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Abstract

Model Predictive Control has been widely used in industrial practise, but has been
restricted to applications with relatively slow dynamics in the past due to limited
computational power. Its capability of handling constraints easily makes it very attractive
for a wider range of application though.

The purpose of this thesis is to investigate Model Predictive Control for a 3DOF Labora-
tory Helicopter, which offers fast dynamics and nonlinearities which may be unknown.
A nonlinear mechanical model of the helicopter is developed and model parameters are
identified. After linearisation the model is split into three parts, one for each axis. Indi-
vidual Model Predictive Controllers are implemented in a cascation structure to decrease
computational complexity. Input disturbance estimators are used to achieve zero-offset
control. Nonlinear effects are included in the MPC as measured disturbances. A terminal
weight and terminal set are implemented in order to prove stability. Experimental results
are employed to investigate the controller’s performance and properties.

The results show that an excellent controller performance can be achieved with MPC,
mainly because the constraints can be enforced easily. It is not possible though to formally
show stability within a reasonably large feasible set as control and prediction horizon
are very restricted due to computational limitations. This shows that computational
limitations are still the main challenge for proofing stability of Model Predictive Controllers
in practise.
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1 Introduction

Model Predictive Control is an optimal control method which originates in the process
industry. The core idea of Model Predictive Control is to repeatedly solve a finite
horizon optimal control problem at every time step, but only apply the very first input
signal supplied by the optimisation algorithm. This process is then repeated for every
proceeding time step. The main advantage of Model Predictive Control is that no explicit
control law is needed as only a finite optimal control problem is solved at every time
step using a numerical optimisation algorithm. Consequently, system constraints can be
handled very easily, which is often impossible for infinite optimal control. In practise this
can be very beneficial, as many plants are most effectively operated near their physical
constraints. Unfortunately, the main advantage of Model Predictive Control is also its
biggest flaw: As an optimal control problem has to be solved at every single time step,
Model Predictive Control is extremely computationally demanding. This is especially
the case for systems with fast dynamics and thus small sampling intervals, which leaves
very few time for the optimisation algorithm to solve the problem. This is the main
reason why Model Predictive Control had been restricted to the process industry in the
past where the dynamics are very slow, often with sampling intervals of several minutes.
But with much more computational power nowadays, Model Predictive Control becomes
available to much faster systems. Nevertheless, computational demand remains the main
issues in Model Predictive Control. An additional challenge in Model Predictive Control
is to systematically show stability. When Model Predictive Control started in the process
industry, no formal stability theory was available. Over the last decades a lot of research
was done on the topic which resulted in a mainly Lyapunov based stability theory for
Model Predictive Control. Nevertheless, this stability theory is hardly used in industrial
practise to this day. One of the reasons is that this stability theory often has additional
computational demands.
This thesis investigates the implementation of a Model Predictive Controller on a system
with fast dynamics and considerable nonlinear effects. The main focus lays on how to
deal with the computational demand and the performance and practicability of the Model
Predictive Controller compared to traditional methods. Additionally, the stability theory
is implemented for this application and conclusions are drawn on its feasibility in practise.
A Quanser helicopter with 3 degrees of freedom will be used as a benchmark system.
It consists of two rotors mounted on an arm which can be elevated up and down and
rotated around a vertical axis. The helicopter offers relatively fast dynamics and due

1



2 1 Introduction

to its multibody character considerable nonlinear effects. As it is used by universities
all over the world in in laboratories and to benchmark different kind of controllers, it is
ideal to compare Model Predictive Control to other methods.



2 Experimental Setup

The 3 degrees of freedom (3DOF) helicopter is designed and manufactured by the
Canadian company Quanser. It is depicted in Figure 2.1. The helicopter consists of
a base on which a turn-able axis is mounted vertically (A in Figure 2.1). An arm is
attached on the top of that vertical axis (B). This arm can be moved up and down. The
actual helicopter is attached to the front of this arm (C). It can be pitched up and down.
Addtionally, a counterweight is attached to the back of the arm (D).

There are 3 incremental angle sensors, one for each axis ((s) in Figure 2.1). Both rotors
can be steered individually.

Travel

Pitch

Elevation

A

B

C

D

s

s

s

Figure 2.1: Quanser 3DOF Helicopter (Picture Source: [exp]).

The helicopter can be controlled using Quanser’s Rapid Prototyping Software and
Hardware, which is called QUARC. It provides an interface to Matlab-Simulink. The
Simulink models need to be compiled into C-Code to work on QUARC.

3



4 2 Experimental Setup



3 Model Identification

In this chapter, a coordinate system and conventions for the Quanser 3DOF Helicopter
are defined. Then a nonlinear model structure is derived.

In the second part of the chapter, model parameters are identified and analysed using
several experiments conducted on the real plant.

In the third part, the model is verified by comparing open-loop simulation and experiments
on the real plant.

5



6 3 Model Identification

3.1 Modeling

3.1.1 Conventions and Coordinate Systems

Distances

All geometric distances will be labeled with d and are measured in meters. The index
will specify to which axis the distance belongs, for example dθh belongs to the θ axis.
The other index h indicates that dθh is referring to a height.

Angles

All angles will be labeled by Greek letters.

Identified Parameters

All parameters which are identified experimentally are labeled with a k. The index
specifies the purpose of the parameter, for example kthrust.

Momentums

All momentums are referred to with a capital M . The index will indicate the cause of
the momentum in the first letter. There are 3 types of causes:

1. Mg: Momentums caused by the gravitational force

2. Mm: Momentums caused by the motors

3. Mr: Momentums caused by relative forces in the multibody system.

3.1.1.1 Coordinate Systems

Pitch Axis

• Positive θ if the front rotor goes down (the front motor is labeled on the helicopter)

• Zero if parallel to the ground

• Negative θ if the front rotor goes up
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Elevation Axis

• Negative φ if the helicopter is below the joint.
• Zero φ if bottom of the helicopter is parallel to the joint of the elevation axis.
• Positive φ if helicopter is above the joint of the elevation axis.
• The sensors are initialised on the ground, so an elevation offset has to be programmed

in the Simulink model. The offset is φ0 = −0.7164rad.

Travel axis

• Positive ψ if rotating in the right hand sense (as depicted in Figure 2.1)
• Zero ψ at starting point
• Negative ψ if rotating in the left hand sense

3.1.2 Rotor Thrust

The aerodynamic lift produced by the rotors depends quadratically on their rotational
rates ωf and ωb respectively. This is due to the fact that the aerodynamic lift of an
object depends on its squared speed and two constant factors:

Flift = 1
2clAv

2,

where cl is an aerodynamic coefficient, A the effective surface area and v the speed of
the object. For further details, please consider [Ste03]. The rotational rate of the rotors
depends on the impressed voltage and the motor dynamics. As the motor dynamics are
very fast, they are neglected. As a result, the lift forces can be described by

uf = kfthrustU
2
f

ub = kbthrustU
2
b , (3.1)

where Uf is the voltage impressed on the front motor and Ub on the back motor respectively.
The factors kfthrust and kbthrust have to be identified experimentally.

It is convenient to define the sum force and the difference force of the motors as inputs
to the system:

u =
[
usum

udiff

]
=
[
uf + ub

uf − ub

]
. (3.2)
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This yields

uf = 1
2(usum + udiff )

ub = 1
2(usum − udiff ).

3.1.3 Pitch

F_f

F_b

F_g

Θ

d_θh1

d_θw

d_θh1

A

Figure 3.1: Outline of the Pitch Axis.

On the pitch axis, there are three main forces: the thrust of the front motor uf , the
thrust of the back motor ub and the gravitational force Fg. There are additional relative
forces such as the Coriolis force, since the helicopter is rotating around the travel and
elevation axis.

Those forces result in momentums around the pitch axis. The momentum around the
joint produced by the motors can be described by

Mmdiff = dθwub − dθwuf = dθw(ub − uf︸ ︷︷ ︸
udiff

).

Because the joint is not attached to the center of mass of the helicopter, the gravitational
force also results in a momentum around the joint. It is difficult to determine the center
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of mass. The momentum could be determined experimentally though. To do so, the
weight of the helicopter at point A (See Figure 3.1) for different pitch angles will be
measured. The momentum Mgθ around the joint can then be calculated as follows:

Mgθ =
√
d2
θh1 + d2

θw︸ ︷︷ ︸
dθh

sin(θ)Fgmeas(θ),

where Fgmeas(θ) is the measured force at point A.
It also turned out that the weight on the pitch axis is not distributed symmetrically. The
helicopter has the tendency to tilt to the side of the front motor. This means that the
helicopter’s front motor is slightly heavier or that it is mounted slightly further from the
joint.

Additionally, the Coriolis Effect has to be taken into account. Because of this effect, the
pitch angle tends to go to zero, when the helicopter is rotating around the travel axis. It
depends on the travel speed and the pitch angle.

[Wol11] also modeled friction in the pitch joint, but it is very small. It will be neglected
here.

The inertia Jp around the pitch axis has been determined by [Eit11].

Using the principle of conservation of momentum, those considerations result in the
following model for the pitch axis:

Jpθ̈ = Mmdiff (udiff ) +Mgθ(θ) +Mrcor(θ, ψ̇)
= dθwudiff + dθhsin(θ0)Fmeas +Mrcor.

3.1.4 Elevation
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-φ

F_g

x_1

d_φ

Figure 3.2: Outline of the Elevation Axis.

On the elevation axis, there are two forces involved: the gravitational force Fg and the
part of the thrust force of the motors F vm vertical to the x1 axis.
The thrust force F vm causes a momentum around the joint, which can be described by

Mmthrustφ = dφcos(φ) (Ff + Fb)︸ ︷︷ ︸
usum

.

The gravitational force Fg causes a gravitational momentum Mgφ. [Wol11] tried to model
this momentum using geometry. Nevertheless, it is more practical and precise to obtain
this static momentum by measuring the force at point B (see Figure 3.2) for different
angles φ using a weighting scale. With this measurements, the gravitational momentum
with respect to the joint can be obtained by

Mgφ = dφcos(φ)Fmg(φ).

[Wol11] also modeled friction on this axis, but it is very small and will not be modeled
here.
Because of the rotation around the travel axis the relative forces are relevant on the
elevation axis. This rotation creates a centrifugal force which drives the helicopter
upwards. [Wol11] used geometry to calculate this centrifugal force. To do so, he had to
make some approximations. As the centrifugal force only depends on the rotation around
the travel axis and a constant factor, it seems more feasible to determine it experimentally
though. In the experiment, the helicopter is rotated around the travel axis. After some
time, it will set to a certain elevation angle φ. Then, the part of the centrifugal force
perpendicular to the x1 axis is equal to the gravitational force for this elevation. The
centrifugal force can be described by

Mrcen = kcenψ̇
2,
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where kcen is a scalar constant and ψ̇ the rotational speed around the travel axis. The
details of this experiment are explained in the corresponding chapter on identification
(3.2.4).

Another important momentum is caused by the rotors themselves. Because both rotors
are mounted in the same direction, air drag causes a torque around the rotational axis of
the rotors. Air drag can be described by

Fdrag = 1
2cdρAv

2,

where cd is the aerodynamic drag coefficient, ρ the density of the air and A the effective
surface area of the rotors.

[Wol11] has shown that the drag momentum depends quadratically on the rotor’s thrust.
Thus

Mmdrag = kmdrag(u2
f + u2

b) = 1
4kmdrag((usum + udiff )2 + (usum − udiff )2)

= 1
2kmdrag(u2

sum + u2
diff )

where kmdrag is a constant factor to be identified.

So the effective torque on the elevation axis is

M e
m torque = 1

2kmdragsin(θ)(u2
sum + u2

diff ).

Using the principle of conservation of momentum, those considerations result in the
following model for the elevation axis:

Jeφ̈ = Mmthrustφ(usum) +Mgφ(φ) +Mrcen(ψ̇) +M e
m torque(usum, udiff ) (3.3)

= dφcos(φ)usum + dφFmg(φ) + kcenψ̇
2 + 1

2sin(θ)kmdrag(u2
sum + u2

diff ). (3.4)

3.1.5 Travel
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Figure 3.3: Outline of the Travel Axis.

Around the travel axis, there are two significant forces. The first one is the thrust force
of the engines perpendicular to the travel axis. This force can be approximated by

F hm = sin(θ)usumTerminalConstraint

(ignoring the fact, that the joint is not directly attached to the arm, but slightly above).
This yields the momentum

Mmthrustψ = dψF
h
m

= dψsin(φ)usum

As for the elevation axis, the rotor’s torque has an impact on the behaviour on the travel
axis. It can be described by

M t
m torque = 1

2cos(θ)kmdrag(u
2
sum + u2

diff ).

Additionally, the friction on the travel axis is notable. Therefore, a linear friction term
will be assumed:

Mfriction = −kfrictionψ̇,

where kfriction is a constant factor to be determined.

The parameter kfriction can be obtained with the same experiment used to identify the
centrifugal force. There, the helicopter is rotating around the travel axis. Because of the
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friction, the rotational speed decreases. This can be used to determine the friction: If
the motors are offline, it can be said that

Jtψ̈ = Mfriction

= −kfrictionψ̇.

Solving this differential equation yields

ψ̇(t) = ψ̇(0)e−
kfriction

Jt
t
.

This function can then be fitted into the measurements of the experiment to obtain d.

