced 

hello timer, or more preferably using hardware based techniques and BFD. 
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 A). A reduced hello timer 

A reduced hello timer, reducing the hello timer notably improves the time to detect failures between 

nodes, but it will also increase the load on every router as they are required to process the fast hello 

packets. It is possible to reduce the hello interval to millisecond ranges but the impact on CPU and 

network stability need to be taken in to consideration. CPU utilization in routers can increase for the 

following reasons. 

 As routers process hundreds of neighbors’ fastHello packets  

 As multiple concurrent failures and/or recoveries occurs  

 As LSA storms occurs in a network and so on. 

 

As OSPF reacts quickly to a continuous flaps in network that are close in time, several routes on a 

routing table can be removed and added back within a short period of time, this is characterized as 

route flaps. Route flaps caused by link flaps, in a perturbed OSPF network, always lead to a network 

instability and unreliability [8]. Using a real ISP network model (292 nodes and 765 links) Anindya 

Basu and Jon G. Riecke [9] observed a six-fold increase in the number of route flaps when reducing 

the hello timer from 500 ms to 250 ms. They suggested the value 275ms as the optimal one. The 

authors in [7] however suggest 500 ms as the optimal hello timer value with its failure detection time 

capability of around 2 seconds. 

 

In [15] it is stated that the hello timer is dependent on the physical constraint of links, like the link 

noise hits. The authors in [30] tried to determine the optimal hello interval for a network. They 

suggested that the optimal hello timer depends on the network’s expected congestion level and the 

number of links in the network topology [30]; the authors in [7] also agree with these suggestions and 

point out the network’s tolerance for false alarm as an additional factor.  

 

The authors in [8] showed in their simulation network that fast detection, using an optimal hello 

timer, is achievable under stable network. However, under unstable condition the dynamic hello timer 

(see chapter 3) grows exponentially affecting the detection time and convergence speed but relatively 

reducing the consumption of the CPU and bandwidth. It provides a more tolerant mechanism to 

frequent network changes. 

 

 B). Hardware based techniques 

Hardware based techniques can discover failures in tens of milliseconds but it may not be always 

available either due to the network type or the cost involved. A point to point gigabit link can detect 

failures between two nodes almost instantly, using a network pulse. 

 

 C). BFD  

BFD in its best-scenario can help achieve 50ms error detection mechanism [7]. To detect failures in 

forwarding planes, BFD is preferable over sub-second hellos both in terms of its quick detection and 

its routing load. It can be used in conjunction with fastHello to minimize detection time in control 

plane. 
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Finding an optimal hello timer that avoids false alarms and extra processing in a network is not an 

easy task, as mentioned above. Quick failure detection mechanisms alone in a perturbed network 

environments can lead to instabilities e.g. link flaps causing route flaps, and it can be prevented using 

the dynamic hello timer techniques. The IP event dampening techniques(see chapter 3) can also be 

used to damp some oscillating router interfaces in order to achieve a more stable system. Therefore, 

BFD can be used with the IP event dampening techniques to restrain any possible flapping interfaces. 

 

4.2 OSPF enhancements to optimize event propagation 

Being one of the factors that determine the convergence process, the event propagation technique 

requires an optimization to achieve fast convergence and at the same time a more stable network. The 

event propagation can be affected due several factors, as mention in chapter 2. Among the factors, the 

LSA storm results in high CPU and memory utilization at a router. This makes incoming packets to be 

delayed or dropped, especially where fastHello is used. Packets being missed or delayed can result on 

adjacency breakdown or an increase in the LSA retransmission rate that further can put the network to 

unstable state. 

In [18] the current “Best Current Practices” for OSPFv2 fast convergence are discussed. The 

following methods have been stated as good practices to improve the scalability and stability of large 

OSPF networks:- 

1. Assigning high priority to hello packets and link state acknowledgment packets and low priority 

to the others.  

2. Reset the inactivity timers for an adjacency upon receiving any OSPF unicast packets or packets 

sent to AllSPFRouters over point-to-point link instead of waiting for the hello packet only. 

Adjacency is declared down only on the absences of these packets over the period of 

RouterDeadInterval. 

3. Use an exponential back-off algorithm to determine the rate at which the LSA be retransmitted 

(RxmtInterval).This helps in reducing the rate of LSA retransmission as network experience 

congestion. 

4.  Implicit Congestion Detection of neighbor routers and taking action using exponential back-off 

mechanisms. The detection is done using the level of unacknowledged LSA packets. If the level 

passes certain “high-water mark”, the rate at which LSAs are sent to the neighbor router is 

reduced using exponential back off mechanism to some minimum rate. The rate is increased again 

exponentially as number of unacknowledged LSAs to the router reaches certain “low-water 

mark”. Both 3 and 4 helps avoid excessive congestion at a neighbor, the difference is that 3 is 

only for retransmission but 4 works both for new and retransmission of LSAs. 

5. Reducing the number of adjacencies to be brought up simultaneously, since sending large number 

of adjacencies to neighbors can cause severe congestion due to database synchronizations and 

LSA flooding activities. Here, only “n” number of adjacencies can be brought up at once. The 

value”n”, which is configurable, is based on the processing capability of routers, total bandwidth 

available for control plane traffic and propagation delay. 

 

In addition to the different methods mentioned above, the following are some of the important 

available enhancements that optimize the event propagation process in an OSPF network. 
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6. An LSA throttling technique that takes network convergence and stability into consideration (See 

chapter.3). 

7. Group pacing delay that is available in commercial routers, LSAs are grouped to refresh together 

so as to reduce the number of LS update packets and prevent LSA storms (See, chapter 3). 

8. Setting the DoNotAge bit in LSAs to avoid periodic refresh, this significantly reduce the LSA 

processing overhead of routers [31]. Routers flood their self-originated LSAs with the DoNotAge 

bit set, this reduce the protocol traffic overload in stable network. No need of re-flooding self-

originated LSAs every 30 minutes, the re-flooding interval is extended to configured forced-

flooding interval. New instances are originated up on LSA changes by the LSA originator.  

 

4.3 Optimization in routing table calculations  

Being one of the factors that determine the convergence process, routing table calculation requires an 

optimization. Below are some of the important techniques that can be used to improve the routing 

table calculation process. 

Mechanisms  Description Pros/cons 

Fixed hold time It is a fixed delay that is enforced between 

successive SPF calculations. 

Prevent too many routing 

table calculations after 

topology change. Affect the 

convergence duration but 

good for routing stability.  

SPF throttling, 

with quite 

period(Cisco) 

Initially small hold time, but receiving one or 

more LSAs within the period of hold time double 

the next hold time until certain maximum value. 

The hold time is reset to small value if no LSA is 

received after 2*Max_hold , see chapter 3 

Helps achieve fast 

convergence duration. Tries 

to keep the network stability 

at times of network 

disturbance that may result in 

several SPF calculations. 

Juniper scheme The first few SPF calculations are done with 

small values (fast mode operation), if too many 

SPF within certain threshold, it goes to large hold 

time (slow mode). If no LSA is received during 

the large hold time it is reset back to a small 

value. 

Changes with few routing 

table calculation result in fast 

convergence but affect the 

frequency of the SPF 

calculation for large scale 

topology changes. 

LSA correlation Tries to identify the underlying topology change 

by correlating the LSAs.(See chapter 3) 

Fast convergence with 

reduced number of SPF 

calculations. 

iSPF Avoids unnecessary SPF computations by  

examining newly arriving LSAs against the saved 

SPT. (See chapter 3) 

Contributes to convergence 

speed, since it enables fast 

RIB updates. 

PRC Involves partial route calculations over changed 

prefixes. (See chapter 3) 

Improves the convergence 

speed. 

Table 4.1: Optimization in routing table calculations 
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4.4 Optimization in FIB updates 

 

iFIB is used to optimize the FIB update time, it works best with iSPF (see chapter 3). 

 

4.5 Achieving Sub-second convergence in large IP network  

In [13] the authors have showed that it is possible to achieve sub-second convergence in large scale 

network (Tier-1 ISP network model with 200 routers in Europe, America & Asia) without affecting 

the stability of the network. Their simulation study was performed using ISIS, which equally applies 

to OSPF. The simulation experiment contains the following assumptions and conservative approaches     

 Packet over SDH (Synchronous Digital Hierarchy/SONET (or POS) links in SP backbones or 

BFD as means of sub second error detection mechanism. 

