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Abstract

We suggest a scheduling application that is to be used as a decision support system
in a shop floor work center, mainly in case of a production disturbance. In a decision
support situation, a small set of scheduling problems are identified corresponding to
different global actions. Each of these problems are fed to a solver and the overall
best solution found with respect to total costs is proposed to the user after a short
execution time. The total cost includes activity costs, penalty costs for late product
deliveries, and costs related to global actions. The scheduling problems have to
be modelled on a detailed level, including features like multiple resource usage for
operations (e.g. machine, operator and fixture) with possibly different time usage for
the resources involved in the operation, volumetric resources, limited buffers, flexible
routing, product lot sizes, release dates for individual products and delayed arrival
of resources.

We give an overview of different existing techniques for modelling and scheduling
of manufacturing processes, and discuss their potential of being extended to meet
the modelling and solution demands of our application. Based on these discussions,
we choose a Petri net for the modelling of the scheduling system. In order to be
able to include all the desired modelling features, we introduce a new type of timing
mechanism in the net, where time is associated to individual tokens and output arcs
rather than with places or transitions as in standard timed Petri nets. Several search
algorithms suitable for a limited execution time are presented, and their performance
is evaluated on a set of test problems with respect to different objective functions and
evaluation functions. A solution method based on beam search produces the overall
best results. For the objective of minimizing tardiness penalties, an approximate
evaluation function is presented that together with beam search gives very good
results. A heuristic based on a limited lookahead in time is used in all algorithms, and
the results show that a short but non-zero lookahead is favourable in most situations.

Keywords and phrases: Production scheduling, Decision support system, Combi-
natorial optimization, Petri nets, Heuristic search.

AMS 1991 subject classification: 90B35, 90B50, 90C27.



ii



Preface

This report

This report summarizes the results from the first phase of a research project which is
a joint venture between the Departments of Mathematics and Computing Science at
Chalmers University of Technology and G&teborg University, and Prosolvia Systems
AB, Goteborg, Sweden. The university part of the project has to a large extent
been financed by NUTEK, the Swedish National Board for Industrial and Technical
Development.

The report also serves as the thesis of the ECMI' post-graduate program in In-
dustrial Mathematics at Chalmers, fulfilling the requirements for the degree of Li-
centiate of Engineering. This five-semester program includes a block of core courses
covering several areas of applied mathematics and computing science and a block of
specialization courses within one selected field, which in this case is algorithms and
combinatorial optimization. The final and main part of the program is to work with
a problem from industry.

The project

The long-term goal of this research project is a new kind of product for scheduling
of manufacturing systems. The core of the product is a scheduling problem solver,
around which a decision support logic is built. The aim of the first phase of the project
has been to lay the theoretical foundation for the future research and development
of the product, with emphasis on the solver. More specifically, the work has been
focused on

e specifying the requirements of the product

studying modelling and solution methods for similar problems

suggesting a model for the system

developing solution methods for the scheduling problems and evaluating the
results from tests

¢ identifying areas in need of future research

!The European Consortium for Mathematics in Industry
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Outline of the paper

In Chapter 1, an introduction to the problem is given. Some graphical modelling tech-
niques that can be used for describing production processes are presented in Chapter
2. Scheduling theory and commonly studied problems are described in Chapter 3.
Models and solution methods for scheduling that have been studied in the literature
are reviewed in Chapter 4. A reader well familiar with scheduling techniques in gen-
eral and Petri net based scheduling in particular may skip most sections in the last
three mentioned chapters without too much trouble, if it is desired to come to the
new contributions of this paper as soon as possible. In Chapter 5, a model for the
scheduling problems is presented, and its use within the decision support system is
briefly discussed. A number of candidate solution methods for the scheduling prob-
lems are described in Chapter 6, and their performance on a set of test problems
is discussed in Chapter 7. In Chapter 8, conclusions are made and suggestions for
future research are presented in Chapter 9.
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Chapter 1

Introduction

In this chapter, we will first give an introduction to the problem area of planning and
scheduling. Then we will give some background to the problem treated in this report,
before describing it in more detail. Finally, we will informally present a possible
solution model in order to give a picture of the character of the problem.

1.1 Planning and Scheduling

In the next section, we will describe some planning and scheduling problems encoun-
tered in the manufacturing industry. Although the reader will probably already have
a good picture of what the terms planning and scheduling mean, they still deserve
some discussion. The word planning is often used as a very broad term, including
among other things the problem of scheduling. But it is also common to make a slight
distinction between them, saying that planning is mainly concerned with “what to
do”, whereas scheduling concentrates on “how to do it”. Following this “definition”,
we can say that a planning problem is on a more general level and its solution is often
the input to one or more scheduling problems that take into account more details.

In this paper, the main focus will be on scheduling. We will in later present
scheduling terminology and theory in more detail, but we will already here give some
definitions on a very general level. Baptiste and Le Pape (1995) state that “scheduling
is the process of assigning activities to resources in time”. In our field of application,
resources represent machines, tools, robots, operators, buffers etc., and activities are
e.g. the processing of products in machines or the transport of products between
machines. In a scheduling problem we often want to optimize some criterion while
obeying a set of constraints. Again following Baptiste and Le Pape (1995), we can
identify three main families of problems:

o In (pure) scheduling problems, the resources that are to be used for activities
are uniquely specified together with their available capacity over time. The
problem is to position the activities in time without exceeding resource capac-
ity or violating any other constraints. This problem type is very common in
manufacturing.

e In (pure) resource allocation problems the demand for different resource types
over time is known and the problem is to allocate individual resources in time
so that the supply equals or exceeds the demand and other constraints are



obeyed. This problem type is not very interesting in our case, but there are
many important applications from other fields, e.g. airline crew scheduling.

e In combined scheduling and resource allocation problems it is to some extent
possible to choose which activities that are to be done and/or decide which
resources to allocate for activities. In manufacturing with flexible routing for
products we have this kind of problem. From now on, we will mean this case
when we talk about scheduling, although many examples will be pure scheduling
problems.

1.2 Problem background

Planning and scheduling problems in the manufacturing industry can roughly be
grouped into three levels, with respect to the scale of the model and the length of
the time horizon involved:

The strategic level. At this level, typical problems are:

- What will the demand be for the company’s products?

- Which factories should manufacture a certain product, and if they do, at
what quantities?

- How should transports of raw materials and products be handled?

- If a new factory is needed to increase capacity, where should it be located?

The time horizon at this level is typically years. There is a large portion of
uncertainty in the data. Except for perhaps the logistics oriented problems,
most of the problems are very specific for a business area or even an individ-
ual company. This means that there are not many generally applicable tools
available for solving these kinds of problems.

The factory (shop) level. Given the restrictions imposed by a strategic plan, the
problems on this level are concerned with how to make the production as ef-
ficient as possible without getting delayed deliveries for customers. The time
horizon is usually weeks or months. A planning task is to decide what prod-
ucts to produce in different time periods and how much, given customer orders,
stock levels etc. The outcome of this is a number of jobs' that have to be
performed, the times when the necessary raw materials and components for
these jobs must be available and the times when it is desired that the jobs are
finished. This data together with information on the availability of production
resources forms the basis of a scheduling problem. Due to its large size this
problem is usually not broken down into the finest details, instead a number
of simplifications are done to make the problem manageable. The degree of
simplification depends on the solution method used: simple rule-based meth-
ods allow more detail, whereas more advanced optimization methods require a
simpler model. Due to variations in processing times, problems not predicted
by the simplified model, unforeseen events etc., a schedule does not usually last
very long and it has to be adjusted quite often. Methods taking some elements
of uncertainty into account can produce more robust schedules. These kinds of

1a job corresponds in most cases to the manufacturing of a product.



problems can be quite similar even for companies producing entirely different
goods, so a lot of more or less general scheduling strategies and methods have
been developed over the years. Consequently, a large number of commercial
computer-based tools for this are available, and a lot of research is performed
in the area.

The work center level. The factory is usually divided into smaller parts, which
we will refer to as work centers. They typically include a number of workers
(we will call them operators), a few machines, and some transport devices and
storage facilities for products. Other things such as robots, fixtures and tools
might also be vital for the functionality of the work center. The scheduling
problem on this level has similar prerequisites as the one at the factory level:
the jobs to be performed, arrival times and desired completion times of these
jobs, and the availability of resources. The time horizon is hours or days. But
at this level, the foreman of the center is responsible for actually performing
the jobs down at the shop floor. In many cases this is not very difficult since
enough time is available from the overlying factory schedule. Also, the degree
of uncertainty involved in the problem is not very high due to the short time
horizon. For these cases, no computer-based solution methods are needed.

However, if an unexpected event actually does occur (a raw material gets de-
layed, a machine breaks down, an operator gets ill etc.) it might not be easy to
follow the factory schedule, if possible at all. It can also be the case that the
simplifications made in the factory level scheduling cause problems. In these
cases scheduling on the work center level becomes a critical problem, since costly
production disturbances on the factory level are threatening. At the work cen-
ter level, as many problem details as possible must be taken into account in the
scheduling model in order to make it useful. It might also be necessary for the
foreman to take special actions in order to avoid delays. Another complicating
factor is that there is not much time available for doing the scheduling. This
is the problem of our attention, and it has (to the best of our knowledge) not
been widely studied before. A good scheduling method for this kind of detailed
but not necessarily very large problems can be useful also in other cases, e.g.
if we have a situation where the production process of the work center is very
complex, so that schedule optimization can increase productivity a lot.

We note here that some scheduling problems on the work center level have been
studied earlier, especially in the case of Flexible Manufacturing Systems (FMS)2.
We will review several papers on this subject in Chapter 4. Even if we are more
interested in manned systems, there are many similarities with FMS scheduling.
However, there are some limitations of these models, such as that most of them use
scheduling objectives that are not relevant to us. Also, the possibilities of special
events and actions are not part of these models, so the application we will describe
lies within a to a large extent unexplored research field.

We also note that the idea of being able to respond to unexpected events is
not new. On the contrary, there is a quite wide-spread approach to these problems
called reactive scheduling (see e.g. Smith (1995)) that includes methods for adjusting

2FMS is an approach to manufacturing which allows production to be switched rapidly from one
product to another. The system is usually fully automated, and consists of a few machines with
changeable tools and some transport device (typically a robot).



existing schedules as the environment changes. However, these systems work on the
factory level, both with respect to detail resolution and time horizon.

1.3 Problem description

We will now describe a decision support system for scheduling a work center, a system
that is mainly intended to be used in case of a production disturbance. Its typical
use will be that the user consults the decision support system when an unexpected
event occurs. If not registered through an automatic alarm or the like, the user feeds
the information regarding the event into the system. The system then identifies a few
scenarios corresponding to special actions® relevant to the event. For each of these
scenarios, a scheduling problem is solved with the objective of minimizing (the sum
of) activity costs and costs for late deliveries. The cost of the best schedule found
for the scenario is added to the costs related to the special action, if any. Finally,
after a few seconds of total computing time it presents the scenario with the lowest
total cost as the suggestion to the user. It should also be possible to use the system
even if no special event has occurred, in which case there will be only the standard
scenario. The time horizon considered is intended to be fairly short, sometimes only
the remainder of the day.

A solution that appears good on the local level might be very bad in a global
perspective. Although this system works locally, the scheduling objective used is
focused on making decisions that are good also globally. The desired interaction
with other parts of the factory can be achieved by setting appropriate delivery times
for the products and associated penalty costs for late deliveries.

1.3.1 Why decision support?

Why is a (fast) decision support system like this needed? We see several motives:

e In case of a production disturbance, there can be huge extra costs for the
company if actions are taken too late, or if bad decisions are made. There is
thus a large money-saving potential for a decision support system that works
well.

e Estimating the consequences of different actions is a very complex problem,
even for an expert on production. In most cases it will be the foreman of
the work center that makes the early important decisions, a task for which he
probably has no training for. Also, the foreman might not have all information
relevant for the decision-making.

e The difficulty of the problem is not alleviated by the fact that the decision for
which actions to take must be made very quickly. This means that the decisions
have to be made in a high-stress situation, and even more so if e.g. a person
injury is involved.

1.3.2 System requirements

The general requirements of the decision support system are the following:

30me of the scenarios will (of course) be the standard one of taking no special action at all.



e All relevant information regarding the manufacturing process must be stored
prior to use. This includes alternative ways of performing activities, that are
not used in daily operations but can be interesting if all normal alternatives are
gone.

e It must be integrated with a ERP*-system or the like in order to have infor-
mation regarding the current state as up to date as possible, so that the user
needs to input a minimum amount of data when consulting the system.

e It should be able to recognize various (unexpected) events, of which the most
important are:

- A resource becomes unavailable, either for the entire time horizon or until
a certain time. This event type includes malfunctioning machines, robots
or transports, operators getting ill or injured, etc. We note that in order
to associate the event with appropriate special actions it is necessary to
distinguish between different resource types.

Delayed arrivals of products or raw materials.
- Priorities or desired completion times for products are changed.

- New product orders are received.
The last three items all concern the ability to change order information.

e It should be possible to define a number of possible special actions and their
associated costs and effects. Examples of such actions are:

- Calling for external service personnel that can repair errors on machines
or transports faster than otherwise.

- Hiring a replacement or additional resource. The expected delay until
arrival must be specified (delays and costs of course vary with resource
type).

- Buying a (sub-) product type from an external supplier instead of produc-
ing it yourself. Delivery times etc. have to be estimated.

- Ordering overtime. This gives in effect more working time before some of
the desired completion dates.

e There should be some kind of intelligence for selecting only scenarios corre-
sponding to special actions that are relevant for the event that occurred.

e The scheduling model used in the different scenarios should allow for a variety
of details and constraints. We discuss this in more detail below.

e The total computing time should be very short, typically not more than say 10
seconds.

e The suggested scenario, the corresponding best schedule, and relevant conse-
quences should be presented in an easily comprehensible way to the user.

4Enterprise Resource Planning



1.3.3 Requirements for the scheduling model

One important source of information for the scheduling problem is the so called
operation list for a product type. It specifies the activities (called operations) that
are to be performed when manufacturing an item of the product type, together
with information on time and resource usage. In the simplest case the sequence of
operations is uniquely given, and a single machine is specified for each operation
together with a processing time. We will need a much more general and detailed
specification than that, but it is good to have this basic case in mind when we
describe a more advanced model. The minimum requirements for our scheduling
system are that the following modelling features should be handled:

The scheduling objective function should include costs for performing activities
and penalty costs for late deliveries.

Besides the processing of a product in a machine, other types of activities such
as transportation of a product and setup of a machine should be possible to
include in the model.

Activities requiring more than one resource (e.g. a machine, an operator and a
tool), possibly with different time usage for the resources, should be modelled
adequately.

It should be possible to treat identical resources capable of performing the same
activities as a single so called wvolumetric resource. Examples of volumetric
resources are parallel machines, a pool of equally qualified operators, and a set
of identical tools.

The situation with buffers having limited capacity for storing products has to
be treated if necessary. The most important example for our application is
machine input buffers. Most other storage places used e.g. between operations
can be regarded as infinite since the operators usually can find some alternative
space if necessary.

We should be able to model in a natural way the case where we have more than
one item of a product type that has to be manufactured, since we might not
want to distinguish between identical items in certain situations.

It should be possible to model alternative ways of performing activities using
different sets of resources with different time usage.

We should be able to model suitable initial conditions for the scheduling scenario
such as:

- Possibly different arrival times of products.

- Ongoing activities.

- Delayed availability of resources.

It is good, but not absolutely necessary, if we could model the following cases as well:

Instead of just having alternatives for single activities, we could have product
“paths” of a general fork-join type. The number of activities in different paths
need not be the same.



e A resource may be tied up by a product for several successive activities, e.g. a
fixture or a pallet.

e We could have activities for a product type where the order of performance is
not uniquely specified.

e We could have assembly activities where two or more different product paths
join into one.

e The setup time of a machine may depend on the previous activity performed.
This case is called sequence-dependent setup times.

e We may have groups of operators with different skill levels which allow them
to perform some activities but not others.

We will not include uncertainty in the scheduling model, since this is more than can
be handled with a detailed model and a short execution time. However, as discussed
earlier the stochastic element is not that significant with the short time horizon we
have, so this simplification is well motivated.

1.4 A preliminary problem formulation

The main focus of the first stage of this project has been the modelling and solving
of individual scheduling scenarios. Before we describe existing modelling techniques,
scheduling theory and solution methods, we will in an informal way present one
possible way of modelling and solving a scheduling scenario. Although there are many
other ways of doing this for such a problem, the principle we describe is perhaps the
most straight-forward one and we believe that it can be helpful to the reader to have
it as a background when studying the rest of the report.

1.4.1 A discrete event model

In this model, we will explicitly follow the state of the manufacturing system in time,
beginning from the starting time of the scheduling scenario. We will study the system
only at certain discrete time points, namely when some kind of event has occurred.
Examples of such events are:

e A product arrives at a buffer.
e A resource becomes available.
e An activity is finished.

If we define such events properly, we can restrict all decisions regarding “what to
do next and when to start doing it” to these time points plus of course the starting
time point of the scenario. This removes the continuous element of assigning start
times to activities, and we will still be able to find an optimal schedule®. This can be
motivated by saying that it makes no sense to postpone the starting of an activity
unless we are waiting for another event to occur. We now temporarily define the
word action to include information on

5Tt is possible to define strange objective functions so that this does not hold, but our cost-based
function is well behaved in this manner.



e An activity that is to be started.
e The assignment of resources to this activity (if there are alternatives).

e The starting time (which is the time of an event or the starting time of the
entire scenario).

The scheduling process is now to select a sequence of actions in ascending order of
the starting time until we have reached a desired final state, without violating any
constraints of system. If our system is specified properly, we can make an important
observation: Given the initial conditions of the scheduling scenario, a time point
and an allowed sequence of actions up to this point, the state of the system at that
time point is uniquely defined. Such a system belongs to the class of discrete event
dynamic systems.

1.4.2 Exploring the decision tree

But how do we select an action sequence? There are a large number of possible
sequences and we want to find the best, or at least one that is good enough for our
purposes. One way of implicitly organizing all possible sequences is in a decision tree.
A node in the tree corresponds to a reachable state of the system, and the node has
one branch leading to a child node for each action that is possible to take next. A
node without any child nodes (a so called leaf) corresponds to a final state where all
activities have been completed or to a non-final state from which it is impossible to
make any more actions. The root node of the tree is the initial state.

Each path from the root node to a leaf node corresponding to a final state is
thus associated to a unique action sequence for which we can calculate the cost.
Recall that we defined the cost of the schedule to be the sum of costs for performing
activities and costs for late deliveries. The scheduling problem is now to find such a
path that has as low cost as possible. But one problem is that we do not have this
tree explicitly given in a scheduling scenario, instead we have to build it gradually
starting from the root. It is not difficult to realize that the size of the decision tree
becomes huge as the action sequence required to reach a final state gets longer. This
means that for larger problems, we cannot hope to explore the entire tree, instead
we will have to focus on some interesting parts and settle for the best path sequence
we can find there. An important task is thus to make this search procedure as fast
and intelligent as possible.



Chapter 2

Graphical modelling
techniques

Before we discuss solution methods for scheduling problems, we will take a look at
some graphical tools that can be used for modelling manufacturing systems. When
designing a system like ours that will be used by non-experts, the advantage of using
a model which can be viewed graphically is obvious. If the graphical representation
follows a wide-spread standard, it is of course even better. Therefore, an important
part of the first phase of this project has been to evaluate some established graphical
models with respect to our application. A reader only interested in parts directly
connected to scheduling may settle with reading Sections 2.1 and 2.4 only.

2.1 Petri nets

Petri nets is a graphical and mathematical tool for the modelling of discrete event
systems, based on the early ideas of Petri (1962). The research area of Petri nets is
very large and we will only give a short introduction to the subject here, to serve as a
background when we discuss the application of Petri nets to scheduling problems in
subsequent chapters. We refer to the literature for further reading on general Petri
net theory. A classic book on the subject is Peterson (1981), and a likewise well-cited
reference is a paper by Murata (1989). One of the major applications of Petri nets
is the description of manufacturing systems. The book by DiCesare et al. (1993)
focuses on this.

2.1.1 A simplified Petri net

A Petri net can be viewed as a directed graph with two classes of nodes, denoted
places and transitions. There are two kinds of directed arcs in the graph. An arc
of the first kind goes from a place to a transition and is called an input arc of the
transition. The place is referred to as an input place of the transition. The second
kind of arc goes from a transition to a place and it is referred to as an output arc
of the transition. The place is accordingly called an output place of the transition.
Since no arc connects a place to a place or a transition to a transition, the graph is
bipartite. Graphically, places are drawn as circles, and transitions are drawn as bars



or boxes (we will use the latter). An example of a simple Petri net is shown in Figure
2.1.

_ .-~ Place

_--Input arc
ffffff Transition

~ Output arc

Figure 2.1: An example of a Petri net.

In the Petri net, places represent states and transitions represent events (or ac-
tions). The state of the entire system is determined by a marking of the net, which
is a distribution of so called tokens in the places. Tokens are graphically drawn as
dots inside place circles. In the simplest case, there can be at most one token in each
place in the net. A place with a token in it is called marked. A place represents a
boolean property of the system (e.g. the idleness of a machine) which is true if the
place is marked and false otherwise.

The state of the system (i.e. the marking of the Petri net) can change by the so
called firing of a transition. A transition is said to be enabled (or ready to fire) if
and only if all input places of the transition are marked and all output places are
unmarked. When the transition is fired, the new marking of the Petri net is obtained
by first removing all tokens in the input places and then adding a token in each
output place. This is illustrated in Figure 2.2. The evolution of the marking in the
Petri net through the firing of transitions is sometimes called the token game.

Q O

Figure 2.2: Left: A marking of the Petri net of Figure 2.1. Right: The new marking
obtained when the leftmost transition is fired.

The marking that describes the initial state of the system is referred to as the
initial marking. The structure of the Petri net and the initial marking govern the
states (markings) that are reachable by firing a sequence of transitions. These states
and the ways of reaching them are often analyzed in terms of the so called reachability
graph (not to be confused with the Petri net itself). In this graph, there is a node
for each marking that can be reached from the initial marking (including the initial
marking itself). There is a directed arc from a node A to a node B if and only if
the marking corresponding to B can be reached from the one corresponding to A by
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the firing of an enabled transition. In general, there can be many paths in the graph
between two nodes. As we will see later, solving a scheduling problem modelled with
a Petri net is equivalent to finding an optimal path between the node corresponding
to the initial marking and a node corresponding to a desired goal marking. One never
works explicitly with the reachability graph however, instead one explores only parts
of it implicitly. The reasons for this are that the reachability graph is not known
before a solution process starts, and that it in most cases is way too large to store in
computer memory.

2.1.2 The standard Petri net

The simple type of Petri nets described in the previous section can be extended to a
more general version (which we will refer to as a standard Petri net), where we allow
any number of tokens in a place and multiple arcs between a place and a transition
or vice versa. The latter extension means that we have a multi-graph'. We now
say that a transition is enabled if and only if for each input place of the transition
there is at least as many tokens as there are input arcs between the place and the
transition. Note that we now do not have any conditions on the output places. When
the transition is fired, from each input place of the transition a number of tokens equal
to the number of input arcs between the place and the transition are removed, and
to each output place a number of tokens equal to the number of output arcs between
the place and the transition are added. We illustrate this in Figure 2.3.

e 1
O ®

Figure 2.3: Left: A marking of a Petri net of the more general type. Right: The new
marking obtained when the rightmost transition is fired.

2.1.3 An algebraic description of the system

If a place is both an input place and an output place of the same transition, we
say that we have a self-loop. The structure and dynamics of a Petri net without
self-loops can be compactly described in matrix form. In the input matriz I rows
correspond to places and columns to transitions. The entry on row ¢ and column j
in I is equal to the number of input arcs going from place number i to transition
number j. We analogously define the output matriz O. The incidence matriz C is
defined by C = O — 1.

A marking can be described by a column vector M where element 4 is equal to the
number of tokens in place number i. Let E; be the characteristic vector of transition

1We note that it is also common to use an equivalent model based on an ordinary graph but with
weights on the arcs, with the weight on an arc equal to the number of parallel arcs in our model.
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number j, i.e. element j of E; is 1 and all other are 0. We can now describe the
transition enabling rule: transition number j is enabled if and only if

M > IE;. (2.1)

Assume now that we have two markings represented by the vectors M; and M,. It
can be shown that M> can be obtained by firing transition j at M; if and only if the
following holds:

My = M; +CE; > 0. (2.2)

Assume now that marking M}, is reachable by firing a sequence of transitions starting
from marking My. We introduce the firing count vector N in which element j equals
the number of times transition number j was fired in the sequence. The following
equation, often referred to as the Petri net state equation, now holds:

My =My+CN >0, N >0. (23)

Unfortunately, the relation between this equation and a firing sequence does not
go both ways, as it did for the firing of one transition. Given two markings M,
and M}, we can find a vector N which solves (2.3), where there is no possible firing
sequence with firing count given by N so that M}, is reached from My. Such an N is
called a spurious solution of the Petri net state equation. The existence of spurious
solutions makes this algebraic approach less powerful than it otherwise would be
when analyzing properties of Petri nets.

2.1.4 Extensions of standard Petri nets

A natural extension of the standard Petri net we have described above is to include
time in the model. There are two widely accepted approaches for doing this, place-
timed Petri nets and transition-timed Petri nets, but other variants exist as well. In
these models the token distribution alone is not sufficient to fully describe the system,
and one has to take into account the current time of the system when analyzing e.g.
which transitions are enabled.

In a transition-timed Petri net, tokens are removed from the input places when a
transition is fired, but new tokens are not introduced into the output places until a
certain time has passed in the system. We thus associate time delays to transitions. In
a place-timed Petri net, the firing of transitions are immediate, but a token introduced
in an output place must wait for a specified time before it can be used as input for a
transition. In this case time delays is associated to places, and the places with non-
zero time delay are often referred to as timed places. Usually the net is constructed
in such way that there can be at most one token in a timed place. It has been shown
that place-timed and transition-timed Petri nets are equivalent to each other with
respect to modelling power.

Another extension is to let individual tokens in a place be distinguishable by
giving them a “color”. The input and output arcs of a transition are labelled with
formal expressions, constraining the color combinations of tokens in input places that
are allowed when firing the transition, and determining the color of the new tokens
introduced in the output places. These kind of nets are called Colored Petri nets.
Nowadays, Colored Petri nets have been generalized to allow arbitrary complex data
types for tokens and to let expressions for arcs and transitions be constructed with a
special programming language. Colored Petri nets belong to the class of High-Level
Petri nets. An introduction to the subject can be found in e.g. Jensen (1997).
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2.1.5 Advantages and disadvantages of Petri nets

The advantage of Petri nets over many other graphical modelling tools is that it has a
mathematical formalism that makes the dynamic behaviour of the underlying system
well-defined, and amenable to theoretical analysis using results from e.g. linear alge-
bra and graph theory. If an intuitive and easy-to-read graphical model is the main
concern rather than an exact description of the underlying system, Petri nets have
some drawbacks however. First of all, even if places and transitions are labelled with
names of the corresponding states and events, a reader must learn Petri net basics
before he can understand the model. Secondly, Petri nets tend to become graphically
very muddled for all but small examples. There have been some suggestions for a
hierarchical composition of Petri nets in order to partially overcome this drawback,
but such techniques are mainly used in the construction phase of the modelling.

2.2 IDEFO

IDEF0? is a tool for modelling a variety of automated and non-automated systems,
and can be used for the specification and implementation of a new system and for
analysis of an existing system. IDEF0 was developed in the 1970s within the U.S.
Air Force Program for Integrated Computer Aided Manufacturing (ICAM), and is
now adopted as a Federal Information Processing Standard (FIPS) by the National
Institute of Standards and Technology. We will here only briefly describe some IDEFQ
basics, for more details we refer to Nat (1993).

2.2.1 Graphic syntax

Whereas Petri nets are mainly status oriented, IDEF0 is a more function oriented
graphical modelling technique. An IDEF0 model is composed of a hierarchical series
of diagrams, which can be of three types: graphic, text and glossary. The graphic dia-
grams define system functions and functional relationships, and the text and glossary
diagrams provide additional information. There are two main graphic components
in the IDEFO0 syntax: bozes and arrows.

Boxes represent functions, which are defined as activities, processes or transfor-
mations. The box has a number, uniquely identifying it within the diagram. Arrows
represent data or objects related to functions. Arrows start and end either at the
side of a box or at the boundary of the diagram. An arrow which has one of its ends
at diagram boundary is called a boundary arrow, whereas an arrow going between
two boxes is called an internal arrow. Arrows may also fork and join. The role of an
arrow with respect to a function is determined by which side of the box it is connected
to, and by its direction. The possible connections of arrows and boxes are shown in
Figure 2.4.

Arrows entering the left side of the box are inputs to the function, which can
be transformed or consumed by the function to produce outputs, which are arrows
leaving the box at its right side. Arrows entering the top side of the box are controls,
which specify the conditions required for the function to produce correct outputs.
Arrows attaching to the bottom side of the box are mechanisms. Those pointing
upwards identify the means that support the execution of the function. A mechanism
arrow pointing downwards is called a call arrow, and it can be used for sharing detail

?Integration DEFinition language 0.
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Figure 2.4: An IDEFO box.

between different models or between portions of the same model. Note that all these
definitions are with respect to a certain function box. An arrow can have different
roles at different boxes, e.g it can be the output of one function box and the control
of another.

In our case, a function box on a detailed diagram level could represent a man-
ufacturing activity, e.g. the processing of a product in a machine. The product
would be both input and output, and if we have an assembly activity there could
be additional inputs for subproducts or raw materials. The machine and any other
resource needed for the activity would be mechanisms. Controls could represent the
constraints concerning the activity.

2.2.2 Hierarchical decomposition

A box on a diagram may be decomposed into a child diagram, which typically contains
several boxes representing sub-functions of the decomposed function. The box is then
referred to as a parent boz, and the corresponding diagram is called a parent diagram.
A parent box has a label below it stating the name of the child diagram. The arrows
connecting to the parent box are the boundary arrows of the child diagram. An
example of decomposition is shown in Figure 2.5.