All together, the angular momentum around the travel axis can then be described as

Jtθ̈ = Mmthrustψ(θ, φ) +M t
m torque(θ, usum) +Mfriction(ψ̇) (3.5)

= dψsin(θ)usum + 1
2cos(θ)kmdrag(u2

sum + u2
diff )− kfrictionψ̇. (3.6)

3.1.6 Summary

With the models for each individual axis derived above, a representation of the helicopter
dynamics can be summed up by

Jpθ̈ = Mmdiff (udiff ) +Mgθ(θ) +Mrcor(θ, ψ̇)
Jeφ̈ = Mmthrustφ(usum) +Mgφ(φ) +Mrcen(ψ̇) +M e

m torque(usum, udiff )
Jtθ̈ = Mmthrustψ(θ, φ) +M t

m torque(θ, usum) +Mfriction(ψ̇)

or

Jpθ̈ = dθwudiff + dθhsin(θ0)Fmeas +Mrcor

Jeφ̈ = dφcos(φ)usum + dφFmg(φ) + kcenψ̇
2 + 1

2sin(θ)kmdrag(u2
sum + u2

diff )

Jtψ̈ = dψsin(θ)usum + 1
2cos(θ)kmdrag(u2

sum + u2
diff )− kfrictionψ̇

respectively.
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This provides the following State Space model

ẋ1 = x2 (3.7)

ẋ2 = 1
Jp

(dθwudiff + dθhsin(θ)Fmeas +Mrcor)

ẋ3 = x4

ẋ4 = 1
Je

(dφcos(x1)usum + dφFmg(x3) + kcenx
2
6 + 1

2sin(x3)kmdrag(u2
sum + u2

diff ))

ẋ5 = x6

ẋ6 = 1
Jt

(dψsin(x1)usum + 1
2cos(x1)kmdrag(u2

sum + u2
diff )− kfrictionx6)

where x1 = θ, x2 = θ̇, x3 = φ, x4 = φ̇, x5 = ψ, x6 = ψ̇. Following definition (3.2), usum
and udiff are inputs describing the sum and differential of the thrust force of the rotors.
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3.2 Parameter Identification

3.2.1 Thrust Force

For the thrust force, the parameters kbthrust and kfthrust in equation (3.1) have to be
identified.

To do so, the motor’s thrust is measured using a weighting scale for increasing impressed
voltages. This seems like a simple task, there are some problems to deal with though:

1. The individual motors do not produce the same thrust for equal impressed voltages.
Consequently, kbthrust and k

f
thrust can not be identified at the same time by measuring

the sum force of the motors. As a results, the motors had to be dismounted from
the helicopter to be able the measure their thrust independently (See Figure 3.4)

2. If rotors are operated very close to the ground, the so called ground effect causes
an increase in the rotor thrust (further details see [Ste03]). This is normally not
problematic for the laboratory helicopter, as it will be operated high enough above
the ground. For the identification though, the motors have to be mounted to the
weighting scale (See Figure 3.4). So they are close to the ground and the ground
effect is disturbing the measurements consequently.

The experiment results in the relation depicted in Figure 3.5. One can clearly see that

Figure 3.4: Thrust Identification: Detached Rotor and Weighting Scale.

the front motor produces more thrust for the same impressed voltage than the back
motor. Because of the proximity of the rotors to the ground, the relation in Figure 3.5
has a certain offset from the real values due to the ground effect. To deal with this, it is
assumed that the ground effect acts proportionally to the provided thrust, thus

FG.effect = kgFthrust.
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Figure 3.5: Measured Thrust Levels for Different Voltages.

By comparing the relation in Figure 3.5 to the gravitational momentum on the elevation
axis in hovering experiments, it turned out that the ground effect is rather significant
with kg = 1.42.

Another problem was that the measured difference of the motors had some small errors.
To compensate, the thrust of the back motor was multiplied with a correction factor of
kc = 0.98 (see Figure 3.6).

Because relation (3.1) is static, it is not directly part of the model used in the controller.
Instead is has been implemented as a Look-Up-Table in the Simulink interface used to
control the helicopter (see Figure 3.6). Therefore kbthrust and k

f
thrust were not determined

explicitly.
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Figure 3.6: Simulink Implementation Thrust Force.

3.2.2 Inertias

The intertias used in this thesis have been experimentally identified by [Doh11], see
Table 3.1. In these experiments, disks had been added to each axis. Specific weights had
then been attached to those disks. Using step experiments, the intertias have then been
identified. For further information see [Doh11], page 32.

Table 3.1: Intertias Identified by [Doh11].

Parameter Value
Jt 1.1785kgm2

Jp 0.0398kgm2

Je 1.1555kgm2
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3.2.3 Pitch

Gravitational Force Mgθ

As mentioned before, there are two effects causing the gravitational force on the pitch
axis:

• Center of mass is not in the joint

• Front motor is heavier than the back motor

Unfortunately, as the gravitational force on the pitch axis is rather small, it was not
possible to get accurate and consistent measurements with the available weighting scale.
Therefore, the gravitational force will be neglected. Thus the gravitational momentum is
assumed to be

Mgθ = 0Nm.

Coriolis Force

Even though the Coriolis does have some impact, its identification was very difficult as
it could not be investigated independent from other influences such as the centrifugal
force and wind resistance. As it was not possible to gain an exact model of those forces
either, the Coriolis force could not be isolated in experiments. Therefore it is assumed
to be zero. The controller will later deal with this unknown force by using disturbance
estimation methods.

Resulting Model on Pitch Axis

With the gravitational and the Coriolis force neglected, the model around the pitch axis
simplifies to:

ẋ1 = x2 (3.8)

ẋ2 = 1
Jp
dθwudiff (3.9)
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3.2.4 Elevation

Gravitational Momentum Mgφ

In order to determine the gravitational momentum Mgφ, the gravitational force Fmg(φ)
at point B (see Figure 3.1) has been measured for different elevation angles φ using a
weighting scale. Those measurements can be interpolated by a linear function (see Figure
3.7) .
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Figure 3.7: Measured Gravitational Force Mgφ for Different Elevation Angles.

Linear approximation:

Fmg(φ) = (1.996(φ+ 0.71) + 0.3383)N

Consequently the gravitational momentum Mgφ can be described by

Mgφ(φ) = dφcos((φ+ 0.71))Fmg(φ)
= dφcos((φ+ 0.71))(1.996(φ+ 0.71) + 0.3383)N
= dφcos((φ+ 0.71))(1.996φ+ 1.7555)N (3.10)
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Centrifugal Force

In order to determine the centrifugal force, the following experiment was conducted:
The helicopter is rotated around the travel axis. When rotating, the centrifugal force
counteracts the gravitational momentum on the elevation axis, pushing the helicopter
upwards. As a result, gravitational momentum and centrifugal momentum compensate
each other and the helicopter reaches a certain equilibrium elevation angle for a certain
travel speed. The results can be seen in Figure 3.9. This relation can be used to derive
an estimation of the centrifugal force.
It is important to note that the centrifugal force is not acting directly on the elevation
axis. It is acting perpendicular to the travel axis, pushing the helicopter outwards. If the
arm is not perpendicular to the travel axis, a force Fup will then act upwards (see Figure
3.8). It can be described by

Fup(φ, ψ̇) =tan(φ)Fcen(ψ̇). (3.11)

Here, Fup is compensating the gravitational momentum in the experiment. One might
expect to be able to calculate Fcen using (3.11). That is not true though, since Fup
depends on the elevation angle φ as well as the travel speed ψ̇. The experiment only
covers Fup for specific ψ̇(φ). So Fup(φ, ψ̇) can not be calculated, but only its projection
on the subspace spanned by ψ̇(φ). Thus,

Pψ̇(φ)Fup(φ, ψ̇) = Fgφ(φ)

where Pφ(ψ) is the projection on span(φ(ψ)).

Nevertheless, Pψ̇(φ)Fup(φ, ψ̇) still provides useful information, as it results in a lower
bound for the elevation angle.

Fcen

Fup

Figure 3.8: Outline of the Centrifugal Force.

The oscillation in Figure 3.9 occurs, because the helicopter goes up and down during the
rotation. The reason is that the initial rotational speed of the helicopter is not exactly
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given. Consequently, the uplifting centrifugal momentum is smaller or bigger than the
corresponding gravitational momentum for the associated angle. So, if the gravitational
momentum is larger, the helicopter falls down a bit until the gravitational momentum is
small enough.
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Figure 3.9: Measured Elevation Angle for Different Travel Speeds.

Then it goes up again, etc. The mean value of that curve represents the desired relation
between the rotation and uplift tough. The relation between the elevation and travel
speed can then be approximated by the following function (green curve in Figure 3.9):

φ(ψ̇) = −0.03061ψ̇4 + 0.2074ψ̇3 − 0.5771ψ̇2 + 0.9639ψ̇ − 0.8851 (3.12)
The gravitational force for different elevation angles has been identified before (Equation
(3.10)). This can be matched with the above curve:

Pψ̇(φ)Fup(φ, ψ̇) = cos((φ(ψ̇) + 0.71))(1.996(φ(ψ̇) + 0.71) + 0.3383)N
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and consequently

Pψ̇(φ)Mup(φ, ψ̇) = dφcos((φ(ψ̇) + 0.71))(1.996(φ(ψ̇) + 0.71) + 0.3383)N.

Torque

Rotating rotors create an aerodynamic lift force. But they are also exposed to aerodynamic
drag which results in a torque opposite to the direction of the rotation of the rotors. On
helicopters with two rotors, this is normally compensated by rotating the rotors in the
opposite direction. For the Quanser helicopter though, they are mounted in the same
direction. A considerable torque results from this.

To identify this torque, two approaches were taken:

1. Measuring the torque with a weighting scale

2. Closed-loop identification

Weighting scale:

The first approach taken to identify the torque is to measure the corresponding force on
the arm on which the helicopter is mounted. To do so, the weighting scale was mounted
vertically next to the arm. Consequently, the torque force can be measured for different
thrust levels, as the helicopter is pushing against the weighting scale. This torque force
is rather small though, which made it very difficult to measure with a simple weighting
scale, which is not precise enough. So this approach was not used after all.

Closed-loop identification:

The torque caused by the rotors is perpendicular to the rotors themselves. This means
that if the pitch angle is zero, this torque will result in a acceleration around the travel
axis. This acceleration can then be compensated by pitching the helicopter. This has
two effects: The torque is not parallel to the travel axis any more and the motor’s thrust
is now causing a momentum around the travel axis. Those two effects can compensate
for the acceleration around the travel axis. This was done for a range of sum forces. The
results are depicted in Figure 3.10.
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Figure 3.10: Pitch Angle Necessary to Prevent Acceleration on the Travel Axis.

It seems counter intuitive that the angle is not increasing over the whole range, because
the drag force should increase with the sum force. But when the drag force is increasing
with increasing usum, the thrust force is also increasing. So smaller pitch angles are
needed to create a certain thrust momentum around the travel axis, namely

Mbackθ = dψ
Jt
sin(x1)usum.

Additionally, for θ 6= 0 the drag momentum is not completely parallel to the travel axis,
thus

Mmdragψ = cos(x1)Mmdrag.

This results in

Mmdragψ = Mbackθ

cos(x1)Mmdrag = dψ
Jt
sin(x1)usum

⇒Mmdrag(x1, usum) = dψ
Jt
tan(x1)usum.
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The resulting drag momentum is depicted in Figure 3.11.
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Figure 3.11: Identified Drag Momentum for Different Sum Forces.

It is notable that the drag force is not increasing over the whole range. Consequently,
the torque can then be restricted to

‖Mmdrag‖ ≤ 0.08Nm

With neglected centrifugal force, the elevation axis model is simplified to

ẋ3 = x4 (3.13)

ẋ4 = 1
Je

(dφcos(x1)usum︸ ︷︷ ︸
Mmthrustφ

+ dφcos(φ)(1.996φ+ 0.3383)N︸ ︷︷ ︸
Mgφ

(3.14)

+ ‖Mmdrag‖sin(x1)︸ ︷︷ ︸
Mdragφ

(3.15)

3.2.5 Travel Axis

Friction

The friction caused by the joint can be identified using the same experiments as for the
centrifugal force. As mentioned in the previous chapter, the decline over time of the
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elevation caused by the friction around the travel axis can be described by

ψ̇(t) = ψ̇(0)e−
kfriction

Jt
t
. (3.16)

The fraction −kfriction
Jt

can be determined by fitting the curve (3.16) into the elevation
over time plot of the experiment.
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Figure 3.12: Decline of the Elevation Angle Over Time with Fitted Curve ψ̇(t) = 2.67e−0.021t.

This yields −kfriction
Jt

= −0.0211
s . Using Jt = 1.1785kgm2 as determined by [Doh11], it

follows that

kfriction = 0.021 1
kgm2Jt = 0.0247rad

s
. (3.17)

During later experiment, it turned out that this is not the only significant friction: Wind
resistance of the helicopter also has an important influence on the helicopter’s behaviour.
This wind resistance is dependent on the pitch angle. When the pitch angle is close to
zero, the wind resistance is very small. For simplicity, wind resistance is then assumed
to be zero. In contrast, the wind resistance is significantly larger for larger pitch angles.
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Figure 3.13: Decline of Travel Speed Over Time for Different Pitch Angles.

To get an idea about the magnitude of this wind resistance the above experiment was
repeated for a couple of different pitch angles. Figure 3.13 shows that there is indeed a
significant difference in friction for different pitch angles. As expected, for larger pitch
angles there is also a faster decline in the elevation angle over time.

The challenge now is to extract an approximation of the wind resistance from these
experiments. For simplicity, the wind resistance is assumed to be linear with respect
to ψ̇ (even though it is quadratic). Thus the experiment is described by the following
differential equation:

Jtψ̈ = −(kfriction + kwr(θ))ψ̇

where kwr corresponds to the wind resistance. The solution of this differential equation is

ψ̇(t) = ψ̇(0) · e−
kfriction+kwr(θ)

Jt
t
.

As before, this function is fitted into the curves in Figure 3.13. This can be seen in Figure
3.14. This yields:
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Figure 3.14: Decline of Travel Speed Over Time for Different Pitch Angles, Mean Value.
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θ Function
0 ψ̇(t) = 3.72e−0.03784t

0.4 ψ̇(t) = 3.72e−0.04595t

0.75 ψ̇(t) = 3.72e−0.05402t

π
2 ψ̇(t) = 3.72e−0.00721t

It was assumed that the wind resistance is 0 for θ = 0. As a result, the coefficient kwr
can be calculated for the different θ as follows:

θ kwr

0 0
0.4 −0.0081 rads
0.75 −0.0168 rads
π
2 −0.0324 rads

Figure 3.15 shows that this can well be approximated by the following linear function:

kwr(θ) =− 0.02073θ

Consequently the wind resistance is approximated by the following function:

Fwindψ = kwr(θ)
dψ

ψ̇.