 Dynamic timers in LSA generation and SPF computations. 

 40 G link speed, no pacing timer 

 iSPF and iFIB 

 prefix prioritizations  

Using the experience from this survey and the simulation experiment in this project, we believe that 

using a combination of the following techniques at the different stages of the convergence process 

enables to achieve a fast convergence without impacting the network stability.  

 

 

Figure 4.1: Techniques to achieve fast convergence in OSPF 
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5. Simulations 
 

This chapter starts with a brief overview of network simulation and then discusses the implementation 

on the selected simulation.  

 

5.1 Overview of Network Simulators 

Before we started the simulation work, we had to make some survey to select a simulator suitable for 

the implementation. Our targets were freely available tools with modifiable OSPFv2 source code and 

also with a good GUI support. However finding one such ideal tool was difficult in the open source 

world. The commercial tools we suggested were very expensive and there was no budget allocated to 

buy one. NS3, OPNET IT Guru, QualNet, and OMNETPP, all of which are discrete event simulators 

with C/C++ development environment were among the candidates. Ultimately, we managed to choose 

OPNET Modeler Education version 14.5 simulator, one of the OPNET’s families of solutions for its 

advanced GUI and support for simulation statistics related to many of the important properties of 

OSPF such as convergence time. These advanced features are not available in OPNET IT Guru, the 

other academic version by OPNET. We also used OMNET++ version 2.2.1 for its free and extendible 

OSPFv2 source code using which we implemented the LSA generation delay feature. We will present 

a brief overview of the candidate simulators followed by the experiments done on the selected tools. 

Detail explanations can be found in the surveys [32] and [33]. 

 

5.1.1 Network Simulator-3 (NS-3) 

NS-3 is a discrete-event network simulator/emulator widely used for educational and research 

purposes. It’s a relatively new tool (first release 2008) designed to improve some of the inherent 

limitations of NS-2 and other prior tools. It is not an update of NS-2 simulator although it makes use 

of many of its models, nor is it backward compatibility with NS-2; it’s rather a different tool with an 

entirely C++ development environment and an optional python support for scripting. NS-2 uses C++ 

for development but scripting must be done in OTcl (Object-oriented Tool command languages) 

language. NS-3 provides a limited GUI support via NetAnim like NS-2 but newer tools such as PyViz 

and NS3-Viz are also recent introductions. The drawback with this tool is that it doesn't have an 

official OSPFv2 source code release but a user contributed one in the NS-3 experimental repositories 

with lots of unresolved issues. We didn’t dare to use this tool due to such uncertainties and also due to 

the complexity of NS-3 simulation environment added to the poor GUI support. 

 

5.1.2 OPNET/QualNet 

The other set of simulators we considered were products of OPNET (Optimized Network Engineering 

Tools) Technologies and QualNet both of which are commercial closed source tools. The versions 

shipped with the extendable source code are very expensive. QualNet doesn't have a free version and 

we didn't need to investigate it further. OPNET solutions on the other hand have educational versions 

one of which is OPNET IT Guru. IT Guru is mainly designed for small scale network simulations 

with some limitations on simulation parameters such as the number of nodes. OPNET families are 

best for their sophisticated data analysis features and nicely designed GUI.  OPNET Modeler is 

another educational tool by OPNET that we considered for our study. We will briefly describe 

OPNET Modeler and discuss what we achieved on it below. 
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5.1.3 OPNET Modeler 

The OPNET modeler is powerful simulation tool for building protocols and device models. In 

addition, its GUI makes it easy to build a large size network within short period of time .Using 

OPNET it is possible to build up networks that run different types of routing protocols. OPNET 

Modeler educational version has the following key differentiating features; these are: 

 Systems specified in OPNET Modeler consist of objects, each with configurable sets of 

attributes. 

 Models are entered via graphical editors 

 Automatic generation of simulations 

 Application-specific statistics that can be collected automatically during simulations. 

 Scalable simulation environment including support for parallel and distributed simulation 

 

5.1.4 Simulations on OPNET Modeler 

In this simulation, we have used terms like fastHello and normalHello. The fastHello represents a 

hello interval of one second and four seconds of routerDeadInterval.  The normalHello represents the 

traditional hello interval of 10 seconds. 

 

The simulated topology in OPNET Modeler is shown in figure 5.1; it is slightly different from the one 

used in OMNETPP and that was deliberately done to achieve the desired results. It consists of 24 

nodes with 49 point to point links, 98 routes each. 

 

 

 Figure 5.1: Simulated topology in OPNET Modeler 

 

Not all the timer types in OSPF are configurable in Modeler, for example the minLSAInterval/Arrival 

parameters are fixed as specified by the RFC 2328. So, the only interesting timers apart from the 
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retransmission timers that we were able to make use of are the hello timers and the SPF delay/hold 

timers (with a fixed hold value).We will discuss below what values we chose, why we chose and how 

they influence the convergence and stability of the network below. 

 

The network components used in the simulation experiments are slip8_gtwy_690_upgrade generic 

routers, a PPP_SONET_OC48 point-to-point cable with a data rate of 2488.32 Mbps and a controller 

node to model the failure-recovery scenarios. All the simulations in OPNET as well as OMNET 

assume a single area OSPF network with point-to-point links. The point-to-point network was chosen 

to analyze the convergence and stability issues of an OSPF network in its simplest form. This 

simulation work mainly tries to answer the following questions related to OSPF fast convergence and 

stability. 

 

1. What effect does reducing the hello interval from 10 to 1 second has on the convergence speed 

and CPU utilization? 

2. How the CPU utilization and convergence duration vary between fastHello and normalHello 

under the presence of continuous node failure/recovery? 

3. What impact does concurrently failing nodes bear on the CPU utilization? 

4. How do SPF parameters (initial delay and hold values) affect the stability of routes in a 

router?  

 

In the OPNET Modeler the convergence speed of a router can be measured using the convergence 

duration. The convergence duration is the time elapsed since a first sign of convergence activity 

occurs (initially, or with each new disturbance) until the sign of convergence activity occurs that is 

followed by a certain interval of no convergence activity. In this case, we take a sign of convergence 

activity to mean a re-computation of the OSPF routing table. This duration is represented by a Y-axis 

value in the convergence duration graph. 

 

1.) The first part in this simulation experiment shows the comparison of the CPU usage and the 

convergence duration between fastHello and normalHello. We observed this on a selected 

reference node NODE_1 in three different scenarios shown in Figure 5.2 and 5.3. The first 

scenario assumes a failure of a selected node BACK_3 at simulation time 100; the second 

assumes a delayed recovery of the failed node at time 200.This helps us to isolate the effects 

of a failure and a recovery. In the third scenario, the selected node is failed at time 300 and 

recovered at time 320; i.e. within a duration of less than 40 seconds which is the 

routerDeadInterval for the normal hellos. This is made to assume a brief restart in between 4 

and 40 seconds for which the fastHello and normalHello react differently. The SPF style used 

was periodic with a value 1 and that was made to keep the CPU as busy as possible under the 

presence of continuous LSA arrivals. 
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Figure 5.2: Convergence duration between fast and normal hellos 
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fastHello Y: 13, 

X: 19.48 

Y: 1.43, 

X: 104.48 

Y: 0.44 , 

X: 205.48 

Y: 1.40 , 

X: 304.48 

Y: 0.44, 

X: 325.48 

normalHello Y: 19, 

X: 25.48 

Y: 2.91, 

X: 134.48 

Y: 5.42, 

X: 210.48 

Y: 10.39 , X: 330.48 

 

 

Table 5.1: Convergence duration(y-value) values corresponding to simulation time(x-value) 

 

As can be seen from the above table, the convergence duration(y-value) is generally small for 

fastHello case due to the obvious fast failure detection and recovery. The other interesting point is that 

the fast hello scheme updates its routing table twice for the third scenario and that is due to the firing 

of the inactivity timer within the brief restart period and a new routing table computation is done 

assuming the neighbor is dead. The normalHello scheme on the other hand does a single routing table 

computation and hence has only one convergence duration. That was because the failure was not 

detected in less than the routerDeadInterval. The corresponding CPU utilization at these points is 

shown in Figure 5.3. The CPU rises up twice for the fastHello case corresponding to the number of 

convergence durations. From this we can conclude that while fast hello helps achieve fast 

convergence, it may not be that effective in terms of CPU utilization if there are continuous but brief 

restarts in a network. 
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Figure 5.3: CPU utilization between fast and normal hello 