In this way, diagrams are arranged in a tree structure. All IDEF0 models are
required to have a so called contert diagram named A-0 at the top level (the root of
the tree), containing a single function box. Context diagrams relate the model to its
environment. If desired, one can also have a tree of context diagrams, where A-0 is
one of the leafs (and the root for the actual model diagram tree).

2.2.3 Advantages and disadvantages of IDEF0

As we have seen, the basics of an IDEF0 model are defined by only a handful of
components and rules® and are thus quite easy to learn. Also, the IDEF( diagrams are
very intuitive, even for a person who are not familiar with the model. The hierarchical
decomposition makes models well-structured and provides a good overview for a
reader.

3We note however that there are more components, rules and recommendations in the standard,
we have now only presented the most essential parts here.
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Figure 2.5: The decomposition of a parent box into a child diagram.

From our point of view, a drawback is that objects and object states are not well-
defined in the model, nor is the dynamic behaviour of the system. This means that
we would have to impose additional rules and interpretations on the IDEF0 model in
order to be able to base a scheduling algorithm on it, something one of course wants
to avoid if possible. Furthermore, we see no obvious way of doing such an extension.

We also note that there are some IDEFQ rules that would be difficult to follow in
a general scheduling model, one is e.g. that a graphic diagram should have no less
than three and no more than six function boxes (the only exception being the A-0

context diagram).
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2.3 IDEF3

The IDEF3 Process Description Capture Method is another graphical technique in the
IDEF-family that can be used for describing manufacturing systems. We will briefly
present some IDEF3 basics here, for more detailed information we refer to Mayer
et al. (1995). IDEF3 is mainly intended for facilitating the description of an existing
system. Mayer et al. (1995) makes a distinction between the words description and
model, saying that “descriptions record knowledge that originates in or is based on
observations or experience” and that “a model constitutes an idealized system of
objects, properties, and relations that is designed to imitate, in certain relevant
aspects, the character of a given real-world system”. IDEF3 allows for incomplete
descriptions of a system, and alternative descriptions of the same process in the
system. We are however interested in using IDEF3 components for making a well-
defined model.

2.3.1 Basic graphic components

We will start with defining some important concepts in IDEF3. A process is an
ordered sequence of events. A scenario describes the setting within which one or
more processes occur. IDEF3 has both a process-centered view and an object-centered
view. In the process-centered view, one organizes process knowledge with a focus
on processes and their temporal, causal and logical relations within a scenario. In
the object-centered view, one organizes process knowledge with its focus on objects
and their state change behaviour in a single scenario or across multiple scenarios.
Graphically, these views are presented in process schematics and object schematics.
An object schematic that is concerned with a single scenario is called a transition
schematic.

Process schematics

In the process schematics, the unit of behaviour (UOB) box is the most important
component. It represents an event, a decision, an action or an entire process. UOB
boxes are connected with links shown as arrows. The links define precedence relations
or other constraints. Links can fork and join at so called junctions (smaller boxes).
Just like IDEFO0, IDEF3 allows for an hierarchical description. A UOB can be de-
composed into a more detailed description. This is called a decomposition schematic.
Figure 2.6 illustrates all these concepts.

An instance of a UOB is an occurrence of the process it represents. An activation
of a schematic is a collection of instances of some or all of the UOBs whose temporal
and logical properties satisfies the conditions specified in the schematic. A simple
precedence link, as the ones shown in Figure 2.6, does not force instances of both
UOBs it connects to occur in an activation. There are a number of constrained prece-
dence links in the IDEF3 semantics which constrain UOB instances in an activation
in various ways, e.g. saying that if an instance of UOB1 occurs in an activation, then
so must an instance of UOB2. Junctions also control the activation logic. There
are five different junction types in process schematics: AND, Synchronous AND, OR,
Synchronous OR, and Fzclusive OR (XOR). In Figure 2.6, we saw examples of XOR-
junctions. We will not go into details on activation rules here, see Mayer et al. (1995)
for this.
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Figure 2.6: An IDEF3 process schematic with decomposition

Object schematics

We will here only discuss the basic components used in the simplest form of object

schematics: the transition schematic. In a transition schematic, a certain kind of

object being in a certain state is represented by a circle with a label specifying both
the kind and the state. Transition links connect such object state symbols. Junctions
(small circles) can be used when more than two object state symbols should be
connected. A junction’s logical meaning can be either AND, OR or XOR. A simple

example is shown in Figure 2.7.

Referents
of a system. By attaching a referent to a transition link or an object state symbol, the

transition schematic can be related to a UOB, to a scenario or to another transition

schematic. Referents, which are represented as boxes, can be either of type call-

and-continue or call-and-wait. The type affects the timing of transitions. In Figure
2.8, it is shown how the transition schematic example is connected to a UOB with
a call-and-wait referent. In this example, an instance of the UOB must terminate

before the object state transition can occur. Referents can also be used in process

A transition schematic does not give much information in itself regarding the function

schematics, e.g. for connecting to a transition schematic.
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Figure 2.7: An IDEF3 transition schematic.
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Figure 2.8: The example transition schematic connected to a UOB.

2.3.2 Other IDEF3 components

IDEF3 includes many more components than we have presented here. For example,
there are object schematics called first-order schematics and second-order schematics.
They can be used for describing properties of objects and relations between objects
which are not connected to state transitions. There are also so called elaborations
that can be attached to schematic elements, having for example an additional textual
description. If desired, one can use a special well-defined elaboration language. It is
similar to a logic language, a subject we briefly touch in Section 4.2.

2.3.3 Advantages and disadvantages of IDEF3

IDEF3 is not as intuitive and easy to learn as IDEF0, but it offers a much richer
syntax. The range of systems and situations that can be described is much larger
than for IDEFO0 or Petri nets. Unlike IDEF0, the dynamic aspects of a system can be
modelled to some extent, but not as precise as in Petri nets. Although IDEF3 must
be regarded as a very powerful tool in general, we believe that it is not particularly
well-suited as the basis for a scheduling algorithm.
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2.4 Project planning techniques

In the area of project planning, graphical models have been used to describe and
solve simple scheduling problems for almost forty years. We will briefly review two
similar graphical models here, the potential task graph and the PERT* graph. We
do this not because they are likely to be extendible to our problem, but to provide
the reader with some background on the connection between project and production
scheduling problems. More advanced project scheduling problems are often similar
to problems encountered in manufacturing. In fact, the potential task graph model
can be modified and extended to the so called disjunctive graph, which is a commonly
used model in production scheduling. We will discuss the latter in Section 4.1.3.

We will in the following presentation follow the book by Gondran and Minoux
(1984). The basic problem which the potential task graph and the PERT graph
are designed to model is the central scheduling problem. In this we have N tasks
(activities), where task ¢ has a duration d;. The goal of the problem is to assign
start times to the tasks in order to minimize the maximum completion time of any
task, while obeying a set of so called precedence constraints. A precedence constraint
between tasks ¢ and j means that task j are not allowed to start before task i has
been finished.

2.4.1 Potential task graphs

In the potential task graph, the tasks are represented by nodes. There is a directed
arc between nodes ¢ and j if there is a precedence constraint between tasks ¢ and j
(assuming the same numbering on nodes and tasks). This arc has a length d;. We
also add two fictitious tasks of duration 0: an initial task which has to precede all
others and a final task which all other tasks precede. We will illustrate this with
an example from Gondran and Minoux (1984), which is specified in Table 2.1. The
potential task graph for the example is shown in Figure 2.9. Note that a potential
task graph is always acyclic.

Task | Name | Duration | Previous tasks
1 A 7 -

2 B 3 A

3 C 1 B

4 D 8 A

5 E 2 D, C

6 F 1 D, C

7 G 1 D, C

8 H 3 F

9 I 2 H

10 J 1 E, G, I

Table 2.1: A simple central scheduling problem.

It can be shown that the minimum duration of the project is equal to the length
of a longest path in the graph. Such a path is called critical. Given this minimal
project duration, it is easy to calculate the earliest and latest starting times for the

4Project Evaluation and Review Technique.
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Figure 2.9: A potential task graph.

tasks. The difference between the latest and the earliest starting times are called the
slack of the task. The tasks with zero slack are called critical tasks, and they always
correspond to nodes lying on a critical path. If a critical task is delayed, so will the
entire project be. In the example above, there is one critical path: A-D-F-H-I-J.

The potential task graph can be extended to model some other constraints by
adding arcs with certain lengths. For example, if task ¢ cannot be started before a
time ¢;, we can add an arc from the initial node to node 7 having length ¢;.

2.4.2 PERT graphs

In a PERT model, the project is divided into a number of stages. A stage is defined
by a set of tasks already carried out and it is represented in the graph as a node.
We have an initial stage where no tasks have been performed, a final stage where all
tasks are done, and a number of intermediate stages. A task i is represented by a
directed arc in the graph, going between two nodes (stages) and having a length d;.
If there is a precedence constraint between tasks ¢ and j, the end node of ¢ should
be the start node of j. There can be more than one arc between two nodes, so the
graph is in fact a multigraph. The graph will be acyclic. We show the PERT graph
of the example from 2.1 in Figure 2.10.

stages

I I
Initial Fina

Figure 2.10: A PERT graph.

As can be seen, it is not as straightforward to build a PERT model from a given

20



central scheduling problem as it is for the potential task graph. There are however
other problem formulations for which the PERT model is natural. As for the potential
task graph, it is easy to find the minimum project duration and the critical tasks in the
PERT graph. The PERT graph is however more difficult to extend with additional
constraints.
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Chapter 3

Optimization and Scheduling
theory

In this chapter we will present some terminology and concepts of scheduling theory.
We will also present some well-known scheduling problems that are of interest in
manufacturing. As mentioned in Section 1.1, scheduling is a broad area with many
applications. Some of the more basic problems can arise not only in manufacturing
but also in e.g. scheduling of computer processes and project planning. As we add
more features specific to the application areas, the similarities between the resulting
scheduling problems decrease. Therefore, examples and methods from other applica-
tion areas will not be that interesting for us and we will only mention a few examples
in this report.

3.1 Optimization problems

We will in this report use some standard terminology for optimization problems.
For readers unfamiliar with this, we present some definitions here. An optimization
problem is the task of minimizing or maximizing an objective function under a set of
constraints. In the simplest case, the objective function is constructed from a set of
variables, called decision variables, and the constraints are equations formed by these
variables. There are also many cases where the objective function and the constraints
cannot be explicitly stated using mathematical formulae. We will for simplicity use
the former case as example when explaining some of the following definitions, but
they apply to the general case as well.

The problems of interest here are called combinatorial optimization problems,
which in the simplest case means that some or all of the decision variables take only
discrete values. Usually, an optimization problem of a particular type is generally
stated, with a set of parameters controlling the number of variables and constraints
and the exact definition of the objective function and the constraint equations. For
a given assignment of values to these parameters we say that we have an instance of
the problem. Note that it is very common to only use the word problem when it is
clear from context that one refers to a problem instance.

For a given optimization problem instance, an assignment of values to the variables
such that all constraint equations hold is called a feasible solution (or just solution).
An assignment for which one or more constraints are violated is called an infeasible
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solution. The value of the objective function for a given variable assignment is called
the objective value. A solution for which it is not possible to find another solution
with better objective value is called optimal. Note thus that the word solution for an
optimization problem (instance) does not imply “best” with respect to the objective
function, it is only connected to the constraints.

A solution method (or algorithm) for an optimization problem is a well-defined
procedure for finding a feasible solution (as good as possible) to the problem. If the
method guarantees to find an optimal solution for any problem instance given enough
computing time and memory, we say that the method is ezact, otherwise we call it
approzimate or heuristic.

3.2 Scheduling glossary

Here we present a list of terms (in alphabetic order) frequently used in the scheduling
literature. Throughout the report, we will use some of these terms without further
explanation, so the reader is urged to return to this section if necessary. In the
descriptions below, we will use italics for terms that have their own explanation
elsewhere in the list.

Activity: A general term for the tasks that are to be performed by a manufacturing
system. Frequently, the activities are grouped into jobs, in which case the
individual activities of the job often are referred to as operations. Activities
require the availability of resources in order to be performed. The term task is
sometimes used instead of activity.

Allowance: The difference between the due date and the release date of a product
(job), i.e. the maximum desired flow time for the product.

Alternative paths: See routing flexibility.
Arrival time: See release date.
Assembly: The process of creating one product out of two or more sub-products.

Batch: The term for when we have more than one item of a product type that should
be manufactured. See also lot size.

Buffer: A resource that serves as a storage facility for one or more products.

Capacity: A measure of how much a resource can be utilized!. A common example
of specifying capacity is the number of items available of a certain resource over
time.

Completion time: The time when a product (job) is finished. The term can also
be used for individual activities (operations).

Deadline: See explanation at due date.

Deadlock: The situation when two or more products are in a cyclic wait state due
to limited or no buffer space. If no product can continue its processing we talk
of a global deadlock.

IWe note that the word capacity is sometimes used with a slightly different meaning. Our
definition corresponds to what is then called mazimum capacity.
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Disjunctive constraint: A constraint between a pair of activities (operations) say-
ing that they cannot overlap in time, usually because the resource capacity is
not large enough for both activities at the same time.

Due date: The time when a product (job) is estimated/desired to be finished. The
due date is a “soft” constraint that can be violated in a schedule, but at a
penalty cost. In addition we can have a “hard” constraint that the product
must be finished before a certain time. This time is called the deadline and is
of course larger than or equal to the due date.

Earliness: This non-negative quantity is equal to the difference between the due
date and the completion time of a product (job) if the product is finished before
the due date, and 0 otherwise.

Flow time: The difference between the completion time and the release date of
a product (job), i.e. the amount of time the product spends in the system.
Optimization objectives based on flow times are used when it is desirable to
minimize in-process inventory.

Job: Corresponds to the manufacturing of a certain product. The activities needed
to finish the product are called operations. Usually, the operations within a job
cannot overlap in time.

Just-In-Time (JIT): An optimization objective where it is desired that products
are neither finished too late or too early relative to the due date.

Lateness: The difference between the completion time and the due date of a product
(job). Note that this quantity is negative if the job is completed before the due
date.

Lot size: The number of items that are to be produced of a certain product type (in
the same time period). See also batch.

Machine: The most common type of resource.

Makespan: The maximum completion time of any activity considered in the schedul-
ing problem. If activities are grouped into jobs, the makespan is the last com-
pletion time of any job (product). Perhaps the most common optimization
objective used, at least in the academic society. Also called schedule length.

Operation: An activity of a job. Usually an operation refers to the processing of a
(not yet finished) product in a machine, but sometimes other activities such as
transports, setup of machines etc. are considered to be individual operations
as well.

Operator: A human resource that operates other resources such as machines and
transport devices.

Precedence constraint: A constraint between a pair of activities A and B stating
that B cannot be started until A is finished. This is typically used to specify
the order of operations within a job.

Preemption: The processing of an actiwvity (operation) is interrupted and resumed
at a later time. In most situations this is not allowed, in which case one refers
to the manufacturing process as non-preemptive.
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Processing time: The time it takes to perform an activity (operation). In most
cases it is a fixed time independent of how and when the activity is performed,
but it can also depend on the resources used (see routing flexibility) or other
factors.

Product: The physical entity that is manufactured. Note that we define the product
with respect only to our scheduling problem. In a larger setting, it might be
just a sub-product.

Ready time: See release date.

Release date: The time when a product (job) gets available for manufacturing.
Other names for this are arrival time or ready time. In some cases one talks of
release dates for individual activities as well.

Resource: In the simplest case (called a unary resource), it is a single machine,
operator, robot, tool, buffer etc. needed for performing an activity (operation).
A volumetric resource can perform more than one activity at a time (i.e. it
has a capacity greater than one). Examples of the latter are parallel machines,
a pool of equally qualified operators, a buffer with room for more than one
product etc. Other types of resources can also be specified, but these are the
two most common.

Routing flexibility: In the simplest case, this denotes the situation where there
can be alternative ways of performing activities (operations), using different
resources and possibly resulting in different processing times. In a more general
setting, routing flexibility means that there can be alternatives for entire sets of
activities (operations), with possibly different number of activities in different
sets. We also refer to this term as alternative paths.

Schedule length: See makespan.

Slack: The difference between the remaining time to the due date and the remaining
processing time of a product (job) at a certain time. A negative slack means
that the product will inevitably be finished later than its due date.

Start time: The time when an activity (job) is started. One can also talk about
start time for an entire job, meaning the start time of its first operation.

Tardiness: This non-negative quantity is equal to the difference between the com-
pletion time and the due date of a product (job) if the product is finished after
the due date, and 0 otherwise. Optimization objectives based on tardiness are
used in situations where it is desirable to avoid late deliveries.

Task: See activity.

3.3 Scheduling theory

In the first chapter, we gave an introduction to the area of scheduling, and we have
in the previous section defined a number of scheduling terms. We will now go deeper
into some parts of scheduling theory that we will need for the following parts of this
report. We will also give several references for further reading.
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3.3.1 Classification of scheduling problems

We saw one way of classifying scheduling problems in Section 1.1. Here we will
present some other ways of dividing problems into different types.

Classes based on the degree of certainty in the problem

The first distinction we will make is between deterministic and stochastic scheduling
problems. In the former class, all parameters in the problem are known without
uncertainty, whereas this is not the case in the latter.

Another classification is static vs. dynamic scheduling problems. In static schedul-
ing problems, all jobs (or more generally, activities) that are to be completed within
the time horizon of the scheduling problem are known. In dynamic scheduling prob-
lems, new jobs (activities) can be added during the scheduling time period. Note
that a dynamic problem is by nature stochastic, but that static does not imply de-
terministic. In the dynamic case, the schedule cannot be completely finished before
execution, instead it has to be constructed in stages as time passes. Therefore, it is
more difficult to talk about optimality for the problem. For most real-world dynamic
problems, different scheduling strategies have to be evaluated by simulations. As
was discussed in the introduction, we will in this report mainly concentrate on static
deterministic problems.

Complexity classes

One can also classify a scheduling problem (or any optimization problem for that
matter) according to how difficult it is to solve it optimally. For some problems, so
called polynomial solution algorithms exist. This means that the computing time the
algorithm needs for any problem instance is bounded by a polynomial function in the
size (which is measured as the length of the input data string given to the algorithm)
of the instance. If the order of the polynomial is low (preferably linear), the solution
algorithm is usually fast also for large problems.

Other problems can be proved to belong to the class of so called NP-hard prob-
lems, for which it is believed that polynomial algorithms cannot be found. Instead,
the solution time for an exact algorithm will typically grow exponentially with the
problem instance size. For our kind of problems, this effect is related to what is some-
times called the combinatorial explosion. In practice, larger instances of an NP-hard
problem are not possible to solve optimally, instead one has to settle for an approx-
imate solution. There are also so called open problems for which no polynomial
algorithm has been found but where NP-hardness remains to be proved.

This research area is often referred to as complexity theory, and a good general
book on the subject is the one by Garey and Johnson (1979). For deterministic
scheduling problems, the book by Brucker (1998) has a very extensive list of poly-
nomially solvable problems and NP-hard problems. However, we need not concern
us much about these issues, since almost all scheduling problems of practical interest
are NP-hard. This is particularly true for the applications of interest in this project.
Also, the size of real-world problem instances is usually so large that they cannot be
solved optimally.
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More on deterministic scheduling problems

In the academic society, the by far most studied class of problems are (static) de-
terministic scheduling problems. Some recent books having an extensive treatment
of the subject are Pinedo (1995), Blazewicz et al. (1996) and Brucker (1998). Some
of the newest contributions to deterministic scheduling theory are discussed in Lee
et al. (1997). In all of the above mentioned books, a well established formal notation
for further classifying deterministic scheduling problems is used. We will however
not use it in this report, since our scheduling problem falls outside this classification
scheme.

Even if this is the simplest class of scheduling problems, all but the more basic
problems are extremely difficult to analyze and solve. We will later in this chapter
give several examples of commonly studied deterministic scheduling problems, and
in the next chapter we will review different types of solution methods.

More on stochastic scheduling problems

Stochastic scheduling problems belongs to the research field of optimization under
uncertainty, or stochastic programming as it is often called. In many cases, one tries
to optimize the expected value of the objective function. A general treatment of the
subject can be found in e.g. the book by Birge and Louveaux (1997). Apart from
a few simple cases, scheduling problems with uncertainties in e.g. processing times
are generally much more difficult than their deterministic counterparts. The range
of problems that allow any deeper theoretical analyses to be made are even narrower
than in the deterministic case. The book by Pinedo (1995) has several chapters on
stochastic scheduling. A collection of articles on both deterministic and stochastic
scheduling can be found in Chrétienne et al. (1995). We particularly mention the
article by Weiss (1995a), which is a tutorial on stochastic scheduling.

3.3.2 Types of schedules

With a schedule we mean a feasible solution to the scheduling problem. We will now
discuss some classes of schedules. If there are decisions left to make in the scheduling
process, we speak of a partial schedule. If we want to emphasize that the schedule
is not partial, we will say that it is complete. If each activity is performed without
interruption, we say that the schedule is non-preemptive. If this is not the case, we
have a preemptive schedule. Preemptive schedules are not very common in practice.
The interest in them is more due to the fact that some more basic scheduling problems
are NP-hard when preemption is not allowed, but polynomially solvable otherwise.
The preemptive solution is then often used for calculating lower bounds (minimization
case) as a part of solution method for the non-preemptive original problem. For our
application, preemptive schedules are not of much interest.

We call a schedule left-justified (or semi-active) if no activity (operation) can start
earlier without changing the processing order on the resources. For most objective
functions used in practice, it is sufficient to consider only left-justified schedules when
optimizing. In this way, we remove the continuous part of the scheduling problem
and we are left only with the combinatorial part (recall that we did just that in the
preliminary model presented in Section 1.4). A schedule is called active if no activity
(operation) can start earlier without delaying another. From this definition, we see
that all active schedules are left-justified, but that the opposite is not necessarily
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true. One can show that for most objective functions, at least one optimal schedule
is active.

We say that a schedule is non-delay if no resource is kept waiting when there is
an activity (operation) available for processing. It can be shown that all non-delay
schedules are active but that the opposite is not true. In a non-delay schedule we
remove the possibility to delay a product in favour of another one that will be available
in the near future. For non-preemptive problems like the ones we are interested in
here, the restriction to only non-delay schedules can remove all optimal schedules.
In the next section, we will show an example where this happens. We note here that
limiting the search for schedules to non-delay ones is not necessarily a bad thing.
It can be a good heuristic when the computing time available is short, since most
non-delay schedules are fairly good.

3.4 A survey of common deterministic scheduling
problems

In this section we will present some well-studied scheduling problems, in increasing
order of modelling complexity. We will arrive at the so called job shop scheduling
problem and its more advanced versions. These problems will serve as the basis for
discussions in the next chapter when we present different solution strategies.

3.4.1 Single machine scheduling problems

The simplest scheduling problems include only one resource and a set of activities
with given processing times to be performed under some constraints. Although single
machine scheduling problems are of little direct practical interest, they have received
lot of attention in the research society. This is partly due to the fact that they are
simple enough to allow for thorough theoretical analyses, but more importantly that
some problem versions arise as subproblems in solution methods for multi-machine
scheduling problems. As we move on to even more advanced problems, the usefulness
of solution methods for single machine problems decreases. Therefore we will not be
very interested in them, and we will only mention a few examples.

For some problem versions, an optimal solution is found by simply sorting the
activities according to some criterion. One example is if all activities are available at
the start time and we want to minimize a weighted sum of the completion times of
the activities. An optimal schedule is obtained if we sort the activities in decreasing
order of weight over processing time. Other problems require more advanced solution
algorithms but are still polynomially solvable. But even in this simple case there are
many NP-hard problem versions. A well known-example is if we want to minimize
the makespan when we have sequence-dependent setup times at the machine. This
problem can be shown to be equivalent to the famous Travelling Salesman Problem
(TSP) in combinatorial optimization. Single machine problems of interest for com-
puting lower bounds when solving the job shop scheduling problem (defined below)
are the minimization of makespan when release dates and deadlines are specified for
the activities, and the minimization of maximum lateness with release dates and due
dates specified. These problems are NP-hard, but fairly large instances can be solved
to optimality quickly. The preemptive versions of these problems are polynomially
solvable, and the solutions to these are sometimes used instead of the non-preemptive
one for the calculation of lower bounds.
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3.4.2 Parallel machine scheduling problems

A natural generalization of single machine problems is to have a number of parallel
machines that can perform the activities. Neither these problems are very useful
for our application, so we will only briefly discuss the perhaps most well-known
problem variant. In this case all machines are identical and processing times are
given for the activities, and we want to minimize the makespan. This is equivalent
to balancing the load on the machines as much as possible. The problem is NP-hard,
but a simple good heuristic exists for the problem: sort the activities in descending
order of processing time and assign them in order to the first machine that becomes
available. An interesting fact is that if the processing times are stochastic and follow
a basic probability distribution, this simple algorithm (we modify it to sort according
to expected processing time) is optimal when one wants to minimize the expectation
of the makespan.

3.4.3 Shop scheduling problems

In the so called shop scheduling problems we have a set of m different machines and
a set of activities with precedence constraints between them given. For each activity
a unique machine and a processing time are specified. The most commonly studied
objective is the minimization of makespan. If we impose no further restrictions on
the problem, it is called general shop scheduling or disjunctive scheduling. The latter
term comes from the so called disjunctive constraints that say that activities that are
to be performed on the same machine cannot overlap in time.

Usually, the activities are grouped into jobs corresponding (in our application
area) to the manufacturing steps of a product, in which case the activities are referred
to as operations. The operations within a job cannot overlap in time. If there are
no precedence relations between the operations in the jobs, the problem is called
open shop scheduling. If the order of operations within each job is uniquely specified
(i-e. the precedence constraints form a “chain” of operations for each job), we have
the job shop scheduling problem, which like most other shop problems is NP-hard.
If we have neither of these cases, we talk of a mized shop. Job shop scheduling is
perhaps the most studied problem in the scheduling community, and the literature
on the subject is extensive. We will later give some references when we study specific
solution methods for this problem, but we will already here mention Pinson (1995),
which has a good general treatment of it. Other good general sources are the books
mentioned in Section 3.3.1.

Before we look at some special cases of the job shop, we will give a simple exam-
ple. We have three machines and two jobs in the job shop, and the objective is to
minimize makespan. Data for the operations are given in Table 3.1. This example
also illustrates that looking at only non-delay schedules is not sufficient for finding
the optimum. In Figure 3.1, the optimum schedule is shown together with the best
(and in fact the only) non-delay schedule.

A further restriction that can be made is that there is exactly one operation for
each machine in all jobs?, i.e. the number of operations is m. If in addition all jobs
have the same processing order on the machines, we have the special case of flow shop
scheduling. This problem can be specialized further to the so called permutation flow
shop, where each machine have to process the jobs in the same order. This problem

2We note that many authors include this restriction in their definition of the job shop scheduling
problem.
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Job | Op. 1| Op. 2| Op. 3
1| Mi/1 | M2/3 | M3/5
2 | M2/3 | M1/2 | M3/1

Table 3.1: Example job shop. The operations of the jobs are to be processed in
numerical order. Machines and processing time are specified for each operation.

\ \ \ \
0 10 0 10

Figure 3.1: Left: Optimal schedule for the example job shop. Right: Best non-delay
schedule.

is much simpler than the general flow shop, since one only has to find a permutation
of jobs which implicitly decides the starting times of operations. The problem is still
NP-hard, however.

3.4.4 Limitations of the job shop scheduling model

As we will see here, the job shop scheduling model is far too simple to be used
directly in real-world scheduling applications like ours. However, the more advanced
problems we are interested in have a job shop character to a large extent, so it is still
an interesting problem for us. The main reasons why the basic job shop scheduling
model is not suitable for a typical manufacturing environment are:

1. We cannot model the situation where an operation requires more than one
resource.

2. We are not able to handle volumetric resources, e.g. parallel machines.
3. The model does not allow for alternative ways of performing activities.

4. Tt is assumed that there is unlimited buffer space for storing products between
operations.

5. Transportation of products are not explicitly considered (in fact, it is assumed
to be instantaneous). To some extent transportation times can be modelled by
either including them in the operation processing times (assuming unlimited
transport capacity) or by adding special transport operations done on “ma-
chines” that correspond to transport resources. However, this is not sufficient
in a more general setting with e.g. limited buffer space and flexible routing.

6. A product lot size greater than one has to be modelled using one job for each
item. This does not allow for cases where we do not want to distinguish between
different items of the same product type.
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7. Different release dates for products have to be handled artificially, by adding
fictitious operations and machines.

8. We cannot handle the case where resources are unavailable during certain time
periods.

9. We cannot model sequence-dependent setup times for machines.
10. The makespan is not the relevant objective in many real-world cases.

As can be seen, we have to overcome most of these restrictions in order to meet the
requirements of our application (see Section 1.3.3). And even if we do so, there are
still some modelling features we cannot handle: different time usage for resources
needed on the same activity, resources needed for several consecutive activities, gen-
eral routing flexibility, assembly etc.

3.4.5 More advanced models

For more advanced scheduling problems, not many generally accepted models exist.
We will present a few cases here with fairly well-established names.

Flow shop with blocking

When there are no buffer space for storing products between machines, a product has
to occupy a machine until its next operation is started. This is sometimes referred to
as blocking. Flow shops with blocking have been quite extensively studied. For job
shops, problems with blocking are more difficult since the occurrence of deadlocks is
possible. This problem has only recently been studied, and we will review some work
in the next chapter.

Flexible shop scheduling

If we allow parallel machines at each stage in a shop model, we get the flexible
open/job/flow shop scheduling problems. Of these, the flexible flow shop problem
has received most attention.

Resource constrained (project) scheduling problems

In the previous chapter we saw an example of a simple project scheduling problem:
the central scheduling problem. A more advanced problem is the resource-constrained
project scheduling problem (RCPSP), which has been extensively studied. It is a gen-
eralisation of the general shop scheduling problem with discrete time. Each resource
(type) has a capacity and the amounts of different resources needed is specified for
each activity. For each discrete time period we have the constraint that the usage of
the resources cannot exceed the capacity. We have thus removed restrictions 1 and 2
in the list presented above. In the generalized resource-constrained project scheduling
problem (GRCPSP) further extensions are made. Release dates and due dates can
be specified for activities, resource capacity may vary over the time intervals, and
precedence relations are generalized to be either start-start, finish-finish, finish-start
or start-finish. These problems are presented in e.g. Herroelen and Demeulemeester
(1995), and they can of course also be used in a production scheduling setting.
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Chapter 4

Existing scheduling methods

In this chapter we will present methods from different research areas that have been
used to solve scheduling problems with applications in manufacturing. We note
that it is difficult to make a clear division of methods into different classes, since
many scheduling techniques include elements from several research fields. Our way
of organizing methods is just one possible.