This represents the wind resistance around the travel axis. More important is the wind
resistance around the elevation axis. When the helicopter is turning very fast around the
travel axis, and the controller is using a large pitch angle to slow the helicopter down,
the wind resistance will cause lift or downdraft, depending on the direction. This has an
significant effect on the controller performance. Therefore it is reasonable to calculate
the wind resistance for the elevation axis. This can be done using the geometry depicted
in Figure 3.16. There Fwindφ represents the wind resistance on the elevation axis and F⊥
is the wind resistance perpendicular to the helicopters body. Now F⊥ can be derived
using trigonometry:

cos(θ − π

2 ) = sin(θ) = F⊥
Fwindψ

⇒ F⊥ = Fwindψsin(θ).
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In the second step, Fwindφ can now be calculated:

Fwindφ = F⊥cos(θ)
= Fwindψsin(θ)cos(θ)

= 1
2Fwindψsin(2θ)

= 1
2sin(2θ)kwr(θ)

dψ
ψ̇.

3.2.6 Summary

ẋ1 =x2

ẋ2 = 1
Jp

(dθwudiff + ‖Mgθ‖+ ‖Mcor‖)

ẋ3 =x4

ẋ4 = 1
Je

(dφcos(x1)usum − dφcos(x3)(0.1996x3 + 0.03383)kg + ‖Mcen‖

+ ‖Mtorqueφ‖+ ‖Mwindφ‖)
ẋ5 =x6

ẋ6 = 1
Jt

(dψsin(x1)usum − kfrictionx6 + ‖Mtorqueψ‖+ ‖Mwindψ‖).

3.3 Model Verification

Before a controller can be implemented, it is essential to validate the model. To do so,
several step response experiments were conducted on the real systems as well as the
simulation model. The response of model and real plant was the compared graphically.
For simplicity, the step response experiment were conducted in such a way that only one
of the axis was effected each time.

• Experiment 1: Step on Sum Force with fixed pitch angle θ0 = 0rad.
• Experiment 2: Step on Differential Force with fixed travel and elevation angles.
• Experiment 3: Step on Sum Force with fixed pitch angle θ0 = π

2 rad.
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3.3.0.1 Experiment 1

In the first experiment a step of from 0N to 3.2N was applied on the sum force. The
pitch axis was fixed at 0rad. Two elements of the model can be validated with this
experiment:

1. Elevation Axis
With the pitch angle fixed at zero, the sum force will entirely act in the direction
of the elevation axis. Consequently, the elevation model can be validated using
this experiment. Figure 3.17 depicts the result of the experiment for the first three
seconds. It can be noted that simulation and experiment show a very similiar step
response.

2. Drag Force
With the pitch angle fixed at zero, the drag momentum created by the rotors is
entirely acting in the direction of the travel axis. Consequently, the model of the
drag momentum can be validated by comparing the step response on the travel
axis with corresponding simulation results. Figure 3.18 shows those results for the
first three seconds
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Figure 3.17: Step on Sum Force, Elevation Axis.
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Figure 3.18: Step on Sum Force, Travel Axis.

3.3.0.2 Experiment 2

In the second experiment, the elevation and travel axis were fixed at zero. Then a step of
∆udiff = 1.5N was applied to the differential force. This experiment has a direct effect
on the pitch angle, so it can be used to validate the pitch axis model. The step response
on the pitch angle and the corresponding simulation response is depicted in Figure 3.19
for the first second. It shows a good match between simulation and experiment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time in s

θ 
in

 r
ad

step on differential force of 1 at sumforce = 3.2V, pitch axis

 

 

Simulation
Experiment

Figure 3.19: Step on Differential Force, Elevation Axis.
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3.3.0.3 Experiment 3

In the third experiment, the helicopter was fixed on the pitch axis at θ0 = π
2 and rotated

around the travel axis with an initial speed. A step on the sum force was then applied to
slow the helicopter down. As the pitch angle is fixed at θ0 = π

2 , the sum force is entirely
acting on the travel axis. Consequently, this experiment can be used to validate the
model of the travel axis. Figure 3.20 depicts the response on the travel axis with the
corresponding simulation results for the first five seconds. The step time is t = 0s. It can
be seen that model and real system show an excellent match.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

4

6

8

10

12

14

16

18

20

22

time in s

ψ
 in

 r
ad

step on sum force of 20V at t=2s

 

 

Simulation
Experiment

Figure 3.20: Step on Sum Force, Elevation Axis.
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4 Controller Design

This chapter will deal with the theory of Model Predictive Control. Additionally, the
implementation of the MPC for the 3DOF helicopter is presented and a stability analysis
for this controller is discussed.

35
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4.1 Introduction to Model Predictive Control

4.1.1 Introduction

Model Predictive Control (MPC) originates in the process industry and has been used
there for the last 30 years. The core idea of MPC is to repeatedly solve an open-loop
optimal control problem at each time step. The current state of the system is used as
the initial state of the optimal control problem at that time instant. The optimisation
problem delivers a sequence of input signal which will steer the system back to its set
point - but only the very first input signal is used. The most important advantage of
MPC is that input and state constraints can be handled easily, as no explicit control law is
needed. This is more difficult and often impossible in traditional infinite horizon optimal
control, where an explicit control law has to be determined a priori. This capability
enables MPC to run a system close to its constraints, which is often more effective. The
most important disadvantage of MPC is that it is computationally extremely demanding,
as an optimisation problem has to be solved at every single time step. This is especially
problematic if the sampling time is very small, which means that there is not much time to
solve the optimal control problem. This is the main reason why MPC had been restricted
to applications in the process industry, where the systems are very slow and therefore
sampling times very long compared to other applications. This leaves enough time for
the optimisation algorithm. Since the computational power has been increasing rapidly
throughout the last decades, MPC can now be applied to a wider range of application.

4.1.2 MPC Setup

This thesis is using MPC theory based on state-space models. Let’s consider the following
state space model

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k), (4.1)

where x(k) ∈ X ∈ Rn, u(k) ∈ U ∈ Rm, y(k) ∈ Rp denote the state, input and output
respectively.
Here, X , U are the state and input constraint sets. They are assumed to be polytopes,
i.e. can be described by linear inequalities:

X = {x(k) ∈ Rn | Hx(k) ≤ h}
U = {u(k) ∈ Rn | Ru(k) ≤ r}.

Additionally, the system is assumed to be both controllable and observable.
Let’s also consider the following cost function:
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Definition 1. Cost function

V (k) =
k+Hp−1∑
j=k

xT (j)Qx(j) +
k+Hc−1∑
i=0

u(i)TRu(i) +
k+Hc−1∑
i=0

∆u(i)T∆R∆u(i), (4.2)

where Hp ∈ R denotes the prediction horizon and Hc ∈ R the control horizon. Q ∈ Rn×n,
R ∈ Rm×m and ∆R ∈ Rm×m are weights to be chosen. Q is penalizing the state deviation,
R the magnitude of the input and ∆R changes in the input signal.

Note that non quadratic cost functions can also be used in MPC. Quadratic cost functions
are used in this thesis, because they are computationally less demanding, widely used
and suitable for the task.
With this definition, the following optimisation problem can be formulated:

Definition 2. Optimisation problem

min
u

k+Hp−1∑
j=k

xT (j)Qx(j) +
k+Hc−1∑
i=0

u(i)TRu(i) (4.3)

subject to x(j) ∈ X
u(i) ∈ U
x(j) = Ax(j − 1) +Bu(j − 1)

If Hc < Hp, then u(k+Hc) = u(k+Hc+1) = . . . = u(k+Hp) is an additional condition.

With those definitions a basic MPC algorithm can then be formulated as follows:

Definition 3. Basic MPC algorithm

1. Retrieve current measurement x(k)

2. Determine the next input u(k) by solving the optimisation problem (4.3)

3. Apply u(k)

4. Repeat from 1.

4.1.3 Offset Free Control

Since the nominal model always contains small errors, there is a difference between the
behaviour of the real system and what is predicted by the model. Additionally, unknown
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...

Figure 4.1: Basic MPC Scheme, Picture From [con].

disturbance can increase this model error. In Model Predictive Control this can result
in control offsets. In the case of the laboratory helicopter, the relation between the
impressed voltage and the rotor’s thrust is not perfect. Moreover, nonlinear affects and
unknown aerodynamic disturbances add to the model error. Traditional methods mainly
deal with this issue by adding integrators to the control law. There are different methods
in literature to achieve offset free control for MPC. The Matlab Model Predictive Control
Toolbox also contains routines for offset free control. Unfortunately, those routines do
not always work properly. Therefore, a self implemented approach is used in this thesis,
which is based on the following result presented by [Ekh13] (page 44, Proposition 5.1):

Assume that the steady-state target problem is feasible and that a MPC is implemented
using the following augmented model:

Definition 4. Augmented System[
x

d

]+

=
[
A Bd

0 I

] [
x

d

]
+
[
B

0

]
(4.4)

y =
[
C Cd

] [x
d

]
(4.5)

According to [Ekh13] the following theorem then applies:
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Theorem 1. Offset Free Control
Assuming Cz = HC, nd = m and Bd, Cd are chosen such that

rank

[
I −A −Bd
C Cd

]
= n+m (4.6)

Then if the closed-loop system converges to a steady-state with constraints inactive, there
is no offset on the controlled outputs.

Proof see [Ekh13] p.45.
Unfortunately, using this augmented model to achieve offset free control will increase
the computational complexity compared to a non augmented model, as the augmented
model consists of more states. In the case of the laboratory helicopter, this actually is a
problem. Because of that a slightly different approach was taken: Instead of using the
augmented model in the Model Predictive Controller directly, it was used to estimate
the input disturbance using a Lueneberger observer. The input disturbance estimated
by the Lueneberger observer is then included into the Model Predictive Controller as a
measured disturbance.

4.1.4 Stability

Intuitively, one may expect that the optimality of the MPC algorithm results in guaranteed
stability. But in the case of a finite prediction horizon, optimal controllers can actually
be unstable, as optimality is only guaranteed for a limited horizon. For linear MPC, as a
rule of thumb one can say that a longer horizon makes the controller more likely to be
stable.
The input and state constraints render a linear system nonlinear. Consequently stability
analysis of constraint Model Predictive Control is based on Lyapunov stability theory.
The core idea is to use the cost function as a Lyapunov function to ensure stability of
the closed-loop system.
To establish the stability theory, it has been found useful to add several features to the
MPC. Firstly, a so called terminal cost Vf (x) is included into the MPC’s cost function.
The terminal cost is penalising the last step within the prediction horizon:

Definition 5. Cost function with terminal cost Vf (x)

V (k) =
k+N−1∑
j=k

xT (j)Qx(j) +
k+M−1∑
i=0

u(i)TRu(i) + xT (k +N)Qfx(k +N)︸ ︷︷ ︸
Vf (x)

, (4.7)

where Qf ∈ Rn×n is the terminal weight.
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The second feature to be included into the MPC is the so called terminal constraint set
Xf :

Definition 6. Terminal Constraint
The terminal constraint set Xf is a set containing a neighbourhood of the origin the MPC
has to enter within its predicition horizon, i.e.

x(k +N) ∈ Xf ⊂ X . (4.8)

The last new feature is the terminal controller κf (x), which is active within the terminal
constraint set Xf .
With those features, Lyapunov stability theory makes it possible to derive conditions
for the controller’s stability. Details of the derivation are not discussed here, but can be
found in [Sco00], which provides an excellent review of the matter.
According to [Sco00] the following theorem can be formulated:

Theorem 2. Stabilising MPC
An MPC with a terminal weight Qf and terminal constraint set Xf is locally stabilising
within a feasible set X if the following conditions hold:

1. Xf ⊂ X ,Xf closed, 0 ∈ Xf (state constraint satisfied in Xf )

2. κf (x) ∈ U , ∀x ∈ Xf (control constraints satisfied in Xf )

3. Ax+Bκf (x) ∈ Xf , ∀x ∈ Xf (control invariance)

4. Vf (Ax+Bκf (x)) + xTQx ≤ Vf (x) (Vf local Lyaponov function).

There are plentiful possibilities to satisfy those conditions, depending on the properties
of the system. There are different suggestion in literature, depending on if the system is
linear or nonlinear, constraint or unconstrained, stable or unstable. The 3DOF helicopter
is a linear, but constrained and unstable system. In the following, three methods suitable
for the 3DOF helicopter are investigated.

4.1.4.1 Terminal Equality Constraint

The most simple method is to choose the terminal constraint set as the origin, e.g.

x(k +N) =0,

thus Xf = {0}. Consequently, conditions 1.-4. in Theorem 2 are fulfilled trivially, if
Xf = {0}, κf (x) = 0 and Qf = 0.
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The advantage of this method is that it can be implemented very easily. A major problem
is feasibility though. Long horizon are needed to steer the system to the origin within the
prediction horizon. This might not be possible, because computational power is limited.

4.1.4.2 Terminal Constraint Set (Dual Mode)

In this method, a terminal constraint set Xf and a terminal cost Vf (x) are applied. The
idea is that the Model Predictive Controller has to steer the system into the terminal
constraint set where a local controller κf (x) takes over. This is sometimes referred to as
Dual Mode Model Predictive Control. Accordingly, the local controller κf (x) is chosen
such that it fulfills conditions 1.-3. in Theorem 2 on the given set Xf and Vf (x) so that
condition 4 is fulfilled.

4.1.4.3 Unconstrained Cost Function

The idea of this method is to choose the terminal cost in such a way that the finite
horizon MPC becomes equivalent to an infinite horizon controller when the constraints
are not active. This results in an excellent performance, because of the good properties
of Linear Quadratic Regulator such as robustness. It can be shown that if the terminal
cost is chosen as

Vf (x) =xTPx,
where P is the solution of the algebraic Riccati equation, the MPC becomes equivalent
to an LQR if the constraint are not active. Moreover, the prediction and control horizon
have to have the same length. Additionally, the terminal constraint set is defined as the
set where the constraints are not active. The MPC is then equivalent to the corresponding
LQR in the terminal set and conditions 1.-4. in Theorem 2 are fulfilled (Details and
proof see [Ekh13]).
Note that this method is a special case of Dual Mode Model Predictive Control.
As all methods above require reaching the terminal set within the prediction horizon, it
is essential to calculate the initial states from which this is possible. This is sometimes
referred to as the backwards reachable set or initial admissible set. This set denotes the
set within the MPC can be operated.

Definition 7. Backwards Reachable Set
The Backwards Reachable Set is defined as

X (Xf ,U) = {x0 | ∃(u)Hp ∈ U : xHp ∈ Xf} (4.9)

where (u)Hp is the sequence {u1, ..., uHp} with all ui ∈ U and xHp is part of the sequence
{x1, ..., xHp} with xk+1 = f(xk, uk) ∀k ∈ [1, Hp − 1].
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When calculating the backwards reachable set, it is important to distinguish between
Model Predictive Controllers with equidistant prediction and control horizon and MPCs
where the prediction horizon is longer than the control horizon. In the latter case, the
controller is holding the last value of the input signal within the control horizon for the
proceeding prediction horizon.