 

 Initial 

Convergence 

BACK_3 

Failure (100 

sec) 

BACK_3 

Recover 

(200 sec) 

BACK_3 

Failure (300 

sec) 

BACK_3 

Recover 

(320 sec) 

fastHello CPU Y:  0.01500 0.00610 0.00610 0.00640 0.00620 

normalHello 

CPU 

Y: 0.00860 0.00280 0.00280 0.00510 

 

Table 5.2: CPU Utilization between fastHello and normalHello 

 

2.) In the second scenario the selected node BACKUP_3 is made to go up and down continuously 

in 20 seconds interval between the simulations times of 100 and 300 seconds. The SPF style 

was periodic with a value 1.The goal was to show how fast reaction to such failures affects the 

CPU in fastHello as compared to the relatively delayed reaction in normalHello. The 

simulation result in Figure 6.4 shows that the CPU utilization shoots-up in both scenarios 

corresponding to the number of convergence durations. 
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Figure 5.4: fastHello vs. normalHello reaction to continuous flaps 

 

3.) The third simulation in Figure 5.5 shows the effect of concurrent node failures and recoveries 

on the CPU for fastHello. The effect was analyzed in three different scenarios. We used the 

twelve nodes in the left side of the simulated topology in Figure 5.1 to create three different 

scenarios. In the first scenario, the top four nodes were put down at a time at simulation time 

100s and recovered at 200s. In the second scenario, a total of 8 nodes failed at simulation time 

100s and recovered at time 200s. In the third scenario, all the 12 nodes were made to fail at 

time 100s and recovered at 200s. The SPF style used was periodic one second to create the 

maximum possible pressure on the CPU. 

 

The 12 nodes, when seen in 3 pairs of each 4 nodes, have the same number of adjacencies to 

the back bone nodes; BACK_1 for example. This creates an interesting scenario to observe the 

CPU utilization trend on BACK_1 when different combinations of these pairs fail/recover at 

different times. 



37 

 

 

 

 

Figure 5.5: CPU utilization for fastHello under concurrent failures 

 

From this result, we were able to conclude the following. 

 

 The CPU utilization is highly dependent on the number of adjacencies that a router 

has. As can be seen from the above figure, The CPU utilization is inversely 

proportional with the number of failing nodes whereas it’s directly proportional with 

the number of recovering nodes. This is of course is due to the fact that  the more the 

number of the adjacencies ,the more will be the corresponding number of LSAs that a 

router needs to process, and OSPF operations including the SPF computation are 

highly dependent on the size of the link state database that contains all these  LSAs .  

 The Other interesting analysis is that even though the CPU consumption trend is 

generally decreasing for the failure case and increasing for the recovery, the relative 

changes are not the same i.e. it shows a sharp rise for the recovery and relatively a 

small change for the failure. Well, it’s of course always easier to destroy than to create; 

a lot of OSPF messages have to be exchanged and processed since the neighbor 

relationships need to be re-created from scratch. 

 

4.)  The fourth part in Figure 5.6 shows how the network stability can be affected due to frequent 

node failure/recovery when using different values for the SPF hold value. This can be shown 

in OPNET Modeler using the next hop update parameter that shows the number of times the 

next hop of a given route is updated. The selected node BACK_3 is made to flap 20 times in 

10seconds interval between the simulation times 100 and 300 seconds. This time the 

LSA_driven SPF style is used with initial delay of 1s and a hold value of 5s for the first 

scenario and initial delay of 1s and a hold value of 15s for the second scenario.  
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Figure 5.6: Number of next hopes updates in fastHello using SPF hold 5 and 15 

 

As can be seen from the above figure the number of next hop updates for the SPF hold value of 15 

seconds is 8 as compared to 20 for the SPF hold value of 5 seconds. A simple observation from this 

could be that the number of SPF calculations is delayed 2 times more for the former case; this gives 

more time to collect more LSAs before the SPF starts which results in fewer number of SPF 

calculation and route flaps. 

 

5.1.5 OMNETPP (Objective Modular Network Test bed in C++) 

OMNETPP is one of the promising and widely used simulation platform for modeling wireless/wired 

network communications and protocols. It also provides a strong GUI support though not as 

sophisticated as OPNET’s solutions are. OMNETPP is not a simulator itself but it is a simulation 

platform that follows component based architecture with flexible and scalable simulation 

environment. All network models and protocols supported by OMNETPP such as OSPF are provided 

in a separate package called the INET framework. The INET framework is independent of 

OMNETPP but complies with its architecture. Simulated objects in OMNET++ are represented as 

modules which can be simple or compound.  A simple module is a C++ implementation of a simple 

object such as a queue or a point to point interface whereas a compound module such as a network 

layer or a router is formed from two or more combinations of simple/compound modules. The 

following figure shows a compound module router and its building blocks.  
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Figure 5.7: OMNETPP simple/compound modules 

 

A network model in OMNETPP is created using a special Network Description Language called the 

NED language. All connections between simple/compound modules and other associated parameters 

are described using the NED language. 

 

5.1.5.1  OMNETPP simulation components 

A simulation model in OMNETPP consists of the following files: 

NED files: Like OTcl is for NS-2 or python/C++ is for NS-3, topology information in OMNETPP is 

described using the NED language as mentioned above. The information contains the network name, 

a detail description of the sub modules forming the network and the description of the connection 

between them (channels, gates etc.). 

Config. files: Contains OSPF configuration information; this includes information related to the areas 

(area id, area address range etc.) and routers such as router id and the description of its interfaces.  

Routing information: this includes the router IP addressing details, metric, multicast/broadcast 

groups and static/default routing information. 

Omnetpp.ini file: The Omnetpp.ini file describes what to run and with what parameters; it contains 

the names of the NED file, the configuration file, the routing files, and other run-time parameters. The 

following figure shows a screen dump of the above files in OMNET++ window. 
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Figure 5.8: OMNETPP simulation components 

 

5.1.5.2  OMNETPP OSPFv2 Issues 

We chose OMNETPP for its free OSPF source code which of course has a few of limitations. Some of 

the issues were clearly stated by the developers and we have noted a few others during the source 

code review. Some of these issues along with their effect on our implementation are outlined below: 

 

 The implementation has some unresolved issues related to unnumbered point to point links, as 

clearly commented by the authors. However, all connections between the routers in our 

network are numbered point to point. 

 Unlike the other protocols such MPLS, OMNETPP doesn't have advanced simulation support 

for OSPF such as automated link/node failure and recovery. This would have helped to easily 

model a flapping interface. We have adopted a different way of achieving this which is 

discussed later on this chapter. 

 OSPF operations such as checksum validation are not implemented. This is used to check 

whether the received OSPF messages are corrupted or not, but in our simulation we assumed 

all sent messages are received without an error since we didn’t introduce a message loss or a 

bit-error factor in the simulation. 

 The implementation doesn't make use of the minLSAInterval parameter; no gap between 

successive originations of the same LSA. The LSA throttling algorithm introduces a new 

dynamic implementation of it. 

 

 

 

 

NED 
file 

  Ini 
file 

Routing 
file 

Config 
file 
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5.1.5.3  The simulated topology in OMNET++ 

The network topology we considered for the simulation is shown in Figure 5.9 It consists of 22 

routers, with 47 links and 94 routes (each point to point link is added as separate route). The topology 

is made to not use equal cost multi-paths, to get a unique path through the network at all times. The 

green path shows the current shortest path from the source R1 to the destination R18 and the yellow 

line through R10 is an alternative redundant path that takes over when the link R10-R11 fails. R11 is 

selected as the target router that experiences the flapping interface; its ppp5 interface that connects it 

to R12 is brought Up and Down periodically to imitate a constantly oscillating interface. R1 is taken 

as a reference node to monitor the LSAs generated by R11. 

 

 

 

Figure 5.9: The simulated topology 

 

5.1.5.4  Interface/Neighbor state changes following a link flap 

Before we discuss the LSA throttling algorithm, it is important to review the LSA generation process 

corresponding to the Interface/Neighbor state changes in point to point links. As discussed in chapter 

2, one of the possible ways a router could generate a new LSA is when its interface/Neighbor state 

changes. We will present an explanation of how this happens following the figure below. The figure 

shows how the interface state and neighbor states of an interface changes in point to point links as the 

selected interface is put down and up. 
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Figure 5.10: Interface/Neighbor state changes 

 

Normally, when an interface is brought down, the following sequence of actions are taken by the 

router 

 

 The interface's state is changed to DOWN .This may necessitate a new LSA generation 

(LSA1) that excludes the down link. The interface may not have a neighbor associated with it 

in this case. 