For many of the techniques, we will first describe how they are used when solving
the standard job shop scheduling problem. Then we will review the literature on
solving more advanced problems with the technique, and discuss the possibilities to
apply the technique on our application. Solution methods are not described in full
detail, instead references for further reading are given. We note however that some
of the method principles only briefly explained here will be treated in more detail in
Chapter 6, where they are applied to our particular scheduling model.

4.1 Methods from Operations Research

In Operations Research (OR), technical and economic decision problems are modelled
and solved with mathematical methods. The research field is a part of the larger field
of Management Science. Being an application-oriented area, OR overlaps a variety of
more method-oriented areas such as statistics, probability theory and optimization.
We are mainly interested in the latter aspect of OR here.

4.1.1 Mathematical Programming approaches

The aim of the mathematical programming approach is to state the optimization
problem in an explicit form with an objective function and a set of constraints, using
arithmetic expressions involving a number of continuous and discrete decision vari-
ables. Preferably, the expressions used should be linear in the decision variables, in
which case strong theoretical results and analytical tools are available. The restric-
tion to linearity is most important for the constraints, which means that they should
be expressed as linear equalities or inequalities. From a problem modelling point of
view this is a serious limitation, since many real-world constraints are impossible or
at least difficult to express in this way. There are classes of constraints (e.g. logical
conditions) that can be transformed into linear ones by introducing additional deci-
sion variables, but at the expense of an increase in the problem size which may be
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prohibitive for the solution methods that are to be used.

For readers unfamiliar with some of the terms used in the remainder of this
section (branch-and-bound, cutting planes, Lagrangian relaxation etc.) we refer to
any general text on discrete optimization, e.g. the book by Nemhauser and Wolsey
(1988).

The basic job shop scheduling problem

We will first show a classic mized integer programming (MIP) formulation® of the job
shop scheduling problem. We have m machines and n jobs to process. Job ¢ has n;
operations that have to be processed without preemption in the order of ascending
index. Let R;; denote the index of the machine that is to be used for operation j
of job ¢, and p;; the corresponding processing time. As our decision variables we
will choose the starting times of the operations: let z;; denote the starting time of
operation j of job i. We will set the time scale such that the earliest starting time
of any operation is 0. As objective we will choose the minimization of makespan,
denoted by C,ax- Many other objectives, like e.g. mean flowtime, can easily be used
in the same framework.

The constraints that determine the order of the operations within a job and
assure that the processing of these operations cannot overlap in time are called the
conjunctive constraints. With the aid of our notation given above, we can easily
formulate the conjunctive constraints. We must have

Tij+1 — Tij 2 Pij

foralli=1,...,nand j =1,...,n; —1. The constraints that two operations that are
to be processed on the same machine cannot overlap in time are called the disjunctive
constraints. These are more difficult to express mathematically, we have that

Tij — Thi > Pkl or Tkl — Tij 2> Pijs

foralli=1,....,.n—1; j =1,...,n;35 k =i+1,...,n; I = 1,...,n such that
R;; = Ry;. Note that we do not need such constraints between operations belonging
to the same job, since this is already taken care of by the conjunctive constraints.
The problem here is that we have a logical condition in the disjunctive constraints,
but as mentioned earlier we only want simple linear inequalities. This problem can
be overcome by introducing a binary decision variable for each pair of operations that
are to be processed on the same machine (but not belonging to the same job): let
Yiji take the value 1 if operation j of job ¢ is processed before operation I of job k
on the machine in question, and 0 otherwise. We will also need a large constant M.
Here is now the complete problem formulation, where we for notational convenience
introduce the set A = {(i,,k,0): i=1,...,n=1; j=1,...,n5 k=1i+1,...,n; | =
1,...,nk; Rij = Ry} for the disjunctive constraints.

1A subclass of mathematical programming which may include both real-valued and integer deci-
sion variables, with the restriction that the objective function and the constraints are linear.
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min Cpax

Ti,j+1 — Tij Zpij i:l,...,n;j:l,...,ni—l

Cmax — Tin; > Ping i=1,...,n
ot d Thl —Tij Tt M1 —yip) > pij  (4,5,k,1) € A (4.1)
) mij — T+ MY > pr (i,4,k,1) € A

:cijZO i:l,...,n;j:l,...,ni

vijr € {0,1} (4,5,k,1) € A

This formulation clearly shows both the discrete nature (ordering operations on
the machines) and the continuous nature (assigning start times for the operations)
of the job shop scheduling problem. The instances of this problem can in principle
be attacked with a standard MIP solver (that typically uses the exact branch-and-
bound technique), thus removing the need for developing a special purpose algo-
rithm. However, only problems of very modest size can be solved in this way because
of the combinatorial explosion associated with the disjunctive constraints and the
corresponding binary variables. To the best of our knowledge, no general-purpose
approximate MIP solvers using fast heuristic methods exist that could be used in-
stead of an exact solver. Neither has (4.1) shown to be a good starting point of
specialized (primal) heuristic approaches. Applegate and Cook (1991) used it as a
starting point for a cutting plane algorithm calculating lower bounds (i.e. it can be
regarded as a dual heuristic). The results obtained were only slightly better than the
standard bounds calculated by solving a set of the simplified problems, but required
considerable computational effort.

Deadlock-free scheduling and material handling

As mentioned earlier, limited bufferspace for parts restricts the scheduling possibilities
of activities in a manufacturing system. A situation that may occur is a deadlock,
where parts cannot move anymore because they are in a circular wait state. In
a manned system such situations can be resolved with some extra effort, but an
automated system do not necessarily have such an opportunity. In the latter case, it
is important that the control system always generates deadlock-free schedules.

Ramaswamy and Joshi (1996) extend a MIP formulation similar to (4.1) (but with
mean flow-time as objective instead of makespan) to include the case with no buffers
between machines, and proves that this formulation provides an optimal deadlock-
free schedule. In order to be usable in an automated system, the scheduler must
also take the transport of parts (typically performed by a robot) between machines
into account. This can be done by modelling the transporter as a resource just as
the machines, and by extending each job with transport operations. But this more
than doubles the number of operations in each job, leading to a very large increase
in disjunctive constraints. The authors show that this leads to a significant solution
time (over a minute) already for a very small problem with 3 machines, 1 robot and
4 jobs. Instead they propose a heuristic modification of the optimal deadlock-free
schedule without transports, that adds the material handling tasks afterwards. This
method performs reasonably well when the transport times are small compared to
processing times.
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Other extensions

Mathematical programming formulations of an entirely different type than (4.1) have
been proposed in the literature, not with the aim of being suitable for a standard
MIP or IP solver but rather to provide a basis for a heuristic approach. Discrete
time with a given time horizon is used, and the time unit used for specifying e.g.
operation times in problem instances is taken as large as possible in order to keep the
complexity of the model down (at the expense of modelling accuracy). Machines are
grouped into machine types with the capacity available (i.e. the number of machines
of the type in question) specified at each time unit. Operations in jobs can have quite
general precedence constraints, and required timeouts between successive operations
can be specified. For each operation the possible machine types and the corresponding
processing times are specified. Apart from the deteriorated time resolution, this is a
much more advanced model than the standard job shop scheduling problem.

This model is first presented in Hoitomt et al. (1993). The primary decision
variables they use are operation starting time and the machine type selected for the
operation. Instead of disjunctive constraints, machine capacity constraints are used
together with additional binary variables, one for each combination of operation,
machine type and time unit. Although these variables can be of large numbers, the
problem formulation has some nice properties that makes it usable. The authors use a
heuristic based on Lagrangian relazation to produce high-quality solutions and good
lower bounds. The time required to produce a solution for some real-world example
problems with some 30 machines and a total of a few hundred operations is a couple
of minutes per problem, which must be regarded as very reasonable. In Wang et al.
(1997), the Lagrangian relaxation solution methodology is improved giving better
lower bounds and faster execution times compared to those of earlier attempts, but
for a slightly simpler model (precedence constraints are of the standard job shop type
and no required timeouts can be specified).

In Luh et al. (1998a) further extensions of the above model are made in order
to include group-dependent setups, finite buffers and a more general form of flexible
routing. The model can handle a special case of the situation when setup times are
not independent of the sequence of operations on machines. Operations with simi-
lar setup requirements are forced to be processed in groups on a machine, with the
setup time for the entire group specified. Note that this is not the general case of
sequence-dependent setups, since the group setup time is sequence independent. A
finite buffer is modelled as a machine (type) with a certain capacity, with processing
times for buffering operations regarded as unknown variables. The model also in-
cludes alternative routes (of fork-join type) for products, apart from the flexibility in
choosing machine type for a single operation. The authors also show how to approx-
imately handle long time horizons by grouping time units into so-called enumeration
steps (if the time resolution is one hour, an enumeration step is typically one work-
ing day) and considering only the total capacity within each such enumeration step.
The objective function used weighs on-time deliveries and low in-process inventory
together. Numerical results are presented for scheduling problems from a switchgear
manufacturing facility arranged as a flow shop.

These recent approaches are very impressive compared to earlier mathematical
programming attempts, both with regards to modelling power and solution efficiency.
One big advantage is that solution quality is quantifiable, since the methods auto-
matically give lower bounds. The solution algorithms are quite complicated however,
being composed of many complex sub-algorithms that are not easily extended with
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new types of constraints. The methods still lack the capability to handle some of the
vital model features we are interested in, e.g. multiple resource usage and product
lot sizes. Also, the solution times presented in the literature are generally too long
for our application. For these reasons, we will not at this stage attempt a mathe-
matical programming approach for the scheduling system, but we suggest that the
development in the area is closely followed.

4.1.2 Neural network methods

Neural networks (see e.g. the book by Hertz et al. (1991)) is normally regarded as a
branch of Artificial Intelligence rather than of Operations Research. We still prefer to
present the subject in this section, since when neural networks are applied to discrete
optimization problems, one uses much of the mathematical programming theory.
As is the case for many other discrete optimization problems, most neural network
approaches made for the job shop scheduling problem are not competitive with other
solution techniques. Recently, Lagrangian relaxation and neural network techniques
have been combined giving significantly improved performance. In Luh et al. (1998b)
the authors use this method based on the model from Wang et al. (1997) with good
results. But since neural network methods share the earlier mentioned limitations of
the mathematical programming approach, they are not interesting for our scheduling
system, and we will not go further into details of this research field. For readers still
interested in the subject, references can be found in Luh et al. (1998b).

4.1.3 Methods based on the disjunctive graph model

A disjunctive graph? is a suitable tool for the modelling and solution of the general
shop scheduling problem (and its more restrictive versions) with makespan objective.
The nodes in the graph represent the activities (operations) and are labelled with
the corresponding processing times. There are in addition two dummy nodes, the
source and the sink. There are two sets of arcs in the graph. The first is the directed
conjunctive arcs that represent the precedence constraints between activities. There
is a conjunctive arc from a node A to a node B if there is a constraint stating that the
activity corresponding to A must end before the one corresponding to B is started. In
addition, there is a conjunctive arc from the source to each node without predecessor,
and one from each node without successor to the sink. Note that with the elements we
have added so far in the graph, it is equivalent to the potential task graph discussed
in Section 2.4.1, the only exception being that the times are here associated with
nodes instead of with arcs.

The second set is the undirected disjunctive arcs which represent the disjunctive
constraints. In the general shop scheduling problem there is a disjunctive arc between
two nodes if and only if the corresponding activities use the same machine. In job
shop scheduling one needs only disjunctive arcs between activities in different jobs,
since the conjunctive constraints force two operations in the same job not to overlap
regardless if they use the same machine or not. In the mixed shop case, one needs
a disjunctive arc between nodes corresponding to operations in the same job but
whose order is not determined by the precedence constraints. We will illustrate the
disjunctive graph model with a simple job shop scheduling example®, having two

2 A perhaps more proper name is conjunctive-disjunctive graph, but we (and most other authors)
prefer to use the more convenient shorter version.
31t is in fact a flow shop, but that is not important here.
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machines and two jobs. The data for the operations are given in Table 4.1, and the
disjunctive graph for the problem is shown in Figure 4.1.

Job | Op. 1| Op. 2
1 | M1/3 | M2/4
2 | M1/5 | M2/6

Table 4.1: Example job shop. The operations of the jobs are to be processed in
numerical order. Machines and processing time are specified for each operation.

o
@\Q
o

Figure 4.1: A disjunctive graph for a simple job shop scheduling problem. The
job and operation number is shown inside the node circles and the corresponding
processing time is given next to the node. The disjunctive arcs are shown with bold
lines for clarity.

Source Sink

The disjunctive graph is to be seen as a basis for solution methods, and not as a
graphical presentation tool. Graphs for small problems can be used for illustrating
principles, but graphs for larger problem are impossible to view graphically since they
are cluttered with disjunctive arcs.

Disjunctive graph theory

We will now present some properties of disjunctive arcs that are important for solution
methods. Such methods work by selecting an orientation for each disjunctive arc
(i.e. making it directed instead of undirected), thus fixing the order between the
corresponding activities. A set of disjunctive arcs for which the direction has been
fixed is called a selection (or orientation). If all disjunctive arcs have been fixed
we have a complete selection, otherwise it is called a partial selection. A complete
selection is called feasible if the resulting directed graph is acyclict. With the length
of path between the source and the sink in the directed graph defined by a feasible
selection we mean the sum of the processing times associated to the nodes in the
path. Such a path in the graph with largest possible length (there can in general be
more than one) is called critical. We now have two important results:

e There is a one-to-one correspondence between the set of feasible selections and
the set of feasible left-justified schedules.

4We note that some authors include this in their definition of a complete selection.
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e The length of a critical path in the directed graph resulting from a feasible
selection is equal to the makespan of the corresponding left-justified schedule.

This means that one never has to work explicitly with starting times of activities in
a disjunctive graph based solution method, instead one concentrates only on orders
between activities. When the solution process terminates with the best feasible selec-
tion found, it is straightforward to derive the starting times. Another fact that makes
disjunctive graph based methods powerful is that one can use well-known methods
from graph theory for finding longest paths and detecting cycles in a fast way.

Branch-And-Bound

A lot of effort has been put into developing exact methods based on the disjunctive
graph model for the job shop scheduling problem. Today extremely advanced branch-
and-bound methods exist that can solve problems with up to about 15 machines and
15 jobs. In most methods, a node in the search tree is specified by a selection in the
disjunctive graph. When a search node is selected for branching, the most common
approach is to select a disjunctive arc not in the selection and then create two child
nodes, one for each possible direction of the arc. In Figure 4.2, a search tree for the
above job shop example is shown to illustrate this.

Figure 4.2: One possible search tree for the job shop scheduling problem modelled
with the disjunctive graph of Figure 4.1. The selection of disjunctive arcs is shown
inside the search nodes. The search node corresponding to the optimal solution is
drawn with a bold circle.

In order to avoid explicitly exploring a large portion of search tree, it is important
that the lower bound calculated at each search node is as good as possible. A simple
and fast way of doing this is just to remove all disjunctive arcs not in the current
selection and to calculate the longest path in the remaining directed graph. A better
lower bound (but computationally more expensive) can be calculated by discarding
all non-fixed disjunctive arcs for all but one machine. This leads to a single machine
problem which is usually possible to solve quickly despite the fact that it is NP-hard.
We can of course do this for all machines and then pick the best bound obtained.
Several other ways of calculating lower bounds exist.

Apart from lower bound calculations, many other issues are important, e.g. which
non-fixed disjunctive arc to select next for branching. Many of the already mentioned
references treat branch-and-bound methods for the disjunctive graph model in more
detail, e.g. Pinson (1995), Blazewicz et al. (1996) and Brucker (1998).
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The shifting-bottleneck heuristic

When larger problems are to be solved, exact methods cannot be used any more. One
of the more well known approximate methods for the job shop scheduling problem
is the shifting bottleneck heuristic, originally proposed by Adams et al. (1988). It
is based on the same idea as was described for calculating lower bounds for use in
branch-and-bound methods. The algorithm goes through a number of stages equal
to the number of machines in the problem. At the beginning of stage number k,
the operation order on k — 1 machines has been determined (i.e. all disjunctive arcs
for these machines have been fixed). Then a single machine problem is solved for
each of the remaining machines. The machine which causes the largest increase in
makespan is identified as the “bottleneck”. Since it seems reasonable to schedule such
a machine before others, this machine is included in the set of scheduled machines (i.e.
the disjunctive arcs corresponding to the machine is fixed according to the solution
of its one-machine problem). Finally, at the end of the stage, the algorithm makes a
local re-optimization of the schedule for the k so far selected machines.

The book by Pinedo (1995) has a good example illustrating the steps in the
method. Many variants of the algorithm have been proposed, e.g. in Applegate and
Cook (1991). Vaessens et al. (1996) presents computational results for many shifting
bottleneck heuristic versions as well as for other heuristics.

Meta-heuristics

A meta-heuristic is a general algorithmic principle that can be used as a basis for
constructing approximate methods for a variety of problems. The most well-known
meta-heuristics are simulated annealing (see e.g. Aarts and Korst (1989)), tabu search
(see e.g. Glover and Laguna (1997)) and genetic algorithms (see e.g. Goldberg
(1989)). The former two are based on the principles of local search, which is to
iteratively move from a (complete) solution to another neighboring solution by making
some small changes. The disjunctive graph model is very suitable for local search.
The simplest way of moving from one solution (represented by a complete selection)
to another is just to reverse the direction of a disjunctive arc. It is common to restrict
changes to only arcs lying on critical paths. It has been shown that it is possible to
reach an optimal solution in this way regardless of the starting solution.

Especially tabu search approaches based on the disjunctive graph model have
been successful. The algorithm by Nowicki and Smutnicki (1996) is one of the most
efficient methods known for job shop scheduling. Barnes et al. (1995) present tabu
search approaches for job shop scheduling as well as for other scheduling problems.
Methods based on simulated annealing can also give quite good results, but require
rather long running times. Genetic algorithms are not that suitable for the disjunctive
graph model, and the approaches suggested so far are not competitive with the best
methods. The computational study by Vaessens et al. (1996) includes many methods
based on the meta-heuristics described here.

Extensions of the basic model

When the disjunctive graph model can be used, very efficient solution methods can
be constructed. Unfortunately, the model is not very easy to extend to more general
cases. Features like limited buffers seem very difficult to model with a disjunctive
graph. Also, the disjunctive graph loses much of its strength when an objective
other than makespan is considered, since there no longer is a connection between the
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objective value and the length of critical paths. The most advanced model based on
disjunctive graph ideas that we are aware of is presented in Verhoeven (1998). The
problem treated is referred to as the resource-constrained scheduling problem (RCSP)
and it is similar to the RCPSP problem described in Section 3.4.5.

In this problem, each resource can have an integer capacity. For each activity,
a number of possible resource sets for performing it can be specified together with
processing time (i.e. multiple resource usage and a limited form of routing flexibility
is possible). Activities can have general precedence constraints between them. The
objective is to minimize makespan. A solution of the problem cannot be described
in a single disjunctive graph, instead it is defined by a resource assignment for the
activities and a selection in a graph that depends on the resource assignment. A tabu
search algorithm is presented for the problem and it is tested on some special cases
of the RCSP.

Since there is still a long way to go from the RCSP to a model which meets our
requirements, we doubt that an approach based on a disjunctive graph is suitable for
our application.

4.2 Methods from Artificial Intelligence

Artificial Intelligence (AI) is a huge research field, for a general treatment see e.g.
Winston (1984) or Russell and Norvig (1995). Some parts of this field are of interest
in combinatorial optimization in general and scheduling in particular. Compared
with Operations Research, the work on scheduling with AT methods has been more
directly directed towards industrial applications. Collected articles discussing such
applications as well as more theoretical issues can be found in Zweben and Fox
(1994) and Brown and Scherer (1995). In this section, we will briefly discuss some
AT methods and then see how they can be applied to scheduling problems of the kind
that is of interest to us.

4.2.1 Introduction to AI methods

Artificial Intelligence has a large number of branches. One of them is search, which
concerns methods for finding sequences of actions in order to achieve some kind of
goal. Some of these methods will be of interest for us in discrete event models.
Section 4.3 treats such models, and we will discuss relevant search methods there. A
particular class of search methods that we will discuss here is devoted to so called
constraint satisfaction problems.

Another major branch is logic, where one develops formal languages for encoding
knowledge and methods for carrying out reasoning within the language. So called
first-order logic where one can express relations between objects is perhaps the most
widely studied formal logic language. The well-known logic programming language
Prolog is based on first-order logic. Prolog and the like allow for programming at a
very high level, but the price paid for generality is efficiency problems in the logical
inference processes. A closely related area is expert systems, in which one attempts to
store information given by human domain experts in knowledge bases, and use it for
automatically making diagnoses or taking decisions. There have been some attempts
with knowledge-based systems in production scheduling, but we have not found any
of these approaches suitable for our application.
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Constraint propagation techniques

Constraint satisfaction problems (CSP) are combinatorial problems in which the goal
is to satisfy a set of constraints. Note the close connection to combinatorial optimiza-
tion problems (COP), where one in addition wants to optimize some criterion while
obeying the constraints of the problems. Although CSPs can be said to be a special
case of COPs, it is considered a separate research area since the applications studied
generally differ from the ones in combinatorial optimization. In COPs one usually
studies subsets of constraints that are fairly easy to handle, whereas the research on
CSPs is directed towards more general classes of constraints and problems where fea-
sibility is difficult to achieve. This has lead to different types of solution techniques.
The reason why we are interested in CSP techniques is that they can be useful in
difficult COPs such as ours as a complement or alternative to classic COP techniques.

An important component in CSP techniques is constraint propagation. When a
decision is taken (e.g. the assignment of a value to a variable) in the search process for
the problem, the consequences of this is analyzed for the constraints, and the result
can be that the set of possible values for other decision variables are narrowed down
or that unavoidable violation of a constraint is discovered. This means that large
parts of a search tree may be cut off without explicitly exploring it. A trade-off has
to be made between how many search nodes to explore and the amount of constraint
propagation done at each node. The propagation process can be a combination of
general techniques and techniques specialized for certain types of constraints.

We will now only briefly describe some further CSP basics. For a more general
treatment we refer to the literature, e.g. Kumar (1992). A binary CSP is a problem
which can be described by a set of decision variables with a discrete set of possible
values and constraints involving only pairs of variables. We note that many other
types of CSPs can be transformed into binary CSPs. The problem can be represented
by a constraint graph, where each node corresponds to a variable and there is an
undirected arc between two nodes for each constraint between the two variables in
question. An arc between nodes/variables i and j is said to be consistent in the
direction from i to j if there for all possible values of i is at least one possible value of
j such that the corresponding constraint is not violated. If the arc is not consistent,
we can directly remove some value(s) from the set of possible ones for i. There exist
several variants of algorithms for making the entire constraint graph arc consistent.
Full or partial consistency checking can be made either before a search process starts
or at each search node.

Constraint logic programming

In the mid 80’s, research on using constraint propagation techniques in first order
logic in order to improve the efficiency of logical reasoning methods were done. This
development together with the introduction of richer data structures into logic pro-
gramming languages led to the birth of constraint logic programming (CLP). In an
ordinary logic programming language the objects used can represent just about any-
thing, but all relations between objects have to be explicitly stated in order to allow
for logical reasoning. In CLP one also has objects that have a meaning in a special
application domain (e.g. the arithmetic domain), with associated operations. This
allows for implicit expression of relations between objects using more general con-
straints. CLP has not only richer semantics, but also improved efficiency due to the
possibility to use specialized constraint solving techniques (e.g. the simplex method
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for linear constraints in real-valued variables). There is a whole family of CLP lan-
guages depending on the application domain(s) supported. A good introduction to
CLP is given in Frithwirth et al. (1993).

4.2.2 Constraint-based approaches to job shop scheduling

Many of the modern branch-and-bound methods based on the disjunctive graph
model for job shop scheduling (see Section 4.1.3) use some elements of constraint
propagation. This is usually done by calculating a time window for each activity
within which it has to be performed. When a pair of activities is ordered, propaga-
tion of this decision may lead to some time windows being narrowed and sometimes
inconsistency can be detected if an activity no longer fits in its time window. The
disjunctive graph functions in this case as a constraint graph.

Caseau and Laburthe (1995) use constraint propagation to a large extent with
a slightly different approach called task intervals. A task interval is actually a set
of activities to be performed on the same machine whose time windows fulfil some
requirements. The constraint propagation techniques for task intervals are not only
used within a branch-and-bound algorithm, but also for calculating lower bounds,
within a greedy method and in a local search method. All these parts are then
integrated into a hybrid algorithm which is very efficient.

4.2.3 Extensions to more advanced models

For more advanced scheduling problems, a CLP-approach seems to be the most
promising alternative due to the flexible modelling capacity. ILOG SCHEDULE
is a such a product, based on the generic CLP-tool ILOG SOLVER and specialized
for production scheduling. In Baptiste and Le Pape (1995), the constraints that
can be modelled with SCHEDULE is presented. Baptiste et al. (1995) describe the
propagation mechanisms used in more detail and report some computational results.
Some of the modelling features possible in SCHEDULE are:

e Many types of temporal constraints. This includes general precedence con-
straints (start-start, finish-finish, finish-start or start-finish) and minimum and
maximum delays between activities.

e Several types of resources. One can have unary resources, volumetric resources
and state resources. The latter can be used when an activity can use a resource
only under specific conditions.

e Resource utilization constraints. The required resources can be specified for
activities. It is also possible for an activity to consume or produce resources.

e Alternative resources for an activity (i.e. a limited form of routing flexibility)
and optional activities.

e Transition times between activities. This can be used to model sequence-
dependent setup times.

This approach is certainly a candidate for our scheduling system, since the versatility
of the CLP language should make it possible to model even more cases. There are
two question marks however. The first is how easy it is to include the remaining
modelling requirements of our application (limited buffers, multiple resources for an

43



activity with possibly unequal time usage, product lot sizes, total costs as objective
instead of makespan etc.). The other is how well the solver will do given only a short
computing time as in our application, especially if there are many constraints which
cannot be handled by the specialized propagation methods.

4.3 Discrete event models

In Section 1.4, we introduced the concept of a discrete event dynamic system and
argued that it is one of the most natural and straightforward ways of describing
a scheduling problem in a manufacturing system. It is also very commonly used in
practice, especially in industry. The power of discrete event approaches lies mainly in
its modelling capacities. It is fairly easy to customize a model to accurately describe
the dynamic behaviour of a particular manufacturing system. This also makes it
suitable for other purposes than scheduling, e.g. the surveillance and control of a
system. Discrete event models are also very suitable for describing dynamic and
stochastic scheduling problems.

4.3.1 General solution principles

A drawback of a discrete event model is that one has to resort to only one way of
scheduling it: from front to back in time. In e.g. a disjunctive graph model there
is much more freedom in which order to make scheduling decisions, and it is easy
to move from one solution to another. If we for a discrete event scheduling problem
have a solution in form of an action sequence and change a decision somewhere in the
middle of the sequence, we have to reschedule the entire last part of the sequence.
This means that local search methods are not easy to apply to a discrete event model.
Instead we are restricted to mainly three solution method principles (of which the
first can be said to be a special case of the second):

e Construct a single action sequence, making each decision according to some
more or less advanced rule. This is mainly interesting in a real-time application
or for making repeated simulations in a dynamic/stochastic scheduling problem,
but neither of these cases are of interest to us.

e Construct a series of action sequences until the available computing time is used
up and then return the best found. The latest generated sequence may or may
not depend on previous sequences, and randomization is usually used in some
way.

e Systematically organize all possible action sequences in a decision tree and use
some tree search method from Operations Research or Artificial Intelligence.

A discrete event model has the advantage that since it describes the actual behaviour
of the modelled system (i.e. all constraints of the problem are explicitly handled),
every action sequence that leads to the goal state is a feasible solution. This means
that it in most cases is easy to find one or a few feasible solutions extremely quickly®.
But the approach also has a major disadvantage, which we now will explain.
Although the search tree in a discrete event model is restricted to only feasible
solutions, it is much larger than for e.g. a corresponding disjunctive graph model.

5Tn many methods mainly based on other models, a discrete event model is often used to construct
an initial solution.

44



This is due to the fact that we often have decisions that are independent of each other
(it may be possible to take several decisions at the same time point for example).
We will then have many actions sequences that are totally equivalent to each other,
and we can have several search nodes corresponding to the same system state. In
Figure 4.3, this is illustrated for the simple job shop problem presented in Section
4.1.3. Compare this search tree with the disjunctive graph search tree in Figure 4.2.
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Figure 4.3: A decision tree for the job shop example specified in Table 4.1, described
with a discrete event model. We define an action to be the starting of an operation.
The action taken to reach a state represented by a node is shown at the arc leading
to the node. The time at which the last decision was taken is shown inside each node,
and the makespan of a complete schedule is shown below the leaf nodes. Optimal
values are shown bold.

For a problem which also allows for e.g. a disjunctive graph model, it is in general
much more difficult to find optimal or near-optimal solutions with a discrete event
model. By checking for repeated states during a tree search process one can avoid
exploring equivalent paths to some extent, but the number of search nodes that has
to be explored in the tree may still be huge.

4.3.2 Methods based on priority rules

Priority rules for selecting the next activity to start in a scheduling process have been
extensively studied over the years for different scheduling objectives, due to the fact
that they are easy to use in real-world applications and that they also can be applied
in dynamic/stochastic environments. Most work in the area has been devoted to
cases without flexible routing, so that it is uniquely specified in which machine queue
a product is put after its latest operation. In a given situation, a priority value is
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calculated for each activity that can be started next and the one with the highest
priority is selected. If there is a tie between two or more activities, it can be broken
by calculating another priority value or by simply selecting an activity randomly or
according to some predefined order. Examples of some commonly used priority rules
are (commonly used abbreviations are shown inside parentheses):

o First-In-First-Out (FIFO).

e Shortest processing time (SPT). The activity with the shortest processing time
is chosen first.

e Shortest setup time (MINSEQ). This rule applies to the case where we have
sequence-dependent setup times at a machine. A more advanced version (FIXSEQ)
solves a single-machine scheduling problem (see Section 3.4.1) for the products
that are currently in the machine queue and then selects the first product in
this schedule.

e Most work remaining (MWKR). The activity for the job with the largest re-
maining processing time (including the activity in question) is chosen first.

e Earliest due date (DD). The activity belonging to the job with the earliest due
date is selected. Used for due date related objectives.

e Least slack (SL). The activity belonging to the job with the smallest slack is
chosen first. Also due date related.

e Work in next queue (WINQ). The activity whose successor are to be processed
in the machine with smallest queue (with respect to processing time).