4.1.4.4 Backwards Reachable Set for Hp = Hc

The backwards reachable set X for Hp = Hc can be calculated using the following simple
algorithm suggested by [Löf01]:

Algorithm 1. Backwards Reachable Set
If the system A is invertible and the prediction horizon equals the control horizon, then
the backwards reachable set can be calculated using the following algorithm:

1. Generate a cloud of initial points X = xi within the terminal set Xf

2. Find the backwards reachable points, e.g.
rij = {A−1xi −A−1Buj ∀xi ∈ X , uj ∈ U}

3. Generate new set of initial points X = {rij} ∨ X

4. Repeat from 2. N − 1 times

This algorithm was implemented as a Matlab function (see Appendix 4.1.4.4). Note
that the system matrix has to be invertible for this algorithm. This is the case with the
Laboratory Helicopter. Consult [Löf01] for non-invertible system matrices.

4.1.4.5 Backwards Reachable Set for Hp > Hc

For the case Hp > Hc the algorithm had to be changed by splitting it into two parts.
After the control horizon is reached, the controller will hold the last input value for
the rest of the prediction horizon. The first part of the algorithm deals with this part.
Therefore Algorithm 1 has to be changed as the input signal has to be hold for the whole
reach.
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Algorithm 2. Backwards Reachable Set Hp > Hc

If the system A is invertible and prediction horizon equals control horizon, the backwards
reachable set for Hp > Hc can be calculated using the following algorithm:

1. Generate a cloud of initial points X = xi within the terminal set

2. Pick one uj ∈ U , which has not been used yet

3. Find the backwards reachable points, e.g.
rij = {A−1xi −A−1Buj ∀xi ∈ X}

4. Repeat 3. Hp −Hc times

5. Go to 2. until all uj have been used

6. Generate X1 = {rij} ∨ X ∀i, j

7. Apply X1 as an initial set in Algorithm 1

Please consider Appendix 4.1.4.4 for the implementation of this algorithm.

4.1.5 Trajectory Planning

In traditional control methods, trajectory planning can increase the controller’s perfor-
mance significantly. This is due to the fact that the controller may need a different tuning
for small deviation from the reference target than for large ones. If a sufficiently smooth
trajectory is used, this deviation stays small at all times and the controller can be tuned
accordingly.

In theory, model predictive controllers do not necessarily benefit from a trajectory
planning, as they already have a type of inherent trajectory planning. Within the model
predictive controllers an optimisation algorithm is looking for an input signal which is
resulting in a trajectory minimizing the cost function. So in principle, MPC includes
trajectory planning. In practise though, very limited prediction horizons restrict these
trajectory planning capabilities to deviations from the reference target which lay within
the prediction horizon. If the deviation is outside this area, the MPC cannot “see” far
enough to plan a good trajectory. As a result of that, model predictive controllers can
actually benefit from external trajectory planning, as they keep the deviation from the
reference target within the prediction horizon. This is the case with the laboratory
helicopter.

The method used here to generate smooth trajectories is based on polynomials.
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4.1.5.1 Polynomials

Let’s consider the following scenario: The controller is to control a certain output from y1
to y2 in t1,2 seconds. In that case, the reference signal can have many shapes, as long as it
is reaching y2 within t1,2 seconds. The easiest possibility is a simple step. Unfortunately,
this simple approach can cause the problems mentioned above. Second order polynomials
of the form

y(t) =at2 + bt+ c

with y(t1) = y1, y(t2) = y2 and y′(t1) = y′1 are used instead. These ensure sufficiently
smooth trajectory. A function has been implemented to generate those trajectories (See
Appendix A.1.2).

4.2 Model Preparation

A linear MPC will be used to control the laboratory helicopter. Consequently, the model’s
nonlinearities and unknowns have to be analysed first. Afterwards a steady state is
derived and the model is linearised.
The helicopter model had been identified as

ẋ1 =x2

ẋ2 = 1
Jp

(dθwudiff + ‖Mgθ‖+ ‖Mcor‖)

ẋ3 =x4

ẋ4 = 1
Je

(dφcos(x1)usum − dφcos(x3)(0.1996x3 + 0.03383)kg + ‖Mcen‖

+ ‖Mtorqueφ‖+ ‖Mwindφ‖)
ẋ5 =x6

ẋ6 = 1
Jt

(dψsin(x1)usum − kfrictionx6 + ‖Mtorqueψ‖+ ‖Mwindψ‖).

Nonlinearities

Input nonlinearities dφ
Je
cos(x1)usum and dφ

Je
sin(x1)usum: Those function can only be

approximated properly by a linear function, if the system stays close to the set point.
Unfortunately, this is not the case. If you choose e.g. x1s = 0 the linear function will
just be zero, which is certainly not true when x1 = 45°. This will be dealt with later by
modeling these nonlinearities as measured disturbances in the MPC algorithm.
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Unknowns

Some effects could not be identified properly and are unknown or only partially known.

• ‖Mgθ‖: Gravitational force for large pitch angles, because the joint is below the
center of gravity.

• ‖Mcor‖: Coriolis force, which is pushing the pitch angle back to zero when rotating
around the travel axis. Experiments have shown that it can be very significant for
large travel speeds.

• ‖Mcen‖: Centrifugal force which could only be partially identified.

• ‖Mwind‖: Drag caused by wind resistance.

The unknowns will be neglected in the model used in the Model Predictive Controller.
Even tough, they will be dealt with by input disturbance estimators to avoid zero-offsets.

The model then simplifies to

ẋ1 =x2

ẋ2 = 1
Jp
dθwudiff

ẋ3 =x4

ẋ4 = 1
Je

(dφcos(x1)usum − dφcos(x3)(0.1996x3 + 0.03383)kg

ẋ5 =x6

ẋ6 = 1
Jt

(dψsin(x1)usum − kfrictionx6). (4.10)

4.2.1 Steady State

It is intuitively clear that there are many steady states, as the helicopter can hover on
any elevation angle and on any travel angle. Therefore, the steady state values those two
angles arbitrary and have to be chosen. But let’s look at Equation (4.10) to show that.
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For the steady state, the left hand side of Equation (4.10) has to be zero. Thus,

0 =x2

0 = 1
Jp
dθwudiff

0 =x4

0 = 1
Je

(dφcos(x1)usum − dφcos(x3)(0.1996x3 + 0.03383)kg

0 =x6

0 = 1
Jt

(dψsin(x1)usum − kfrictionx6).

Obviously, x2s = x4s = x6s = udiffs = 0.
So the following equations are left to be solved:

0 = 1
Je

(dφcos(x1s)usums − dφcos(x3s)(0.1996x3s + 0.03383)kg + 1
2sin(x1s)kmdragu2

sums)

0 = 1
Jt

(dψsin(x1s)usums + 1
2cos(x1s)kmdragu2

sums) (4.11)

which are two equations with the 3 unknowns x1s, x3s and usums. As a result, one of
those unknowns has to be chosen. A reasonable operating point for the helicopter is to
hover at an elevation angle of x3 = −0.2. Consequently, x3s is chosen to be x3s = −0.2.
Note that x5s does not appear in Equation (4.11) and can therefore be chosen arbitrarily.
It is chosen to be x5s = 0. Now equation (4.11) could be solved numerically. However,
there is a much simpler approach: the experiment used to determine the torque in the
previous chapter consisted of letting the helicopter hover for different elevation angles.
This experiment showed that for x3s = −0.2 the sum force is usums = 1.3N and the pitch
angle x1s = 0.03rad when hovering.

Variable Steady State Value
udiff 0rad
usum 1.3N
x1 0.03rad
x2 0rad
x3 −0.2rad
x4 0rad
x5 0rad
x6 0rad
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4.2.2 Linearisation

Linearisation at the above steady state yields the following state space model:

A =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

− 1
Je
dφsin(x1s)usums 0 ∂

∂x3
1
Je
Mgφ 0 0 0

0 0 0 0 0 1
1
Jt
dψcos(x1s)usums 0 0 0 0 − 1

Jp
kfriction


and

B =



0 0
0 1

Jp
dθw

0 0
1
Je
dφcos(x1s) 0

0 0
1
Jt
dψsin(x1s) 0


or numerically

A =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

−1.283 0 −0.11 0 0 0
0 0 0 0 0 1

0.1146 0 0 0 0 −0.0247


and

B =



0 0
0 0.248
0 0

0.655 0
0 0

0.00866 0


.
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4.3 Constraints

4.3.0.1 Input Constraints

Each motor can produce a maximum thrust of about 2.2N and a minimum thrust of
0N . So no negative thrust is possible. The MPC is using the sum force usum and the
differential force udiff to control the helicopter. Intuitively, it makes sense to choose
0N ≤ usum ≤ 4.4N . This is not a good choice though, because the range of the differential
force udiff actually depends on the current sum force usum: the idea of the differential
force is to increase the thrust of one motor and decrease the thrust of the other motor for
the same amount. This way the sum force stays constant when doing so. The problem
is that the thrust of each motor is constraint between 0N and 2.2N . So if for example
the sum force is currently usum = 0N , the thrust of either motor cannot be reduced any
more (because both are at their minimum thrust). Consequently, as long as usum = 0N
the range of usum shrinks to zero and the pitch axis cannot be manipulated any more.
As a result, the range of the sum force has to be reduced, so that a reasonable range for
the pitch axis controller remains. A good choice turned out to be a maximum differential
force of udiff = ±1N and a maximum differential force of udiff = ±1.5N . This dynamic
constraint can be implemented with the Matlab MPC toolbox. Consequently, the sum
force has to be restricted to 0.5N ≤ usum ≤ 3.9N .

Table 4.1: Input Constraints.

Variable Min Max
usum 0.5N 3.9N
udiff -1.5N or ≥ −usum 1.5N

4.3.0.2 State Constraints

Both the pitch as well as the elevation angle are constraint to a certain range. The
travel angle on the other hand is unconstrained. Physically, the helicopter can move
from a pitch angle of -90° up to angle of 90°. But it certainly does not make sense to use
this whole range. First of all there has to be a certain margin of error to robustify the
controller. So the controller should not be operated at its very physical limit. Moreover,
if the pitch angle is close to 90°, all the thrust will be directed around the travel axis
and none on the elevation axis. So the controller will not operate the plant at this angle
anyway. In the course of setting up the controller, it turned out that −π

4 ≤ θ ≤ π
4 is

a good choice. The elevation angle is physically restricted by a minimum angle when
the helicopter is on the floor and a maximum angle. The helicopter is on the floor for
φmin = −0.7164rad. As a maximum angle, φmax = 0.2rad was chosen.
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Table 4.2: State Constraints.

Variable Min Max
θ -π4 rad

π
4 rad

φ −0.7164rad 0.2rad

4.4 Controller Cascation

The standard approach would be to use the linear model as it is and design a MPC
directly. But it turned out that the MPC is very difficult to tune this way, because
there are a lot of states - 9 - to consider. Moreover, the high order of the system is
computationally very demanding. Because of that it is more practical to cascade the
controller. This has the advantage that independent controllers with less states can
be tuned individually instead of tuning all at the same time. This is also reducing
computational complexity. Additionally, different sampling rate can be used for the
individual controllers.

The linearised model can be divided into two loops: All axis are powered by the same
rotors. This means that the input forces are all in the same range. If we ignore the
cross-connections between pitch and the other axis, the inertias give an idea about the
time constants of each axis. The inertias are

Jp = 0.0398kgm2

Je = 1.1555kgm2

Jt = 1.1785kgm2.

So the time constant of the pitch axis is around 25 times lower than the time constants
of the elevation and travel axis. As a result the pitch axis serves as an inner loop and
the travel and elevation axis as an outer loop. As a result, the system equations can be
reformulated in the following manner:[
ẋ1

ẋ2

]
=
[
0 1
0 0

] [
x1

x2

]
+
[
0 0
0 0.248

] [
usum

udiff

]

ẋ3

ẋ4

ẋ5

ẋ6

 =


0 1 0 0

−1.283 −0.11 0 0
0 0 0 1
0 0 0 −0.0247



x3

x4

x5

x6

+


0 0

0.655 0
0 0

0.00866 0


[
usum

udiff

]
+


0

0.00076
0

0.1146

x1

︸ ︷︷ ︸
Fx1



50 4 Controller Design

where Fx1 is used to model the influence of x1 on elevation and pitch as a measured
disturbance.

You can also see, that elevation and pitch angle are independent now. So the system can
actually be split into 3 individual 2x2 systems:

[
ẋ1

ẋ2

]
=
[
0 1
0 0

]
︸ ︷︷ ︸
Apitch

[
x1

x2

]
+
[
0 0
0 0.248

]
︸ ︷︷ ︸

Bpitch

[
usum

udiff

]

[
ẋ3

ẋ4

]
=
[
0 1
0 −0.11

]
︸ ︷︷ ︸

Aelev

[
x3

x4

]
+
[

0 0
0.655 0

]
︸ ︷︷ ︸

Belev

[
usum

udiff

]
+
[

0
−1.283

]
x1

[
ẋ5

ẋ6

]
=
[
0 1
0 −0.0247

]
︸ ︷︷ ︸

Atravel

[
x5

x6

]
+
[

0 0
0.00866 0

]
︸ ︷︷ ︸

Btravel

[
usum

udiff

]
+
[

0
0.1146

]
x1. (4.12)

This restructured model results in the controller structure depicted in Figure 4.2. There,
the elevation and travel controller form two parallel independent outer loops. They are
provided with the reference trajectories x3ref for the elevation angle and x5ref for the
travel angle respectively. The elevation controller provides the sum force usum as an
input to the helicopter. The travel controller on the other hand does not provide a direct
input signal to the helicopter, but a reference trajectory x1ref for the pitch angle. This
reference trajectory x1ref is processed by the pitch controller, which forms an inner loop
with respect to the travel controller. The pitch controller then provides the differential
force udiff as an input signal to the helicopter.
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Elevation

Controller

Travel

Controller

Pitch

Controller

x3,x4

x1,x2

x5,x6x1ref

udiff

usum

x5ref

x3ref

Figure 4.2: Controller Cascation Structure.