 All the timers associated with the interface are cleared. 

 A kill neighbor’s signal(actually a function call to delete all the neighbor states associated 

with that interface) is sent to all neighbor objects associated with the interface following 

which all the neighbor data structures are cleared and also the inactivity timer(that fires every 

routerDeadInterval amount) is cancelled. Finally the neighbor’s states are put to down. This is 

followed by a new LSA generation (LSA2) that excludes the down link states. 

When the interface is brought up again, its state immediately changes to Point-to-point(note that this 

is not the case in broadcast links) and a new LSA (LSA3) is generated to advertise this, but the link is 

advertised as a stub link if the adjacency over it is not yet fully established. The neighbor state 

transitions all the way from init to full upon which the router once again generates an LSA declaring 

the availability of a fully functional route (LSA5). The neighbor state may jump from an exchange 
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state to full state as shown in the figure following an exDone event if the link state request list of the 

router is found empty(i .e  all the LSAs are already exchanged). Note that if the second kill neighbor 

signal is sent to a neighbor state that is in any of the states less than the full State, no LSA will be 

generated as a result, rather the neighbor state is restarted from init. 

The above sequences of actions were put ambiguously in OSPFv2 source code leading to unnecessary 

LSA generation. That was corrected following the discussions with our supervisor. However, with the 

LSA throttling feature enabled, we don’t have such issues as the LSA generation is no longer event 

driven but rather controlled by the LSA throttling timers. 

 

5.1.5.5  The convergence process in simulation 

The simulation results of the CPU time taken for each of the convergence factors described in chapter 

2 are shown in table 5.3 We will explain the approaches used below: 

 

Failure detection time: This is the duration from the failure of a link/Node until the OSPF process is 

informed of the failure. In our case, the failure detection time is the duration from the time the given 

interface is brought down using the interfaceDown event triggered upon the expiry of the 

interfaceDown timer until the router performs all the necessary changes following the failure (see 

section 6.1.3.4) but before the corresponding LSA is originated. 

 

Propagation time: this is the duration from the start of the LSA origination until it is received by the 

farthest router in the network (depends on the network diameter). This includes the time for the LSA 

origination, flooding, reception and processing time by a receiver which includes identifying the LSA 

for new/duplicate, re-flooding and acknowledgment among others.  An initial LSA delay time is also 

added to this if any is configured. 

 

SPF run time: this is the CPU time taken to compute SPT for the network. The SPT is computed for 

the given network of 94 routes. Note that each point to point interface assumes a separate route in the 

routing table and added to the routing table as a separate route unlike broadcast links where a single 

route is added for adjacent links that share a common sub network address. 

 

FIB Update time: OMNETPP simulation doesn't consider FIB update times; it assumes an ideal 

router with FIB update time 0. So, routes are already added to the routing table when the SPF 

computation returns. As a result, this time is considered zero in our case. Note that in real world 

scenarios, the FIB update time takes the maximum share next to the event propagation time in the 

convergence process. The table below shows the average CPU times for the above operations. 

 

 

 

 

 

 



44 

 

 

Operation Average CPU-time(ms) Remark 

Failure Detection 0.050 Time from a failure of PPP6 interface of R11 until LSA 

generation starts; this actually doesn’t correspond to the 

real detection time as we manually down the interface 

in the code itself. 

Event propagation 145.96 Time from LSA generation by R11 (target Node) until 

SPF starts at R1 (reference Node).LSA/SPF initial delay 

is assumed 0. 

SPF computation 2.65 SPF computation and routing table update 

FIB update NA Not applicable 

Total Convergence 

Time 

148.66 Total Convergence time  for a down event 

 

Table 5.3: Total convergence time 

 

5.1.5.6  LSA Throttling 

The LSA throttling algorithm works under the presence of a link flap. In the real case, the flap is 

notified to the OSPF process by the available failure detection mechanism. Figure 5.11 shows the 

periodic UP (U) and Down (D) Timers and the LSA throttling timers in action as the ppp5 interface of 

R11 flaps.  

 

 

 

Timers IntfDownTimer(D) IntfUPTimer(U) LSAInitialDelay(i) Hold(h) MaxDelay 

Intervals(s) 2 3 1 2 32 

 

Figure 5.11: LSA throttling timers  
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As can be seen from the figure, the interface down event (D) starts from time 20; the delay is to give 

enough time for the initial convergence which is the total time that each router takes to acquire all the 

routes in the network initially. The LSAInitialDelay(i) is assumed to be 1s; this is an important 

parameter to be tuned carefully in real network deployments because it has a significant impact on the 

convergence time. The general rule of thumb is to keep it as small as possible (5-10ms, Cisco) but 

large enough to incorporate multiple changes that might occur synchronously (e.g. simultaneous link 

failures when a routers fails). The hold value starts from 2s and it grows exponentially until 

MaxDelay after which it keeps this value so long as the flap. It will be reset back to its initial value if 

no sign of flap is detected for a duration of 2*MaxDelay. The Up and Down timers are rough 

estimations fulfilling the following conditions: 

 

 The UP time (3s) is chosen in such a way that there would be enough time for Router11 to 

establish a full neighbor relationship with its adjacent router R12 before it is brought down. 

 The Down time (2s) should give enough room for the adjacency to be fully torn down before 

it is brought up again. 

 The inactivity timer is assumed not to fire following a down neighbor, for the down interval of 

2 seconds is less than the routerDeadInterval which is 4 second and at least one hello must be 

received before it expires. This is automatically taken care of by the OSPF process when the 

neighbor state is brought down. But even if this timer fires leading to LSA generation, the 

LSA generation is subjected to follow the LSA Throttling delay. 

 

Below are shown the pseudo code for some parts of the implementations related to the timers.  

Notations: 

router  is a pointer to a Router  

intf   is a pointer to an Interface 
nbr   is a pointer to a Neighbor 

msgHandler  is a pointer to MessageHandler 

 

Upon expiry(timer  intfDownTimer) 
If router=TARGETROUTER then  // get the target router with a flaping interface 

Intf <--getInterfacebyId(intfId)                           // get a reference to an active interface 

Set intf.state<--DOWN                     // fail the interface 

Timer intfUPTimer<--router.getIntfUpTimer()        // get a reference to the Up timer  

start(timer intfUPTimer,double upInterval)             // (re)schedule the UP timer 

 

Upon expiry(timer  intfUpTimer) 
intf<--intfUpTimer.getContextPointer()  // get a reference to the interface from 
Set intf.state<--UP    // the timer context and recover it 

start(timer intfDownTimer,double downInterval) // reschedule the Down Timer 

 

Upon expiry(timer  stopTimer) // stop the flap timers and make sure the intf is Up finally 

If isRunning(timer intfDownTimer) then  

stopHandler.clearTimer(intfDownTimer) 

else if isRunning(timer intfUPTimer) then 

stopHandler.clearTimer(intfUpTimer) 

If intf.getCurrentState()=DOWN then              // make sure the interface is up finally 

Set intf.CurrentState=UP 
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Upon expiry(timer lsaDelayTimer)  

 Intf<--lsaDelayTimer.getContextPointer()          // get a reference to the interface from the timer context  

 

// track the presence of a flap using the flap counters associated with each interface or using the neighbor  

// inactivity/linkDown counter associated with the neighbors on each PPP interface  
// a sequence No. mismatch error may also occur leading to LSA generation  when a router suddenly resets  

// its sequence number due to interface Down event before the other peer detects the failure. 