The priority rules can be categorized in various ways. One classification is if they
take into account global information (like WINQ) or just information at the queue in
question (the remaining examples). Another is if the priority value of an activity is
time dependent (like FIFO, MINSEQ, SL and WINQ) or if it can be calculated once
and for all (SPT, MWKR, DD). By combining several simple priority rules one can
form more advanced versions. A survey of the subject can be found in Haupt (1989).
A slightly different approach than standard scheduling rules is described in Holthaus
and Ziegler (1997), where global information is taken into account.

Greedy methods

The well-known Giffler-Thompson algorithm (described in e.g. Blazewicz et al.
(1996)) can be said to form the basis of most rule-based approaches that gener-
ates a single schedule for a (static) deterministic job shop scheduling problem. Since
a decision taken is never changed, we can refer to it as a greedy method.

More advanced methods

If ties between activities are not too uncommon when priorities are compared, one
can extend the Giffler-Thompson algorithm in a simple way by running it several
times and breaking ties randomly. This might improve the “one-shot” value slightly.
A more advanced (but also quite strange) approach is taken in Dorndorf and Pesch
(1995). There a genetic algorithm (see e.g. Goldberg (1989)) controls the generation
of new schedules. An individual in the population is defined by a string with n — 1
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entries, where n is the number of activities in the problem. Entry ¢ in the string is
a priority rule, and this rule is to be used at the i:th stage of the Gifler-Thompson
algorithm. The algorithm requires rather long running times, and the results obtained
are not competitive with disjunctive graph based heuristics.

Applicability to our problem

The strength of priority rules lies in the extremely quick execution time and the fact
that they can be used in dynamic scheduling. We have a static case, and even if
our computing times are short we want to use all time available in order to find a
schedule that is as good as possible. In view of this, an approach purely based on
priority rules is probably not very good in our case.

4.3.3 Methods based on Petri net models

As mentioned in Section 2.1, different types of Petri nets have been widely used
for the modelling of manufacturing systems. An area that has received particular
attention is that of Flexible Manufacturing Systems (FMS), perhaps due to the fact
that the discrete event nature of a Petri net model is suitable for the control of such
an automated system. Initially, the possibilities of scheduling were not addressed,
instead simple rules like first-in-first-out (FIFO) were used to control the execution
of the system. Later, both on-line and off-line scheduling problems for FMS have
been studied. More recently, Petri net based methods have been recognized as a
promising tool for a broader range of problems, including the scheduling of general
manufacturing processes (not necessarily fully automated). Problems from other
areas such as the scheduling of computer processes and the scheduling of restoration
actions for power systems have also been attacked with Petri net methods, but we
will not discuss these cases further since the models used are not applicable to our
scheduling system.

Next, we will show how the standard job shop scheduling problem for minimizing
makespan can be formulated in a place-timed Petri net framework, and how this
model easily can be extended to cover much more realistic scheduling applications.
Then we will present an overview of the research made in the area.

Modelling the standard job shop scheduling problem

The standard approach for the modelling of job shops uses two kinds of places:
product places (also referred to as process places) and resource places. The product
places represent the status of a product during the manufacturing process: being
processed in a machine, waiting in a buffer etc. The product places corresponding
to operations are timed places, with the time delay equal to the processing time of
the operation in question. In the simplest case the product places form chains, one
for each product, which represent the technological order of operations done on the
product. Each product chain has a start place which corresponds to the product
waiting for the first operation and a goal place which represents the product being
completed. The transitions that link the product places in a chain represent events
like the start or end of an operation. Different product chains are only connected
through the resource places, which represent the availability of machines.

The initial marking consists (in the basic case) of one token for each product start
place and one token in each resource place. The goal is to reach a marking where
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there is a token in each product goal place. The scheduling problem is thus to find
a firing sequence which reaches the goal state in minimum time. In terms of the
corresponding reachability graph, this is equivalent to finding the optimal path from
the initial state to the goal state in the graph. Since each firing of a transition moves
the system one step closer to the goal state, the number of firings required to reach
the goal state is independent of the firing sequence. If we construct a tree search
algorithm, we can take advantage of the fact that we know a priori the depth of the
search tree.

An important issue is how we keep track of time and how we select the next
transition to fire, given a current state of the system and the time elapsed to reach this
state. In the general case, we allow any transition that is enabled without regarding
time to fire next. If this transition has a timed input place (i.e. a product place
corresponding to an operation), the time of the system is advanced to the moment
when the token in the timed input place becomes available. A restriction of the firing
possibilities that is often done is termed eager firing. We say that transitions are
eager-to-fire when we follow the rule that they fire as soon as possible. The firing of
a transition can of course still be delayed if a choice is made to fire another transition
enabled at the same time which is in conflict with the former, but as soon as there
are no such conflicting transitions it will fire. Another way of explaining the concept
of eager firing is to say that “we only advance the time of the system when there
are no more enabled transitions at the current time”. As the reader may already
have guessed, eager firing in Petri net scheduling is equivalent to the definition of
non-delay scheduling made in Section 3.3.2.

We will now illustrate the issues discussed above with an example. In Figure 4.4,
a Petri net model for the simple job shop example given in Section 4.1.3 is shown
with an initial marking. Note that between the places corresponding to operations
(these timed places have a number below them signifying the time delay) there is
a place representing the product being in a buffer. These places correspond to the
implicit assumption of unlimited buffers in the basic job shop model, and assure that
the Petri net never ends up in a deadlock state (not counting the goal state of course).

In the figure, the reachability graph from the initial marking in the Petri net is
also shown. The progress of the first job (J1) is shown on the horizontal axis and the
progress of J2 is on the vertical axis. The upper left node is the initial marking and
the lower right node is the goal marking. There is no unique time associated to a node,
since this is a property of the path used to reach the node. The reachability graph
clearly illustrates the point that there are many ways to reach a certain marking,
some of which may be equivalent with respect to time. The impact of this on the
performance of search methods was discussed in Section 4.3.1. The arcs lying on
optimal paths are drawn with bold lines.

The reduction of the reachability graph due to the eager firing restriction is shown
in the figure as well. In this case, the reduced graph still contains paths that are
optimal in the original graph, but as the example in Section 3.4.3 showed, this is not
always the case.

Extensions of the standard model

To model a situation with no buffer between two machines, we just remove the buffer
place between the two operation places. In general, when buffers are finite, and in
particular when there are no buffers, the possibility of deadlock in the system model
must be taken into account. In some cases (e.g. in manned shops or in FMSs with
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Figure 4.4: Left: Petri net model of the job shop scheduling example. Upper right:
The reachability graph from the initial marking. Optimal paths are drawn with bold
lines. Lower right: Reachability graph when transitions are eager-to-fire.
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recovery possibilities), this situation can be handled in the actual system when it
occurs. But this requires some extra effort and time, and it is of course better if
the scheduling system never produces a deadlock situation. For a Petri net where
deadlocks can occur, a search algorithm must therefore be able to find a way around
such states. We note that in some cases with restricted buffering, the eager firing
rule may cause all paths to the goal state to be cut off. Take e.g. the example above,
remove the buffer places and also change the order of the operations of job 2 (M2
is used before M1). After starting the first operation of either job, the eager-to-fire
transitions will then directly start the first operation of the other job, and the reader
may check that this now is a deadlock state.

A more advanced model than the basic job shop scheduling problem is easily built
in the Petri net framework. We have already discussed the case of no buffers, and in
Figure 4.5 we show several other extensions. Case A shows that if several items of
the same product are to be manufactured, this can be modelled in a natural way just
by introducing several tokens in the start place of the product. In the other models
discussed, product lot sizes greater than one have to be represented by multiple jobs.
In Case B it is shown how to model an operation needing more than one resource. In
this way, we can easily handle cases where it is important to take additional resources
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Figure 4.5: Examples of Petri net scheduling model extensions. A: Product lot sizes.
B: Multiple resource usage. C: Limited buffers. D: Volumetric resources. E: Routing
flexibility. F: Assembly.

such as operators, fixtures and tools into account.

Case C illustrates how to model a finite buffer. A finite buffer is a special case
of a volumetric resource, i.e. a resource with the capacity of handling more than one
operation at a time. A natural extension of this is that some operations demand
more than one unit of a volumetric resource. An example of this is shown in Case D.
In Case E it is shown how to model the simplest case of routing flexibility, i.e. when
there are alternative ways of performing an operation. This can easily be generalized
to cases with alternative paths having an arbitrary number of operations before the
paths join again. Case F shows another application of path joining. It models
the situation where sub-products must be available before an assembly operation of
another product can be performed.

In Chapter 5 further modelling extensions are made using a non-standard Petri
net. We note that for including a modelling feature in a scheduling system, it is not
enough that the Petri net allows it. The solution method used must also be able to
interpret the modelling feature correctly.

Existing approaches

In this section, an attempt is made to give an extensive historic review of the liter-
ature that is relevant for our application in this area. Some of the solution methods
discussed below will be presented in more detail in Section 6.2, but we will also give

50



other references.

The earliest examples of production scheduling with Petri nets came in the late
80’s, where priority rules were used to make decisions. Shih and Sekiguchi (1991) are
the first to use some kind of search in the scheduling process. They present a quite
advanced transition-timed Petri net model which takes into account transportation
activities (performed by an AGV?®), limited bufferspace and flexible routing. When a
scheduling conflict has to be resolved (i.e. there are two or more conflicting transitions
that are enabled or will be enabled in the near future) a decision module is called.
The decision module performs a partial beam search (see e.g. Winston (1984)) looking
ahead some units of time, and then chooses the transition that leads to the partial
solution with best evaluation. Simulation experiments done by the authors favour
their approach over some simple priority rules when the objective is Just-In-Time.
This algorithm is intended as a real-time algorithm that can be used for scheduling
and control of a FMS in a dynamic environment, but the partial beam search idea
could be interesting as part of some heuristic for static scheduling as well.

Camurri et al. (1993) present a suggestion of how to automatically create a Petri
net model from the knowledge base of a FMS. They use colored transition-timed
Petri nets where different products can share parts of the net instead of having
separate process places like in the example above. Color is then used to distinguish
between products in the same place. The authors suggest that a pure Monte Carlo
method (they choose the best solution found in a number of trials, where random
selection is used to resolve all conflicts in each trial) could be used as a general
purpose scheduling strategy for any kind of objective function. For a case study they
also develop a special purpose scheduler based on priority rules that can be used in
real-time.

In Lee and DiCesare (1994) some of the authors’ previous work on FMS scheduling
are summarized and extended. They are among the first to employ some kind of
intelligent global search to this kind of scheduling problems. They use a place-timed
Petri net model which can include features like product lot sizes, multiple resource
usage, limited buffers and routing flexibility. With the aim of minimizing makespan,
a variant of the A* search " method (see e.g. Russell and Norvig (1995)) is used
as a basis for a set of algorithms. The algorithms differ in the choice of evaluation
function for the nodes in the search tree. Apart from one trivial case, none of these
functions are admissible (see Russell and Norvig (1995)), which is a condition that
has to be satisfied if optimality is to be guaranteed during the search. This does
not mean that these functions are necessarily bad. Properly designed non-admissible
functions reduce the search space explored significantly and can thus be used to
produce solutions for problems that are too large for optimal methods. The time
needed for producing a solution may still be large however. In order to avoid exploring
equivalent branches in the search tree, the previously generated search nodes are
checked for a repeated state each iteration. Although this is a costly operation, it
pays off globally in most cases. We note that if one wants to guarantee optimality
during the search, the comparision between search nodes is not a trivial task. This
and many subsequent articles use a simplified comparison without discussing the
impact on optimality. We will discuss these issues in more detail in Section 6.1.6.

Sun et al. (1994) present a similar place-timed Petri net model for a FMS, that
also includes the control of an AGV system with more than one vehicle. The authors

6 Automated Guided Vehicle.
"The A* search method is perhaps the most important member of the class called best-first search
methods. Note that many authors use the latter term instead of A*.
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present an approach for further reducing search time. They present a limited expan-
sion A* search method (using one of the evaluation functions of Lee and DiCesare
(1994)), that sets a maximum value b for the number of unexplored nodes that are
kept in memory. This makes the algorithm similar to a global beam search method,
and just as the latter it has for this kind of problem a worst case guarantee for the
number of search nodes explored before a solution is found (assuming the system is
deadlock-free). This feature makes these approaches more interesting for our appli-
cation than the pure A* (admissible or not) methods, although it may not be easy to
a priori calculate a maximum actual computing time. We note here that Sun et al.
(1994) say that the algorithm used in their tests is designed for non-delay schedul-
ing (see Section 3.3.2). This should mean that they have eager-to-fire transitions,
however that is not explicitly stated in the article.

In Azzopardi and Lloyd (1994), a depth-first branch-and-bound method for stan-
dard job shop scheduling modelled with a place-timed Petri net is presented. Apart
from bounding based on the remaining processing times of products, two other search
space reduction techniques are incorporated into the algorithm. One is a check for
duplicate markings (similar to Lee and DiCesare (1994)), and the other is the removal
of alternatives when there are independent transitions enabled at the same time. As
far as we can see from the article, the method is restricted to eager firing, i.e. the
full scheduling problem is not solved. This is not discussed by the authors.

Jeng et al. (1996) propose a new evaluation function to be used with the A*
search method for makespan scheduling. They use an approximate solution to a linear
programming problem with the constraints taken from the Petri net state equations,
thus incorporating global information into the evaluation function. Although the
matrix operations in the new evaluation function make it more costly to compute than
the examples from Lee and DiCesare (1994), it is shown with simulation experiments
that the method performs better in most cases.

An interesting article is van der Aalst (1996), where it is shown how the problem
we call resource constrained scheduling (see the end of Section 4.1.3) with arbitrary
precedence constraints can be mapped onto a Petri net. No specialized search al-
gorithm is presented, instead is is shown how to analyze (checking for conflicting
and/or redundant constraints, calculating lower bounds etc.) and approximately
solve a problem using standard Petri net tools. The time model used is more flexible
than the standard transition-timed or place-timed counterparts. Time delays are as-
sociated with transitions but the completion of the firing is immediate. Instead the
individual tokens have a timestamp that are set upon firing which equals the earliest
time they can be used for inputs to a transition again. This makes it easy to extend
the problem with e.g. release dates for products. The price paid for the greater
flexibility is a slightly more complicated and memory consuming implementation.

Chetty and Gnanasekaran (1996) model the special case of a flexible assembly
system using colored Petri nets. In assembly processes it may occur that some op-
erations on a product can be performed in any order, in contrast to the strict tech-
nological precedence between operations we usually have in standard manufacturing.
The authors show how to model this by representing the status of the product at
this stage by several tokens and a so-called product identity place. In Section 5.2.5
we show a possible extension of our model to cover such a case, inspired by this
article. The scheduling is done with priority rules, but the process is repeated several
times with different parameter settings and the best schedule found is returned. The
performance of the algorithm is evaluated in simulation experiments.

The idea of using colored Petri nets to obtain a more compact model is explored
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in Chincholkar and Chetty (1996). The authors represent the production process
of a FMS by using only 15 places and 9 transitions. As opposed to the models we
have studied, a transition can represent many different events and each place can be
“crowded” with tokens being in different states. One example is that a single place
represents any product being in the input buffer of any machine. For the scheduling, a
priority rule base is used. The performance of the algorithm is evaluated with respect
to different objectives by comparing it to simpler priority rules using simulation on
a case study. Yan et al. (1997) introduce so-called extended high level evaluation
Petri nets with a similar modelling idea. They describe a rule-based real-time FMS
scheduling system that can repair previously made bad choices by moving products
from the input buffer of a machine to the input buffer of another equivalent machine.
This kind of models gives a good overview on a high level, but the detailed behaviour
is not graphically represented. Also, we believe that the complex data handling
associated to the firing of transitions makes the search process considerably slower
than an equivalent standard Petri net model. These drawbacks suggest that this
modelling approach is not suitable for our particular application.

In Jeng et al. (1997), the authors modify their previous approach (from Jeng et al.
(1996)) to work with the objective of minimizing weighted tardiness. In essence, the
evaluation function used is based on estimating the minimum remaining processing
time for each product and comparing this with the due date. The authors show that
their method performs better than some well known priority rules in simulations (but
it has of course a much longer execution time). We note however that in the tests
made the number of jobs is not very high compared to the number of machines. If this
is not the situation, the evaluation function will probably underestimate heavily and
we suspect that the method will not work well. In Jeng and Lin (1997), the previously
discussed makespan algorithm is improved and applied to the case of manufacturing
with assembly operations. The evaluation function used is more advanced than in
the authors previous algorithm and simulation experiments favour the new approach.

Based on a previous article from 1996, Xiong and Zhou (1997) presents a hy-
brid heuristic search algorithm for minimizing makespan in a place-timed Petri net
scheduling model that can include multiple resource usage, product lot sizes and lim-
ited buffers. The algorithm uses A* search (similar to Lee and DiCesare (1994)) until
a certain depth limit is reached in the search tree, then it continues with a depth-
first search (also called backtracking search) until a solution is found. The evaluation
function used for the A* search is the maximum operation time left on any of the ma-
chines at the system state in question. This function is admissible, which means that
the algorithm will provide the optimal solution if it can be found within the specified
depth limit. Note however that the function cannot be used without modification
in the case of routing flexibility. The algorithm solves the examples presented in
Ramaswamy and Joshi (1996) (see Section 4.1.1) with significantly reduced running
time.

The same example is examined in Ben Abdallah et al. (1998). The authors present
an algorithm with depth-first branch-and-bound as its basis. It is worth noting that
from what we can see in the article the search is limited to non-delay schedules (i.e.
transitions are eager-to-fire). For the example studied, this reduction of the search
space does not cut off the optimal solution, but as stated earlier this is not the
general case, a fact not mentioned by the authors. Priority rules are used in order to
determine which branch to examine first. Apart from the usual bounding done when
examining a search node (based only on path cost) two other tests are made. The
first is a check for so-called empty siphons (see Murata (1989)) in the net. If such a
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siphon is found the system will inevitably end up in a global deadlock state, thus the
branch can be cut off without further search. The second test checks if the current
marking is present in the path of the current minimal solution and if so, the branch is
only continued if the time to reach it is better. The example from Ramaswamy and
Joshi (1996) is solved even faster than Xiong and Zhou (1997). In this case running
with or without siphon checking does not make a difference in the running time, but
for the same problem with a large batch size for each product a speed-up of about
15 % is observed with siphon checking.

Proth and Sauer (1998) use a subclass of Petri nets called Controllable-Output
nets to model a special case of manufacturing where production volumes are quite
high and the flow of different products are constant within the scheduling horizon.
The model includes routing flexibility and the solution method suggested uses math-
ematical programming in a first step in order to distribute the workload on the
resources, and then a second step derives a schedule in the net. Although the article
describes an interesting combination of Petri net modelling and the use of traditional
OR methods, the model is not very useful for our application.

Another approach which connects Petri net techniques with another field of re-
search is described in Richard and Proust (1998). The authors translate a scheduling
problem modelled with a subclass of Petri nets into a CLP program (see Section
4.2.1) which is then solved with a standard tool. Examples of minimizing makespan
for a number of variants of the flow shop problem is presented. Due to limited mod-
elling power (e.g. routing flexibility is not allowed) and rather long running times,
this approach does not seem promising in our case.

In Xiong and Zhou (1998), the authors extend their previous work (see above).
The application is the scheduling of a semiconductor test facility, modelled with
place-timed Petri nets in the standard manner. The hybrid algorithm from Xiong
and Zhou (1997) is compared with one that uses the two methods in the opposite
order, i.e. depth-first search (backtracking search) is done up to a certain depth-
limit, and then A* search continues the search process from there. These hybrid
algorithms are also compared with (pure) A* search and (pure) depth-first search.
It turns out that the new hybrid algorithm performs significantly better than the
old one, both with respect to objective value and running time. However, if really
good results (say within 10 % of optimum) are desired, the examples show that the
savings in computing time compared to pure A* search are not significant. The same
evaluation function as in Xiong and Zhou (1997) are used in all cases.

Liljenvall (1998) uses results both from Supervisory Control Theory and Oper-
ations Research in a place-timed Petri net scheduling model. The work is mainly
concerned with standard job shop scheduling problems with no buffers between ma-
chines, so avoiding deadlock is one of the main concerns. It is shown how to remove
states leading to a (global) deadlock before the search process begins. Several other
ways to reduce the search space without sacrificing optimality are presented. The
A* search method is used for the scheduling, using evaluation functions based on
two-product relaxations and one-machine relaxations. The former is calculated by
considering all pairs of products and solving the smaller scheduling problem (again
with A*) disregarding all other products for each such pair, and finally using the
solution with largest makespan as the estimate. This gives better estimates than by
just considering single products, but the computing costs involved are larger and do
not scale well to larger problems. The latter relaxation is frequently used in disjunc-
tive graph based methods, and it is computed by solving a preemptive one-machine
problem for each machine. This estimate will be better than by just adding up the
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remaining processing times for the machines (as in Xiong and Zhou (1997)) but re-
quires more time. To handle larger problems, non-admissible evaluation functions are
formed by multiplying the admissible estimate with a factor > 1 that decreases with
depth in the search tree. Results are presented for some classical job shop scheduling
problems, both with and without buffers.

4.3.4 Applicability for our system

Discrete event models are a good candidate for our scheduling system due to the
modelling capacity and the ease with which single feasible solutions can be found.
For methods that are not rule-based, most research in the area has been made in
the context of Petri nets. We have seen examples of many of our desired modelling
features in Petri net scheduling approaches, although not all in the same work. The
possibility of including all these and the remaining ones in a more advanced model
seems to be good.
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Chapter 5

A model of the decision
support system

We will now present a model for the decision support system described in Chapter 1.
As we have already identified the model for individual scheduling scenarios to be the
key element of the overall model of the system, we will start with the discussion and
the definition of the former. Then we will in a more informal way discuss the global
aspects of the application.

5.1 Motivation for the scheduling model selection

We saw in the previous chapter that no previous work known to us fulfills all of
the requirements for the scheduling application dealt with in this project. The ap-
proaches that we believe have the best chances of meeting our modelling demands
are constraint-based methods and discrete event methods. In the former case we
expressed some doubts on the ability to guarantee a solution with a short fixed com-
puting time also for large problems, while still having reasonable quality. Also, unless
the built-in functionality of a commercial CLP product suffices for most parts of the
application, developing a specialized constraint-based scheduler is a huge program-
ming task. A discrete event model is on the other hand fairly easy to develop and
to extend. It is also very easy to quickly find a feasible solution. Therefore, with
the limited amount of time available for this stage of the project, we decided to
concentrate our efforts on a discrete event model.

Another advantage with a discrete event model is that it (as opposed to other
approaches) directly describes the actual dynamic behaviour of the system, and can
therefore also be used for other purposes than scheduling. Scheduling with discrete
event models based on Petri nets has been a growing area of research. Many of
our desired modelling features have been included in previous work (although not
all in the same), and a variety of solution methods have been been tested. It is of
course advantageous to be able to use this research experience, instead of developing
an entirely new model. Also, the combination of a graphical representation and a
precise mathematical definition that Petri nets have is appealing. As discussed in
Chapter 2, there are other graphical modelling techniques that are better than Petri
nets with respect to presentation structure and readability. However, there are no
standards for building a discrete event model on them. For these reasons we decided
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to use Petri nets as the starting point for building a model. We note that even if a
Petri net model is used for the scheduling, it could be possible to use e.g. an IDEF3
model on top of this for high-level graphical presentations.

5.2 A Petri net model for scheduling

We will now present a Petri net model for scheduling scenarios that meets the min-
imum requirements stated in Section 1.3.3, as well as a few of the extra modelling
features mentioned. For the remaining extra modelling features we will give some
suggestions of how to extend the model to include also these. In this section, we
will give a slightly informal presentation of the model and illustrate the ideas with
figures. In the next section we present a formal notation and a precise definition of
the Petri net.

5.2.1 A new timing concept

In Figure 4.5 of the previous chapter, a number of cases are shown that easily can be
modelled with a standard place-timed Petri net. In order to include the rest of our
required modelling features, we introduce a new timing mechanism in the Petri net.
It is an extension of the timing model presented in van der Aalst (1996), where each
token in the net has a timestamp which equals the earliest time it can be removed
from its place by firing a transition. In that model, each transition has a firing time
delay. When it is fired, new tokens are added instantaneously to the output places,
but they will have a timestamp equal to the firing time of the transition plus the
delay. We instead associate the time delays with the individual output arcs of the
transitions. This allows us to make the Petri net model very compact when we have
multiple resources involved in an activity but with different time usage.

There are not only advantages associated with having a more general timing
mechanism. In a computer program for a simple place-timed Petri net where we
have not more than one token in each place, markings can be stored very efficiently
using a bit vector for the token distribution and an integer vector for the timed places.
Updates after firing can be made using bitwise operators. This means that the token
game executes very fast in such a program and that a tree search method requires
a minimum amount of memory. If one allows more than one token except in timed
places, the place-timed Petri net can model e.g. product lot sizes larger than one
and volumetric resources. Then a bit vector cannot be used any more, instead the
number of tokens in each place has to be stored. When we use token timestamps
instead to include more modelling features, we in addition have to store a time for
each token. This means that execution of the token game is slightly slower! and that
the memory consumption is larger.

5.2.2 New modelling features

The use of timestamps for tokens makes some features very easy to model:

e Release dates for products. Each token in a product start place can have an
individual timestamp (i.e. release date).

1By a more or less constant factor. We note that the qualitative behaviour with respect to net
size is not affected.
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Repair of a machine. If for example one out of a few parallel machines will not
be available directly due to repairs, its associated token can have a timestamp
equal to the (expected) time when it can be used again, whereas the other
tokens can have a timestamp of 0 at the starting time of the scenario.

Arrival of a new resource. If a new resource (e.g. an operator) is acquired
through some special action of the scheduling scenario, a token is added to the
appropriate resource place with a timestamp equal to the arrival time.

Ongoing activities. An appropriate token distribution and corresponding times-
tamps can model ongoing activities at the start of the scheduling scenario.

When tardiness penalties are calculated, one must know the time when indi-
vidual products are finished. The timestamps of the tokens in the product goal

places tell us exactly that.

With a timestamp-based model, a time-consuming activity can in some cases be

modelled with a single transition, whereas one has to use an extra timed place and an
extra transition in a place-timed Petri net. More complex multi-stage activities with
several resources involved can also be compactly modelled when we associate time
delays to output arcs. In Figure 5.1, an example of an activity where an operator
unloads a product from a machine is shown. First a tool is removed from the machine
and becomes available for use at another machine after 3 time units. Then the product
is removed so that the machine becomes idle, this takes an additional 2 time units.
Finally, after one more time unit, the product is placed in proper storage and the
operator can continue with other work. With time delays associated to transitions
instead, we would have to use several transitions and places to model such an activity
in detail.

’ ! N

[ ' N

Machine Product in machine Tool

Figure 5.1: Example of an unloading activity.

5.2.3 Modelling the manufacturing process for a product

As in the place-timed Petri net model described in Section 4.3.3, our model has two
kinds of places: product (process) and resource places. Each product is represented
by an acyclic sub-net of product places and transitions, starting with a product start
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place and ending with a product goal place. Different product sub-nets are joined by
the resource places? to form the total Petri net.

There will in general be several activities associated to the processing of a product
in a machine:

1. Transport to the machine input buffer. This activity requires the availability
of a transport resource and a free buffer space.

2. Loading of the product and setup of the machine. Apart from the machine,
an operator must be available and in some cases additional resources such as
tools. The machine input buffer space is freed.

3. Processing in the machine. This can either be a fully automatic (in which case
the operator is not needed) or a partially manual process.

4. Unloading of the product. This activity requires an operator, and will free the
machine and additional resources (see example in Figure 5.1).

If the same resource set is needed for loading, processing and unloading, we can sim-
plify to only one activity represented by a single transition. When the unloading
operation is performed, the token representing the product is moved to an inter-
mediate product place (or the product goal place). This intermediate place can be
regarded as a buffer place with unlimited capacity. In Section 1.3 the validity of such
an assumption for a manned system was discussed. Transports to the next machine
input buffer originate from these intermediate places (or product start places), and if
there are alternative paths the place in question will be input to more than one tran-
sition. Alternative paths forking at an intermediate place (or the product start place)
will eventually join in another intermediate place (or the product goal place). When
we have such a structure on the Petri net, it will be deadlock free for all reasonable
original markings (we do not of course count the goal marking as a deadlock).

We will now illustrate with an example of a product sub-net, see Figure 5.2. Note
that loading/processing /unloading is represented with at most two transitions, since
the processing is assumed to start immediately after loading. For unloading, one
may have to wait for an operator to be available. In the case of two transitions
(as in the processing in M1 in the example), the delay of the output arc going to
the product place “product in machine” is the sum of the loading/setup time and
the processing time. For the second processing step of the example there are two
alternatives, M2 and M3. In both these cases, loading/processing/unloading requires
both the machine and an operator for the entire process, so they can be represented
by a single transition.

5.2.4 The scheduling problem

In order to be able to evaluate a schedule, we introduce two kinds of costs in the Petri
net model. The first is costs for performing activities, which we model by allowing a
firing cost to be specified for each transition. The second is tardiness penalties. For
this we associate a due date and a penalty function with each product goal place.
The only restriction we put on the penalty functions are that they are non-decreasing
in the tardiness.

2Exception: if we have assembly processes, we may have two or more product sub-nets joining
into one. Another way of expressing this would be to say that we have one large sub-net for the
main product that is to be assembled, and that it has more than one (sub-)product start place.
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Figure 5.2: Example of a product sub-net. Resource places are shown only with
names. Some of the resources may be volumetric resources, i.e. have a maximum
number of tokens larger than one. Abbreviations used are P for the product type,
M for machine (type), B for a machine input buffer, O for operator(s), T for tool(s),
and AGYV for a transport resource.