4.5 Nonlinear Aspects

A linear Model Predictive Controller can only use a linear model and all nonlinear
affects have to be neglected. In the case of the Quanser 3DOF helicopter there are some
significant nonlinear aspects though. The most important nonlinearity are the input
nonlinearities on the elevation and travel axis. If one considers the original nonlinear
model

ẋ1 =x2

ẋ2 = 1
Jp

(dθwudiff + ‖Mgθ‖+ ‖Mcor‖)

ẋ3 =x4

ẋ4 = 1
Je

(dφcos(x1)usum︸ ︷︷ ︸
Belev,nonlin(x1,usum)

−dφcos(x3)(0.1996x3 + 0..03383)kg + ‖Mcen‖

+ ‖Mtorqueφ‖+ ‖Mwindφ‖)
ẋ5 =x6

ẋ6 = 1
Jt

(dψsin(x1)usum︸ ︷︷ ︸
Btravel,nonlin(x1,usum)

−kfrictionx6 + ‖Mtorqueψ‖+ ‖Mwindψ‖)



52 4 Controller Design

those input nonlinearities can be identified as

Belev,nonlin(x1, usum) = dφ
Je
cos(x1)usum

Btravel,nonlin(x1, usum) = dψ
Jt
sin(x1)usum.

By adding and subtracting dφ
Je
cos(x1s)usum, those nonlinearities can be reformulated as

Belev,nonlin(x1, usum) = dφ
Je
cos(x1s)︸ ︷︷ ︸
Belev [2,1]

usum + (cos(x1)− cos(x1s))
dφ
Je
usum︸ ︷︷ ︸

δelev(x1,usum)

Btravel,nonlin(x1, usum) = dψ
Jt
sin(x1s)︸ ︷︷ ︸

Btravel[2,1]

usum + (sin(x1)− sin(x1s))
dψ
Jt
usum︸ ︷︷ ︸

δtravel(x1,usum)

,

where Belev[2, 1] and Btravel[2, 1] refer to the second element in the first column of Belev
and Btravel respectively (refer to Equation (4.12)).
Consequently, δelev(x1, usum) and δtravel(x1, usum) can be added to Equation (4.12) as
an input disturbance. This yields[

ẋ1

ẋ2

]
=
[
0 1
0 0

] [
x1

x2

]
+
[
0 0
0 0.248

] [
usum

udiff

]
[
ẋ3

ẋ4

]
=
[

0 1
−1.283 −0.11

] [
x3

x4

]
+
[

0 0
0.655 0

] [
usum

udiff

]

+
[

0
−1.283

]
x1 +

[
0
1

]
δelev(x1, usum)[

ẋ5

ẋ6

]
=
[
0 1
0 −0.0247

] [
x5

x6

]
+
[

0 0
0.00866 0

] [
usum

udiff

]

+
[

0
0.1146

]
x1 +

[
0
1

]
δtravel(x1, usum).

Another important non-linearity is the centrifugal force. For the set point x6s = 0 the
centrifugal force is zero in the linear model. Unfortunately, the helicopter is also operated
on x6 � 0. To counteract this, another measured disturbance is introduced:

δcen(x6) = Mcenφ(φ)
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where Mcenφ(φ) has been identified in the previous chapter.
As a result, the model expands to[

ẋ1

ẋ2

]
=
[
0 1
0 0

] [
x1

x2

]
+
[
0 0
0 0.248

] [
usum

udiff

]
[
ẋ3

ẋ4

]
=
[

0 1
−1.283 −0.11

] [
x3

x4

]
+
[

0 0
0.655 0

] [
usum

udiff

]
[

0
−1.283

]
x1 +

[
0
1

]
(δelev(x1, usum) + δcen(x6))[

ẋ5

ẋ6

]
=
[
0 1
0 −0.0247

] [
x5

x6

]
+
[

0 0
0.00866 0

] [
usum

udiff

]

+
[

0
0.1146

]
x1 +

[
0
1

]
δtravel(x1, usum). (4.13)

4.6 Pitch Controller

The pitch axis was described by the following model

[
ẋ1

ẋ2

]
=
[
0 1
0 0

] [
x1

x2

]
+
[
0 0
0 0.248

] [
usum

udiff

]

or simpler [
ẋ1

ẋ2

]
=
[
0 1
0 0

] [
x1

x2

]
+
[

0
0.248

]
udiff

As mentioned in Section 4.2, there are also unknowns in the system, which have to be
taken care of by the controller. Those are

1. Coriolis Force
2. Gravitational Momentum.

Additionally, an input disturbance will be assumed.
Formally, these can be described as
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[
ẋ1

ẋ2

]
=
[
0 1
0 0

] [
x1

x2

]
+
[

0
0.248

]
udiff +

[
0
1

]
‖MCor‖+

[
0
1

]
‖Mgθ‖+

[
0

0.248

]
‖4udiff‖

⇔
[
ẋ1

ẋ2

]
=
[
0 1
0 0

] [
x1

x2

]
+
[

0
0.248

]
udiff +

[
0 0
1 0.248

] [
‖MCor‖+ ‖Mgθ‖
‖4udiff‖

]

or

[
ẋ1

ẋ2

]
=
[
0 1
0 0

]
︸ ︷︷ ︸
Ap

[
x1

x2

]
+
[

0
0.248

]
︸ ︷︷ ︸

Bp

udiff +
[
0
1

]
︸︷︷︸
Bpδ

(‖MCor‖+ ‖Mgθ‖+ 0.248‖4udiff‖)︸ ︷︷ ︸
δinpitch

(4.14)

So next to meeting the computational limits, the controller has also be able to manage
the input disturbances on the pitch axis.

4.6.1 Sampling Rate

On the one hand, the sampling rate on the pitch axis should be as large as possible. This
has two positive affects on the prediction and control horizons:

1. The longer the sampling interval, the longer the time frame captured by the MPC.

2. If the sampling interval is longer, there is more time to solve the optimisation
problem and therefore longer prediction and control horizons can be used.

On the other hand the sampling rate has to be small enough to capture all relevant
dynamics. Trial and error has shown that a good rule of thumb is to take the cutoff
frequency and multiply it with 40. The bode plot of the pitch axis is
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Figure 4.3: Bode Plot Pitch Axis.

The cutoff frequency at -3dB is 100.472Hz. So the sampling frequency is fsp = 40 ·
100.472Hz = 120Hz . This corresponds to a sampling time of about

Tspmax = 0.0083s ≈ 0.008s.

4.6.2 Controller Parameters

4.6.2.1 Prediction and Control Horizon

From a theoretical point of view, prediction and control should be as long as possible.
This ensures good stability properties and makes the stability proof much easier. In
practise though, these horizons are limited by the available computational power and the
sampling rate. So finding liable horizons is an incremental process, where the horizons
are increased until the computational limit is reached. Important in that process is the
fact that long prediction horizons are much cheaper than long control horizons. So much
longer prediction horizons than control horizon can be a better choice than even ones.
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It turned that a prediction horizon of

Hp = 80

is a good compromise. This corresponds to a prediction length of 0.64s.
The performance was practically identical for long control horizons compared to small
control horizons. Consequentially, a very small control horizon of

Hc = 4

was chosen.

4.6.2.2 Weights

The state weight Q, the input weights R and ∆R has been determined incrementally by
trial and error to achieve good performance:

Parameter Value

Qpitch

[
2 0
0 1

]
Rpitch 0.01
4Rpitch 1 · 10−5

4.6.3 Input Disturbance Estimation

To achieve offset free control and to enhance the controller’s performance, an input
disturbance estimator is added to the controller. The estimated disturbance will be
subtracted from the input signal. In (4.14) the input disturbance was described by[

ẋ1

ẋ2

]
=
[
0 1
0 0

]
︸ ︷︷ ︸
Ap

[
x1

x2

]
+
[

0
0.248

]
︸ ︷︷ ︸

Bp

udiff +
[
0
1

]
︸︷︷︸
Bpd

dinpitch. (4.15)

To design a input disturbance estimator, the system has to be augmented in the following
way: [

ẋ(t)
ḋ(t)

]
=
[
Ap Bpd

0 I

] [
x(t)
d(t)

]
+
[
Bp

0

]
u

y(t) =
[
C Cpd

] [x(t)
d(t)

]
.
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Above it was shown that the disturbance can be estimated if

rank

[
I −Ap −Bpd
C Cpd

]
= n+m

where n = 2 is the dimension of Ap and m = 1 the number of disturbances to be
estimated.
This is the case.
Using the augmented system, a Lueneberger Observer was designed. Critical is the
speed of the observer, because the observer should not interfere with the dynamics of the
controller. As a result, the observer has to be significant slower than the controller. A
good compromise turned out to be the following choice of poles for the discrete observer:

Poles = [0, 0, 0.999].

4.7 Elevation Controller

The elevation axis was described by

[
ẋ3

ẋ4

]
=
[

0 1
−1.283 −0.11

] [
x3

x4

]
+
[

0 0
0.655 0

] [
usum

udiff

]

+
[
0
1

]
(δelev(x1, usum) + δcen(x6)).

Additionally the following disturbances are taken into account
1. Offset in the gravitational momentum
2. Input disturbance.
This results in the following extended model:[

ẋ3

ẋ4

]
=
[

0 1
−1.283 −0.11

] [
x3

x4

]
+
[

0 0
0.655 0

] [
usum

udiff

]

+
[
0
1

]
(δelev(x1, usum) + δcen(x6)) +

[
0

0.248

]
4usum +4Mgφ︸ ︷︷ ︸

δud(usum,x5)
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or simpler [
ẋ3

ẋ4

]
=
[

0 1
−1.283 −0.11

] [
x3

x4

]
+
[

0
0.655

]
usum

+
[
0
1

]
(δelev(x1, usum) + δcen(x6)) + δud(usum,x5).

4.7.1 Sampling Rate

As for the pitch axis, the cutoff frequency multiplied with 40 is used as the sampling rate
for the elevation axis. The bode plot of the elevation axis is
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Figure 4.4: Bode Plot Elevation Axis.

The cutoff frequency at -3dB can be read out as approximately 100.1Hz. So the sampling
frequency is fsp = 40 · 100.1Hz = 50.35Hz and thus

Tsemax = 0.02s.
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Unfortunately, this sampling frequency could not be used in the experiments. Most
likely because of a bug in the MPC toolbox, the trajectory tracking was not working for
sampling rates not equal to 0.002s, which is the sensor sampling rate. For this reason,
the sampling rate T = 0.002s will be used in the following.

4.7.2 Controller Parameters

Prediction and Control Horizon

Parameter Value
Prediction Horizon 15
Control Horizon 5

Note that prediction and control horizon are significantly shorter for the elevation
controller than for the other axis. This is due to the fact that the sampling interval of
T = 0.002s on the elevation axis is much shorter than on the other axis. That leaves less
time for the algorithm to solve the optimisation problem. In consequence, the horizons
have to be shorter to solve the optimisation problem in a shorter amount of time.

Weights

Parameter Weight

Qelev 1000·
[
40 0
0 4

]
Relev 0.0001
4Relev 0.01

4.7.3 Input Disturbance Estimation

Model Predictive Controllers cannot deal with input disturbances directly, as they do not
have an inherit “integral” part as e.g. PI-controllers. As a result, the input disturbance
will cause an output offset. To achieve zero offset, a input disturbance estimator is added
to the controller. The estimated disturbance will be subtracted from the input signal. In
(4.15) the input disturbance where described as[

ẋ1

ẋ2

]
=
[
0 1
0 0

]
︸ ︷︷ ︸
Ap

[
x1

x2

]
+
[

0
0.248

]
︸ ︷︷ ︸

Bp

udiff +
[
0
1

]
︸︷︷︸
Bpd

dinpitch. (4.16)
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To design a input disturbance estimator, the system has to be augmented in the following
way: [

ẋ(t)
ḋ(t)

]
=
[
Ae Bed

0 I

] [
x(t)
d(t)

]
+
[
Be

0

]
u

y(t) =
[
C Ced

] [x(t)
d(t)

]
.

Using the augmented system, a Lueneberger Observer was designed. A good compromise
turned out to be the following choice of poles for the discretised observer:

Poles = [0, 0, 0.9995].

4.7.4 Pitch Axis Compensation

As described before, in the linearisation it has to be assumed that the states operate
in a small range. Unfortunately, this is not the case for the pitch angle. Therefore, the
generated thrust in elevation direction has an offset for pitch angles not equal to zero.
To increase the performance of the controller, a measured disturbance as a compensation
is introduced. The measured disturbance is defined as

δelev(x1, usum) = (cos(x1)− cos(x1s))dφusum.

4.8 Travel Controller

The travel axis was described by the following model

[
ẋ5

ẋ6

]
=
[
0 1
0 −0.0247

] [
x5

x6

]
+
[

0 0
0.00866 0

] [
usum

udiff

]
+
[

0
0.1146

]
x1 +

[
0
1

]
δtravel(x1, usum)

or simpler[
ẋ5

ẋ6

]
=
[
0 1
0 −0.0247

] [
x5

x6

]
+
[

0
0.00866

]
usum +

[
0

0.1146

]
x1 +

[
0
1

]
δtravel(x1, usum).

Additionally several disturbances have to be taken into account:
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1. Disturbance on Sum Force

2. Input Disturbance.

Formally, these can be described as

[
ẋ5

ẋ6

]
=
[
0 1
0 0

] [
x5

x6

]
+
[

0
0.248

]
udiff +

[
0
1

]
‖MCor‖+

[
0

0.248

]
‖4udiff‖+

[
0
1

]
δtravel(x1, usum)

or

[
ẋ5

ẋ6

]
=
[
0 1
0 0

] [
x5

x6

]
+
[

0
0.248

]
udiff +

[
0 0
1 0.248

] [
‖MCor‖+ δtravel(x1, usum)

‖4udiff‖

]

or

[
ẋ1

ẋ2

]
=
[
0 1
0 0

] [
x1

x2

]
+
[

0
0.248

]
udiff +

[
0
1

]
︸︷︷︸
Btδ

(‖MCor‖+ 0.248‖4udiff‖+ δtravel(x1, usum))︸ ︷︷ ︸
δinpitch

.

(4.17)

4.8.1 Sampling Rate

As before, the cutoff frequency multiplied with 40 is used as the sampling rate for the
travel axis. The bode plot of the travel axis is shown in Figure 4.5.
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Figure 4.5: Bode Plot Travel Axis.