 If  intf.getFlapCounter()>=1  or                         

      intf.getNeighbor.getInactivityCounter>=0 or    

      intf.getNeighbor.getLinkDownCounter>=0  or   

        intf.getNeighbor.seqNoMistmatchCounter>0  then 

   router.OriginateRouterLSA()        // generate the LSA  

   If 2*intf.GetLSADelayInterval()>=MAXDELAY then    // delay shouldn’t  exceed MAXDELAY 

                       intf.setLSADelayInterval(MAXDELAY)  

   Else 
                       intf.setLSADelayInterval(2*GetLSADelayInterval())      //double delay until MAXDELAY 

   msgHandler.startTimer(intf.lsaDelayTimer, intf.GetLSADelayInterval())  // re schedule delay timer 
                             // reset all the counters associated with a link/interface flap 

   reset(flapCounter) 

   reset(inactivityCounter) 

   reset(linkDownCounter) 

   reset(seqNoMMCounter) 

             Else    
   intf.resetLSADelayInterval()      // reset the delay interval to its initial if the flap stops 

   DelayHandler.clearTimer(router.lsaDelayTimer)            // cancel the timer  

 

 

Table 5.4:  Pseudo codes for LSA Throttling timers 

 

The following two figures show Router 11’s LSAs as they arrive at R1. Figure 5.12 shows LSA 

arrivals without the LSA throttling feature and figure 5.13 shows the arrivals with LSA Throttling 

enabled. The red spot at around simulation time 10 shows the initial convergence time; i.e. the last 

route insertion time where R1 has installed all the 94 routes. This time is almost the same for all 

routers with only a slight variation of a few milliseconds. The average value is 10.092 simulation 

seconds. 

 

Figure 5.12: Original LSAs as they arrive on R1 
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Figure 5.13: Throttled LSAs as they arrive on R1 

 

As can be inferred from the graphs, without the LSA Throttling functionality, a persistent link flap 

would generate at least one LSA for each Up and Down event and all the generated LSAs are 

received by R1. With the LSA throttling functionality enabled on R11, the number of LSAs R11 

generates are exponentially delayed and as a result a fewer number LSAs are received by R1. The 

number of LSAs drops from 43 to 9 which is a significant change. It’s not just the decrease in number 

that is interesting but it’s important to see what each LSA could have cost the network if they were 

not throttled. It requires the total convergence time for the network to stabilize for a single LSA, and 

if such LSAs are originated in close succession, all the routers have to repeat the same process over 

and over adding and deleting the same route. The network would be in continuous disturbance and 

never stabilizes. This might have very disastrous consequences that could lead to a network wide 

dysfunction especially if such events occur in large scale. 

 

5.2 Considerations for broadcast networks 

Fast convergence in all types of OSPF networks are affected by the value of the timers set. However, 

different network types exhibit different convergence property due to their inherent design differences 

and OSPF’s mode of operation. For example, it can be generally said that point to point networks 

convergence faster than broadcast networks for so many reasons one of which is due to the fast failure 

detection provided by the layer 2 protocol. The OSPF’s mode of operation in point to point networks 

is the simplest type. One of the reasons is that there is no notion of DR/BDR and an adjacency is 

formed between all neighbors straightaway unlike the broadcast/NBMA networks that take up some 

time for DR/BDR election/re-election. 

 

The other delay factor in broadcast/NBMA networks is that interface state changes in broadcast 

networks involve a waiting time (equivalent to the routerDeadInterval), a time that an interface has to 

wait before it transitions to either DR, Backup or DRother state, this significantly affects the initial 

convergence as well as every other re-convergence following each time a link is UP or a router 

restarts.  
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While the presence of DR/BDR in broadcast networks reduces the number of adjacencies, it exposes 

the network to a single point of failure and also it requires the DR/BDR to originate a new type 2 

LSAs to communicate changes to all the nodes in the network. This increases the overhead in the 

network. If both the DR and BDR happen to fail at a time, the network performance will be highly 

degraded. Multiple adjacencies are dropped simultaneously and a new DR/BDR re-election needs to 

be undergone. All topology changes in the meantime will not be communicated leading to a delayed 

convergence. 

 

The LSA generation delay algorithm applies to all types of OSPF networks in the presence of a link 

flap, but the effect varies a little. This is due to the difference in the traditional failure detection 

mechanisms used in those network types. Unlike the point to point networks that have link layer 

failure detection mechanism, broadcast networks can’t detect failures that occur behind the switch so 

quickly but after the routerDeadInterval. This means that they are unresponsive to frequent link flaps 

that may happen within the routerDeadInterval in contrast to the former that are aware of such events 

as they occur and react instantly. The use of a BFD session over a layer 2 switch is an alternative fast 

failure detection mechanism for broadcast links. 
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6. Conclusion and Future work 

 

OSPF is one of the prominent and widely studied IGP routing protocols in ISPs and enterprise 

networks. Since the latest RFC2328 released more than a decade ago, there have been numerous 

changes in both its traditional configuration of parameter such as timer values as well as changes due 

to optimized ways of working in many of its operations. Most of the important operations of OSPF 

that contribute to its fast convergence such as failure detection, SPF calculation, LSA generation and 

flooding are controlled by timers. Some of these timers have traditionally been considered as 

architectural constants whereas as the rest were a one-time set fixed values. Modern experiences and 

research works suggest a dynamic implementation of these timers for a safer network operation and 

faster convergence to failures. Dynamic timers are generally set to a small initial value based on the 

expected network stability level and the values vary with the experienced network load. This adds 

robustness for the OSPF operation at times of instabilities as well as improves the network 

convergence speed at times of stable network operations. 

 

This work in part revises what has been achieved in OSPF fast convergence so far, with a more focus 

on the use of dynamic timers. Stability issues that come with reducing the timer values have also been 

discussed supported by simulation results for some selected scenarios. The simulation results show 

that while fast hellos of one second are good choices for fast neighbor discovery and failure detection, 

they may not be that effective for continuous but brief link/router breakdowns that are common on 

real network deployments. We have also concluded that the CPU consumption highly depends on the 

number of adjacencies a router has. This work has also introduced the pseudo code as well as the 

implementation and evaluation of the LSA throttling algorithm. The simulation results demonstrate 

that an OSPF network using this feature has a much lower number of LSAs generated at times of 

persistent link/node flaps. Having this dynamic technique is crucial to achieve fast convergence 

taking the CPU and network stability into consideration. 

 

Fast convergence to network changes is one of the desirable properties of OSPF and other routing 

protocols. Experiences indicate a combination of different techniques are used in each operational 

phases of OSPF to achieve sub-second convergence. Simulation results modeling real ISP networks 

of hundreds of nodes show that the hello timers can safely be reduced to a few hundreds of 

milliseconds for fast failure detection. Although the use of fast IGP keep alive timers seems to be 

inefficient in terms of the heavy processing load, a dynamic implementation of this, along with a 

routing protocol independent BFD technique is still highly recommended for fast failure detection on 

broadcast networks. BFD with IP-event dampening technique is a recommended combination for fast 

failure detection as well as suppression of false alarms. LSA throttling is used to provide dynamically 

controlled LSA generation against link flaps. SPF Throttling is best used with LSA throttling to 

provide dynamically controlled SPF computations for self-generated or flooded LSAs. While using 

these throttling techniques, it is very important to tune the initial delays carefully as it highly impacts 

the convergence duration for occasional and transient network failures. 

New variants of SPF algorithm such as iSPF with a dynamic scheduling scheme are best to minimize 

the CPU overhead on large networks. Dynamically tuned packet pacing delay timers are also 

recommended for optimized flooding and retransmission. Incremental FIB update techniques provide 

optimized performance by only updating modified IP route prefixes instead of a full dump. 
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Recent proposals on minimizing packet drops during the convergence period suggest a mechanism to 

avoid communication breakdown at times of link/node failures through the use of alternate locally 

determined paths without requiring explicit notification of the failures globally. Details can be found 

on as RFC 5714, 2010. 

 

Future works on OSPF fast convergence and stability issues may consider the implementation of the 

LSA throttling algorithm or other similar dynamic timer techniques on broadcast networks. We also 

would like to recommend the use of emulators instead of simulators for a close-to-real network 

analysis of results as the emulated network can be extended to a real network node. 
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Appendix 1 
 

1. OSPF Basics 
 

1.1 OSPF Protocol Overview 

The Internet Engineering Task Force (IETF) started working on a routing protocol named OSPF in 

1987 to replace a famous, by the time, distance vector routing protocol named RIP (Routing 

information protocol). RIP consumes higher bandwidth during its update and its convergence time did 

not go well with the growth of the IP (Internet Protocol) network by that time. The development of 

the OSPF protocol is basically prompted by the failure of RIP to address the problem related with the 

growth of the IP network at the time. The development of the OSPF protocol started with the aim of 

achieving faster convergence time taking less bandwidth consumption during updates. 