The starting point of the scheduling process is defined by the initial marking
(token distribution and timestamps) of the Petri net. Most tokens in the initial
marking will be in resource places and product start places, but there can also be
tokens in other places representing ongoing activities. A goal marking is one where
all product tokens are in the product goal places. A schedule is a sequence of fired
transitions which reaches a goal marking from the initial marking. The cost of the
schedule is the sum of the firing costs for the transitions® in the sequence and the
tardiness penalties for each product token in the goal places. The scheduling problem
is thus to find the optimal firing sequence with regard to this cost.

3We note that this part of the cost is independent of the schedule if we do not have flexible
routing.
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5.2.5 DPossible extensions

If we do not have assembly processes, the number of tokens in product places will be
constant during net execution. Another modelling extension that would remove this
property is the following: we come to a stage where we have two or more activities to
perform, but the order in which we perform them is not specified. Following an idea
from Chetty and Gnanasekaran (1996), we can model this case with a Petri net by
temporarily splitting the product token into several ones. This is easiest explained
graphically, so we refer to Figure 5.3. For simplicity, we let in this example the
activities be performed by only a single resource (without preceding transportation
to an input buffer), and we omit arc time delays.

T

Ready for A Ready for B
Product /\
W w@ e
A done /Q B done
—

QA& B done

Figure 5.3: Example where two activities A and B can be performed in any order.

Further modelling extensions can be made if we allow tokens to carry more data
than just timestamps and transitions/arcs to have special functions (i.e. we take a
few steps towards a colored Petri net). One example is sequence-dependent setup
times. A machine place token can carry information of its current setting, and time
delays for a loading/setup activity may depend on the current setting. When the
machine becomes idle after processing, the new setting is stored. Another example is
operator skill levels. The tokens in operator resource places may carry information
on their skill level. Such a token may only be used as an input to a transition if
the skill level allows it. We note that such generalisations of the model will make
execution of the token game slower and memory consumption larger in a computer
program.

5.3 A formal notation for the Petri net

We will now introduce a formal notation for the properties of the Petri net, that we
will use for the rest of this chapter and for describing algorithms. For simplicity, we
will restrict ourselves to the case where there is only one input arc per input place
of a transition. When needed, we will give a comment of how to extend to the more
general case.



We reserve some capital letters for certain meanings throughout the following: P
will denote a place (of any type), R a resource place, S a product start place, G a
product goal place, J a product internal place, T a transition, I input, O output, E
enabling, and M a marking. We will also use n to denote the number of items of
some object, ¢ for costs, and ¢ will be used for time. Superscripts are fixed capital
letters used to identify the quantity in question. Parameters that can assume different
values are shown as arguments inside parentheses. With a marking M we mean not
only the positions of all tokens and their timestamps, but also the current time at
the marking, denoted by ¢(M). In other words M includes all data that we need to
determine the current state of the system.

5.3.1 Definition of the net structure

For the Petri net we define the following: let the net have the places P = 1,...,n".
Of those, PE(i),i = 1,...,n® are the resource places, P°(i),i = 1,...,n° are the
product start places, P%(i),i = 1,...,n% are the product goal places, and P’ (i),i =
1,...,n7 are the product internal places. Also, let the net have the transitions
T =1,...,n". Transition T has the input places P!(T,i),i = 1,...,n!(T), and the
output places P°(T,i),i = 1,...,n°(T). The corresponding output arc delays are
t9(T,i),i = 1,...,n°(T). The costs for the operations associated with the firing of
transitions are denoted by ¢(T),T = 1,...,nT.

The other type of costs we include in our model are tardiness penalties. These are
always dependent on the problem instance, whereas the operation costs need not be.
For a problem instance, we define due dates for the different product types. We will

associate these with the product goal places and denote them t%(G),G = 1,...,n%.

5.3.2 Definitions of marking-related properties

For a certain marking M, let place P have nM (M, P) tokens with timestamps
tM(M, P,i),i = 1,...,nM(M, P). Without loss of generality, we assume that they
are sorted in order of ascending value of the timestamps. The tardiness of a product
token with index ¢ in goal place number G we define as

D(M,G,i) = max(t™ (M, P¢(G),4) — t%(G),0).

The tardiness penalty cost function we denote ¢%(M, G, ). It is assumed to have the
form ¢%(M,G,i) = ¢P(G,D(M,G,i)) and to be nondecreasing in D for a fixed G.
We define the enabling time of place P, denoted by tF¥M (M, P), in the following
way:

tPEM(M P)_ tM(Mapa]-): lan(M7P)>O
>/ 71 o0, otherwise

If the enabling time is finite, it will in most cases represent the earliest time a tran-
sition that has the place in question as an input place can fire. This is not true in
general however, since the firing of another transition might introduce a new token
in the place with a lower timestamp.

Note: in the case where there can be more than one input arc going from an input
place to a transition, we have to modify the concept of enabling time for a place. We
have to instead define enabling time for a place with respect to a transition and
compare the number of tokens in the place with the number of input arcs.
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We can also define the enabling time of a transition 7' with respect to a marking
M, denoted by tT¥M(M,T), according to

tTEM (A, Ty = max  tPEM(M, PI(T,i)),
i=1,...,nT (T)
i.e. the maximum of the enabling times of the input places of the transition. An
enabling time of oo thus means that the transition is not enabled at the current
marking.

5.3.3 Firing of transitions

When we fire an enabled transition T in a marking M we will reach a new marking,
say N. The new current time will be the earliest firing time of T, i.e.

t(N) = max(tTEM (M, T), t(M)).

For each input place of T', we remove the first token (i.e. the one with lowest times-
tamp). If there are multiple input arcs coming from a place, we will of course remove
more than one token. New tokens will be added to the output places, having times-
tamps equal to t(N) plus the output arc delay in question. Then all quantities
depending on N are calculated.

5.4 The decision support logic

In this section we will present a suggestion of how the Petri net scheduling model
presented above can be used in the decision support system. We will first describe
the background data needed, and then we will define types of events that can be
handled and the resulting scheduling scenarios examined by the system.

5.4.1 Reserve alternatives

For each product type the information needed to form a product sub-net (see Section
5.2.3) is stored. Apart from the alternatives used in daily production, the system
offers the possibility to store reserve alternatives for some activities. Examples of
such reserve alternatives could be to perform a welding operation manually instead
of automatically, or to transport a product using a manual device instead of an AGV.
These reserve alternatives are typically slower than the normal ones.

When the decision support system is to be used in a given situation, a Petri
net is formed by subnets for all product types that are to be produced within the
scheduling time horizon. Reserve alternatives are not added to the subnets unless an
unexpected event has made a resource unavailable for whole or a large part of the
scheduling time period, and then only for activities where all normal alternatives are
affected by the resource in question. The motivation for adding reserve alternatives
only when absolutely needed instead of always including them in the model, is that
solution methods will generally give the best results when the net is as small as
possible.

5.4.2 Extra resources

Ways of getting additional resources to the work center can be stored in the system.
This typically corresponds to the temporary hiring of an extra operator, transport
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device etc. If such an opportunity is available for a certain resource, an associated cost
is stored together with the expected delay until the new resource becomes available.
In a scenario where the special action of getting an extra resource is considered, an
extra token with a timestamp equal to the delay is added to the resource place in
question for the initial marking. The extra cost associated is added to the cost of the
best schedule found by the solution method.

5.4.3 Repairs

Alternatives for the repair of resources (machines, robots, transport devices etc.)
that are malfunctioning can be stored in the system. For each case, the expected
time until the resource is repaired is stored together with an associated extra cost.
If another resource will be occupied during the repair period, this can be specified
as well. This typically corresponds to an operator from the work center doing the
repair, in which case the extra cost is zero. For the case of sending for an external
repair-man, there will in general be a non-zero extra cost associated but no other
resource will be occupied. One must in this case of course also include the expected
time until arrival when estimating the time delay until the resource is repaired.

In a scenario corresponding to the special action of performing a certain repair
alternative, the appropriate resource place token(s) gets a timestamp equal to the
expected time when the repair is done. The extra cost associated to the repair action
is added to the best schedule cost. We note that in some environments, repair times
may be very uncertain and we suggest that the user should have the possibility
to change the relevant expected time delays before the corresponding scenarios are
examined.

5.4.4 Acquiring products externally

If it is possible to buy items of a product type from an external supplier, information
regarding this can be stored in the system. We need to store a fixed order cost, a
cost per item and an expected delivery time. A special action leading to a scheduling
scenario will typically be to buy all items of a product type that were to be produced
in the scheduling period. In this scenario, the subnet corresponding to this product
type will be removed from the total net, and the purchase costs are added to the cost
of the best schedule.

5.4.5 Ordering overtime

It should also be possible to store information on time periods where it is possible
to have overtime work. If it is possible to add overtime in the scheduling period, it
will allow more time before some of the product due dates. In the discrete time scale
of the scheduling problem (where off-duty periods are removed) this will have the
effect that some due dates are moved forward in time (but in reality they are not of
course). For such a scenario, the cost associated to the extra overtime is added to
the cost of the schedule.

5.4.6 Events and scenarios

If the decision support system is consulted without any special event occurring, the
system will in the simplest case only examine one scheduling scenario where no reserve

65



alternatives are included in the net. In a more advanced version, one might consider
some special actions if the outcome of the scheduling is not satisfactory.

When an event has caused the consultation of the decision support system, more
than one scenario will in general be examined. As discussed earlier, reserve alterna-
tives may have been added to the product sub-nets as a result of this event. The
standard scenario of taking no special action is always considered. For this and other
scenarios a check is made before the solution method is started, in order to see if
there exists a way of producing every relevant product type. If not, the event has
caused a situation that cannot be solved in that scenario and it is unnecessary to
start a scheduling algorithm.

We now present some event types together with the scenarios that should be
examined in different cases. We suggest that the overtime scenario is examined for all
events, unless the event has caused the standard scenario to be unsolvable. We suggest
that the system should support the following event types and that the following
scenarios should be examined (the standard scenario and the overtime scenario are
not mentioned):

e A resource becomes unavailable, possibly for the entire time horizon. This event
models among other things a machine breakdown, or an operator that has called
in sick. If there are repair alternatives for the resource, one scenario for each
such alternative are examined. In these cases the corresponding resource place
token will as discussed earlier remain in the net but have a non-zero timestamp.
For all other scheduling scenarios, the token is removed entirely from the initial
marking. If it is possible to hire an extra resource of the type in question, all
such possibilities will result in a scheduling scenario (with an extra resource
token added).

e A resource is unavailable until a certain time. This event could be relevant if
e.g. aresource is needed somewhere else in the factory for a given time period.
In this case, the resource token always remains in the initial marking for all
scenarios, but with an appropriate timestamp. The scenarios corresponding to
getting an extra resource of the type in question are examined, but not any
repair scenarios.

e The release dates of one or more items of a product type are delayed. This event
is typically triggered by delayed arrival of some raw material or sub-product
needed. If it is possible to buy the product type in question from an external
supplier, this scenario is examined.

e The due date of a product type is set tighter. The same scenarios as for the
previous event are examined.

e Some new items of a product type are added to the production orders. We
suggest again the same scenarios as above.

For the last three event types, it might not in all cases be the product type in question
that should be bought from an external supplier, instead it would be better to buy
another product type. In Chapter 9, there is a short discussion on such possible
improvements in scenario selection.

As discussed in the introduction, the system will allocate a fixed computing time
for each scenario. When all scenarios are scheduled, the one with the best total cost
(action-related cost + schedule cost) is suggested to the user.

66



Chapter 6

Algorithms

In this chapter we will present a number of candidate solution methods for our
scheduling system. The methods share the property that they are suitable for lim-
ited running times. All but the last two presented methods find a first solution very
quickly, and the search process can therefore be interrupted at any time without the
risk of having no solution at all. The latter two methods must be allowed to finish
their search process, otherwise they will produce no complete solution. However,
the running time can be approximately controlled by analyzing the problem size and
setting some parameters before the search process begins, so these methods are also
potentially useful.

6.1 Common elements

Before we describe the individual solution methods in detail, we will look at some
aspects of the algorithms that are common to most of them. We will use the notation
introduced in the previous chapter.

6.1.1 The limited lookahead heuristic

For a given marking M of the Petri net, we can calculate the enabling time t7*M (M, T')
for all transitions T = 1,...,nT. We will denote the enabled transitions (i.e. those
with tTEM (M, T) < 00) by TEM(M,i),i = 1,...,n"M (M), and we assume that they
are sorted in order of ascending enabling times. When deciding which transition to
fire next, we will have to choose one of these transitions.

We will now introduce a common algorithm time parameter, the so called looka-
head, denoted by [. Its effect can be loosely stated as follows: when we decide which
transition to fire next we will only consider those that have an enabling time that
is within the lookahead, counted from the earliest firing time of any of the enabled
transitions. The lookahead parameter has a natural interpretation in the physical
manufacturing system: it equals the maximum time we allow ourselves to wait until
we take the next action when other actions are possible to take.

Formally, we define the role of the lookahead parameter [ as follows: for a given
marking M and a current time ¢(M), we only choose between the n®ML (M, 1) first
enabled transitions when deciding which to fire next, where

nEML(M, 1) = maxi : t7EM (M, TEM(M,i)) < max(tTEM(TFM (M, 1)),t(M)) + 1.
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The effect of the lookahead parameter is to reduce the size of the reachability graph.
When [ = 0 we have eager firing, and when [ is large enough there is no reduction
at all of the reachability graph. These two extreme cases are the ones that has
received almost all attention in the literature, but with this more general approach
we have a whole range of cases. As we will see later, a small lookahead is sufficient
for most problems to include optimal paths in the reachability graph, but still gives
a significant size reduction. This is beneficial for the efficiency of search algorithms.
The suitable setting for [ depends on the time scale used and the typical processing
times in the manufacturing system.

One might argue that a search algorithm using a good evaluation function (see
section 6.1.2) would recognize that firing a transition with a high enabling time (rela-
tive to others) is a bad choice anyway, thus removing the need for a limited lookahead.
However, we believe there are two strong arguments against this reasoning. The first
is that there are many situations where evaluation functions fail to be informative,
especially in early stages of the search. The second is that for a search algorithm
having only a short computing time available, the reduced number of calls to the
evaluation function (which in most cases are computationally heavy) allows it to ex-
plore a larger portion of the interesting parts of the search tree during this limited
time.

We will in the following sometimes talk of optimality for a given lookahead. With
this we mean the best possible solution in the reduced reachability graph.

6.1.2 General on objective and evaluation functions

The principles of the solution methods we will present below are independent of
the objective of the scheduling problem, which could be minimization of makespan,
mean flow time, tardiness penalties, total costs etc. This does not mean that all the
algorithms are blind. On the contrary, there is a close connection with the objective
function through the so called ewvaluation function that most methods use. Given
the current state of the system and the history of actions taken (the transition firing
sequence in our case) to reach this state, the evaluation function gives an estimate
of the objective value for the best solution reachable from this state. In other words,
the evaluation function takes a partial schedule and estimates the value of the best
final schedule that can be achieved by completing it. We call the methods that use an
evaluation function informed search methods, whereas those who do not are referred
to as uninformed search methods.

The evaluation function typically consists of two parts: an accumulated cost! for
the actions taken to reach the current state, and an estimation of the remaining cost
for reaching the goal state. The latter is calculated using some kind of heuristic
method. If this method always gives a lower bound for the remaining cost (i.e.
underestimates it) it is called admissible. We will call the entire evaluation function
admissible if the heuristic estimation is, otherwise we will say that it is non-admissible.

Methods like A* and Branch-and-Bound are exact only when admissible evalu-
ation functions are used, otherwise they will be approximate methods. Other tree
search methods are approximate by construction (regardless of evaluation function
used). The choice between admissible and non-admissible evaluation functions de-
pends among other things on the problem type and the computing time available. If

1For simplicity we refer here to the function value type as cost, but depending on the objective
function used it could be a time related figure as well as actual monetary costs.
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there exists a good admissible evaluation function (i.e. one that does not underes-
timate too much) for the problem, the algorithms (including the approximate ones)
will generally benefit from using this rather than a non-admissible one. But for prob-
lems where it is difficult to find a good admissible evaluation function, using this may
not give much guidance during the search, so a non-admissible function might work
better.

6.1.3 Precalculations

In this section we will discuss some calculations that are used for evaluation functions.
These calculations use only properties of the net structure, so they can be made before
a search process begins. In the presentation, we will exclude two possible modelling
features in order to not make things too complicated. The first one is multiple parallel
arcs, and the other is assembly (i.e. a joining of process paths without a preceding
forking). In many cases, these features do not affect the calculations presented, but
in others some modifications have to be done.

Calculation of remaining product processing time

For each process place in the Petri net, we can calculate the minimum remaining
time it takes for a token in this place to reach the corresponding goal place. This is
simply the sum of all output delays along the shortest path (with respect to these
delays) from the place to the goal place. We will denote this quantity ¥ (P), and it
is easily precalculated for all process places using a standard shortest path algorithm
for acyclic graphs (see e.g. the book by Weiss (1995b)) starting a run from each
product goal place.

Calculation of remaining resource usage from a process place

Here we will show how to calculate the remaining resource usage of a product, count-
ing from a certain process place P of the product. However, if there are alternative
paths, the remaining resource usage depends on the path taken from P to the goal
place. In this case it is reasonable to calculate the resource usage along the shortest
path (with respect to product processing time) from P, but when using this informa-
tion we must take into account that this resource usage may not be the actual one.
For simplicity, we will present the calculations below for the case of no alternative
paths.

For each process place P, we denote the remaining time usage for the resources
tPE(P,R),R = 1,...,n®. If the resources always are both input and output place
of all transitions, this is easily calculated by just summing up output delays for the
transitions between P and the goal place. However, it is common that a resource
token removed when firing a transition is not returned until another transition further
down the product path is fired, and this complicates matters slightly.

For each combination of process place P and resource R we introduce the binary
quantity z(P, R) which is 1 if P is “inside” R (i.e. when a token is in P, a token has
been removed from R but has not yet been returned) and 0 otherwise. Assume now
that we have calculated (P, R), R = 1,...,n' for process place P that is an output
place of transition 7'. This transition has another process place, say ), as input. For
the resources R that are output places of T we set t7%(Q, R) = t"R(P,R) + t9(T,1)
where 4 is the output place index of R. For those resources R that have z(P,R) =1
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we set t'E(Q,R) = tPR(P,R) + t°(T,j) where j is the output place index of P.
For all other resources R, we set t'%(Q, R) = t"E(P,R). Using this recursion we
can calculate all t"(P, R) by starting once from each product goal place (where all
tPE(P, R) of course are zero). Figure 6.1 should clarify these calculations.

2O

Sl

Figure 6.1: Example of calculating remaining resource time for product places. For
the product shown, we only show one resource R. The value of t#(P, R) is shown
next to the process places.

6.1.4 Calculations depending on the current marking

Here we will use the precalculations described above to calculate some properties
of the current marking. These properties are then the basis of different evaluation
functions.

Calculation of minimum remaining product processing time

For a given marking M, when we want to calculate the minimum remaining time
for a product represented by a token with index ¢ in a process place P, apart from
tP(P) we also take into account the waiting time for the product in place P. We
will denote this waiting time t" (M, P,i). We define the total remaining time by
tPM(M, P,i) =tV (M, P,i) + t*(P).

We will first describe the case when P is input place to only one transition, T (i.e.
there are no alternative paths forking from P). We now check this transition’s en-
abling time, t7"M (M, T). If tM (M, P,i) < t"PM (M, T) < oo and all input resource
places R for T with tPEM (M R) = tTPM (M, T) hold their maximum number of
tokens, we set t" (M, P,i) = max(tTFM (M, T) — t(M),0). In all other cases, we set
tW (M, P,i) = max(tM (M, P,i) — t(M),0). What this definition says is that in most
cases we will add the waiting time (if any) given by the timestamp of the product
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token to the processing time of the remaining operations. But if we are certain that
the next transition is delayed more because of resource waiting times, we will add
this delay instead.

If P is input to more than one transition, we repeat the waiting time calculation
described above for each such transition 7. Let i(T") be the index of the output
place of T that is a process place. Instead of adding t¥(P) to these delays, we add
tO(T,i(T)) + t¥ (PO(T,i(T))). Finally, we will let "™ (M, P,i) be the minimum of
these sums.

One advantage with this calculation of minimum remaining product time is that it
is relevant for a number of different scheduling objectives, e.g. minimizing makespan,
average flow time or tardiness penalties. The main disadvantage is the implicit as-
sumption that the product in question is given top priority and that there is no
waiting for the resources needed. If the number of products is large, it is clearly not
very realistic to assume that this applies for all of them. For most products, the
actual remaining time will be much larger than t™ (M, P,i) in this case.

Calculation of total remaining resource time

For a given marking M, we can estimate the total remaining usage per unit of each
resource. We will denote these quantities t(M,R),R = 1,...,n®. We will do this
iteratively:

1. Set tR(M,R) =0,R=1,...,n%.

2. Go through all process places P. For each token i in P, we first add t"%(P, R)
to t®(M, R) for all resources. If (P, R) = 1, then also add max(t™ (M, P,i) —
t(M),0) to tF(M, R).

3. Go through all resource places PE(R). For each token j in a place, add
max(tM (M, PE(R),j) — t(M),0) to tf(M,R). Then divide t®(M, R) by the
maximum number of tokens in P®(R), rounded up (this has of course effect
only for volumetric resources).

Unlike the minimum remaining product time calculations, the information gained by
making these calculations is relevant also when the number of products are large.
As we shall se later, it forms a good basis for an evaluation function that can be
used with the objective of minimizing makespan. A disadvantage is that it is not
directly applicable to other objectives such as minimizing tardiness penalties, which
is crucial to our application. We will see below that it still can be useful as part of
other calculations, however.

Note that if we have alternative paths, we do not know if tf(M, R) will be the
actual resource usage for the final part of the schedule (this was also discussed in
section 6.1.3), the usage of some resources may be underestimated while it can be
overestimated for others. If we were interested in a lower bound for all resources, we
would have to make a shortest path calculation for each resource. If the shortest paths
would differ much between resources, we would probably end up with an estimate
far below values that are possible for the actual schedules. Therefore, we do not
believe that this is a good alternative, instead we would accept that the lower bound
property does not hold when alternative paths exist.
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Calculation of modified remaining product time

When the objective function includes tardiness penalties, we need a good estimate of
when individual products are finished. As discussed at the beginning of this section,
using the minimum remaining processing time for products does not help us to ac-
complish this when there are a large number of products, since it does not take the
workload of the resources into account. We now present an approach to overcome
this problem, based on the idea of modifying the remaining product processing time
with a factor calculated from the workload of the resources.

Prior to the search process we can calculate the total remaining resource usage
for all places P, denoted by t5,E(P). This is done according to

nR

thr(P) =Y t"R(P,R).
R=1

For a marking M, we first go through all process places P. For each token ¢ in
the place, we calculate t"™ (M, P,i). Then we calculate the average of all such
minimum remaining product times (we only count those with remaining time > 0),
and denote this by tEM(M). We now go through all these tokens again in order to
calculate a modified time for the corresponding products. We will call this quantity

tﬁ%(M , P,i,a), where a > 0 is called the modification parameter. For a marking M

and a token with index ¢ in process place P, we calculate it in the following way:

tEM (M, P,i,0) = tW (M, P,i) +tF(P) - kmoa(M, P, ), (6.1)

mod

where

R

— t"E(P,R) max(t®(M,R) -t/ (M),0)
mod(M,P,0) =1 Ly il ) 6.2
k od( a) +aR§1 t{;}t{(P) tPM(M) ( )

avg

We will now motivate these formulas. As can be seen, we multiply the remaining
processing time with a factor that is greater than or equal to 1. This factor contains
a weighted sum of certain terms. The weights are the proportion of the usage of a
particular resource to the total resource usage of the product. Note that the weights
always sum up to 1. The terms include the difference between the total usage of a
resource for all products and the average remaining processing time of the products. If
this difference is negative, the resource in question will probably not be a bottleneck,
so we do not let this resource affect the factor kmoq(M, P, ). On the other hand, if
the difference is positive we will probably have waiting times at this resource, so we
let the proportion of the difference to the average remaining product time contribute
to the factor.

Finally the weighted sum is multiplied by the modification parameter o, which
can be interpreted as (the inverse of) the priority of the product. We believe that
the most natural choice for « is 1, which corresponds to an estimated worst case for
the product (i.e. lowest priority). a@ = 1/2 could be interpreted as medium priority,
and a low value as high priority. Note that when a = 0, t*M reduces to t"M. Of
course, values larger than 1 is also possible, which could be used for trying to take
into account waiting times that are present for other reasons than those described
above.
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6.1.5 Examples of evaluation functions

Now we have the building blocks necessary to form evaluation functions for different
scheduling objectives.

Minimization of makespan

Although makespan is not the primary objective of our scheduling system, its sim-
plicity still makes it interesting as a test-bench for the algorithms we will describe
later. Also, since this is a well studied case, many test problems of different modelling
complexity exist.

The first evaluation function, which we will denote f; (M), uses the minimum
remaining product time calculations. We simply take the maximum of all products
represented by process place tokens:

Fu(M) = (M) + maxt™™ (M, P,i). (6.3)
In the second function we present, we use remaining resource times instead:
F>(M) = (M) + max t®(M, R). (6.4)
It is now natural to form a third function by combining the two first ones:

f3(M) = max(f1(M), f2(M)). (6.5)

All of these evaluation functions are admissible for the scheduling problem with no
alternative product paths. fo(M) and as a consequence also f3(M) will lose this
property if there are alternative paths (the reasons for this were discussed above).
Although intended for use with tardiness penalties, we can of course also use the
modified remaining product time calculations here for a fourth evaluation function:

fa(M,a) = t(M) + maxtEM (M, P,i, q). (6.6)
P, mod

Note that f4(M, ) is non-admissible for all & > 0, but not for a = 0 since f4(M,0) =

fr(M).

Minimization of tardiness penalties

For each product, we will now try to estimate the value of ¢” (G, D), and then sum
up the costs for all products. For a given marking M and a token with index ¢ in a
process place P, let Degi(M, P, i, @) be the estimated tardiness for the corresponding
product. It is calculated according to

Dest(M, Pyi, o) = max(t(M) + tEM (M, P,i,a) — t9 (G (P)),0),

where G¥(P) is the number of the goal place of the process place P. Now we can
form an evaluation function by summing over all tokens in process places:

fs(M, ) =) P (G (P), Dest (M, Py, ). (6.7)

P,
This evaluation function is admissible only for @ = 0. We believe that values of the
modification parameter corresponding to low product priority (a > 0.5) will give the

best effect, since then products in danger of being delayed can be identified at an
early stage.
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Minimization of total costs

When we have an algorithm that handles problems with tardiness penalties well, it
should not be very difficult to generalize this to the case of total costs. At this stage
of our research project, we have focused our efforts on the former case. The latter
case will be at the attention of future research within the project. Therefore, here
we will only briefly suggest how to make the extension to the total costs case.

In some cases, the extension is trivial. If there are no alternative product paths,
the total operation cost will always be the same regardless of schedule, so in effect we
are only minimizing against tardiness penalties (we must of course include the oper-
ation costs when comparing against other scenarios in a decision support situation).
When alternative paths do exist, we have to keep track of the accumulated operation
cost during the search process. When estimating the remaining operation cost, our
suggestion is to use the costs along the shortest paths of the products with respect
to time, since this would agree with the way resource usage calculations are made.

6.1.6 Comparing duplicate markings

We say that two markings are duplicate if they have the same number of tokens in
every place of the Petri net. More precisely, let M and N be two markings of the net.
We call M and N duplicate markings if n™ (M, P) = n™(N,P) for all P = 1,...,nF.

As has been discussed earlier, there are in general many ways to reach a certain
distribution of tokens in the net. Some pairs of paths used to reach this point are
totally equivalent to each other with regards to the value of the schedule. For other
pairs of possible paths, one is clearly better than the other, whereas for other pairs it
might be that one path is better in some respects but worse in others. For a solution
method that builds a search tree with respect to the transition firing sequence, many
of the search nodes in the tree might correspond to a marking that are duplicate with
the markings of other nodes. If we analyze this before deciding how to expand the
tree next, we may save large amounts of unnecessary work. Therefore, when we are
evaluating a newly created search node, we can search for other nodes corresponding
to duplicate markings. We then decide which ones of these that are worth continuing
from.

We can compare two markings M and N that are duplicate by studying the
timestamps of the tokens. First we describe how to make the comparison between
markings in the case of makespan objective. We say that M is better than or equal
to N if max(tM (M, P,i),t(M)) < max(t™ (N, P,i),t(N)) for all tokens (P,i). If M
is better than or equal to N, there is no point to continue searching from the node
corresponding to N, since it will not lead to a better schedule than can be reached
from the node corresponding to M. The reverse case of course also applies. If neither
M is better than or equal to N or N is better than or equal to M, we cannot say
which of the corresponding search nodes that will lead to the best schedule.

When minimization of tardiness penalties is the objective, we compare all to-
kens that are not in process goal places in the same way as above. For a token 4
in a process goal place with number G, we instead make the comparison between
max(tM (M, P4(G),i),t%(G)) and max(tM (N, P¢(G),4),t%(G)). In the total costs
case, for M to be considered better than or equal to IV, we must also demand that
the accumulated cost associated with the firing sequence that lead to M is less than
or equal to the one for N.

As mentioned, doing duplicate checking in a search process reduces the number
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of nodes that have to be expanded at the expense of spending more computing time
at each node. Unless the nodes can be stored in an intelligent way, the time spent
looking for duplicate markings increases with the size of the search tree.

Liljenvall (1998) has a detailed discussion on comparing duplicate markings for
place-timed Petri nets in the case of makespan objective. He points out that it is
not enough to look at only the time spent to reach the markings in order to do a
proper comparison, one must also look at the remaining times for tokens in timed
places. In our model, the comparison described above achieves just the equivalent
of that. Some other authors describing algorithms for place-timed Petri nets talk
only of comparing the accumulated time, and if their algorithms are implemented
accordingly they do not guarantee optimality.