The cutoff frequency at -3dB can be read out as 10−0.33Hz. So the sampling frequency
is fsp = 40 · 10−0.33Hz = 18.7Hz and thus

Tstmax = 0.053s.

It turned out though that this sampling interval is actually too short and the controller’s
performance was affected in consequence. Thus the sampling interval was chosen to be
the same as for the pitch axis:

Tstmax = 0.008s.
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4.8.2 Controller Parameters

Prediction and Control Horizon

Parameter Value
Prediction Horizon 80
Control Horizon 4

Weights

Parameter Weight

Qtravel

[
0.04 0
0 0.015

]
Rtravel 1 · 10−6

4Rtravel 1 · 10−5

4.9 Nominal Stability

The Model Predictive Controller implemented above is working and does achieve an
excellent performance. There is no structural guarantee though that this controller is
actually stable for all possible trajectories. To design a Model Predictive Controller with
guaranteed nominal stability, MPC stability theory has to be applied. As previously
mentioned in 4.1.4, three different possibilities of satisfying the conditions for nominal
stability are investigated in this thesis. Those are

• the MPC with an Unconstrained Cost,
• the Dual Mode Model Predictive Control,
• the Terminal State Method.

The main issue with nominal stability in practise is a too small feasible sets in which the
controller can be operated. The feasible set has to be large enough to be able to operate
the controller in all possible scenarios. Unfortunately, it is not so clear how large this
feasible set actually has to be. It does not necessarily have to be to whole state space.
The important factor is the deviation from the given reference target ∆x = x− xref as
the feasible set describes the tolerable deviation from the reference target. How large
the tolerable deviation can be depends for example on the expected disturbances, model
errors and the reference trajectory. In consequence, a larger feasible set should result in
a better robustness of the controller. If the reference trajectory includes fast changes,
the terminal constraint set should also be large.
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In the case of the laboratory helicopter, it is reasonable to assume a significant model
error (as shown in section 2) as well as some disturbances. The reference trajectories
used in simulation and experiments later will also be rather fast. Therefore the terminal
set should have a certain size. Consequently, the following specification are made for the
terminal set:

Variable Min Max
∆x1 −0.5rad 0.5rad
∆x2 −0.25 rads 0.25 rads
∆x3 −0.5rad 0.5rad
∆x4 −0.25 rads 0.25 rads
∆x5 −0.5rad 0.5rad
∆x6 −0.25 rads 0.25 rads

Those bounds could of course be chosen differently, which always depends on the specifi-
cations of the application. In this case they are chosen as an example to demonstrate the
problems and challenges of MPC stability theory.

4.9.1 MPC with Unconstrained Cost Function

In practise, the main issue of MPC with Unconstrained Cost Function is that it requires
the Control and Prediction Horizon to have the same length. As the Control Horizon is
much more computationally demanding than the Prediction Horizon, this could limit the
feasible set dramatically. To compensate for that the terminal constraint set should be as
large as possible. Another practical issue is how to determine the terminal constraint set.
In the case of the MPC with the Unconstrained Cost Function, this is relatively simple:
When the constraints are not active, this MPC becomes equivalent to a Linear Quadratic
Regulator (see 4.1.4.3). Consequently, it is sufficient to determine the set with non-active
constraints to be used as terminal constraint set. Due to the properties of the LQR all
properties of the terminal constraint set are then automatically fulfilled in this set.

The downside of this strategy is that if the terminal constraint set is very large, the
constraints are not active most of the time. Consequently, the controller is equivalent
to a Linear Quadratic Regulator and the advantage of MPC, which is the constraint
handling, is lost. It also means that the controller might become very slow in the
attempt of increasing the set with nonactive constraints, which mainly means to slow the
controller down by increasing the input weight R. In that case it might be more feasible
to implement a LQR in the first place, which is much easier to handle.
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In order to determine the terminal constraint set, a functionality of the Multi-Parametric
Toolbox is used. For further details about this toolbox refer to Appendix A.2. Unfortu-
nately, the build in function mpt_invariantSet cannot be used directly, as it is designed
for explicit MPC. Therefore, a workaround has been implemented using subfunctions of
mpt_invariantSet.

To calculate the backwards reachable set, Algorithms 1 and 2 are used, which are described
above.

4.9.1.1 Pitch Axis

In order to implement an MPC with Unconstrained Cost Function, the pitch controller
used before has to be modified. First of all, a terminal weight Qpitch,terminal equal to the
solution of the Riccatti equation has to be added. Secondly, the Control and Prediction
horizon have to have the same length now, thus Hc = Hp = 4:

Parameter Value

Qpitch

[
2 0
0 1

]

Qpitch,terminal

[
182.9 3.6
3.6 2.6

]
Rpitch 0.01
4Rpitch 1 · 10−5

This modified controller still shows very similar performance to the original pitch
controller.

For the stability analysis, the first step now is to determine the terminal constraint set.
The set determined by the Multi-Parametric Toolbox is shown in Figure 4.6.



66 4 Controller Design

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

x
1
 in rad

x 2 in
 r

ad
/s

Terminal Constraint Set Pitch Axis

Figure 4.6: Terminal Constraint Set Pitch Axis, LQR.

Now in the second step, the backwards reachable set of this terminal set is calculated.
The result is shown in Figure 4.7.
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Figure 4.7: Backwards Reachable Set Pitch Axis, LQR.
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Figure 4.7 shows that the specifications of ∆x1 = ±0.5rad and ∆x2 = ±0.25rad are
not met by this terminal set. It is also important to note that the subset where the
constraints are active (blue set) is very small.

To meet the specification, the horizon should be much larger. Unfortunately this is
computationally not possible. The second possibility is to slow down the controller to
increase the terminal set to meet the specifications. Increasing the Input Weight to
R = 0.2, the following terminal set can be calculated:
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Figure 4.8: Terminal Constraint Set Pitch Axis R=0.2, LQR.

This set already meets the specifications of ∆x1 = ±0.5rad and ∆x2 = ±0.25rad. So
nominal stability can actually be shown for this modified controller. Unfortunately, this
controller turned out to be very slow. Additionally, as the terminal set is so large, this
MPC is equivalent to a Linear Quadratic Regulator all the time. So in this case it is
unnecessary to use an MPC and an LQR could be implemented instead.

4.9.1.2 Elevation Axis

As for the pitch axis, a terminal weight has to be added to the original elevation controller
and the horizons set to Hc = Hp = 5. Thus



68 4 Controller Design

Parameter Value

Qelev

[
4 · 104 0

0 4 · 103

]

Qelev,terminal 106 ·
[

6.36 0.0066
0.0066 0.0041

]
Relev 1 · 10−4

4Relev 1 · 10−5

For the stability analysis, the first step now is to determine the terminal constraint set.
Using the Multi-Parametric Toolbox the terminal constraint set shown in Figure 4.9 is
derived.
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Figure 4.9: Terminal Constraint Set Elevation Axis, LQR.

The terminal constraint set shown in Figure 4.9 is very small and can therefore be
neglected. Instead, only the origin is used as a terminal constraint set. This results in
the backwards reachable set shown in Figure 4.10.
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Figure 4.10: Backwards Reachable Set Elevation Axis, LQR.

This terminal set does not meet the minimal requirements for the terminal constraint set
either. As for the pitch controller, longer horizons would be needed to fulfill the
specifications.

The input weight R could now be increased to get a larger terminal constraint set in
order to meet the specifications. Unfortunately, the Multi-Parametric Toolbox did not
return a larger set for any choice of R. The reason seems to be that the Toolbox cannot
handle asymmetric constraint sets. The state constraints on the pitch axis were
symmetric to the origin with −π

4 rad ≤ x1 ≤ π
4 rad, whereas the constraints on the

elevation axis are not with −0.7154rad ≤ x3 ≤ 0.2rad.

4.9.1.3 Travel Axis

As before, a terminal weight has to be added to the original travel controller and the
horizons are set to Hc = Hp = 4. Thus
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Parameter Value

Qtravel

[
0.04 0
0 0.015

]

Qtravel,terminal

[
3.45 0.24
0.24 0.17

]
Rtravel 0.00001
4Rtravel 1 · 10−5

Unfortunately, as for the elevation axis, the Multi-Parametric Toolbox only determines
an empty set as terminal constraint set. Thus the origin has to be used as terminal
constraint set again. This results in the backwards reachable set shown Figure 4.11.
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Figure 4.11: Backwards Reachable Set Travel Axis, LQR.

This terminal set does not meet the requirement of ∆x5 ± 0.5rad. To get a larger
terminal constraint set the speed of the MPC is decreased by increasing the input weight
from R = 0.0001 to R = 0.1. This results in the following terminal constraint set:
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Figure 4.12: Terminal Constraint Set Travel Axis for R = 0.1.

As for the pitch axis, this terminal set already meets the requirements. Unfortunately,
this controller turned out to be extremely slow and is again equivalent to a Linear
Quadratic Regulator.

The implementation of the MPC with an Unconstrained Cost Function has shown that
the requirement that control and prediction horizon have to have the same length is
indeed problematic as it limits the length of the horizons. Either the feasible set does
not meet the requirements or the controller is very slow and equivalent to an LQR. The
proceeding methods try to counteract these problems, because they enable control and
prediction horizon to have differing lengths. Consequently, a long prediction horizon can
be chosen to achieve a large enough feasible set.

4.9.2 Dual Mode MPC

The idea of Dual Mode MPC is to switch from the MPC to an alternative controller when
entering the terminal constraint set. This alternative controller is chosen such that the
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requirements of a terminal constraint set are met. In theory, there are many possibilities
for this alternative controller. In practise though there are additional requirements. The
transition from the MPC to the alternative controller has to be sufficiently smooth. A
reasonable approach is to switch to the alternative controller when the MPC is entering a
set where the constraints are not active any more. Thus the MPC will only be active for
active constraints, which is a good property as the MPC has its strength in the constraint
handling. Another reason to use this strategy is that the Multi-Parametric Toolbox
can only handle an explicit closed-loop representation of the MPC to calculate the
terminal constraint set. This closed-loop representation can only be determined for the
unconstrained MPC though (unconstrained MPC here means a state space representation
of the MPC in the case of nonactive constraints). The unconstrained MPC can be derived
using the Matlab MPC Toolbox and the routine ss. Using this state space representation,
the closed-loop system can be derived. Then the Multi-Parametric Toolbox is used to
determine the terminal constraint set.

With this strategy the original Model Predictive Controllers for each axis do not have to
be modified either.

4.9.2.1 Pitch Axis

For the Pitch Controller the following state space representation of the unconstrained
MPC can be derived using the routine Matlab routine ss:

zk+1 =



0.9862 0.0008572 0 −0.007143 0
−0.9936 0.002553 0 −0.6886 0
−0.001081 −0.007694 1 −0.007694 0
0.007871 −0.001111 0 0.9989 0
−19.64 −18.91 −1 −12.71 0


zk

+



0.01376 0.007143
−0.00826 −0.007777
0.001081 0.007694
−0.007871 0.001111
−0.4592 −1.259


uk

yk =
[
−19.64 −18.91 −1 −12.71 0

]
zk +

[
−0.4592 −1.259

]
uk

In the next step the closed-loop system can be calculate with the routine feedback(sys1,sys2).
This results in the following state space model:
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zk+1 =



1 0.008 0 0 0 0 0
0.02289 1.063 0.979 0.9425 0.04985 0.6336 0
0.01376 0.007143 0.9862 0.0008572 0 −0.007143 0
−0.00826 −0.007777 −0.9936 0.002553 0 −0.6886 0
0.001081 0.007694 −0.001081 −0.007694 1 −0.007694 0
−0.007871 0.001111 0.007871 −0.001111 0 0.9989 0
−0.4592 −1.259 −19.64 −18.91 −1 −12.71 0


zk

+



0.01376 0.007143
−0.00826 −0.007777
0.001081 0.007694
−0.007871 0.001111
−0.4592 −1.259


uk

yk =
[
−19.64 −18.91 −1 −12.71 0

]
zk +

[
−0.4592 −1.259

]
uk

This representation makes it possible to calculate the terminal constraint set using the
Multi-Parametric Toolbox. Unfortunately, the Toolbox only returns an empty set as
terminal set. This makes the Dual Mode MPC on the pitch axis equivalent to the
Terminal State MPC investigated in the next part.
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4.9.2.2 Elevation

For the Elevation Controller the following state space representation of the unconstrained
MPC can be derived using the routine ss:

zk+1 =



0.996 0.001714 −0.004023 −0.0002401 0
−2.806 −0.0004213 −2.806 −0.9543 0
−0.001748 −0.0009653 0.9983 −0.0009653 0
0.0009663 −0.001747 0.0009663 0.9983 0
−2472 −880.3 −2474 −839.8 0


zk

+



0.001209 −0.0007166
−0.007415 −0.002378
0.001748 0.0009653
0.0009663 0.001747
−7.611 −4.166


uk

yk =
[
−2472 −880.3 −2474 −839.8 0

]
zk +

[
−7.611 −4.166

]
uk

In the next step the closed-loop system can be calculate with the routine feedback(sys1,sys2).
This results in the following state space model:

zk+1 =



0.996 0.00171 −0.00402 −0.00024 0 −0.00120 0.000716
−2.806 −0.000421 −2.8 −0.954 0 0.00741 0.00237
−0.00174 −0.000965 0.998 −0.000965 0 −0.00174 −0.000965
0.000966 −0.00174 0.000966 0.998 0 0.000966 −0.00174
−2472 −880.3 −2474 −839.8 0 7.61 4.166
−0.00280 −0.000997 −0.00280 −0.00095 0 1 0.002
−2.803 −0.997 −2.805 −0.952 0 0.00640 1.005


zk

+



0.001209 −0.0007166
−0.007415 −0.002378
0.001748 0.0009653
−0.0009663 0.001747
−7.611 −4.166

0 0
0.008627 −0.004722


uk

yk =
[
−2472 −880.3 −2474 −839.8 0 7.61 4.16

]
zk +

[
−7.61 −4.16

]
uk

Unfortunately, as for the pitch axis, the Toolbox only returns an empty set as terminal
set. So again, the Dual Mode MPC on the elevation axis equivalent to the Terminal
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State MPC investigated in the next part.