 

OSPF is a dynamic link state routing protocol that interconnects routers exchanging information 

within a network. The protocol’s dynamicity comes from the fact that it maintains its routing table 

with possible routes and updates it periodically. It performs a real-time calculation up on changes in a 

network. It is a link state routing protocol since each router in the network tracks the link status of a 

network. It is an Interior Gateway Protocol (IGP) since it operates within a single AS (Autonomous 

System), and it is one of the most widely used IGP in large enterprise networks. It operates on the 

TCP/IP protocol suite encapsulated within the protocol number 89. It uses IP multicast to exchange 

routing information among routers in a network. 

 

Routers configured with OSPF in a network are able to learn routes to other routers in the network 

dynamically, and they will pass the learned information among each other. The main goal of sharing 

link state information between routers in an OSPF network is to construct and maintain the same link 

state database (LSDB) about the whole topology of a network on every router. It is a requirement in 

an OSPF network. LSDB has a collection of routes and their active interfaces, as well as the cost 

associated to use each active links on a router. Making itself as a root node each router is expected to 

construct the shortest path tree (SPT) to every available node in a network. The SPT is constructed 

using the dijkstra’s algorithm. The dijkstra’s algorithm makes use of the lowest link cost as the best 

metric. The cost associated with every link is to give a priority among different routes in a network. 

Finally, each router constructs its routing table from the tree. 

 

After constructing its routing table an OSPF router maintains a synchronized routing table with its 

neighbors. In an OSPF network the hello protocol is used to discover neighbors, and maintain 

connectivity between neighbors. The HelloInterval timer must be the same within a single network 

and it is used in conjunction with the HelloDeadInterval timer. The default time interval for hello 

packet is 10 seconds for an Ethernet link and 30 seconds for a non broadcast link [1][2]. If hello 

packets are not received by a router within the HelloDeadInterval time, which is usually four times 

than the HelloInterval, the router declares that its neighbor is down. This change is reflected by 

flooding a Link State Update throughout the network. The Link State Update packet only carries the 

changed link state information instead of carrying the whole LSDB. The flooding enables all the 

routers to synchronize themselves to the change.  
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1.2 OSPF Autonomous System(AS) and  Areas 

 

1.2.1 Introducing the concept of AS and Area 

A group of interconnected routers that make use of a common routing protocol or a collection of 

routers under the control of a single administrative policy is termed as an AS. In Figure 1 below there 

are two separate AS’s domain.com and reskit.com. Communications among the different networks 

with in some large AS is done using IGP, and Boarder Gateway Protocol (BGP) is used for the 

purpose of communication between one AS and another AS. As the size of an AS gets larger, the 

amount of link state advertisement exchanged and the size of LSDB that should be kept at each router 

in the AS also grows. Therefore, as the size of the AS gets larger each router is required to have a high 

processing capabilities and a large memory size to store the LSDB. Large ASs ends up in having large 

size of routing table which contains all the reachable information. 

 

A router in an AS maintains identical LSDB, which results after a high routing information exchanges 

in the network. An OSPF network allows a large AS to be broken down to a group of networks called 

areas. An area is a collection of contiguous networks, routers and links that has the same area 

identification, say Area 1. Breaking down the AS in to different areas minimizes the size of the LSDB 

on each router to be stored and reduce the processing overhead of the SPT tree in constructing the 

routing table. Each area has its own LSDB and runs its own separate link state routing algorithm. 

Having areas in an AS enables to organize the network in hierarchical structure, and this capability 

gives the OSPF a true scalability and strength. Several areas can be found within an AS; only routers 

with in an area are expected to have the LSDB, i.e. routers have the knowledge of the area they 

belong to instead of the entire AS. Topology of an area is only known to the member routers, routers 

that belong to say area B cannot see the topology of an area A that belongs within the same AS. 

Isolation of topological information from areas reduces the routing traffic that is needed to be 

exchanged. 

  

Depending on the destination address of a router, there are two types of routing with in an AS, intra-

area and inter-area routing. Intra-area routing uses exclusively the available information with in the 

area; it won’t use any routing information obtained from other areas and this will protect it from 

injected bad routing information. 

 

 

Figure 1.1: AS and Stub areas  
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1.2.2 OSPF Area Types 

 

1.2.2.1 Backbone Areas 

The backbone area is the first and special area that should be built when an OSPF network is 

configured. It is denoted by area 0 and can be described as 0.0.0.0[1]. Once a backbone area is 

configured other areas connect to it. Inter-area communication is done using the backbone as a hub 

.The backbone area includes routers that are located on boarder of areas called Area Boarder Routers 

(ABRs).  Routers that are found in the backbone need to be adjacent but if they are not physically 

adjacent then virtual links can be configured for their connection [1]. A traffic flow between two non-

backbone areas area 1 and area 3 in the Figure1 above, is done in a way that the traffic first flows 

from area 1 to the backbone area then the traffic flows through the backbone area 0.0.0.0, and finally 

the traffic is directed to the final destination area 3. 

 

1.2.2.2 Stub Area  

Stub areas in OSPF network are areas with a single exit point, designed usually for routers with 

limited resource capabilities like memory [3]. The stub area is only connected to the backbone area 

and it works in a way that no outside traffic from the AS can be flooded to it. This allows routers in 

the stub area to maintain a small link state database. Stub areas however accept route information 

about other areas within the same domain (inter-area routing information). An ABR that is 

configured for a stub network injects a default route, instead of advertising external routes, into the 

stub area so that the routers inside the stub can use it to reach out to external networks. Stub areas 

can be configured for a sub or branch offices that may not require knowing route to other sub branch 

offices instead it will use the default route to reach the main office and from there it can find all route 

information. 

 

1.2.2.3 Totally Stubby Areas 

As stub area, a totally stubby area is only connected to the backbone area and does not allow external 

routes to be flooded to it. It only allows intra-area and the default routes to be propagated within the 

area, which means routers only keep routing information about the totally stubby area and the default 

route in their LSDB. All inside routers use the default route injected by the ABR ,configured at the 

stubby area, in order to route any traffic between the totally stubby area and other areas within the 

same AS or external to the AS.  

 

1.2.2.4  Not So Stubby Areas (NSSA) 

 

 

Figure 1.2:  NSSA  
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It operates as a stub with the modification that it can import AS external routes and send it to the rest 

of the OPSF network. It works in a flexible way that it can inject external routes in a limited fashion 

to the NSSA area. Since the NSSA area is learning external routes through Autonomous System 

Boundary Router (ASBR), a new type of LSA (Link State Advertisement) called Type 7 LSA come in 

to the place. The Type 7 LSA is created by the ASBR and forwarded to the backbone using NSSA’s 

ABR. The NSSA’s ABR converts the Type 7 LSA to Type 5 LSA when it forwards the external routes 

to the backbone. NSSA is supported in Cisco IOS 11.2 and the later versions. 

 

1.2.2.5 Totally NSSA 

Totally NSSA is an extension to the NSSA; it is a type that is preferred when only one exit point 

exists. In totally NSSA Summary LSAs and external LSAs are not allowed. The default route is 

injected as a summary route and Type 7 LSAs are converted into Type 5 LSAs at the NSSA ABR. 

 

Totally stubby area and NSSA totally stubby area are proprietary extensions implemented by vendors 

like Cisco, Juniper, Alcatel-Lucent, Huawei, Quagga, though not specified in the RFC 2328  and they 

are considered now by many as  standard features. 

Below is presented a summary of the different types of OSPF Areas. The different types of LSAs in 

an OSPF network have been discussed in section 1.6. 

 

Types of Areas Restrictions 

Normal None 

Stub No Type 5 AS-external LSA is allowed 

Totally Stubby No Type 3, 4 or 5 LSAs are  allowed except the default summary route 

NSSA No Type 5 AS-external LSA is allowed as it is a stub. Type 7 LSAs  

can pass through the NSSA and it is converted to Type 5 at the NSSA 

ABR. 

NSSA Totally Stub No Type 3, 4 or 5 LSAs but the default summary route. Type 7 LSAs 

are converted to Type 5 at the NSSA ABR. 

 

Table 1.1: Summary of OSPF area types  

 

1.3   OSPF Network Types 

The OSPF protocol supports in general the following types of networks [1]:- 

 Point-to-Point networks 

 Broadcast networks 

 NBMA(Non-Broadcast Multi-access) networks 

 Point-to-Multipoint networks 
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 Virtual links 

 

1.3.1    Point-to-Point networks 

 

 

 

Figure 1.3: Point-to-Point network  

 

A Point-to-Point network is the simplest type of network that connects two routers directly with each 

other. Any packet sent from one side will have only a single recipient on the other side and it is 

considered as a single network [1]. Point-to-Point networks use the multicast address that works for 

all routers running OSPF (224.0.0.5) to exchange any OSPF packets. 