We make an important note here. Although properly performed duplicate check-
ing within a search algorithm does not cut of all optimal paths in the complete
reachability graph, this is not always the case in a reachability graph reduced with
the limited lookahead heuristic. Consider the following example: assume that we
have a token distribution corresponding to a node in the reachability graph through
which optimal paths go. Assume also that there are two transitions 77 and Ty en-
abled if we do not take time into account, and that firing 7> leads to the optimal
solution. In a search process with lookahead | = 2 we first find a search node cor-
responding to this token distribution where the enabling times of the transitions are
18 and 20 respectively. Both are thus enabled within the lookahead. Later in the
search process, we again arrive at this distribution, but in a faster way so that we
have instead enabling times of 17 and 20 respectively. Doing duplicate checking, we
will discard the first search node. But in the second search node, T5 is not enabled
within the lookahead and will never be fired from this marking.

For a given lookahead < oo, duplicate checking as we have described it will thus
not always preserve optimality for that lookahead, so it must be regarded as a heuris-
tic search space reduction technique in this case. However, duplicate checking will
almost always be a good addition to a tree search algorithm for our application. One
reason for this is that cases like the example above will probably not occur very often.
Another is that even if a duplicate checking algorithm cuts off an optimal solution,
it is still very likely that it finds a better solution within our limited computing time
than it would without duplicate checking.

6.2 Solution methods

We now have all the necessary ingredients for presenting some solution methods that
are candidates for being used in the scheduling system. As mentioned, a method will
only have a short computing time available for each scheduling problem it solves.
Given such a limited execution time, the method must produce a feasible solution of
reasonable quality even if the problem instance is large.

6.2.1 First Enabled

The first method we present is only included for giving a reference solution value that
we can compare with the results from other methods. The method constructs only
one schedule by beginning from the original marking and then selecting a transition
to fire until the goal marking is achieved. When a transition is selected at a marking
M, we always take the first one in the list of enabled transitions, i.e. T*M(M,1).
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This means that the First Enabled method gives an eager schedule. We can consider
the objective value of the schedule to be an example of the result you can get when
the issue of scheduling is not considered in the work center.

6.2.2 Randomized Firing

This method generates as many schedules as it can until the time limit is up and
then returns the best one found. Each new trial is started from the original marking,
and as in the previous method it then repeatedly selects a transition to fire until the
goal marking is reached. When selecting the next transition to fire at a marking M,
the limited lookahead heuristic is used to narrow down the number of choices, and
then a random selection is made among the remaining N¥ML (M, 1) alternatives.

One major advantage that has to do with the fact that the Randomized Firing
algorithm is an uninformed search method is that it can be used with any modelling
feature that can be created within our Petri net framework, whereas the informed
search methods share the modelling limitations of the evaluation function. Another
advantage is that since it uses a minimum amount of calculations before selecting
a transition to fire next, the method will have time for quite many trials even for
large problems. However, the only “intelligence” in this method is the lookahead
heuristic, and besides that the method has to rely on randomization in order to get
good results. But although the random selection will make some good choices, in a
long transition firing sequence there is a very high probability that there will be a
number of bad choices as well. This means that we can expect fairly good but not
perfect results from this method.

6.2.3 Best Enabled

This is also a “one-shot method” that we include for reference. Its interest lies in the
fact that the algorithms presented below that are based on the branch-and-bound
technique will have the Best Enabled schedule as their first solution. This method
is similar to First Enabled, but instead of firing the first transition we fire each
one that are enabled within the lookahead and calculate the value of the evaluation
function of the corresponding new markings. Then we select the marking with the
best evaluation (in case of a tie we take the one that lies first in the list) and continue
in the same way until we reach the goal marking.

6.2.4 Randomized Best Enabled

A natural extension of Best Enabled to a potentially useful method is to make many
trials and to resolve ties between markings having the same evaluation randomly?.
Since the Randomized Best Enabled algorithm for a decision fires several transitions
and makes a call to the evaluation function for each one of them, it will not have
time for as many trials as Randomized Firing. Moreover, the number of trials done
within the time limit will depend on the lookahead parameter .

2If we have a real-valued evaluation function or an integer valued giving very large values there
will probably not be that many ties. In this case it makes sense to adjust the method to select
randomly between the choices having evaluation within some interval.
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6.2.5 Branch-And-Bound Depth-First-Search

A branch-and-bound method builds a search tree, where in our case the nodes in the
tree represent markings in the Petri net and the branches correspond to the firing
of a transition. The root node in the tree is the original marking. At a certain
point in the search process, the method selects a leaf node in the tree (i.e. a node
without children) and expands this®. This is in our case done by firing each enabled
transition within the lookahead (with respect to the marking associated to the node)
and creating a child node for each marking reached in this way.

Then the child nodes are examined in turn. If the child node corresponds to a
goal marking the solution value is calculated, and if this is better than what has
previously been found (the best solution value previously found is referred to as
the upper bound) the transition firing sequence corresponding to the path from the
root node is recorded and the upper bound is updated. If it does not correspond
to a solution, the evaluation function is called for the associated marking. If the
evaluation is higher than or equal to the upper bound, the node is discarded (i.e.
the corresponding branch is cut off). If not, the child node is kept for possible
future expansion. This process of examining a child node is called bounding. If the
evaluation function is admissible (i.e. gives a lower bound) the method will never cut
off all solutions with optimal objective value, so it is in this case an exact method.
We note here that when a candidate node for branching is selected, we again check
against the upper bound before creating child nodes, since the upper bound may have
changed since the node was created.

We get different variants of the branch-and-bound method depending on how the
node selection is performed. We are only interested in node selection strategies that
find a first solution quickly. One such strategy is the Depth-First-Search. Here we
always select one of the newly created children as the next node to expand, unless
we have reached a solution or all children were cut off by the bounding procedure. In
the latter cases, we backtrack in the branch until we find an unexpanded node. This
means that we always explore all possibilities in a branch before we move on to the
next.

The Depth-First-Search is easily implemented using a stack data structure. When
we create child nodes, we put those who are not cut off on top of the stack. When
selecting the next node, we take the one at the top of the stack (removing it from
the stack of course). The algorithm is initiated with only the root node on the stack
and it is done when the stack becomes empty and no more children are added. We
can of course prematurely interrupt the algorithm at any time. Due to the way
exploration is made, the stack of unexplored nodes never grows beyond a certain size
which depends on the depth of the search tree and the maximum number of branches
that can be generated from a node. More details on Depth-First-Search can be found
in e.g. Weiss (1995D).

In our case, we put the child nodes on the stack in descending order of their
evaluation function value. This means that we will always examine the child node
with best evaluation first, and that the first solution we will find will be the one from
the Best Enabled method. The Depth-First-Search strategy has both its advantages
and drawbacks. A disadvantage is that the method is very sensitive to a bad start,
since it takes a long time before it comes back and tries another choice early in the
transition firing sequence. On the other hand, the method spends most of its time
near the bottom of the search tree where evaluation functions can be expected to

3This is also referred to as branching from the node.
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be most realistic, so it can be expected to do well with the latter part of the firing
sequence.

Without duplicate checking

If we do not perform any duplicate checking (see Section 6.1.6), there is no need
to keep already explored nodes in memory other than for recursively finding the
path from a leaf node to the root. But if we store the entire path in every search
node we can delete them right after they have been explored. This together with
the bounded stack size makes the Branch-And-Bound Depth-First-Search algorithm
without duplicate checking extremely memory efficient, and it can be set to run for
a long time without risking memory overflow. However, this advantage is not of
much use to us since we are only interested in short execution times. Also, since no
duplicate checking is performed we risk exploring many unnecessary paths.

With duplicate checking

If we want to perform a complete duplicate checking during the search, we have to
store the already explored nodes in memory. Here we use a simple list to store these
search nodes. When we have created a new child node that is not discarded due to
bounding, we scan through the other nodes in order to find duplicated markings*.

First, we go through the list (stack) of unexplored nodes. If we find a duplicate
marking, we compare the corresponding node with our new node according to the
process described in Section 6.1.6. If it is better than or equal to the new node, we
discard the new node and abort the duplicate checking procedure. If the new one
is better, we discard the other node and continue to search in the list. If neither
node is better than or equal than the other, we keep both and continue the checking
procedure.

If the new node was not discarded, we make a similar check with the list of already
explored nodes. If the new node survives also this checking procedure, it is added to
the list of unexplored nodes.

6.2.6 Branch-And-Bound Best Restart Search

Here we introduce another node selection strategy which we will refer to as Best
Restart Search, that is also potentially useful for our application. In this search
strategy, we follow the Depth-First strategy during the search except for the selection
done directly after that one of the following events occurred:

e The previously selected node corresponds to a solution.

e The previously selected node was discarded due to bounding before branching
was performed.

e All children of the previously selected node were discarded due to bounding
and/or duplicate checking.

4Using a hash table could speed up this process, especially for large search trees. But with our
limited execution time the search tree is not that big, so the savings might not be significant. We
have therefore not considered it motivated to investigate this further at the current stage of the
project.
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In these cases, we instead select the node with the best evaluation from the list of
unexplored nodes. This means that we will follow a path towards a goal marking,
but when this is reached or a “dead end” is encountered, we restart the search from
an entirely different node instead of backtracking on the same path.

This strategy does not share the property of Depth-First-Search that the list of
unexplored nodes remains rather small during the search, but for our short execution
times this is not a serious problem. Just like in the Depth-First-Search case, we can
construct two versions of the method: with and without duplicate checking. For the
duplicate checking case a minor modification has to be done. When we discard a node
from the list of already explored nodes, we have to keep it in memory in another list,
since there is a small possibility that we could find a solution path later in the search
that goes through this node. We note that this behaviour was observed a few times
in tests when an approximate evaluation function was used.

The Best Restart strategy is not as susceptible to a bad start as Depth-First-
Search is, but instead it is not as good at optimizing the latter part of the firing
sequence, so it is not easy to predict which one that will do best. The extra time
associated with searching for the best node when restarting and the larger memory
consumption will in general make it less suitable for optimality proofs than Depth-
First-Search, but this does not mean that it will perform worse given a limited exe-
cution time on a large-sized problem.

6.2.7 Beam Search

The previously presented informed search methods all have a more or less depth
oriented search behaviour, exploring one path at a time. This means that the local
decision of choosing the next transition to fire is very important. But the effect
of a decision might not show in the evaluation function until a few steps later on,
so the guidance on the local level might not be that good. Methods showing more
of a breadth search behaviour can avoid this drawback by exploring many paths in
parallel. However, an exact method with a breadth oriented search strategy will
never get to the goal within a limited time for larger problems and are thus useless
to our scheduling system.

An heuristic search strategy that at least partially removes the latter mentioned
drawback is beam search. The method examines each level in the search tree in turn.
On a certain level it keeps only a maximum number of search nodes for expansion.
This number is referred to as the beam width and we will denote it w. All remaining
nodes on the current level are expanded, and the best (with regards to the evaluation
function used) non-redundant child nodes are kept for the next level, up to a maxi-
mum of w nodes. The non-redundancy is achieved by performing duplicate checking
between the child nodes and discarding the unnecessary ones.

The Beam Search algorithm cannot be interrupted before it has reached the final
level, and this is of course a drawback. However, the running time can fairly easily
be controlled a priori by setting an appropriate value for the beam width w. An
upper bound for the number of explored nodes during the search is bwd, where b is
the maximum branching factor and d is the depth of the search tree. The quantities
b and d can be easily calculated for a certain problem instance. The actual running
time then depends on how child nodes are sorted with regards to evaluation function
value and how duplicate checking is performed. For smaller beam widths, the running
time will be nearly linear in w for a fixed problem instance. Empirical testing on
the target machine for the scheduling system is probably the easiest way to find
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appropriate settings.

6.2.8 Limited Expansion A* Search

The A* search method (see e.g. Russell and Norvig (1995) and also Section 4.3.3)
is an exact algorithm® that also has a breadth oriented search behaviour, but much
more intelligent than pure uninformed Breadth-First-Search. The method can be
said to be (at least for this kind of problems) a special case of branch-and-bound.
The node selection strategy here is to always expand the unexplored node with the
best evaluation. The method stops when it has reached a solution, which in the case
of an admissible evaluation function will be optimal. With the A* method’s search
strategy bounding is never needed. Duplicate checking can be performed in the same
way as was described for the branch-and-bound methods.

Even though A* can in some respects be proved to be the most intelligent exact
search method possible, it still suffers from a worst case execution time that increases
exponentially with problem size. By using an appropriate non-admissible evaluation
function, solution quality can be traded against a shorter execution time, but the
latter is not easy to predict a priori. This fact makes the method unfitted for our
application. Sun et al. (1994) present the Limited Expansion A* Search Method for
Petri net based scheduling. In this approximate variant of A* search, the number
of unexplored nodes kept in memory is limited to a maximum number, which we
will denote u. When new unexplored nodes are added, only the ones with the best
evaluation function values are kept.

The Limited Expansion A* method has similarly to Beam Search an upper bound
bud on the number of explored nodes during the search, but the actual running time
is not as easy to estimate. One cause for this is that it has not the pure breadth-first
behaviour of Beam Search which is very easy to predict. Another is that duplicate
checking is performed against already explored nodes, which can make the checking
process more and more time-consuming as the search tree grows.

The limited size of the list of unexplored nodes can cause some peculiar behaviour
not present in the standard A* search method. As in Branch-And-Bound Best Restart
Search, we might find a solution where the path goes through a discarded node,
but that potential problem is easily avoided by keeping nodes in memory also after
they have been discarded. A more serious situation that can occur is that the list
of unexplored nodes gets empty before a solution is reached. This could happen
if all new nodes generated gets discarded due to duplicate checking against some
already explored nodes, but no unexplored nodes originating from the latter are left
in the limited sized list. If the Limited Expansion A* Search Algorithm shows good
performance in tests, we suggest that these potential problems are analysed more
deeply theoretically and that proper adjustments to the method are made.

5If the evaluation function used is admissible.
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Chapter 7

Results

We will now evaluate the quantitative behaviour of the algorithms that were presented
in the previous chapter. We compare their performance with respect to factors such
as problem size, objective function used, choice of evaluation function and settings
of parameters by analyzing the results from a range of tests. First, we will present
the test problems and discuss the way the tests were performed. Then we will give
the test results along with comments and conclusions.

7.1 The test problems and their corresponding Petri
net model

7.1.1 An example of a work center

As the basis for the majority of test problem instances, we use an example of a
shop floor work center given to us by Prosolvia. It includes a subset of the possible
modelling features discussed earlier. The scarce resources of the work center are three
machines, the input buffers of those machines, two operators and a transport device
(typically an AGV). We will refer to these as M1/M2/M3, B1/B2/B3, 01/02 and
AGYV, respectively. Apart from the machine input buffers, the other spaces used for
storing products are large enough in order to regard them as infinite. These spaces
include the buffers for products waiting to be processed, the buffers for finished
products and the spaces used to store products before they are transported to the
input buffer of the next machine in their operation list. The latter is usually the
output buffer of the last machine that processed the product, but there are also
other places of intermediate storage that the operators might use if necessary.

The machines M1 and M2 are operated by Ol. The machine M1 is fully auto-
mated, so the operator is only needed for the setup of the machine and the removal
of the product. For machine M2, the operator is needed during all phases of process-
ing. The same applies to machine M3, which is operated by O2. All transports of
products to machine input buffers are handled by the AGV.

The work center is capable of manufacturing four different product types, which
we will refer to as P1/P2/P3/P4. The operations required for these are shown in
Table 7.1. Transports to machine input buffers are required prior to each of the
operations. It is assumed that every transport activity takes 1 time unit. It is
also assumed that when an operator performs an unloading activity, the machine is

81



instantly freed, but the operator will spend 1 time unit placing the product in the
next storage space, initiating the next transport activity etc. This delay of 1 time
unit will of course also apply to the product.

P1 P2 P3 P4
Op. 1 | M1/1/4 | M2/2/9 | M3/9/1 | M1/1/4
Op. 2 | M2/2/5 | M1/1/11 | M1/1/9 | M2/2/11
Op. 3 | M3/9/11 | M3/9/4 | M2/2/9 | M3/9/8
Op. 4 M1/1/7 | M3/9/7
Op. 5 M2/2/13
Op. 6 M1/1/5

Table 7.1: Operation lists for the product types of the work cell. Data are shown in
the format “machine/setup time/processing time”.

We can now form a Petri net for the work center according to the model described
in Chapter 5. For the operations performed on machines M2 and M3, we can represent
them by a single transition, with the output arc delay for operator and product places
equal to the sum of setup, processing and unloading times, and with the output arc
delay for the machine equal to the sum of only setup and processing. Since O2
and M3 always are used together, we could in principle have replaced them by one
single resource. For clarity of the graphical model, we have chosen not to do this.
To illustrate the model, we show the part of the Petri net associated with the first
product type in Figure 7.1.

7.1.2 Classical standard job shop scheduling problems

We have also tested the algorithms on two well-known standard job shop scheduling
problems taken from Fisher and Thompson (1963). These and other test problems
are available in OR-Library!, see Beasley (1990). The first one is a 6 machine, 6 job
problem that is fairly easy to solve. It has an optimum makespan of 55. The second
is a notoriously difficult 10 machine, 10 job problem that remained unsolved for over
25 years. Nowadays, sophisticated specialized algorithms based on the disjunctive
graph model (see Section 4.1.3) can rather quickly reach the optimum, which is
930. However, for discrete event based algorithms designed for much more general
problems, it constitutes a tough challenge.

When we make a Petri net description based on our time model for a standard job
shop scheduling problem, we do not need the place for a product being in a machine
as in the place-timed model that were described in Section 4.3.3. Compared to that
case, we can reduce both the number of places and the number of transitions. In
Figure 7.2 we show the model for the example from Figure 4.4.

7.2 Notes on the test runs
As was discussed in Section 6.1.5, the algorithm-oriented work of this project has

so far been concentrated on makespan and tardiness penalties objectives. Therefore,
the test runs presented here have been done on stand-alone scheduling problems. It

Web-site: http://mscmga.ms.ic.ac.uk/info.html
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Figure 7.1: The Petri net model for product type 1 of the work center. Resource
places are labelled with their names.

B3

is not meaningful to test the algorithms on decision support situations with multiple
scheduling scenarios until they are modified to handle the total cost model.

7.2.1 Execution times

When the decision support system is used, it will give a limited amount of computing
time to each scheduling scenario. This time will be in the order of a few seconds,
say 2 s if there are three or four scenarios. Because of this, we believe that the best
way to evaluate the practical usefulness of the solution methods is to use a fixed
(and realistic) time limit for all test runs, regardless of problem size. We chose to set
this limit to 10 CPU seconds for the test runs. There are two reasons why we did
not set the limit as low as e.g. 2 CPU seconds. The first is that a faster computer
will probably be used in the real system compared to the one used for the tests (a
Sun Ultra 10 workstation, 300 MHz). The second is that since the test versions of
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Figure 7.2: The Petri net model for a standard job shop scheduling problem.

the algorithms were developed with ease of implementation as the goal rather than
maximum efficiency, they can be much improved with regards to execution time and
memory consumption.

7.2.2 Presentation of results

For each test, we present in a table the best solution value found within the 10 CPU
seconds time limit by different combinations of algorithms and evaluation functions
for different values of the lookahead parameter [. For the randomized algorithms,
the average value of 10 runs are presented. If all 10 runs produced the same result,
this value is presented without decimals. For the algorithms that do not produce
any (complete) solutions until the end of their execution (i.e. Beam Search and
Limited Expansion A* Search) and thus cannot be interrupted, different settings of
parameters (the beam width w and the max no. of unexplored nodes u respectively)
were tested. The solution value corresponding to a setting giving an execution time
near the CPU time limit is presented.
In the tables, we use abbreviated names for some of the algorithms:

Randomized for Randomized Firing.

Rand. Best for Randomized Best Enabled.

DFS1 for Branch-And-Bound Depth-First-Search without duplicate checking,.
DFS2 for Branch-And-Bound Depth-First-Search with duplicate checking,.
Restartl for Branch-And-Bound Best Restart Search without duplicate checking.
Restart2 for Branch-And-Bound Best Restart Search with duplicate checking.
Beam for Beam Search.

Limited A* for Limited Expansion A* Search.
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In connection to the table, we also give some additional test facts regarding the
test runs for the different algorithms. These are followed by discussions of the outcome
of the test.

7.3 Makespan tests with admissible evaluation func-
tions

In this section, we will present a number of tests based on minimization of makespan
using the evaluation functions fi, fo and f3 that were presented in Section 6.1.5.
The test problems do not include alternative product paths, so all of these evaluation
functions are admissible.

7.3.1 Test 1. A small number of products.

In this first test, we use a problem based on the work center example in Section 7.1.1.
We have only one item of each product type (i.e. a total of 4 products/jobs). We
assume that there is one token in each resource place and each process start place, all
available from time 0. This means that the in-buffers of the machines have capacity
1. Note that although we have no volumetric resources (e.g. machine in-buffers
with capacity larger than one), there are no restrictions against that in any of the
algorithms.

Results

Although this scheduling problem is far too big for complete enumeration, it is fairly
easy to solve with an intelligent search algorithm. The optimum makespan is 95,
which can be found and proved optimal in about 1 CPU second using the DFS2
method with the f3 evaluation function. The optimum can be found already for a
lookahead of I = 1. The optimum eager schedule (I = 0) is 101. The start evaluation
for the f; evaluation function is 77, while for fo it is 80. As seen, neither of these
lower bounds are very sharp, but since the latter bound is better one could expect
f2 to work better than f;. The test results are shown in Table 7.2.

Additional test facts

o Randomized. The algorithm makes around 21400 trials within the time limit,
regardless of lookahead. The standard deviation of the 10 runs is below 2 for
all lookaheads, and 0 for [ < 3.

e Rand. Best. For evaluation function f;, the algorithm makes between 4670
trials for I = 0 down to 3300 trials for [ = oo within the time limit. The
corresponding figures for fa are 3640 and 2650, and for f3 they are 3460 and
2470. The standard deviation for the 10 runs is 0 in all cases except for I = oo
and evaluation functions fs or f3.

e DFS2. For evaluation function f;, it takes 145 CPU seconds to prove 95 optimal
for [ = 0o, while for f; it takes about 4 CPU seconds.

e Restart1/2. For proving optimality, these methods are up to 2 times slower
than the DFS counterpart. This does not necessarily mean that it will produce
worse solutions within a limited time.
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Method Eval. =0 |1=1 1=2 | 1=3 1=5|1=10 | =00
First Enabled | - 113 - - - - - -
Randomized - 101 95 95 95 95.4 96.8 102.2
Best Enabled fi 101 101 101 101 101 101 101
Best Enabled f2 113 113 113 113 113 113 113
Best Enabled f3 113 113 113 113 113 113 130
Rand. Best f1 101 101 101 101 101 101 101
Rand. Best f2 101 95 95 95 95 95 96.6
Rand. Best f3 101 95 95 95 95 95 95.7
DFS1 f1 101 96 96 101 101 101 101
DFS1 f2 113 95 95 95 95 95 95
DFS1 f3 113 95 95 95 95 95 95
Restartl f1 101 101 101 101 101 100 101
Restartl f2 101 101 101 101 101 101 99
Restartl f3 101 101 101 101 101 101 97
DFS2 f1 101 95 95 95 95 96 96
DFS2 f2 101 95 95 95 95 95 95
DFS2 f3 101 95 95 95 95 95 95
Restart2 fi 101 95 95 95 95 101 97
Restart2 fa2 101 95 95 95 95 95 95
Restart2 f3 101 95 95 95 95 95 95
Beam f1 101 95 95 95 95 95 95
Beam fa2 101 95 95 95 95 95 95
Beam f3 101 95 95 95 95 95 95
Limited A* f1 101 95 95 95 95 95 95
Limited A* fe 101 95 95 95 95 95 95
Limited A* f3 101 95 95 95 95 95 95

Table 7.2: Results for Test 1.

e Beam. For lookaheads 1 and 2, the value of 95 is found already at a beam
width of 10 for all evaluation functions, which corresponds only to a couple of
hundreds of a second of CPU time. For larger lookaheads, a beam width of 80
is sufficient in most cases (less than 0.5 CPU seconds) to find the best value.
The worst case is fi with | = oo, where a beam width above 300 (corresponds
to about 2 CPU seconds) is needed in order to achieve 95.

e Limited A*. The algorithm generally needs more time than beam search in
order to find the best solution for a given combination of evaluation function
and lookahead.

Discussion

The results from this problem does not allow us to draw many conclusions, since it is
rather easy to solve. We can however see that resource-based evaluation (f2) works
better than product-based (fi) in almost all cases for this problem. We also have
the indication that a non-zero but small lookahead is good for the results of some
algorithms, and that duplicate checking is advantageous for the branch-and-bound
algorithms.

7.3.2 Test 2. The Fisher & Thompson 6x6 problem.

This problem, that were presented in Section 7.1.2, are of similar size as the previous
one. We can therefore expect most algorithms to do well.

Results

As mentioned earlier, the optimum makespan of this problem is 55. This value can
be found and proved optimal in about 3.6 CPU seconds with the Restart2 algorithm
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using the f3 evaluation function. A lookahead of [ = 2 is sufficient to find a value
of 55. The optimum makespan for [ < 1 is 57. The start evaluation of evaluation
function f; is 47, and for fy it is 43. This gives a hint that f; might give better
guidance to the search methods than fs, as opposed to the case of the previous test.
The test results are shown in Table 7.3.

Method Eval. | [=0 | 1I=1|1=2 |1=3|1=5|l=x
First Enabled | - 68 - - - - -
Randomized - 57 57.2 56.4 58.2 63.9 73.5
Best Enabled fi 68 68 58 76 76 76
Best Enabled fa 68 68 68 68 68 68
Best Enabled f3 68 68 59 59 59 59
Rand. Best f1 58 58 55 56.7 60.4 70.1
Rand. Best fa 57 57 57.3 57.6 58.6 58.7
Rand. Best f3 58 58 55 55 55 55
DFS1 f1 58 60 55 57 57 57
DFS1 fo 57 60 62 62 62 62
DFS1 f3 57 58 59 59 59 59
Restartl f1 58 58 57 57 71 71
Restart1 fo 58 60 60 60 60 60
Restartl f3 57 58 55 56 56 56
DFS2 f1 57 58 55 55 55 55
DFS2 fe 57 57 55 55 58 58
DFS2 f3 57 57 55 55 55 55
Restart2 f1 57 58 56 56 56 56
Restart2 fo 57 57 57 59 61 61
Restart2 f3 57 57 55 55 55 55
Beam f1 57 57 55 55 55 55
Beam fa 57 57 55 55 55 55
Beam f3 57 57 55 55 55 55
Limited A* f1 57 57 59 56 59 69
Limited A* fo 57 57 55 55 55 55
Limited A* f3 57 57 55 55 55 55

Table 7.3: Results for Test 2.

Additional test facts

Randomized. Within the time limit, the algorithm has time for approximately
28100 trials. The standard deviation varies between 0 for no lookahead up to
1.3 for infinite lookahead.

Rand. Best. For evaluation function f;, the algorithm makes between 4990
and 2290 trials within the time limit (for I/ = 0 and ! = oo respectively). The
corresponding figures for f, are 3840 and 1660, and for f; they are 3600 and
1510. For f;, the standard deviation varies between 0 and 1.2, while for fs it
is below 0.7 for all lookaheads. For f3 there is no variation at all between runs.

DFS2. For evaluation function fi, it takes over 10 CPU minutes to prove 55
optimal for | = oo, while for f, it takes about 73 CPU seconds, and for fs it
takes 5 CPU seconds.

Restart2. For proving optimality, this method is sometimes faster than DFS2,
but in other cases it is considerably slower.

Beam. For the evaluation functions f; and f3, a beam width of 40 is sufficient
to find the best value for almost all values of the lookahead parameter [. This
corresponds to a running time of less than 0.4 CPU seconds, even for [ = oco.
For f3, a beam width of about 160 is needed to achieve the best result at all
lookahead levels. This corresponds to running times up to 2 CPU seconds.
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e Limited A* For evaluation function fs, u = 40 is sufficient to find the best re-
sult for all values of the lookahead parameter except I = 1. This corresponds to
running times of less than 0.4 CPU seconds. For the other evaluation functions,
the algorithm has more trouble finding good solutions, especially for large val-
ues of /. In this case, you can also observe that for a fixed lookahead, the result
is a bit unstable with regards to the maximum number of unexplored nodes.
The solution value does not monotonically improve with increasing value of w,
as opposed to what one might expect. One example is that with f; and [ = 2,
the method gives 55 for u = 10, but 58 for u = 40.

Discussion

Like the previous test problem, this problem is not difficult enough to be a real indi-
cator of the differences between the solution methods. For a good choice of evaluation
function and lookahead, almost all methods find the optimum value. Beam search
continues to show good performance for all evaluation functions and values of the
lookahead parameter. As we suspected from the start evaluations, f; performs bet-
ter than f> in many cases, although the opposite case is also observed. The combined
function f3 works even better. The indication from the previous test problem that
duplicate checking pays off compared to doing no checking, and that high values of
the lookahead parameter can sometimes give bad results is supported by these results
as well.

7.3.3 Test 3. An average number of products.

We now return to our work center for a problem that should be of average difficulty.
We have identical conditions as in Test 1, except that we have more products of each
type. To be precise: 4 units of product type P1, 2 units of P2, 2 units of P3 and
finally 3 units of P4. This gives a total of 11 products.

Results

The evaluation function f; still gives 77 as the start evaluation (remember that it
does not account for the workload of the resources), so it cannot be expected to
give much guidance for the search functions in the beginning of the decision making
process. From fo, we get 220 as the start evaluation. This turns out to be a very
sharp lower bound and this helps the exact methods to find the optimum value in
reasonable time despite the fact that the decision tree of this problem is much larger
than the one in Test 1. The optimum is 221, which can be found with lookahead
3 and higher. The best eager schedule (I = 0) is 236, the best schedule for [ = 1
is 229 and for [ = 2 it is 222. The reason for the sharpness of the resource-based
lower bound is that the workload of 02 and M3 turns out to be significantly higher
than for any other resource. This means that the key for finding a good schedule is
to make sure that there are no waiting times at this bottleneck, and since there is
enough available time to play with at the other resources this is also possible to do.
The results are shown in Table 7.4.