4.9.2.3 Travel

For the Travel Controller the following state space representation of the unconstrained
MPC can be derived using the routine ss:

zk+1 =



0.9874 0.003629 0 −0.00437 0
−0.2985 0.002979 0 −0.9594 0
−0.004178 −0.006735 1 −0.006735 0
0.006764 −0.0042 0 0.9958 0
−34.29 −117.5 −0.9542 −113.1 0


zk

+



0.01261 0.00437
0.002795 −0.005344
0.004178 0.006735
−0.006764 0.0042
−0.9874 −2.002


uk

yk =
[
−34.29 −117.5 −0.9542 −113.1 0

]
zk +

[
−0.9874 −2.002

]
uk

In the next step the closed-loop system can be calculate with the routine feedback(sys1,sys2).
This results in the following state space model:

zk+1 =



0.987 0.00362 0 −0.00437 0 −0.0126 −0.00437
−0.298 0.00297 0 −0.959 0 −0.00279 0.00534
−0.00417 −0.00673 1 −0.00673 0 −0.00417 −0.00673
0.00676 −0.0042 0 0.995 0 0.00676 −0.0042
−34.29 −117.5 −0.954 −113.1 0 0.987 2.002
−0.00115 −0.00394 −3.2e− 05 −0.00379 0 1 0.00806
−0.2874 −0.985 −0.00799 −0.947 0 0.00827 1.017


zk

+



0.01261 0.00437
0.002795 −0.005344
0.004178 0.006735
−0.006764 0.0042
−0.9874 −2.002

−3.311e− 05 −6.713e− 05
−0.008278 −0.01678


uk

yk =
[
−34.29 −117.5 −0.954 −113.1 0 0.987 2

]
zk +

[
−0.987 −2

]
uk



76 4 Controller Design

This representation makes it possible to calculate the terminal constraint set using the
Multi-Parametric Toolbox. As for pitch and elevation axis the Multi-Parametric Toolbox
returns an empty set as terminal set as well.

So summing up, the implementation of the Dual Mode MPC was not successful. The
problem is that the state space models of the closed-loop systems are very complex.
As a result, the Multi-Parametric Toolbox has problems finding the set with inactive
constraints. So it returns an empty set. It is to be assumed though that the set with
inactive constraints is actually larger than only the origin. As no other algorithm than
the Mutli-Parametric Toolbox was available to calculate this set in this thesis, there is no
other possibility than to use the origin as a terminal constraint set. In that case though,
the Dual Mode MPC becomes equivalent to the Terminal State Method described next.

4.9.3 Terminal State

In the terminal state method the origin is chosen as the terminal constraint set. The
advantage of this method is that it is very simple to implement. Additionally, the
prediction and control horizon do not have to have the same length. Compared to the
Dual Mode MPC the problem of finding a terminal constraint set is also obsolete. The
disadvantage of this method is that the feasible set is smaller as it is for the Dual Mode
Controller, as the terminal constraint set is very small.

4.9.3.1 Pitch Axis

In order to calculate the feasible set, the backwards reachable set was calculated using
Definition 1. Because the prediction horizon Hp = 80 is not equal to the control horizon
Hc = 4, the backwards reachable set has to be calculated in two steps: Firstly, the
last Hp −Hc = 76 steps are calculated, where the control input is constant. Using the
function in Appendix 4.1.4.4, this yields the following set:



4.9 Nominal Stability 77

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1
 in rad

x 2 in
 r

ad

Feasible set for constant inputs

Figure 4.13: Feasible Set Pitch Axis for a Constant Input.

If now the last 4 steps are added to the set, this yields:
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Figure 4.14: Feasible Set Pitch Axis.

Figure 4.14 shows that the requirements of ∆x1 = ±0.5rad and ∆x2 = ±0.25rad are not
met. The problem is that most of the time the feasible set has to be symmetric to the
origin and convex. The smallest convex subset around the origin in Figure 4.14 is very
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small. Consequently, the longer prediction horizons used in the terminal state method
are not helping to actually increase the feasible set in this case.

4.9.3.2 Elevation Axis

In order to calculate the feasible set, the backwards reachable set was calculated using
Definition 1. Because the prediction horizon Hp = 15 is not equal to the control horizon
Hc = 5, the backwards reachable set has to be calculated in two steps: Firstly, the
last Hp −Hc = 10 steps are calculated, where the control input is constant. Using the
function in Appendix 4.1.4.4, this yields the following set:
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Figure 4.15: Feasible Set Elevation Axis for a Constant Input.

If the last 4 steps are added to the set now, this yields:
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Figure 4.16: Feasible Set Elevation Axis.

As before, the feasible set depicted in Figure 4.16 is not convex. The smallest convex
subset around the origin is rather small. As a result, the requirement of ∆x3 = ±0.5rad
and ∆x4 = ±0.25rad are not met at the same time.

4.9.3.3 Travel Axis

In order to calculate the feasible set, the backwards reachable set was calculated using
Definition 1. Because the prediction horizon Hp = 80 is not equal to the control horizon
Hc = 4, the backwards reachable set has to be calculated in two steps: Firstly, the
last Hp −Hc = 76 steps are calculated, where the control input is constant. Using the
function in Appendix 4.1.4.4, this yields the following set:
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Figure 4.17: Feasible Set Travel Axis for a Constant Input.

If now the last 4 steps are added to the set, this yields:
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Figure 4.18: Feasible Set Elevation Axis.

As before, the feasible set depicted in Figure 4.16 is not convex. The smallest convex
subset around the origin is rather small. As a result, the requirement of ∆x5 = ±0.5rad
and ∆x6 = ±0.25rad are not met at the same time.
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All in all, the advantage of using longer prediction horizons in the terminal state method
does not necessarily results in a larger feasible set. The backwards reachable set is indeed
much larger than for the other methods, unfortunately it is not convex and only contains
a very small convex subset. The reason for this non convexity lays in the fact that beyond
the control horizon, the control input has to stay the same. So let’s consider the pitch
axis of the helicopter. The pitch angle might be deviated by a certain angle from the
reference trajectory without any angular speed. To steer it back, the helicopter has to
be first accelerated around the pitch axis and then slowed down again to stop at the
reference trajectory and not shoot over it. This slowing down is the problem when the
control input has to stay the same beyond the control horizon: Then, it is not possible to
first accelerate and then slow down again, because different input signals are needed for
that. The results might be better for a system with a lot of damping, where the input
signal does not necessarily has to be changing to stop at the reference trajectory.

4.9.4 Summary

All three methods investigated to prove nominal stability turned out to be problematic
when applied to the Quanser helicopter.

The MPC with an Unconstrained Cost suffered from the fact that the terminal constraint
set was either too small, could not be calculated at all or it had the right size, but
resulted in an impractically slow controller. The most important issue is that the control
and prediction horizon have to have the same length in this method and therefore are
very small due to computational limitations. In consequence, the backwards reachable
set becomes very small. So even if the terminal constraint set has is large enough, the
feasible set will not be much larger than this set. In consequence, the MPC is equivalent
to an LQR most of the time.

The Dual Mode MPC caused problems in the implementation. The state space represen-
tation of the unconstrained MPC was too complex for the Multi-Parametric Toolbox to
calculate a terminal constraint set larger than the origin. So in principle, this method
might give good results, but could not be implemented in this application with the
available tools.

The Terminal Set Method has the advantage that control and prediction horizon can be
chosen differing. Thus much longer prediction horizons could be used for this method.
This resulted in comparably large backwards reachable sets. Unfortunately, those sets
very highly non-convex. The largest convex subsets of those sets were very small as
well. This is due to the fact that beyond the control horizon, the input signal cannot be
changed any more. So the strategy of using small control horizon and large prediction
horizons might actually not result in larger feasible sets in most applications.
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5 Evaluation

This chapter evaluates the properties and the performance of the designed model predictive
controller. To illustrate the properties of the cascaded MPC as a whole, the individual
model predictive controllers are examined. Step response experiments are used to
illustrate the closed-loop behaviour of each axes and key characteristics such as the time
constant are derived. Additionally, the benefit of the input disturbance estimator in
achieving offset-free control and increasing performance is shown.

A benchmark scenario is used to evaluate the overall performance of the controller. The
scenario was introduced by the Institute for System Theory and Automatic Control at
University of Stuttgart in control laboratories. It was also used as a benchmark scenario
in thesis projects at University of Stuttgart before.
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5.1 Controller Performance

Step response simulations and experiments can be used to determine several characteristics
of the controller’s performance. Those are:

• Time Constant
• Overshoot
• Settling time
• Control offset

The benefit of the input disturbance estimator concerning control offset will also be
shown.

Because the controller has been divided into individual controllers for every axis, separate
step response simulation and experiments will be conducted for every individual axis.

5.1.1 Controller Characteristics

Time Constant The so called initial slope method is used to determine the time constant.
If a tangent is drawn on the initial slope of the step response, the intersection of this
tangent and the final value of the step approximates the time constant.

Overshoot The overshoot is defined as the maximum overshoot over the final value of
the step response

Settling Time The following definition of the settling time will be used: The settling
time is the time until the controlled variable stays within 10% of the reference target.

5.1.1.1 Pitch Controller

The following reference step was applied to the pitch axis: The initial pitch angle is
θ0 = −π

4 . At t = 5s the reference angle jumps to θfinal = π
4 . Figure 5.1 shows the results

of the simulation and experiment. The first graph shows the reference angle and the
measured pitch angles in the simulation and experiment respectively. The behaviour in
simulation and experiment is quite similar. It is notable though that the experimental
results show a slight oscillation. The applied input signals in simulation and experiment
(second and third plot in Figure 5.1) also reflect the oscillation in the experiment. Both
in simulation and experiment, the input signal first jumps to the maximum value of
1.6N . In the experiment though, the controller holds that value significantly longer and
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then shows a declining oscillation. This discrepancy between simulation and experiments
results from the fact that the motors have a certain delay from the impressed voltage to
the generated thrust. This had not been modeled. For the controller this delay results in
the fact that the initial value of 1.6N is hold longer, because the system does not react
immediately: If you look at the measured pitch angle in Figure 5.1, you can see that
in the experiment, the system does not react for about the first 0.1s. As a result, the
controller holds the initial value for the input signal longer. The proceeding oscillation
also occurs because of this delay, as the thrust does not follow the impressed voltage
right away. This is a common problem in systems with delay.
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Time Constant Using the initial slope method in Figure 5.2, the time constant can be
approximated as τpitch ≈ 1.2s. Only the simulation result was used in Figure 5.2, as they
are almost identical to the experimental results.
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Figure 5.2: Time Constant Pitch Axis Using Initial Slope Method.

Overshoot Figure 5.1 shows that there is no overshoot on the pitch axis.

Settling time Settling time can be define by the time it takes for the controller to reach
ε = 10% of the final value. With a step of ∆θ = π

2 this means ε = 10%·π2 rad=0.1571rad.
Figure 5.3 shows that the settling time is about tsettle = 2.4s.
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Figure 5.3: Settling Time Pitch Axis.

5.1.1.2 Elevation Controller

To determine the characteristics of the elevation axis controller, a step response experiment
was conducted: The elevation angle starts at an initial value of φ0 = −0.5. At t = 5s the
reference angle switches to φstep = 0.2. In Figure 5.4 the results in the simulation and
experiment are depicted.
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Time Constant As for the pitch axes, the initial slope method is used to determine
the time constant of the closed-loop system. Figure 5.5 shows that the time constant is
τelev ≈ 1.3s.
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Figure 5.5: Time Constant Elevation Axis.
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Overshoot The overshoot can be measured as ∆φ = 0.04rad using Figure 5.6.

Settling time Settling time can be define by the time it takes for the controller to reach
ε = 10% of the final value. With a step of ∆φ = 0.7 this means ε = 0.07. Figure 5.6
shows that the settling time is tsettle = 2.4s.
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Figure 5.6: Settling Time Elevation Axis.

5.1.2 Offset Free Control

To achieve offset free control, a disturbance estimator has been used. The estimated
disturbance was added to the MPC as a measured disturbance. This section will
investigate the benefit of the disturbance estimator in achieving offset free control. Control
scenarios with input disturbances are used to cause control offsets. The disturbance
estimator is then used to counteract those control offsets.

5.1.2.1 Pitch axis

Errors in the relation between the impressed voltage and the aerodynamic force, aero-
dynamic disturbances, wind resistance, ground effect and other disturbances result in a
control offset in the MPC.
Let’s consider the following scenario: The MPC is to control the pitch angle to zero.
At tdist = 5s an input disturbance of ∆udiff = 1N is added to the system. Figure 5.7
shows that this input disturbance results in a significant control offset of ∆θ = 1rad
on the pitch angle. Additionally, the experimental results also show a control offset for
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the first five seconds. This is due to actual input disturbances in the plant, most likely
because the measured thrust of each motor does not perfectly represent the actual thrust
generated by the individual motors.
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Figure 5.7: Pitch Angle with Disturbance at t=5s without Estimator.

In an other experiment, the disturbance estimator is added to the controller. Figure
5.8 shows that the added input disturbance still results in an initial control offset of
about 0.5rad. But when the disturbance estimator is reaching the exact estimation of
the input disturbance, the control offset vanishes. This shows that offset free control can
be achieved with the disturbance estimator. It is also notable that the estimator is quite
slow. This is due to the fact to the conservative choice of pole in the Lueneberger observer.
It is necessary to keep the disturbance observer slower than the dynamics of the closed
loop system. Otherwise the additional dynamics of the observer can cause instability.
By keeping the observer slow, its dynamics can be considered constant compared to the
systems dynamics and therefore they will not results in stability problems.
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Figure 5.8: Pitch Angle with Disturbance at t=5s without Estimator.

5.1.2.2 Elevation Axis

There are also significant disturbances on the elevation axis. Like on the pitch axis,
imperfections in the derived relation between impressed voltage and thrust cause an input
disturbance. Moreover, the function for gravitational momentum has small errors, too.