 

1.3.2    Broadcast Networks  

 

               Figure 1.4:  Broadcast Network  

 

A broadcast network is a type of network that supports more than two attached nodes. It has a 

capability of sending a single message to all routers in a network and such network is important when 

setting large number of communicating devices [1]. Ethernet, Token Ring, and FDDI, can be taken as 

an example of broadcast multi-access networks. It makes use of a multi-access segment like switch 

for efficient way of communication, since switch has the tendency to multiply a single incoming 

packet to reach out to all connected nodes. The switch’s capability helps in saving bandwidth in the 

network [1]. Using such types of network simplify the neighbor discovery process. Neighbors are 

discovered dynamically using the hello protocol packet that takes advantage of the nature of the 

network, no need of prior knowledge about neighbors presence.  

 

OSPF routers in a broadcast networks can end up forming several neighbor relationships with each 

other due to the presence of multi access segment. The desired feature is to have as simple 

adjacencies as possible. As a result, nodes on multi-access segment elect special nodes from the 

available nodes in the network called designated router (DR) and backup designated router (BDR). 

Both DR and BDR are termed as AllDRouters. Having a DR and BDR helps to achieve better 

management of the LSAS in a network. All routers other than the AllDRouters are called DRothers. 
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The election of DR and BDR is done with the help of the hello protocol, and the election process 

makes use of the routers priority or the router ID advertised in the hello packets exchanged. All nodes 

in the network including the BDR will form adjacencies with the DR. The nodes are also expected to 

form adjacency with the BDR, to be used as a backup in case of DR failures [1]. Here a network of 

four routers can have 12 adjacencies to form mesh network if the DR and BDR are not in place but, 

with the existence of the DR and BDR only 5 adjacencies information is required [1]. As mentioned 

in section 2.4.7, the DR is also responsible in generating the Network LSA. 

 

In broadcast networks OSPF routers use the following two reserved IP multicast addresses 

224.0.0.5 and 224.0.0.6. All routers use the IP multicasts address 224.0.0.5 to send the hello packets 

to AllSPFRouters, routers running OSPF. This multicast IP address can also be used by the DR to 

flood updates to the DRothers.  The multicast IP address 224.0.0.6 is used by the DRothers to send 

updates to the AllDRouters, this address can only be listened by the DR and BDR. Being a DR is a 

property of routers interface not the whole router. Therefore, a router can be a DR on one of its multi-

access network and it may not be on its other interface. 

 

1.3.3 Non-broadcast  Networks 

 

 

 

 

 

 

 

Figure 1.5: Non-Broadcast 

Network (Frame Relay Topology)  

 

Non-broadcast networks support more than two routers in their network but have no broadcast 

capabilities [1]. This explains that all multi-access technologies do not support broadcast capabilities. 

Some of the examples of the non-Broadcast networks are X.25 Public Data Network (PDN), frame 

relay and ATM that needs a configuration of individual permanent virtual circuits (PVCs) between 

their end points [1]. Neighbor relationships are maintained using the hello protocol that are sent 

individually instead of being multi-casted, since the network lacks the broadcast capabilities. But in 

such networks neighbor discoveries may require some prior configurations. NBMA and Point-to-

Multipoint are the two main modes of operations in an OSPF non-broadcast network [1]. 

 

1.3.3.1 Non-Broadcast Multi-Access(NBMA) 

The NBMA simulate Broadcast network in order to address its broadcast incapability. OSPF hello 

packets or link state packets are individually sent from a node as a unicast packet to adjacent 

neighbors. Each router in NBMA is configured with the IP address of its neighbor as a destination IP 

address. DR and BDR are also elected to reduce the adjacencies that need to be formed. 
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1.3.3.2 Point-to-Multipoint 

As its name describes the Point-to-Multipoint treat the non-broadcast network as a collection of 

Point-to-Point links and does not try to emulate the broadcast capability. As in NBMA individual 

hello packets replication is needed but in this approach there is no need for DR or BDR that is no 

Type-2 LSA.   

 

1.3.4 Virtual links 

A Virtual link is a link that is used to connect to the backbone through a non-backbone area. In such 

links OSPF packets are sent as unicast. 

 

1.4     OSPF Router Types 

 

1.4.1  Backbone routers 

Back bone routers are routers that belong to the backbone area (area 0). These routers can have one 

or more interfaces in the backbone area. The area 0 is expected to have at least one backbone router 

in its area [1]. 

1.4.2 Internal routers 

Internal routers are those that have all their interfaces inside one area only, they are connected only to 

one area [1]. 

1.4.3 Area Border Routers( ABRs) 

ABRs are routers that are connected to more than one area. They are usually placed at the boarder of 

an area to connect a non-backbone area to the backbone one, having its interfaces to both areas. 

ABRs have multiple LSDBs, one for each attached area. 

1.4.4 Autonomous System Border Routers(ASBRs) 

ASBRs are routers that connect one AS to another AS that runs under different protocol. ASBRs are 

routers that are used to distribute external routes from outside the AS. 

  

1.5 OSPF Packet Types 

Packet name  Type Description 

Hello 1 To discover and maintain neighbors 

Database description 2 Summarize database contents 

LinkState Request 3 A request to obtain LSAs from neighbor routers, 

sent during the state of exchange, Loading, or Full. 

LinkState Update 4 Used at the time of flooding, to send update to 

neighbor routers. 

LinkState acknowledgement 5 Acknowledgement that an LSA has been received. 

Table 1.2: OSPF Packet Types 
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1.6 OSPF LSA Types 

 

In an OSPF networks routers usually have different types of LSAs that are exchanged to describe the 

link states associated with a router. The main types of LSAs in an OSPFv2 protocol are described 

below. 

 

1.6.1 Router LSA( Type-1 LSA)  

Router LSA is usually characterized as Type 1 LSA [1].It is an LSA that describes the router’s 

interface status and the cost associated with each link. Its flooding scope is only limited to the area it 

belongs to. While generating the router LSAs, the originators router’s ID is used as the link state ID 

that identifies the source. Router LSA includes the entire interface that the router has with in the area 

in one single LSA packet [8]. 

 

1.6.2 Network LSA ( Type-2 LSA) 

Network LSA is usually termed as Type 2 LSA, generated by the DR routers on behalf of the subnet 

[1]. It is generated both in broadcast and NBMA networks, and it describes all the available routers 

including the DR within an area. Network LSAs are flooded only with in the area they belong to, and 

they use the DR’s IP interface address as a link state ID to identify the source. 

 

1.6.3 Summary LSA ( Type-3 and Type-4 LSA) 

An ABR, connected to more than one area, has the capability of summarizing all the routes that it has 

learned from one area and passes it to other areas it is connected to, inter-area communications [1]. 

Several routes information is summarized in to a single prefix to create summary LSAs. This reduces 

the size of the routing table or the information that should exist in link-state advertisements and 

LSDB.  The characterization of summary LSA generated by ABRs is based on the type of the 

destination. If the destination is an ASBR the summary LSA generated is Type 4 summary LSA and 

the ASBR’s router ID is used as a link state ID otherwise it is Type-3 LSA and the destination ABR’s 

ID is used as the link state ID of the LSA [1]. 

 

1.6.4 AS External LSA ( Type-5 LSA) 

Route information external to the AS are originated by the ASBRs and are characterized as type 5 

LSAs [1].     

 

1.6.5 Type-7 LSA 

An ASBR in NSSA flexibly accepts external route information that is characterized as Type-7 LSA 

and it can travel through the NSSA. The Type-7 LSA is then converted to Type-5 LSA by the NSSA’s 

ABR to the backbone, as the LSA is routed to the rest of the network. The following table 

summarizes the different types of LSAs in an OSPF network. 
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Name of the LSAs Type Created due to 

Router LSA 1  Changes in the link status(up/down), 

 Changes in the link cost/bandwidth 

 Neighboring routers changes to/from the FULL state 

 The changes in the state of one of the router's that is 

configured as virtual   links 

 

Network LSA 2  Changes in the Network's DR 

 If router itself is a DR and one of the neighboring routers 

changes to/from the FULL state. 

 

Summary LSA ¾  An intra-area or inter-area route has been 

added/deleted/modified in the routing table. 