Additional test facts

o Randomized. Around 8450 trials are made within the time limit. The standard
deviation lies between 0 and 4.5 for the different lookaheads.
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Method Eval. | I =0 =1 =2 =3 =5 |1=10 | =00
First Enabled | - 240 - - - - - -
Randomized - 236 | 230.6 229.2 | 227.9 233.5 244.1 261.2
Best Enabled f1 277 277 277 277 289 289 289
Best Enabled f2 240 240 240 240 240 240 240
Best Enabled f3 240 240 240 240 240 240 240
Rand. Best f1 241 238 238 238 238 238.2 238.8
Rand. Best f2 236 | 232.2 229.8 | 228.6 232.9 237.3 239.7
Rand. Best f3 236 | 231.4 | 228.5 | 229.1 231.8 236.7 239.4
DFS1 f1 242 242 242 242 242 242 250
DFS1 f2 236 229 229 229 237 237 237
DFS1 fa 236 229 229 229 237 237 237
Restartl f1 241 272 272 273 284 284 284
Restartl f2 237 238 230 221 221 221 221
Restartl f3 237 238 230 221 221 221 221
DFS2 f1 242 242 242 242 242 242 242
DFS2 fa 236 229 222 222 229 226 228
DFS2 f3 236 229 222 222 229 226 227
Restart2 fi 237 237 234 223 238 238 239
Restart2 f2 236 229 222 221 224 224 224
Restart2 f3 236 229 222 221 224 224 224
Beam f1 237 229 245 239 243 229 229
Beam f2 236 229 222 221 221 221 225
Beam f3 236 229 222 221 221 221 225
Limited A* f1 239 240 238 223 230 240 225
Limited A* fa 237 231 232 221 221 221 221
Limited A* f3 237 231 232 221 221 221 221

Table 7.4: Results for Example 3.

e Rand. Best. For evaluation function f;, the algorithm makes approximately
1570 trials for I = 0 and 1080 trials with [ = co. The corresponding numbers
for f» are 1160 and 740, and for f3 they are 1080 and 690. For f;, the standard
deviation is below 1 in all cases. For f» and f3 it is higher, up to around 2.5
for some lookaheads.

e DFS2. With f3, optimality of 221 can be proved in about 22 minutes of CPU
time.

e Beam. Near optimal results are obtained for evaluation functions f and f3 with
w = 80 (corresponds to 0.7 - 1.7 seconds of CPU time depending on the value
of 1), but in order to improve them further several seconds more are needed.
Similar as to what was observed with the Limited Expansion A* Method in
the previous test, the results can fluctuate when w is increased although the
overall trend is towards better results. This effect is largest for lower values
(say w < 100).

e Limited A* A running time near the time limit is achieved with u near 70 for
most cases. The results are slightly unstable with respect to .

Discussion

We can see that the results for fo and f3 are almost identical, which is natural since
f2 will dominate f; for most parts of the search process. The results with f; is worse
than for fy and f3, but not as bad as one might expect. Beam Search and Limited
Expansion A* Search together with the branch-and-bound methods using duplicate
checking perform better than the randomized algorithms and the branch-and-bound
algorithms without duplicate checking. The behaviour of the algorithms with respect
to the lookahead parameter agrees with the results from tests 1 and 2.
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7.3.4 Test 4. A large number of products.

We now test a problem with even more products. We have identical conditions as
in Test 3, except that we have 6 items of each product type. This gives a total of
24 products. This problem should be large enough to be out of reach for proved
optimality with exact methods.

Results

Evaluation function f> gives 480 as a lower bound for the problem (f; gives 77 as
usual), and like in the previous problem this bound turns out to be very sharp. The
resources 02 and M3 still make up the bottleneck, although the difference from other
resources is not as large as in the previous test. The best solution found is 481 (I = 2).
For [ = 1, the best value found is 482 and for I = 0 it is 483. We do not know the
optimum values for different lookaheads, but judging from the lower bound the best
values found must at least be very close to optimum. The results are shown in Table
7.5.

Method Eval. = = = = = 1=10 | I =0
First Enabled | - 595 - - - - - -
Randomized - 496.2 | 517.0 | 521.0 | 527.8 | 548.0 587.2 641.7
Best Enabled fi 594 594 594 596 628 628 628
Best Enabled f2 595 595 595 595 595 595 595
Best Enabled fa 595 595 595 595 595 595 595
Rand. Best fi 504.0 | 513.0 | 514.6 | 516.0 | 520.0 526.7 527.8
Rand. Best fa2 500.7 | 516.9 | 518.5 | 520.0 | 526.0 536.0 541.3
Rand. Best f3 502.2 | 517.2 | 520.0 | 522.8 | 526.6 534.8 538.7
DFS1 f1 594 594 594 595 628 628 628
DFS1 fa 577 580 580 583 591 591 594
DFS1 f3 577 580 581 583 591 591 594
Restartl f1 574 574 574 574 579 559 550
Restartl f2 577 577 577 577 577 577 577
Restartl f3 577 577 577 577 577 577 577
DFS2 f1 594 594 594 594 616 616 623
DFS2 f2 574 575 575 580 585 586 586
DFS2 f3 574 575 575 580 585 586 586
Restart2 f1 574 574 574 574 579 559 550
Restart2 f2 581 581 581 581 581 581 581
Restart2 f3 581 581 581 581 581 581 581
Beam f1 484 482 481 482 490 496 490
Beam fa2 502 506 511 506 515 515 511
Beam f3 502 511 528 515 515 511 519
Limited A* fi 504 514 496 525 530 541 533
Limited A* fo 522 505 519 508 519 534 506
Limited A* f3 520 507 514 510 519 534 519

Table 7.5: Results for Test 4.

Additional test facts

e Randomized. Around 3680 trials are made within the time limit. The standard
deviation lies between 2 and 4 for all values of [ except co where it is as high
as 10.

e Rand. Best. With evaluation function f;, the algorithm has time for approxi-
mately 610 trials for I = 0 and 410 trials with I = co. With f; the corresponding
numbers of trials are 400 and 240, and for f3 they are 370 and 230. The stan-
dard deviation is typically between 3 and 5.
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e Beam. The beam width that gives a running time near the limit varies from
280 — 300 for I = 0 down to 140 — 170 for ! = oo (the low values are for f3 and
the higher are for f).

o Limited A*. Values between 20 and 30 for u give a running time near the time
limit.

Discussion

The results from this problem are very interesting. They show that the branch-and-
bound algorithms cannot compete with the other algorithms in this case, most likely
due to the large size of the problem. The most surprising results are perhaps the
success of Beam Search with evaluation function fi, in spite of the fact that the
search process is more or less blind at the early stages. We do not believe however
that this is representative of the behaviour of f; with a large number of products, it
is most likely a “strike of luck”. Another result that might be better than expected
is the one from Randomized Firing with [ = 0, beaten only by results obtained with
Beam Search. We also note that as in the previous test, the results using f» and f3
are very similar.

7.3.5 Test 5. The Fisher & Thompson 10x10 problem.

As mentioned earlier, this is a problem where it is hard to find good solutions and
lower bounds, even for specialized algorithms. Therefore, with our limited computing
time we cannot expect near-optimal results from discrete event based algorithms
designed for much more general problems. However, it is interesting as a difficult
test case for comparing our different algorithms relative to each other.

Results

The start evaluation from f; is 655, and from f, it is 631. These lower bounds are
very far from the optimal value 930. The results are shown in Table 7.6.

Additional test facts

e Randomized. Around 3050 trials are made within the time limit. The standard
deviation lies in the range from 8 to 23, except for [ = oo where it is around 40.

e Rand. Best. With evaluation function f;, the algorithm has time for approxi-
mately 520 trials for I = 0 and 180 trials with I = co. With f; the corresponding
numbers of trials are 460 and 130, and for f3 they are 430 and 120. The stan-
dard deviation is typically between 5 and 20 for small lookaheads, while it can
be larger for higher values of I.

e Beam. The beam width that gives a running time near the limit is around 280
for [ =0 and 100 for | = co. The results can be a bit unstable with regards to
beam width for a given lookahead. An example is that with fo and [ = 0 or
I =2, w =40 gives 993 whereas beam widths around 300 give 1020-1030.

e Limited A* Values between 25 (high lookaheads) and 65 (small lookaheads)
for u give a running time near the time limit. The results vary quite a lot with
increasing u for a given value of [, especially for large values of the latter.
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Method Eval. 1=0 =2 =5 =10 1 =20 1 =50 | = oo
First Enabled | - 1262 - - - - - -
Randomized - 1030.3 1033.8 1041.2 1058.6 1118.2 1385.1 1892.1
Best Enabled fi 1092 1095 1099 1118 1121 1526 1526
Best Enabled f2 1262 1262 1262 1262 1262 1262 1262
Best Enabled f3 1126 1126 1126 1132 1124 1411 1411
Rand. Best f1 1046 1047.8 1040.6 1055.9 1094.2 1342.0 1475.8
Rand. Best f2 1062.2 1067.7 | 1062.0 1074.8 1090.3 | 1134.1 1146.6
Rand. Best f3 1044.8 1045.8 1045.9 1056.6 1073.0 | 1101.5 1114.7
DFS1 f1 1092 1094 1094 1118 1097 1526 1526
DFS1 f2 1190 1190 1190 1190 1190 1262 1262
DFS1 f3 1126 1126 1126 1126 1107 1411 1411
Restartl f1 1046 1059 1099 1071 1095 1410 1526
Restartl f2 1205 1205 1205 1205 1205 1205 1205
Restartl f3 1100 1105 1100 1132 1090 1386 1411
DFS2 f1 1087 1092 1094 1118 1097 1450 1486
DFS2 f2 1130 1130 1130 1130 1190 1214 1254
DFS2 f3 1072 1081 1126 1107 1107 1411 1411
Restart2 fi 1045 1047 1058 1073 1107 1435 1526
Restart2 fa2 1205 1214 1245 1245 1245 1245 1245
Restart2 f3 1037 1081 1060 1056 1075 1150 1150
Beam f1 1023 1030 1023 1050 1011 1149 1169
Beam fa2 1024 1029 1028 1035 1057 1042 1110
Beam f3 991 991 991 979 1053 1123 1065
Limited A* f1 1020 1065 1065 1045 1153 1482 1453
Limited A* fe 1042 1088 1046 1155 1142 1158 1211
Limited A* f3 985 1058 1064 1052 1106 1516 1556

Table 7.6: Results for Test 5.

Discussion

For this problem, f; works better than f» in general, and as in previous tests the
combined function f3 has a good behaviour in most cases. As in the previous large-
sized problem, the branch-and-bound methods do not work well. We can see that
Beam Search performs much better than the other methods. The randomized algo-
rithms show fairly decent and stable results for small lookaheads, whereas the Limited
Expansion A* Search method gives a few good results but also some bad ones.

Other authors have also examined this problem using Petri Net methods. van der
Aalst (1996) finds a schedule with makespan 1023 by heuristically adding extra prece-
dence constraints to the problem and then generating solutions with a standard Petri
net tool. The running time was in the same range as in our case. Liljenvall (1998)
uses an A* search method with advanced evaluation functions and search space re-
duction techniques, and obtains as best a result of 959 (with a few minutes of running
time) which is better than our best result (979). However, many of the features used
are difficult to generalize to a more general scheduling model and/or computationally
intensive, so they are not so interesting for our particular application. This paper
was also discussed in Sections 4.3.3 and 6.1.6.

7.3.6 Conclusions

An observation we can make is that the makespan of the First Enabled method lies 9
- 29 % above the best result obtained with other methods for the different problems.
This indicates how much you can gain for this objective by using scheduling methods.
From the results of these makespan problems, we can draw some conclusions that
can be of interest also for other objectives. The issue of whether resource based
or product based evaluation is best has no clear answer, since we saw that this
varied from problem to problem. An evaluation function combining both should take
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away this problem-dependence and eliminate a potentially bad behaviour, and that
is exactly what has been observed with the function f3. In many cases, it even works
better than the best of f; and f for that problem. The conclusion we can draw
from this is that we should focus both on products and resources when designing an
evaluation function.

We can also tell from the results that a limited lookahead is advantageous for
all solution methods. Among the algorithms, Beam Search is the one that gives the
overall best results. It works well even when the evaluation function used is not very
good for the problem. The branch-and-bound methods with duplicate checking com-
bined with the best evaluation function give good results for the small and medium
sized problems, but for larger problems they perform badly. There are no clear in-
dications as of whether the depth first or the best restart strategy is best given a
limited computing time, but the former seems to be the most efficient when large
parts of the search tree are to be explored. The Randomized Firing algorithm gives
fairly good results for all problems when a small lookahead is used, but as expected
it does not give good results for larger lookaheads. The Randomized Best Enabled
method performs slightly worse than the former for the larger problems, but it is
not as sensitive to the setting of the lookahead parameter [. The Limited Expansion
A* Search method shows a bit of an unstable behaviour: really good results in some
cases but bad ones in others.

7.4 Makespan tests with a non-admissible evalua-
tion function

In this section, we will present results from the same test problems as in the previous
section, but using the non-admissible evaluation function fs (see Section 6.1.5). Al-
though the modified product time calculations are intended for the case of tardiness
penalties or total costs, it is interesting to verify that it does not perform badly in the
case of makespan objective. For reference we present again the results with evalua-
tion function f; since this corresponds to the case when the modification parameter
« is zero.

7.4.1 Test 6. A small number of products.

Here we present the results for the problem of Test 1.

Results

The start evaluation with @ = 1 (which corresponds to the worst case estimation)
is 97 (recall that the optimum is 95), which is a slight overestimate but much closer
to the optimum than the lower bounds given by the admissible evaluation functions.
The test results are shown in Table 7.7.

Additional test facts

o Rand. Best. The algorithm makes between 2810 trials for [ = 0 down to 2140
trials for [ = oo within the time limit for & > 0. As can be seen from the table,
there are no variations in the results.
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Method (e 1=0 =1 1=2 1=3 =5 1 =10 =0
Best Enabled | 0 101 101 101 101 101 101 101
Best Enabled | 0.25 101 106 106 106 101 101 101
Best Enabled | 0.5 101 107 107 107 101 101 118
Best Enabled | 0.75 101 107 107 107 101 101 118
Best Enabled | 1 101 107 107 107 107 107 118
Rand. Best 0 101 101 101 101 101 101 101
Rand. Best 0.25 101 101 101 101 101 101 101
Rand. Best 0.5 101 101 101 101 101 101 101
Rand. Best 0.75 101 101 101 101 101 101 101
Rand. Best 1 101 101 101 101 101 101 101
DFS1 0 101 96 96 101 101 101 101
DFS1 0.25 101 96 96 101 101 101 101
DFS1 0.5 101 107 103 103 101 101 102
DFS1 0.75 101 107 107 107 101 101 102
DFS1 1 101 107 107 107 107 107 106
Restart1 0 101 101 101 101 101 100 101
Restartl 0.25 101 101 101 101 101 101 101
Restartl 0.5 101 107 107 107 101 101 103
Restart1 0.75 101 107 107 107 101 101 101
Restart1 1 101 107 107 107 107 107 102
DFS2 0 101 95 95 95 95 96 96
DFS2 0.25 101 96 96 96 96 96 96
DFS2 0.5 101 102 102 103 96 101 102
DFS2 0.75 101 107 107 107 101 101 102
DFS2 1 101 107 107 107 107 107 102
Restart2 0 101 95 95 95 95 101 97
Restart2 0.25 101 95 95 95 96 101 97
Restart2 0.5 101 100 100 100 96 96 101
Restart2 0.75 101 107 107 107 101 101 101
Restart2 1 101 107 107 107 107 107 102
Beam 0 101 95 95 95 95 95 95
Beam 0.25 101 95 95 95 95 95 95
Beam 0.5 101 95 95 95 95 95 95
Beam 0.75 101 95 95 95 95 95 95
Beam 1 101 95 95 95 95 95 95
Limited A* 0 101 95 95 95 95 95 95
Limited A* 0.25 101 95 95 95 96 96 97
Limited A* 0.5 101 95 95 95 96 96 98
Limited A* 0.75 101 95 95 95 96 100 97
Limited A* 1 101 95 95 103 96 100 102

Table 7.7: Results for Test 6.

e DFS2, Restart2. For a > 0, the solutions are given very quickly for all but the
highest lookaheads. This is related to the large amount of cutting made in the
search tree.

e Beam. A beam width of 80 is sufficient to find the best results for all lookaheads
except the largest ones. This corresponds to running times of less than 0.5 CPU
seconds.

e Limited A* In many cases, the list of unexplored nodes never gets full over a
certain size of u, so improving u further does not change the result or affect the
running time.

Discussion

For many of the methods, the results get worse as a increases. For the branch-and-
bound methods, this is probably due to the fact that branches in the search tree get
cut off due to overestimation even though they contain a potentially good solution.
Also, the negative trend seen in Best Enabled suggest that the local decision of
choosing the next transition to fire is not helped by the modified estimation. However,
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the most important result is that the evaluation function works well with the best
algorithm from the previous series, namely Beam Search. Limited Expansion A*
Search also does well for lower values of [.

7.4.2 Test 7. The Fisher & Thompson 6x6 problem.

This is the same problem as in Test 2.

Results

The start evaluation with a = 1 is 55, which is exactly the same as the optimum
makespan. The test results are shown in Table 7.8.

Method a =0 |1l=1]1=2]|1=3]1=5|l=x
Best Enabled | 0 68 68 58 76 76 76
Best Enabled | 0.25 68 68 61 61 79 79
Best Enabled | 0.5 68 68 58 76 78 78
Best Enabled | 0.75 65 66 59 63 63 65
Best Enabled | 1 70 76 76 76 76 79
Rand. Best 0 58 58 55 56.7 60.4 70.1
Rand. Best 0.25 58 58 55 58.2 59 59
Rand. Best 0.5 58 58 57 58.7 61 61
Rand. Best 0.75 58 58 57 59.6 61 61
Rand. Best 1 62 71 71 71 72 74
DFS1 0 58 60 55 57 57 57
DFS1 0.25 58 61 55 57 56 56
DFS1 0.5 59 62 58 57 57 57
DFS1 0.75 58 60 59 58 58 58
DFS1 1 61 76 67 70 70 70
Restartl 0 58 58 57 57 71 71
Restartl 0.25 58 58 58 59 65 64
Restartl 0.5 59 61 58 61 64 64
Restartl 0.75 61 61 59 61 63 59
Restartl 1 65 66 58 59 62 62
DFS2 0 57 58 55 55 55 55
DFS2 0.25 57 59 55 55 56 56
DFS2 0.5 59 59 58 55 55 55
DFS2 0.75 58 60 59 58 58 57
DFS2 1 61 64 58 66 67 70
Restart2 0 57 58 56 56 56 56
Restart2 0.25 59 58 58 56 58 58
Restart2 0.5 59 59 58 56 58 58
Restart2 0.75 59 61 59 57 59 59
Restart2 1 65 59 58 59 57 59
Beam 0 57 57 55 55 55 55
Beam 0.25 57 57 55 55 55 55
Beam 0.5 57 57 55 55 55 55
Beam 0.75 57 57 55 55 55 55
Beam 1 57 57 55 55 55 55
Limited A* 0 57 57 59 56 59 69
Limited A* 0.25 57 57 55 55 55 58
Limited A* 0.5 59 59 57 55 55 55
Limited A* 0.75 59 59 58 55 55 55
Limited A* 1 61 59 58 58 55 55

Table 7.8: Results for Test 7.

Additional test facts

e Rand. Best. For a > 0, the Randomized Best Enabled algorithm has time for
between 2780 and 1200 trials within the time limit, depending on lookahead.
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e Beam. A beam width of 80 is sufficient to find the best results for almost all
lookaheads. This corresponds to running times of up to 1 CPU second.

e Limited A*. As in the previous test, the behaviour of the method is unchanged
above a certain value of » in many cases.
Discussion

The conclusions from the last test is supported also by this one. Beam Search and
to some extent Limited Expansion A* Search works well with evaluation function fy,
whereas the other algorithms tend to get worse results with increasing value of «.

7.4.3 Test 8. An average number of products.

This is the same problem as in Test 3.

Results

The start evaluation for a = 1 is 242, which is a slight overestimate of the optimal
schedule which has a makespan of 221. But it is of course much more realistic
compared to 77 which is the estimation without modification (@ = 0). The results
are shown in Table 7.9.

Additional test facts

e Rand. Best. For a > 0, the Randomized Best Enabled algorithm has time for
between 780 and 560 trials within the time limit, depending on lookahead.

e Beam. Already with w = 20 (less than 0.5 CPU seconds), results near the final
ones are achieved. One has to go to quite high beam widths, giving a running
time near the limit, in order to improve the values much from this.

e Limited A*. Values for u in the range 35 to 60 give running times near the
limit in most cases.
Discussion

In this test, the value of a does not have that much impact on the results. Beam
Search again performs best, although the advantage over the other methods is not
as evident as in the other cases. It is interesting to note that almost all results are
quite close to the start evaluation of 242 obtained with o = 1.

7.4.4 Test 9. A large number of products.

We now test the modified evaluation function on the problem of Test 4.

Results

With a = 1, the start evaluation is 527 which is to be compared with the best known
schedule which has a makespan of 481. This estimation is again fairly realistic. In
Table 7.10, the test results are shown.
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Method « =0 =1 =2 1=3 =5 =10 =00
Best Enabled | 0 277 277 277 277 289 289 289
Best Enabled | 0.25 277 277 277 277 295 295 295
Best Enabled | 0.5 276 276 276 276 299 294 299
Best Enabled | 0.75 288 276 276 276 299 258 258
Best Enabled 1 288 294 294 294 294 248 276
Rand. Best 0 241 238 238 238 238 238.2 238.8
Rand. Best 0.25 241 241 241 241 241 241 241
Rand. Best 0.5 241 241 241 241 241 241.1 241.4
Rand. Best 0.75 241 241 241 241 241 241.2 242.0
Rand. Best 1 241 241 241 241 241.1 242.5 248.0
DFS1 0 242 242 242 242 242 242 250
DFS1 0.25 242 242 242 243 250 250 268
DFS1 0.5 241 241 241 242 246 249 274
DFS1 0.75 241 241 241 243 246 243 244
DFS1 1 241 242 241 241 241 248 261
Restart1 0 241 272 272 273 284 284 284
Restartl 0.25 241 273 272 272 291 291 291
Restartl 0.5 241 241 241 241 239 245 245
Restart1 0.75 242 241 241 241 246 249 247
Restart1 1 241 259 241 241 241 248 251
DFS2 0 242 242 242 242 242 242 242
DFS2 0.25 242 242 242 243 244 244 244
DFS2 0.5 241 241 241 242 246 241 246
DFS2 0.75 241 241 241 241 246 243 244
DFS2 1 241 253 241 241 241 245 249
Restart2 0 237 237 234 223 238 238 239
Restart2 0.25 237 242 235 242 266 245 248
Restart2 0.5 241 241 241 241 239 244 254
Restart2 0.75 242 241 241 241 246 247 258
Restart2 1 241 258 241 241 241 248 251
Beam 0 237 229 245 239 243 229 229
Beam 0.25 237 237 237 237 241 234 235
Beam 0.5 245 237 237 237 241 234 234
Beam 0.75 237 237 237 237 241 234 231
Beam 1 237 236 237 237 241 234 234
Limited A* 0 239 240 238 223 230 240 225
Limited A* 0.25 237 239 232 223 249 261 264
Limited A* 0.5 246 237 237 238 256 258 259
Limited A* 0.75 237 241 243 247 256 247 277
Limited A* 1 241 241 244 247 247 244 244

Table 7.9: Results for Example 8.

Additional test facts

e Rand. Best. For a > 0, this method can make between 260 and 190 trials
within the time limit, depending on lookahead. The standard deviation lies
between 2 and 11.

e Beam. Beam widths from 110 (I = co0) up to 220 (I = 0) give a running time
near the limit.

e Limited A* The values for u that give execution time near the limit vary
between 14 and 34.

Discussion

The most striking thing about these results is that the Limited Expansion A* Search
method fails to find any schedule in some cases. The possibility of such occurrences
was described in Section 6.2.8. This suggests that this algorithm has to be modified to
cope with such cases if it is to be used in a scheduling system. The effect of the product
time modification varies between the algorithms. The branch-and-bound algorithms
generally give better results with o > 0 than without modification, whereas the
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Method (e =0 =1 1=2 =3 =5 1 =10 Il =00
Best Enabled | 0 594 594 594 596 628 628 628
Best Enabled | 0.25 563 571 576 588 611 611 608
Best Enabled | 0.5 553 545 544 556 562 563 570
Best Enabled | 0.75 529 547 543 548 577 630 630
Best Enabled | 1 569 581 575 572 586 685 703
Rand. Best 0 504.0 | 513.0 | 514.6 516.0 | 520.0 526.7 527.8
Rand. Best 0.25 514.4 | 527.8 | 532.8 535.8 | 536.9 545.2 548.4
Rand. Best 0.5 514.3 | 533.6 | 533.8 540.0 | 547.7 559.1 561.1
Rand. Best 0.75 541.6 | 550.4 | 547.6 552.4 | 561.4 587.3 588.7
Rand. Best 1 551.6 558.4 | 560.2 563.4 | 571.1 616.2 620.9
DFS1 0 594 594 594 595 628 628 628
DFS1 0.25 563 571 576 588 606 606 608
DFS1 0.5 553 521 521 531 547 563 570
DFS1 0.75 518 543 539 537 556 630 630
DFS1 1 547 546 565 566 564 685 703
Restart1 0 574 574 574 574 579 559 550
Restartl 0.25 549 567 576 577 594 578 604
Restartl 0.5 513 519 521 531 547 563 570
Restart1 0.75 513 543 539 528 573 602 605
Restart1 1 538 563 563 561 561 628 660
DFS2 0 594 594 594 594 616 616 623
DFS2 0.25 528 551 568 585 585 585 585
DFS2 0.5 523 518 518 520 525 526 532
DFS2 0.75 518 529 534 533 550 609 606
DFS2 1 548 553 552 556 564 671 690
Restart2 0 574 574 574 574 579 559 550
Restart2 0.25 549 567 566 577 594 578 577
Restart2 0.5 513 519 521 531 547 551 570
Restart2 0.75 513 543 539 548 573 605 605
Restart2 1 538 563 563 561 561 628 660
Beam 0 484 482 481 482 490 496 490
Beam 0.25 491 514 505 502 532 495 530
Beam 0.5 507 522 522 530 513 532 540
Beam 0.75 503 510 539 538 553 552 550
Beam 1 518 525 536 545 544 572 560
Limited A* 0 504 514 496 525 530 541 533
Limited A* 0.25 517 505 521 511 [e's) 517 511
Limited A* 0.5 494 521 513 517 541 o) 574
Limited A* 0.75 541 0 [eS) [e%S) 538 561 581
Limited A* 1 507 [eS) &) [eS) 587 575 584

Table 7.10: Results for Test 9.

results from Randomized Best Enabled, Beam Search and Limited Expansion A*
Search tend to get worse when « is increased. Recall however that Beam Search with
evaluation function f; (o = 0) performed suprisingly well for this problem.

7.4.5 Test 10. The Fisher & Thompson 10x10 problem.

Here we test the effect of product time modification on the problem from Test 5.

Results

The start evaluation with a = 1 is 699 which is only slightly better than 655 which
is the lower bound given by f1 (o = 0). Recall that the optimum is 930 and that the
resource based lower bound from fy was 631. This suggests that the difficulty of this
problem lies not in a resource bottleneck or a certain critical product. The results
are shown in Table 7.11.
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Additional test facts

e Rand. Best. For a > 0, the algorithm has time for approximately 390 trials for
I = 0 and 100 trials with [ = co. The standard deviation is zero in many cases,
due to the fact that when deciding the next transition to fire, the modified
evaluation function does not give many alternatives that have the same integer

value.

o Beam. The beam width that gives a running time near the limit is around 240

for I = 0 and 80 for | = co.

e Limited A*. Values between 19 (high lookaheads) and 45 (small lookaheads)

for u give a running time near the time limit.

Discussion

The impact of the modification parameter « is different from the previous test. Beam
Search improves its results with higher a. For the other algorithms, there is no clear
trend, except for Randomized Best Enabled which gets worse results with a > 0 than

without modification.
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Method « l = l = = =10 =20 1 =50 l =00
Best Enabled 0 1092 1095 1099 1118 1121 1526 1526
Best Enabled 0.25 1173 1223 1223 1201 1267 1689 1689
Best Enabled 0.5 1199 1153 1166 1179 1165 1526 1526
Best Enabled 0.75 1120 1153 1170 1105 1139 1443 1443
Best Enabled 1 1168 1140 1101 1131 1156 1180 1180
Rand. Best 0 1046 1047.8 1040.6 1055.9 1094.2 1342.0 1475.8
Rand. Best 0.25 1120 1218 1223 1169 1130 1614.1 1622.1
Rand. Best 0.5 1142 1123 1114 1143 1147 1515.4 1517
Rand. Best 0.75 1120 1123 1170 1098 1108.8 1439.5 1430.1
Rand. Best 1 1055 1056 1101 1131 1194 1165.3 1164.0
DFS1 0 1092 1094 1094 1118 1097 1526 1526
DFS1 0.25 1173 1181 1181 1181 1206 1631 1631
DFS1 0.5 1199 1106 1114 1126 1165 1517 1517
DFS1 0.75 1120 1106 1135 1105 1110 1417 1417
DFS1 1 1168 1140 1101 1131 1156 1180 1180
Restart1 0 1046 1059 1099 1071 1095 1410 1526
Restartl 0.25 1099 1095 1084 1099 1098 1208 1208
Restartl 0.5 1073 1089 1085 1100 1137 1272 1272
Restartl 0.75 1063 1078 1087 1105 1085 1204 1204
Restart1 1 1093 1104 1101 1091 1090 1128 1154
DFS2 0 1087 1092 1094 1118 1097 1450 1486
DFS2 0.25 1123 1142 1174 1181 1181 1537 1591
DFS2 0.5 1149 1072 1077 1126 1165 1487 1491
DFS2 0.75 1120 1091 1112 1087 1110 1413 1417
DFS2 1 1144 1140 1061 1131 1156 1172 1172
Restart2 0 1045 1047 1058 1073 1107 1435 1526
Restart2 0.25 1053 1063 1084 1069 1098 1208 1217
Restart2 0.5 1040 1063 1085 1096 1137 1272 1272
Restart2 0.75 1063 1063 1087 1105 1139 1155 1155
Restart2 1 1033 1063 1101 1092 1136 1128 1180
Beam 0 1023 1030 1023 1050 1011 1149 1169
Beam 0.25 985 1004 1025 991 1053 1105 1120
Beam 0.5 985 993 985 988 1034 1109 1161
Beam 0.75 985 991 985 988 1030 1050 1114
Beam 1 985 994 979 985 1030 1105 1152
Limited A* 0 1020 1065 1065 1045 1153 1482 1453
Limited A* 0.25 1051 1003 1107 1059 1118 1462 1617
Limited A* 0.5 1092 1065 1087 1097 1113 1436 1551
Limited A* 0.75 1072 1062 1057 1075 1159 1556 1244
Limited A* 1 1027 1074 1043 1136 1104 1400 1537
Table 7.11: Results for Test 10.