In contrast to the pitch axis, the MPC actually provides offset free control in the presence
of input disturbances without an input disturbance estimator. To show that, let’s consider
the following scenario: The MPC is to control the elevation angle to zero. The initial
angle is φ0 = −0.71rad (which means that the helicopter is laying on the ground). At
tdist = 15s an input disturbance of ∆udiff = −1N is added to the system. As you can see
in Figure 5.9, the input disturbance is causing an initial offset at tdist = 15s. In contrast
to the pitch controller though, the MPC on the elevation axis is capable of compensating
the control offset.
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When the input disturbance estimator is added, the controller has almost the same
performance (see Figure 5.10)
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Figure 5.9: Elevation angle with Disturbance at t=15s without Estimator.
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Figure 5.10: Pitch Angle with Disturbance at t=5s without Estimator.
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5.2 Benchmark Scenario

The following flight path serves as the benchmark scenario: The helicopter starts on
the ground (φ0 = −0.7164rad). From there, it moves up to a horizontal position
(φ1 = 0.0rad). Then it turns 5

2πrad one and a quarter rotation in positive direction
around the travel axis (ψ1 = 5

2πrad). There it descents to φ2 = −0.30rad and ascents
back φ3 = 0.0rad. From this position the helicopter turns back one rotation around the
travel axis. There it descents back to φ4 = −0.30rad and ascents again φ5 = 0.0rad
afterwards. From there the helicopter then turns back a quarter rotation around the
travel axis to hover over the starting position. Finally, it descents to the starting position
from there. These way points are also listed in Table 5.1 and depicted in Figure 5.11.

Table 5.1: Way Points Benchmark Scenario (φ, ψ in rad, Time in s).

Segment i Time slot in s ψi ψi+1 φi φi+1

1 0− 5 0.0 0.0 −0.48 0.0
2 5 - 23 0.0 5

2π 0.0 0.0
3 23-24.5 5

2π
5
2π 0.0 0.0

4 24.5− 29.5 5
2π

5
2π 0.0 −0.30

5 29.5− 31 5
2π

5
2π −0.30 −0.31

6 31− 36 5
2π

5
2π −0.31 0.0

7 36− 53 5
2π

1
2π 0.0 0.0

8 53− 54.5 1
2π

1
2π 0.0 0.0

9 54.5− 59.5 1
2π

1
2π 0.0 −0.30

10 59.5− 61 1
2π

1
2π −0.30 −0.31

11 61− 66 1
2π

1
2π −0.31 0.0

12 66− 74.5 1
2π 0.0 0.0 0.0

13 74.5− 74.9 0.0 0.0 0.0 −0.48
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Figure 5.11: Benchmark Scenario.

5.2.1 Trajectory Planning

An important task in the benchmark scenario is to provide the controller with the
reference target. In general, sufficiently smooth trajectories are necessary to achieve a
good controller performance. In the case of MPC, in theory, this is not necessary, because
the MPC is optimising the input signal to achieve an optimal trajectory. So the trajectory
planning is included in the algorithm. In practise though, this is not necessarily true,
because the prediction horizon is limited.

For the benchmark scenario, second degree polynomials where implemented between
proceeding set points using the function smoothtrajectory (see Appendix A.1.2). The
resulting trajectories are shown in Figure 5.12.
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Figure 5.12: Benchmark Scenario.

5.2.2 Performance

The benchmark scenario has some challenging aspects for the controller. First of all,
the controller needs to be sufficiently fast to follow the trajectory within the time limits.
But higher speeds also make it more difficult for the controller to be accurate in terms
of deviation from the reference trajectory. Accuracy is especially challenging on the
elevation axis. This is due to the fact that the travel controller is using the pitch angle
to control the travel angle. Changing the travel angle is changing the thrust on the
elevation axis as well, which is acting as an input disturbance in the elevation axis. Here
this problem was dealt with the input disturbance estimator.

The experimental results of the benchmark scenario without the use of an input distur-
bance estimator are shown in Figure 5.13. The first graph shows the experimental results
in the θ-φ-plane, the red line represents the reference trajectory and the blue line the
experimental results. It can be seen that there are some deviations in the elevation angle,
especially close to the points where the helicopter is diving down (at ψ = 0rad, 1

2π,
5
2π).

The reason is that the helicopter has to be slowed down on the travel axis in order to stop
at these angles. This means that the pitch angle was changed which is causing an input
disturbance on the elevation axis. This is difficult to deal with for the controller without
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the use of the input disturbance estimator. The last three graphs show the angular
behaviour on each axis over time for the benchmark scenario. The blue lines show the
experimental results and the green line the reference trajectories. The pitch graph shows
that the constraints on the pitch axis are actually hit on several occasions, mainly when
the diving points are approached. During the first 15 seconds there is a considerable
deviation from the reference on the pitch axis provided by the travel controller (blue line
in the second graph in Figure 5.13 and Figure 5.14). This is caused by the fact that the
controller is lying on the ground at this point, which makes it impossible to approach
the reference value.

Figure 5.14 shows the experimental results for the benchmark scenario when the input
disturbance estimator is activated. It is apparent on the first graph that the controller is
now much more accurate on the elevation angle.
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Figure 5.13: Benchmark Scenario with MPC, without Disturbance Estimation.



5.2 Benchmark Scenario 99

−1 0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

E
le

va
tio

n 
an

gl
e 

φ 
in

 r
ad

Travel angle ψ in rad

Benchmark Scenario: Experiment

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5
Time Behaviour

θ 
in

 r
ad

Time in s

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

φ 
in

 r
ad

Time in s

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

ψ
 in

 r
ad

Time in s

Figure 5.14: Benchmark Scenario with Disturbance Estimator.
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Now the question is how the performance of the Model Predictive Controller compares
to other kind of controllers implemented on the 3 DOF helicopter before. Cristian Wolf
implemented a Linear Quadratic Regulator with flatness-based feed-forward in his thesis
“Flachheitsbasierter Steuerungsentwurf am Quanser-Laborhelikopter (Flatness-based Feed-
forward Design for the Quanser Laboratory Helicopter)” which he conducted at the
Institute of System Theory and Control in Stuttgart in 2011. Figure 5.15 depicts his
results of the benchmark scenario. Please note that he used degree instead of radiant. It
is obvious that the deviation from the reference trajectory is significantly larger than for
the Model Predictive Controller.
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Figure 5.15: Benchmark Scenario Wolf (first graph) vs. MPC (second graph). Source: [Wol11],
modified.
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6 Summary and Conlusion

The topic of this thesis was the implementation and stability analysis of a Model Predictive
Controller on a Quanser 3DOF helicopter. The first step was to identify a mechanical
model using the principle of conservation of inertia. In that process, a relation between
the impressed voltage on the motors and the rotor’s thrust was identified. It turned
out that the ground effect had an significant impact on the thrust. As the joint of the
elevation axis of the helicopter is not in the center of gravity, the resulting gravitational
momentum was identified using a weighting scale. A lower bound for the centrifugal force
was identified as well. Additionally, in experiments the friction around the travel axis
and the wind resistance dependent on the pitch angle were investigated. This resulted in
a nonlinear state space model, which was verified using step experiments. In the next
step, the nonlinear state space model was linearised and input as well as state constraints
were defined. Then the model was cascaded into three individual models for each axis to
be controlled by three individual Model Predictive Controllers. In the cascation structure
there are two parallel loops: the elevation controller on the one hand and a loop consisting
of the travel controller as an outer loop and the pitch controller as an inner loop on the
other hand. Additionally, important nonlinear effects such as input nonlinearities and
the centrifugal force were added as disturbances to the model. Thereafter, the Model
Predictive Controllers were designed for each axis. The sampling intervals were chosen
according to the cut-off frequencies of each axis and state and input tuned to achieve
a good performance. For the pitch and elevation axis an input disturbance estimator
was designed to handle zero-offsets caused by input disturbances such as disturbances
in the motor’s thrust. To ensure nominal stability, MPC stability theory was applied.
Three different methods were investigated: the MPC with an Unconstrained Cost, the
Dual Mode Model Predictive Controller and the Terminal State Method. For the MPC
with Unconstrained Cost, the terminal weight was chosen as the solution of the Riccati
Equation. In consequence, the MPC became equivalent to a Linear Quadratic Regulator
as soon as the constraints were not active. Control and Prediction Horizon needed to
have the same length for that though. This resulted in impractically small feasible sets.
For the Dual Mode MPC, the idea was to switch the MPC to another controller as soon
as the constraints are not active. Unfortunately, the structure of the MPC in this case
was too complex to calculate this set with inactive constraints. Thus this method could
not be applied. For the Terminal State Method, the terminal set was assumed to be only
the origin. Because the prediction horizon could be chosen much longer than the control
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horizon, rather large backwards reachable sets could be accomplished. Unfortunately,
those sets were highly non-convex with very small convex subsets. Consequently, the
feasible sets were very small as well. In the last part of the thesis, the performance of
the implemented Model Predictive Controller was investigated. First, key properties
such as time constant and settling time of the individual Model Predictive Controllers of
each axis were evaluated. Additionally, the benefit of the input disturbance estimators
on elevation and pitch axis were demonstrated. To show the overall performance of the
Model Predictive Controller, a benchmark scenario was implemented. This scenario was
used in thesis work and laboratories at University of Stuttgart before. In comparison,
the Model Predictive Controller showed an excellent performance.

The goal of this thesis was to implement a Model Predictive Controller on the Quanser
3DOF helicopter which has fast dynamics. The results show that it is indeed possible to
implement a controller which shows excellent performance compared to other types of
controllers. The generally commended inherent constraint handling property of Model
Predictive Control is actually the main asset in achieving this excellent performance.
Nevertheless, it was abundant that limited computational power is still the most important
issue when implementing Model Predictive Controllers on fast systems. Several measures
such as the cascation of the model and the limitation of the horizon’s length had to be
taken to reduce the computational demand. This shows that the implementation of Model
Predictive Controllers on fast system is possible, but can be very challenging. The second
goal was to apply MPC stability theory on the 3DOF helicopter. It became quite apparent
that there is a significant gap between MPC stability theory on paper and in practise.
Many of the assumptions made in the theory are actually very limiting and often very
difficult to meet. There are two main aspects which turned out to be most problematic:
MPC stability theory is based on the assumption that the origin or a terminal set can
be reached within the MPC’s prediction horizon. This might not be possible from the
whole state space, but only from a limited feasible set. The size of this feasible set mainly
depends on the length of the control and prediction horizon of the MPC. In the case of
the 3DOF helicopter, those horizons were very limited due to the fast dynamics of the
system. In consequence, the MPC stability theory resulted in impractically small feasible
sets. The second practical problem was to find the terminal constraint sets. They are
assumed to be known in MPC stability theory, but it is not clear how they can actually
be calculated in practise. There was no algorithm available to calculate a terminal set
directly. Instead, the terminal constraint sets were calculate for the unconstrained MPC
using the Multi-Parametric Toolbox. This did not always work properly. Another problem
was that the resulting terminal constraint sets were often very small or could not be
calculated at all. Those difficulties prevented the usage of a Dual Mode Model Predictive
Controller in this application. It is clear that both the implementation of the MPC as
well as the stability theory would benefit from more computational power or a more
efficient implementation of the controller. The implementation of the 3DOF helicopter
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in a HIL system is certainly not optimal computationally. Nevertheless, the 3DOF
helicopter shows that computational limitations still remain the most important challenge
when implementing a Model Predictive Controller on fast systems. It was still possible
though to implement a Model Predictive Controller on the Quanser 3 DOF helicopter
and achieve an excellent performance. This shows that with even more computational
power and better optimisation algorithms, Model Predictive Control becomes an excellent
alternative for many application outside the process industry.



A Appendix

A.1 Implementation

A.1.1 Backwards Reachable Set

In order to calculate the backwards reachable set from a given set x, the following function
has been implemented in Matlab:

1 function [y] = back_reach_set (x,Ainv ,B,Nu ,Umax ,Umin)
2 y=x;
3 [a, xlength ] = size(x);
4 intu = (Umax -Umin)/Nu
5 for i = 1:1: xlength
6 for j =0:1: Nu
7 y = [y, Ainv*y(:,i)-Ainv*B*( intu*j+Umin)];
8 end
9 end

where x is the initial set, Ainv the inverted system matrix, B the input matrix, Nu the
resolution of the discretisation of possible input signals, Umax the maximal input and
Umin the minimal input.

The function delivers a new set y which contains reachable points within one step.

A.1.2 Trajectory Planning

To get sufficiently smooth trajectory, the function smoothtrajectory was implemented to
generate a second degree polynomial between two setpoints:

1 %% Generates a second degree polynomial between two setpoint and
2 % returns a set of points of the generated polynomial
3 % t is a vector containing start and end time
4 % f contains the setpoints
5 % f1 contains the desired gradient on the setpoints
6 % tp is a vector describing the point of time for the
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7 % returned set of points describing the polynomial
8

9 function [ points ] = smoothtrajectory (t,f,f1 ,tp)
10

11 lgs = [ t(1) ^3,t(1) ^2,t(1) , 1;
12 3*t(1) ^2 ,2*t(1) ,1, 0;
13 t(2) ^3,t(2) ^2,t(2) , 1;
14 3*t(2) ^2 ,2*t(2) ,1, 0 ];
15 b = [ f(1);
16 f1 (1);
17 f(2);
18 f1 (2) ];
19

20 coef = inv(lgs)*b;
21 points = coef (1)*tp .^3 + coef (2)*tp .^2 +coef (3)*tp .^1 +coef (4)*tp .^0;

A.2 Multi-Parametric Toolbox (MPT)

The Multi-Parametric Toolbox (MPT) is a Matlab toolbox developed by researchers
at the Automatic Control Laboratories at ETH Zürich [mpt]. It offers a wide range
of algorithms for the design, analysis and implementation of optimal controllers for
constrained systems.
The toolbox also includes an algorithm to calculate the invariant set of an MPC for the
specified constrained system:
1 invCtrl = mpt_invariantSet (ctrl , Options )
2

3 % MPT_INVARIANTSET Computes ( robust ) positive invariant subset of an %
explicit controller

Unfortunately, this function only works for explicit Model Predictive Controllers. In
order to use the toolbox for regular MPC used in this thesis, a subfunction of mpt_infset
was used:
1 [Oinf ,tstar ,fd , isemptypoly ] = mpt_infset (A,X,tmax ,Pnoise , Options )
2

3 % Calculates the maximal positively invariant set for an autonomous
4 % discrete -time LTI system Takes into account polytopic and additive
5 % system uncertainty , if defined in " sysStruct " / " Pnoise ",
6 % respectively .

This function is able to calculate the invariant set of an autonomous system. In order
to use it for a Model Predictive Controller, a state space representation of the MPC
has to be derived. In general, this is only possible for an unconstrained MPC. With the
state space representation of the MPC the resulting autonomous system can then be
calculated.
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