 Newly attached router to an area 

AS-external-LSA 5  A router is no longer an ASBR. 

 An external route gained through direct experience with an 

external routing protocol (like BGP) changes. 

 

 

Table 1.3: LSA Types [1] 

 

1.7 Basic operation of OSPF 

Basic step by step operations are involved in the OSPF network which finally results in a converged 

network. The steps involved are discovering neighbors, synchronizing link state database, doing route 

calculations and finally populating the routing table with the optimal route information. 

 

1.7.1 Neighbor discovery   

In OSPF network routers that are adjacent with each other form a neighbor relationship, in order to 

exchange routing information and maintain that relationship after the formation of the adjacency [1]. 

Such adjacency formation requires directly connected routers, and the interfaces used to be within the 

same area.  

 

In an OSPF network the hello protocol is used to dynamically discover neighbors and keep an eye on 

them once a neighbor relationship is formed. The hello protocol also helps to elect the DR and BDR 

to which each OSPF router should make adjacency with [1].While trying to establish fully adjacent 

neighbor relationships, OSPF neighbor routers goes through different states: Down, Attempt, Init, and 

2-Way, Ex-start, Exchange, Loading, and Full. 
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Figure 1.6: OSPF Neighbor States Types [4] 

 

 

 Down State: 

It is the first or initial neighbor state in which no hello control packets have been received from 

another node/s, no neighbor discovery yet. Down state can also result from tearing down a full state 

where neighbors did not hear about each other within the RDI. 

 

 Attempt : 

The attempt state is for manually configured neighbors in NBMA networks, a Unicast hello packet is 

sent to idle neighbors from which hello packets are not received within the RDI. 

 InitState: 

InitState is a state in which a hello packet is received from a router that is trying to establish a 

neighbor relationship. In this state, the hello packet received by a router does not contain the 
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receiver’s router ID .The receiver node is expected to include the sender’s ID in its hello packet as an 

acknowledgement that a valid hello packet has been received by it. 

 

 2-Way state: 

It is a state that follows the InitState in which a bi-directional communication is established between 

two routers. This state is achieved when the receiving node finds its own router ID inside the hello 

packet sent by another node; both routers have seen each other’s hello packets at this stage and they 

are considered as neighbors. DR and BDR are elected for broadcast and non-broadcast networks. A 

router becomes full state only with the DR and BDR and stays in a 2-Way state with all other 

neighbors. But, on a point-to-point or point-to-multipoint networks a router becomes in full state with 

all connected routers in the network. 

 

1.7.2 Database synchronizations  

 

 Exchange start (Ex-start) state: 

Once the DR and BDR are elected in the 2-way state, routers start to exchange link state information 

with their DR and BDR which transit it to Exstart [3]. In this state router establish a Master-Slave 

relationship on a neighbor basis and chooses the initial sequence number used for the DBD packets to 

be exchanged among them [3]. A router is elected as Master on the basics of its router ID. 

 

 Exchange state: 

The Ex-start transits to the Exchange state once the Master-Slave and sequence number is negotiated 

between adjacent neighbors. In this state, neighbors exchange database description packet that 

describes their database [8]. The database description packet contains only the LSA header that 

describes the content of their LSDB. The database description packet sequence number is 

incremented only by the Master and it has to be acknowledged by the slave in explicit manner [8]. In 

the process of Exchange state, routers can also send and receive link-state request and update that 

contains the entire LSA .After database information has been exchanged among neighbors, the 

Exchange state can change to Loading or Full state. 

 

 Loading state: 

Loading state is when the Link state request list is not empty. Based on the information provided in 

the database description packets, routers make a request for link state information they don’t have 

.The requested router responds with a Link State Update packet that contains the information being 

requested and this update is also acknowledged by the receiver. When the exchange process is 

completed between neighboring routers their state transfers to the Full state. 

 

 Full state: 

It is considered as the fully functional state of OSPF neighbors where the Link state request list is 

empty and neighbors are fully adjacent with each other. The following figure illustrates the different 

types of OSPF message exchanges from adjacency start-up to completion. 
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Figure 1.7: an adjacency bring-up example [1] 

 

 

1.7.3 Route calculations 

Once link state information is synchronized among routers, each router in a network performs a route 

calculation. The route calculation is based on the SPF (Shortest Path First) algorithm that chooses an 

optimal path between nodes. The outcome is optimal routes that are populated in the routing table and 

placed on the forwarding table [3] [1]. The interface reach-ability and the cost metric are the factors in 

which the route calculation is based on. Cost on interfaces can be set by a network administrator or 

can be derived from link characteristics, and the lowest cost metric is chosen as the optimal one. Up 

on later changes once a converged network is achieved, neighbors send an immediate update to reflect 

the change that occurs in the network status. This makes other OSPF routers to change their state .The 

update only carries the change that occurred, and each router that receives the update goes through the 

synchronization process to achieve the same database, there by achieving convergence in the network. 

 

1.8 OSPFv2 timers 

In the RFC 2328 several OSPFV2 parameters have been described as architectural constant values 

and some are listed as configurable. Earlier OSPF implementations are based on the RFC 2328 but 

nowadays there are several OSPF parameters that are vendor specific as well. 

 

 

1.8.1 OSPFv2 Architectural Constant Timers ,RFC 2328 
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Name  Time value Descriptions 

LSRefreshTime 30 minutes Time in which a router generates a new LSA, as the LS age field of one 

of its LSA reaches the value LSRefreshTime. 

MinLSInterval 5 seconds The minimum time between distinct originations of any particular LSA. 

MinLSArrival 1 second. It is the minimum time that must elapse when receiving new LSA 

during flooding; LSA received without this interval is discarded. 

MaxAge  1 hour It is the maximum age that an LSA can reach. When an LSA's LS age 

field reaches MaxAge, it is re-flooded to flush the LSA from the routing 

domain. Such LSAs are not important in the routing calculation. 

CheckAge 5 minutes It is the time interval in which an LSA’s checksum is verified as LSAs, 

which reside in LSDB, reaches multiple of CheckAge interval.  

MaxAgeDiff 15 minutes Due to the nature of the topology in the network, similar LSAs with the 

same sequence number but different ages may be received twice or 

more at some router. This will make the receiver node inefficient to 

assume that the LSA is different than it has already received in the 

flooding process. As a result, OSPF assumes such LSAs to be different 

only if the age differ more than the MaxAgeDiff interval. 

 

Table 1.4: OSPFv2 Architectural Constants Timers [1] 

 

1.8.2 OSPFV2 Configurable timers, RFC 2328 

Name  Time value Description 

RxmtInterval 5 seconds 

(default for LAN) 

It is the transmission time interval in which an unacknowledged 

LSA can be re-sent. It should be more than the expected round-

trip delay between any two routers on the attached network to 

avoid unnecessary re-sending.   

InfTransDelay 1 sec It is the amount in which an update LSA should be incremented at 

a router’s interface, during flooding. It must be greater than 0 and 

the sample value for a local area network is one second. 

HelloInterval 30 /10 sec This is the time interval between two successive hello packets. 

Sample value for non-broadcast networks is 30 seconds and that 

of a LAN is 10 seconds. 

RouterDeadInterval 4*(HelloInterval) This is the time interval that a router uses in conjunction with its 

HelloInterval to detect the inactivity of its neighbor. This value 

must be the same for all routers attached to a common network. 

Table 1.5: OSPFV2 configurable parameters [1] 

1.8.3 Vendor Specific timers (Cisco)   
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Table 1.6: OSPF Specific Timers, Cisco.  

 

Vendor     Parameter name                 Values                                        Descriptions 

Cisco SPF initial delay 0-65535sec               

(5 sec default) 

It is the initial delay from LSA reception until 

the first SPF is computed. 

Cisco SPF hold time  0-65535sec             

(10 sec default) 

Time between two successive SPF calculations 

Time between two successive SPF calculations. 

Zero sec, no delay between successive SPF. 

Cisco  Flood Pacing  Timer 5-100msec        

(33msec default) 

 Determines the rate at which LSAs are flooded. 

Cisco Retransmission Pacing 

Timer  

5-200 msec 

66 msec(default) 

Delay before resending unacknowledged packet 

send to neighbor. 

Cisco The OSPF LSA group 

pacing 

10-1800sec             

(240 sec) 

Applies for grouping LSA for refreshing, check 

summing, and aging functions (Cisco IOS 

Release 11.3 AA). 