7.4.6 Conclusions

The evaluation function fs based on modified remaining product times cannot be said
to work better for the makespan objective than the admissible evaluation functions
tested earlier, although it in some cases finds better results. Together with Beam
Search it gives acceptable results, and we can draw the important conclusion that
this combination does not show any unwanted bad behaviour. Another observation
that suggests that the modification procedure is sound is that the start estimation
for @ =1 is realistic in all cases but for the difficult 10x10 problem.

7.5 Tests with tardiness penalties

Now we come to the most interesting test problems, namely the ones where we have
minimization of tardiness penalties as the objective. Our results from the much
simpler case of makespan objective lead us to believe that Beam Search should be
the best of the informed search methods, and the most important question is perhaps
how this method with evaluation function f5; and a > 0 will compare with @ = 0
and with the uninformed search method Randomized Firing. With high values of «
(> 0.5), we can expect f5 to overestimate the objective value heavily in some cases,
since it assumes that all products are given low priority. In spite of this, we believe
that it can still work well when comparing different search nodes.

We note that the objective value of different schedules varies much more for
tardiness penalties than for makespan, especially if the magnitude of penalties differ
between product types. In the ideal case there are no late products and the objective
value is then zero. But in the case of a late product with a high penalty, we will
get a very large objective value. Therefore it is not very meaningful to analyze the
quotient between the objective values of two different schedules in the same way we
would do for e.g. makespan. In the total costs case (which is the long-term goal of
this research project) such a comparison is more relevant, since then the tardiness
penalties will be just one part of the total objective value. We urge the reader to
keep this in mind when studying the following results.

7.5.1 Test 11. A small number of products.

For our first test on tardiness penalties, we take a problem that should not be too
difficult to solve to optimality. We have one product of each type in the work center
example from Section 7.1.1. For simplicity, we assume linear tardiness penalties. The
due date and the penalty factor (per unit of time above the due date) for the different
product types are shown in Table 7.12. Since the problem is rather small and we do
not have a high workload on the resources, the admissible evaluation function (o = 0)
can be expected to do well. The aim of this test is to see how Beam Search with
the non-admissible evaluation function and Randomized Firing will do compared to
optimum.

Results

The start evaluation for a up to about 0.15 is 0. For @ = 1 it is 17. The optimum
objective value is 39, a solution which can be found for [ > 4. For | = 3 the optimum
is 51 and for I < 2 it is 54. The results within the time limit are shown in Table 7.13.
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Product type | Due date | Penalty factor
P1 60 2
P2 80 1
P3 70 4
P4 90 3

Table 7.12: Data for Test 11.

Additional test facts

o Randomized. About 21250 trials can be done within the time limit. The stan-
dard deviation is zero for small lookaheads and around 2 for higher.

e Rand. Best. The algorithm has time for approximately 2670 trials for [ = 0
and 1920 trials with [ = oco. The results are without deviation in most cases,
and the standard deviation is below 2 in all cases.

o DFS2/Restart2. It takes around 30/19 CPU seconds for DFS2/Restart2 re-
spectively to prove 39 optimal for | = co (using o = 0).

e Beam. A beam width of 80 is enough in most cases for finding the optimum,
which corresponds to running times of up to about 0.5 CPU seconds (for I = o).

Discussion

This test indicates that tardiness penalties problems are more difficult than makespan
problems, and that a slightly longer lookahead is needed for finding the optimum.
Although the search tree for this problem is of the same size as the one in Test 1,
we have much larger variations in objective value for the different methods. Beam
Search and Limited Expansion A* Search work well for all values of a. The branch-
and-bound methods with duplicate checking do well in most cases, but there are also
some bad values, especially for high values of a. An interesting fact is that most
methods using duplicate checking miss the optimum at / = 3 (Limited Expansion A*
Search finds it at @ = 0.75). The possibility of this was discussed in Section 6.1.6.

7.5.2 Test 12. An average number of products.

In this test problem, we again use our work center example from Section 7.1.1 as the
basis. We have three items of each product type, giving a total of 12 products. As
in the previous case, we have linear tardiness penalties. The due dates and penalty
factors for the different product types are shown in Table 7.14.

Results

The start evaluation for a up to about 0.65 is 0. For @ = 0.75 it is 57 and for a =1
it is as high as 354. We note here that the best results known for the problem are
139 for I = 0, and 114 for [ > 1. The results within the time limit are shown in Table
7.15.
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Method « 1=0 =1 =2 =3 =4 =5 =10 Il =
First Enabled | - 133

Randomized - 54 54 54 51.9 47.2 47.3 47.3 50.7
Best Enabled 0 133 133 133 133 133 133 133 133
Best Enabled 0.25 92 92 92 92 96 97 92 71
Best Enabled 0.5 92 92 92 92 96 97 92 71
Best Enabled 0.75 92 92 92 92 96 97 92 92
Best Enabled 1.0 218 218 218 218 218 218 218 218
Rand. Best 0 54 54 54 54 54 54 47.7 49.8
Rand. Best 0.25 54 54 54 54 54 54 54 54
Rand. Best 0.5 54 54 54 54 54 54 54 54
Rand. Best 0.75 54 54 54 54 54 54 54 54
Rand. Best 1.0 122 122 122 129 171 171 175 183
DFS1 0 94 94 94 51 47 47 47 65
DFS1 0.25 54 54 54 54 96 97 92 56
DFS1 0.5 54 54 54 54 96 97 92 54
DFS1 0.75 63 63 63 54 51 54 54 56
DFS1 1.0 54 63 63 63 63 63 54 54
Restartl 0 54 63 63 63 63 63 47 47
Restart1 0.25 54 63 63 63 63 63 47 47
Restart1 0.5 54 55 55 71 96 97 47 47
Restart1 0.75 63 54 54 54 54 54 51 51
Restart1 1.0 55 55 55 55 52 56 51 51
DFS2 0 54 54 54 54 39 39 39 39
DFS2 0.25 54 54 54 54 39 39 39 47
DFS2 0.5 54 54 54 54 39 39 39 39
DFS2 0.75 63 63 63 63 39 39 39 39
DFS2 1.0 54 63 63 63 39 39 39 39
Restart2 0 54 54 54 54 39 39 39 39
Restart2 0.25 54 54 54 54 39 39 39 39
Restart2 0.5 54 54 54 54 39 39 39 39
Restart2 0.75 63 54 54 54 39 39 39 39
Restart2 1.0 55 55 55 55 39 39 39 39
Beam 0 54 54 54 54 39 39 39 39
Beam 0.25 54 54 54 54 39 39 39 39
Beam 0.5 54 54 54 54 39 39 39 39
Beam 0.75 54 54 54 54 39 39 39 39
Beam 1.0 54 54 54 54 39 39 39 39
Limited A* 0 54 54 54 54 39 39 39 39
Limited A* 0.25 54 54 54 54 39 39 39 39
Limited A* 0.5 54 54 54 54 39 39 39 39
Limited A* 0.75 54 54 54 51 39 39 39 39
Limited A* 1.0 54 54 54 54 39 39 39 39

Table 7.13: Results for Test 11.

Additional test facts

e Randomized. Around 7250 trials are made within the time limit. The standard
deviation increases from around 12 for [ = 0 up to 85 for [ = oc.

e Rand. Best. The algorithm has time for approximately 590 trials for [ = 0 and
390 trials with [ = 0o. The standard deviation is between 20 and 40 in most
cases.

e Beam. The beam width that gives a running time near the limit is around 460
for | = 0 and 220 for [ = co. Since the best results were obtained with a =1
we also tried increasing a beyond 1, but this made the results worse.

e Limited A*. The value of u that gives a running time near the limit is between
40 and 60 in most cases.
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Product type | Due date | Penalty factor
P1 150 2
P2 200 1
P3 180 4
P4 220 3

Table 7.14: Data for Test 12.

Discussion

We see that the results have a huge variation, and by examining the schedules we
can see that ones with similar makespan can have totally different objective value.
All methods except Randomized Best Enabled are in general helped by modified re-
maining product time calculations (o > 0). Beam Search with a = 1 gives the best
results by a large margin, and this confirms our belief that high values of the mod-
ification parameter should be good for tardiness penalties. Randomized Firing does
pretty well for small lookaheads. The Randomized Best Enabled method does not
give very good results except perhaps low values of a and [. The branch-and-bound
methods give disastrous results except for a few lucky shots. Limited Expansion A*
Search gives a few fairly good values but also many bad ones. These results show
that minimizing tardiness penalties can be a very difficult problem.

7.5.3 Test 13. A large number of products.

We now test an even larger problem to see if we get similar results. We have now
five items of each product type, giving a total of 20 products. As in the previous
problems, we assume linear tardiness penalties. The due date and the penalty factor
for the different product types are shown in Table 7.16.

Results

The start evaluation is 0 for a up to about 0.75. For a = 1 it is 750. The best
schedule known for the problem has a value of 201 (found with { = 0). The results
are shown in Table 7.17.

Additional test facts

o Randomized. About 4430 trials are made within the time limit. The standard
deviation lies between 20 and 60, except for [ = oo where it is over 100.

e Rand. Best. The algorithm has time for approximately 280 trials for [ = 0 and
195 trials with [ = co. The standard deviation is between 20 and 80 except for

some cases with large lookahead.

e Beam. The beam width that gives a running time near the limit is around 280
for I =0 and 130 for [ = co.

o Limited A*. The values of u that give a running time near the limit are between
20 and 40 in most cases.
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Method (e =0 =1 =2 =3 =4 =5 =10 Il = o
First Enabled | - 718

Randomized - 186.2 221.7 199.4 | 213.1 238.9 261.9 358.9 539.1
Best Enabled 0 718 730 754 799 844 844 844 844
Best Enabled 0.25 706 706 830 821 821 920 920 920
Best Enabled 0.5 630 669 669 669 721 695 1125 1125
Best Enabled 0.75 597 609 609 623 435 435 758 758
Best Enabled 1.0 1093 1012 1012 1012 1114 1205 1564 1418
Rand. Best 0 221.3 250.6 241.8 | 254.5 | 284.6 300.6 375.1 447.7
Rand. Best 0.25 212.8 271.8 262.4 | 283.8 | 305.8 320.7 343.0 417.4
Rand. Best 0.5 245.5 249.0 | 272.3 | 255.3 | 268.9 292.4 299.0 342.2
Rand. Best 0.75 | 406.7 | 375.5 | 405.3 | 385.8 | 398.9 378.9 344.6 362.6
Rand. Best 1.0 521.9 571.4 | 591.0 | 560.2 | 560.3 555.7 571.2 582.5
DFS1 0 664 676 700 700 700 719 719 719
DFS1 0.25 640 655 797 670 676 866 866 866
DFS1 0.5 555 621 621 481 637 546 1004 937
DFS1 0.75 271 271 271 271 288 419 526 526
DFS1 1.0 334 773 773 842 580 778 971 1078
Restart1 0 528 528 528 550 550 545 545 603
Restart1 0.25 382 487 495 515 515 515 463 463
Restart1 0.5 195 195 234 219 253 279 443 443
Restart1 0.75 545 557 557 393 352 352 490 676
Restart1 1.0 275 304 298 301 301 301 346 495
DFS2 0 328 443 582 652 646 646 646 595
DFS2 0.25 328 333 515 413 596 800 734 667
DFS2 0.5 192 256 306 306 474 415 873 732
DFS2 0.75 266 266 266 266 273 275 440 420
DFS2 1.0 334 408 257 329 602 753 791 819
Restart2 0 456 555 550 550 550 594 628 628
Restart2 0.25 456 505 514 553 618 660 528 528
Restart2 0.5 195 195 517 390 390 510 463 523
Restart2 0.75 397 310 376 382 346 346 551 672
Restart2 1.0 316 302 283 318 318 308 304 498
Beam 0 146 194 167 192 419 313 299 219
Beam 0.25 152 154 154 184 229 303 282 193
Beam 0.5 166 166 232 233 244 232 187 290
Beam 0.75 139 139 150 150 148 157 150 160
Beam 1.0 150 118 128 120 128 127 129 142
Limited A* 0 285 343 154 209 237 202 209 337
Limited A* 0.25 294 244 449 246 199 208 202 373
Limited A* 0.5 285 238 258 228 362 292 252 256
Limited A* 0.75 258 194 178 266 262 198 240 210
Limited A* 1.0 190 190 207 201 628 464 183 317

Table 7.15: Results for Test 12.

Discussion

This test amplifies many of the trends seen in the previous one. All methods except
Randomized Best Enabled improve their results when modified remaining product
time calculations are used (a > 0). The branch-and-bound methods give their best
results (which still are very bad) at @ = 1, whereas the best setting seems to be
a = 0.75 for Beam Search and Limited Expansion A* Search. Beam Search again
gives the best results. Randomized Firing does well for [ = 0.

7.5.4 Conclusions

These tests on tardiness penalties show the merit of the modified remaining prod-
uct time calculations. They also support the conclusions from the makespan tests
that Beam Search gives the best results and that Randomized Firing with a small
lookahead (zero for the larger problems) is a fairly good and stable alternative to the
former. The best results are obtained with high values of the modification parameter
(a > 0.5) , in most cases with the worst case estimation o = 1. This confirms our
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Product type | Due date | Penalty factor
P1 350 3
P2 400 2
P3 250 1
P4 300 4

Table 7.16: Data for Test 13.

theoretical discussions.
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Method a | = =1 =2 =3 =4 =5 =10 = 00
First Enabled | - 3608

Randomized - 347.7 | 449.6 | 488.0 | 538.4 | 588.0 | 703.8 | 1054.1 1708.9
Best Enabled 0 3631 3631 3651 3663 3663 3663 3663 3663
Best Enabled 0.25 3608 3907 3953 4005 4005 4005 4005 4017
Best Enabled 0.5 3493 3677 3677 3677 3701 3701 3701 3701
Best Enabled 0.75 2412 3232 3232 3232 3232 3855 4199 4199
Best Enabled 1.0 1970 1941 1941 1717 2121 1789 2899 3325
Rand. Best 0 452.9 | 538.9 | 566.0 | 587.2 | 662.7 | 727.5 849.3 1190.2
Rand. Best 0.25 | 474.4 | 567.9 | 591.2 | 628.8 | 682.7 | 752.7 908.9 1076.4
Rand. Best 0.5 519.6 | 572.4 | 560.1 | 625.4 | 696.9 | 760.8 870.8 935.0
Rand. Best 0.75 | 629.3 | 656.5 | 640.1 | 713.8 | 732.0 | 758.4 859.8 948.4
Rand. Best 1.0 823.8 | 837.7 | 827.8 | 849.3 | 834.6 | 832.1 917.3 1047.9
DFS1 0 3631 3631 3651 3651 3651 3651 3651 3651
DFS1 0.25 3608 3907 3953 3953 3953 3953 3953 3953
DFS1 0.5 3493 3677 3677 3677 3701 3701 3701 3701
DFS1 0.75 1863 2853 2956 2700 2952 3668 4165 3907
DFS1 1.0 1162 1323 1341 1285 1202 1449 2737 2987
Restartl 0 2493 2493 2493 2528 2588 2588 2613 2626
Restartl 0.25 2224 2294 2302 2294 2366 2366 2366 2366
Restartl 0.5 2224 2294 2294 2310 2334 2334 2334 2334
Restartl 0.75 1483 1351 1761 1805 1955 1955 2517 2769
Restartl 1.0 1399 1752 1776 1717 1417 1789 2514 2665
DFS2 0 3027 3308 3381 3483 3570 3570 3570 3631
DFS2 0.25 2904 3607 3708 3822 3892 3934 3934 3829
DFS2 0.5 2366 2578 3137 3438 3586 3627 3677 3485
DFS2 0.75 1175 1708 1955 2704 2895 3696 3737 3649
DFS2 1.0 1162 1197 1309 1285 1249 995 2561 2965
Restart2 0 2493 2493 2493 2553 2626 2626 3064 3122
Restart2 0.25 2224 2294 2302 2294 2366 2366 3098 3110
Restart2 0.5 2224 2294 2294 2310 2334 2334 2571 2822
Restart2 0.75 1483 1809 1941 1955 2374 2735 2769 3326
Restart2 1.0 1271 731 1591 1499 1417 1745 1545 2213
Beam 0 1111 750 1020 1012 1444 1434 1404 1428
Beam 0.25 631 531 697 837 861 816 937 681
Beam 0.5 319 435 499 473 565 557 451 508
Beam 0.75 201 229 499 441 545 534 1016 726
Beam 1.0 336 380 394 469 531 577 737 532
Limited A* 0 1430 1402 1382 1813 1756 1512 1954 1494
Limited A* 0.25 940 844 973 1299 884 641 980 1386
Limited A* 0.5 1003 523 597 677 509 711 533 749
Limited A* 0.75 512 571 445 341 730 872 751 782
Limited A* 1.0 515 773 736 787 o) 898 1185 1174

Table 7.17: Results for Test 13.
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Chapter 8

Summary and conclusions

Now we will summarize the main results from this work and draw some general
conclusions.

8.1 General remarks on modelling and solution tech-
niques

We have studied an application that requires the challenging combination of detailed
modelling and short execution time. The decision support system is intended to
compare a number of possible scenarios when consulted by a user. We have identified
the modelling and solution of the scheduling problems associated to these scenarios
as the key to good performance for the system. After studying techniques for similar
scheduling problems, we come to the conclusion that there is typically a conflict
between modelling power and solution efficiency. The most efficient solution methods
are based on the disjunctive graph model, but they are hard to generalize to more
realistic models. CLP and discrete event methods offer the best modelling features,
but have different types of efficiency problems.

Although CLP schedulers have fast specialized propagation mechanisms for some
of the basic scheduling constraints, they have to rely on more general and possi-
bly slower techniques for other constraints. Some modelling features are possible to
include in the scheduling system, but require several constraints and complex ex-
pressions. This raises some question marks regarding a CLP scheduler’s ability to
produce solutions fast also for larger problems.

Discrete event based schedulers face another kind of problem: they are restricted
to use sequential search methods. The search tree to explore has a very high degree
of redundancy with respect to different paths, making it impossible to solve larger
problems optimally. However, finding some solution fast is very easy, so properly
designed search methods will always give a decent schedule even for large problems.

8.2 The Petri net model

For reasons discussed, we chose a discrete event model for the scheduling system. We
decided to use a Petri net as the basis for this model, the main reasons for this are:

¢ It has a graphical representation.
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e Its behaviour is clearly defined and can easily be expressed mathematically.
e It allows for many of the modelling features we required.
e Research done on Petri net scheduling shows some promising results.

By using a partially new timing concept with timestamps for tokens and time de-
lays associated to output arcs we could further increase the modelling power, at
the expense of a more complicated and memory-consuming implementation giving a
slightly decreased speed. It is possible to take further steps in this direction, by al-
lowing some tokens to carry more information and to have additional data associated
to transitions and arcs.

8.3 Scheduling problems

We have mainly studied two problem types, minimization of makespan and mini-
mization of tardiness penalties, with the aim of dealing with a third: minimization
of total costs. Because of its simplicity the makespan problem has been extensively
researched using different types of models and solution methods, but its practical
usefulness is limited. Still, it remains one of the more challenging problems in combi-
natorial optimization. However, compared to the minimization of tardiness penalties,
makespan problems are pretty well behaved.

Not only is the former problem harder to model, it is also much more difficult
to solve. Apart from making sure that the overall production rate is high in the
system, the order in which products are completed is crucial. One effect of this
is that instances of the problem show large variations in objective value between
schedules that are of similar makespan. It is also hard to find good estimates of the
objective value for partial schedules, especially if one desires a lower bound, and this
makes it difficult to build informed search methods that work well.

Luckily, the step from minimization of tardiness penalties to minimization of total
costs is not that long, or at least so we believe. Adding costs for activities should
not introduce any new problems, it is just the book-keeping that gets slightly more
complicated.

8.4 Solution methods

We have evaluated a number of solution methods on a set of test problems, with
different objectives, evaluation functions and parameter settings. We can come to a
conclusion regarding a feature that all solution methods share: the limited lookahead
heuristic is a good addition to all of them. Without imposing any computational over-
head, it makes a reduction of the search space, the magnitude of which is controllable
with the lookahead parameter [. With an appropriate choice of the latter, there are
still many good paths in the reachability graph even though its size is significantly
smaller than without the heuristic. This proves to be beneficial for time-limited
algorithms, especially for large problems.

Even though we are mostly interested in minimization of tardiness penalties,
our general conclusions on the merit of different solution methods hold also for the
makespan objective. Beam Search shows the overall best results. The success is
probably due to its ability to carry several partial solutions in parallel until it is
visible in the evaluation function which ones are the best. This means that it works
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well also when the evaluation function gives guidance globally but not so much locally
(i.e. selecting the next transition to fire for a given marking), whereas this is not the
case for the depth-oriented search methods. The drawback of Beam Search is that
it does not give a complete schedule if interrupted prematurely, so one has to let it
run until it is done. Fortunately, the execution time is pretty easy to predict and
control by the setting of the beam width. Using some empirical data, it should be
possible to construct the system so that the problem size is analysed and the beam
width adjusted prior to execution, giving a resulting running time quite close to the
desired one. If one is willing to sacrifice the fixed time limit, an alternative is to use
a fixed beam width for all problem instances. This will give better results for the
larger problems at the expense of an increased running time. The tests show that
the results become fairly stable at a good level around a beam width of 150 — 200.

Apart from Beam Search, we recommend that the Randomized Firing algorithm
is implemented into the system. This recommendation is based mainly on its great
flexibility to be used with any modelling feature and objective function, but also the
fact that it for small lookaheads gives fairly good and stable results for all problems
tested. For larger problems, the lookahead should probably be set to zero (i.e. eager
firing) in the algorithm. An alternative to using only one of these methods for a
particular problem is to use a hybrid method, allocating e.g. 25 % of its time on
Randomized Firing and the rest on Beam Search.

The rest of the tested solution methods are for different reasons not as suitable
for the scheduling system, at least not in their present form. The Randomized Best
Enabled method does not have the flexibility of the uninformed Randomized Firing
algorithm, so the only reason for including it in the system would be if it could
be improved so that it would outperform Beam Search. A possible development of
the method would be to extend the random selection to choices with similar but
not necessarily exactly the same evaluation. Although this would probably eliminate
some of the bad behaviour observed in the tests, it does not seem very likely that this
would give a significant overall improvement. The branch-and-bound algorithms give
bad results for the larger problems, so they are not useful other than for optimality
proofs of smaller problems. The Limited Expansion A* method is not as efficient
as Beam Search, and has in addition some unwanted characteristics. It occasionally
gives quite bad results, and even worse, it sometimes fails to produce any solution.
The running time is also much harder to estimate a priori.

We have seen for the makespan problems that it is advantageous to use an evalua-
tion function that focuses both on products and resources. For the tardiness penalties
problems, it is not only advantageous but absolutely necessary for larger problems.
The approximate evaluation function f5 is one of the most important contributions
of this work. It modifies the remaining processing time of a product according to the
workload on the resources used, giving a much more useful estimate than the lower
bound obtained without modification. In agreement with the theoretical discussion,
the best values for the modification parameter a proved to be the ones corresponding
to low product priority (« > 0.5) for the tests made with beam search on tardiness
penalties.

8.5 Limitations

The model and solution methods we have developed are intended for scheduling
problems with many detailed real-world constraints that must be solved with respect
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to total costs within a short limited computing time. How useful is our approach
when we change some of these conditions?

We start with relaxing the limited computation time, and allow longer times (say
a few minutes) that can vary between different problem instances. The randomized
algorithms will probably only improve their results marginally given more computing
time, whereas the other algorithms can be expected to improve more. On large-size
problems, the branch-and-bound methods will probably still not be able to compete
with the other methods. We believe that Beam Search would still perform best.
However, previous approaches in Petri net scheduling, such as a pure A* algorithm
with a depth-dependent evaluation function, may also be useful in such a case. It
would also be interesting to compare the performance with a CLP-approach having
the same modelling features.

Our scheduling model is designed for problems that are not extremely large, say
up to about 10 machines and 30 jobs. If used for larger problems, we would probably
have to increase running times in order to get reasonably good results. But for such
a large-scale problem it is probably better to solve a simplified problem on a general
level, taking care of details in more manageable sub-problems.

If we relax many of the modelling requirements we have for our system so that
e.g. disjunctive graph or Lagrangian relaxation approaches also could be used for
the problem, they would probably outperform our methods, at least if we allowed
slightly more computing time.

8.6 New contributions

To summarize, we will now point out some areas where we have made new contribu-
tions compared with previous research.

The application.

- The idea of a decision support system for scheduling on the detailed work
center level is to the best of our knowledge new.

The literature review.

- We studied existing modelling and solution techniques from different re-
search areas with the aim of investigating the possibilities for quickly solv-
ing a detailed scheduling problem with total costs as the objective.

The Petri net model.

- The new timing concept allowed us to build a model more general and
compact than previous approaches in Petri net scheduling.

- We created a total costs objective function in the Petri net model.
e Time-limited solution methods for Petri net scheduling.

- We evaluated several solution methods suitable for a short limited com-
puting time. As far as we know, the only methods among those we tried
that have been tested earlier are branch-and-bound with depth-first-search
and the limited expansion A* search algorithm.

- We discovered that global beam search can produce very good results.
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e Evaluation functions.

- We created building blocks for evaluation functions that allow for several
modelling features.

- We developed the evaluation function fs for the objective of minimizing
tardiness penalties. This function has the ability to take the workload of
resources into account when estimating the remaining time until a product
is completed, which is necessary when the number of products is large. The
function proved to work well with beam search in tests.

e Search space reduction techniques.

- We introduced the limited lookahead heuristic which improves the effi-
ciency of most methods.

- We examined how search space reduction techniques affect optimality.
We discussed the effect of limited lookahead (and in particular non-delay
scheduling) and duplicate checking and the combination of the two.
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Chapter 9

Suggestions for future
research and development

In this chapter we will point out some possible directions of future research and
development for the decision support system.

9.1 Further tests with the current algorithms

It would be useful if the algorithms were tested on other example problems, in order
to confirm or reject the conclusions drawn so far. The new tests should be focused
mainly on minimization of tardiness penalties. Since the examples tested here only
include a subset of the possible modelling features, a couple of new work center
examples having some more could be tested. The most important feature not yet
tested is flexible routing.

9.2 Improving the algorithms

The limited lookahead heuristic and duplicate checking are two mechanisms that re-
duce the search space. One line of research could be to investigate if it is advantageous
to incorporate other search space reduction techniques into the algorithms. These
techniques could be either exact (i.e. guaranteed to not cut off all optimal paths) like
the duplicate checking!, or approximate like the limited lookahead heuristic. One
example could be to always fire transitions that are not in conflict with any other
enabled transition as soon as possible.

9.3 Analyzing the modified remaining product time
calculations

The modified remaining product time calculations have shown very good results when
used with beam search for the minimization of tardiness penalties. We have given
some arguments for the soundness of these calculations and discussed its physical
interpretation, but we are still a bit away from understanding its actual behaviour

IFor full lookahead.
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during a search process. Studying the calculations in detail for some search nodes of
a problem might give more insight to e.g. why it is not always better than unmodified
calculations at the local level of evaluating child nodes for the next transition to fire.
This could give clues of how to further improve the evaluation function.

We note that we have during tests found some interesting facts that lead us to
believe that it can be worthwhile to investigate these calculations further. In an early
implementation of f5, the correct timestamps of tokens arriving earlier than the due
date to goal places were replaced by the due dates. This does of course not affect
the objective value, but it gives tfng (M) another value than intended. Interestingly,
the correct implementation of f5 (for which we have presented results) does not
always give better results than this first (erroneous) version. For example, the best
value (114) known for the problem of Test 12 was found with the first version. This
indicates that the time which ¢t¥(M, R) is compared with in (6.2) is important for
the performance. One idea for investigating this could be to replace LY (M) by

avg
BtEM (M) in (6.2), and test different values for the parameter 3.

avg

9.4 Developing a total costs model

The most natural continuation of this project is of course to extend the methods
for minimization of tardiness penalties to the total costs case, a task that should
not be too difficult. When this is done, one can start to test the system in decision
support situations with multiple scheduling scenarios. When the solution methods
work satisfactorily for these problems, focus can be shifted towards improving the
implementation of the test versions in order to reduce running time and memory
consumption. As mentioned earlier, it should be possible to improve the efficiency
considerably.

9.5 Improving the decision support logic

Instead of a priori deciding which scheduling scenarios to evaluate, one could inves-
tigate strategies that add certain scenarios only if other scenarios have been inves-
tigated first and found not to be satisfactory. For example, if a scenario leads to a
schedule where all due dates are met, it is of course a waste of time to also investigate
a scenario with the same starting conditions but with overtime ordered. One could
also analyze if it could be worthwhile to examine other scenarios than those stated
in Section 5.4.6, e.g. buying a product type that shows to be difficult to deliver in
time or hiring an additional operator if this resource is identified as a bottleneck.

Another way of improving the system could be to investigate scenarios that cor-
respond to more than one special action. There must be some intelligence in the
system for selecting only the relevant combinations of actions, otherwise the number
of scenarios may be too large.

9.6 Trying other approaches

It would also be of interest to further investigate if we could get the same modelling
features as for the Petri net based scheduler with another approach. And if this shows
to be the case, we should of course try to compare the methods quantitatively on
some test problems. For most approaches this would require large amounts of work,
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but a candidate that would be more easy to evaluate is the CLP-based commercial
product ILOG SCHEDULE which has many of the modelling features we are looking
for.
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