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Abstract
The purpose of this project is to analyse different design possibilities for a rotating permanent magnet exciter for
a hydroelectric generator. This is done through development of design models for optimizing suitable solutions.
By use of Matlab/Simulink, COMSOL Multiphysics and ACE, the dynamics and the performance of the design
is investigated. The aim is to have a robust system with low torque ripple absorbed by the exciter. It is shown
that the six phase rectification solution has lower torque ripple for normal delay angles of the thyristor bridge
compared to the three phase solution. For further development to try to reduce the torque ripple even more,
one should optimize (reduce) the self and mutual inductances of the exciter rotor windings. A reduction of the
parasitic magnetic energy storage in the system will reduce the torque ripple drastically.

Index Terms: Hydroelectric Generators, Permanent Magnet Machine Design, Finite Element Method,
Thyristor Rectification Bridge

i



ii



Acknowledgements
I would like to thank my supervisor Urban Lundin for his help and contribution throughout the project. He spent
a lot of time to teach me how to use ACE and to program in FORTRAN. Urban gave a lot of good ideas during
my project period. I would also like to thank my examiner Sonja Lundmark for following up the progression
of the project and for giving me feedback on the report. The structure of the report would never been the same
without numerous feedbacks from Sonja.

The Author
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Chapter 1

Introduction

1.1 Background

Hydropower still maintains its position as the most important source of renewable power generation in the
world. In these days, most European countries go through a phase of intense refurbishment and upgrading of
their existing plants. This leads to new challenges and the engineers need to gain back the knowledge that went
lost twenty years ago. The trend in the hydropower industry today is more use of computerized tools and this
has really revolutionized the whole design process.

The generator is one of the key components of a hydropower plant, since it is responsible for converting
the mechanical energy from the fluid motion to magnetic energy through rotor excitation and finally to electric
power absorbed by the stator windings, distributing the energy into the power grid. The generators used in
hydro power plants are mainly synchronous generators. A whole generator system, the test rig Svante, is shown
in figure 1.1, with a zoom of only the exciter part of the system (on the top) shown figure 1.2.

Fig. 1.1 Whole Hydroelectric Generation System
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Chapter 1. Introduction

Fig. 1.2 Zoom on the Exciter

The excitation system of hydroelectric generators are either static or rotating. Both of them are available in
the Svante test rig. The static system feeds dc current to the rotor of the generator through brushes. The rotating
system, on the other hand, has permanent magnets in the stationary exciter stator that induces currents in the
exciter rotor windings mounted on the rotating shaft. The currents are rectified before the connection to the
rotor electromagnet of the generator. The static excitation principle is the most primitive one, but it is very easy
to control. The fact that it acts very fast is a big advantage regarding the supply of reactive power reserves into
the power grid, to maintain voltage stability. Because of the carbon dust from the brushes, you need regular
maintenance of this part. That is an interesting economic aspect.

On the other side, the rotating excitation system is more complex, but it needs less equipment on the static
side. The excitation current is transmitted brushlessly as a result of the induced currents on the rotor windings
from the stationary permanent magnets on the stator side. The rectification is done by diodes on the rotor side
and the rectified current is connected to the rotor winding of the main generator. The rotating solution is cheaper
because of less cost for equipment and for maintenance. Because of high complexity, an in depth analysis is
needed.

There is, however a possibility to join the advantages of a rotating exciter with the controllability of a
static exciter by replacing the diodes mounted on the shaft with an active rectification system, in the easiest
implementation made up of a 6-pulse thyristor rectification bridge (Figure 1.3). This means that one has to
transfer a control signal to the shaft and thereby maneuver the thyristors.

Fig. 1.3 Simplest form of active rectification system, 6 pulse thyristor bridge
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1.1. Background

The rotor winding of the main generator is then fed with a controllable DC current. The firing angles of the
thyristor bridge are controlled wirelessly through Bluetooth communication. A pilot of the described excitation
system has been installed at Bergeforsen Hydropower Station near Sundsvall, Sweden. The system has been
shown to work well in operation, but vibrations is seen in the exciter with a bigger firing angle [5].

A complete diagram of the excitation system is shown in figure 1.4. The most important aspect is the flow of
power between the different subsystems. It is important to note that it does not flow power from the permanent
magnets in the stator. They only act as a catalyst for the energy conversion process. The power consumed
is taken from the shaft connected to the hydroelectric turbine. The power generated in the rotor windings (6
individual phases) are fed into both the parasitic magnetic energy storage (inductive properties of the windings)
and the dc load circuit through rectification. Because the current in the DC circuit is very stiff, the machine
operation is close to the operation of a BLDC machine. The phase currents are not sinusoidal in shape and they
will look more like square waves.

Fig. 1.4 Overall block diagram of the excitation system

The basic function of an excitation system is to provide direct current to the synchronous machine field
winding on the rotor. In addition, the excitation system performs control and protective functions essential to
the satisfactory performance of the power system by controlling the field voltage and thereby the field current.
The control functions include the control of voltage and reactive power flow, and the enhancement of system
stability. There is also protective functions to ensure that the capability limits of the synchronous machine, ex-
citation system and the other equipment, are not exceeded. The basic requirement of the excitation system is to
supply and automatically adjust the field current to maintain the terminal voltage of the synchronous generator.
In addition, the excitation must be able to respond to transient disturbances with field forcing consistent with
the generator instantaneous and short-term capabilities [13].

A magnetic field can be created in two different ways. Either a current through a winding generates the field
or the field is sustained by a permanent magnet. Usually in a generator, the rotating magnetic field is generated
by windings in order to be able to control the magnetic field excitation. For a smaller generator that creates the
brushless rotating excitation, it is not so important to control the magnetic field. This is because you control
for the current and not for the voltage. The current can be controlled by a rotating thyristor rectifier. Therefore
permanent magnets can be used as excitation for the rotating exciter. If you still want some slow tuning of
the magnetic field you can combine the permanent magnets with some windings. The field from a permanent
magnet is not constant. It depends on the magnetic field path it follows. Another thing is that currents induced in
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Chapter 1. Introduction

the windings that surrounds the permanent magnet, will create its own magnetic field, which will try to oppose
the magnetic field from the permanent magnet. This is called the armature reaction.

1.2 Aim

The aim of the given master thesis project is to get a deep understanding of FEM methods applied to electro-
magnetic analysis of synchronous machines and how to couple them to external circuit equations. The work
should be able to predict the electric, electromagnetic and mechanical behavior of the exciter and be in cor-
respondence with experiments. The goal is to build up knowledge and to get a deeper understanding of the
complexity behind the rotating exciter for hydropower applications.

1.3 Problem

There are several types of problems that need to be investigated in this thesis. The influence of the thyristor firing
angle for the system should be analyzed. One major effect that needs to be studied is the current commutation
process of the thyristor bridge. There are also stability issues regarding harmonics in the exciter AC system.
The AC system has six phases, but can be reconnected into a 3-phase system. Different couplings between the
phases during loaded operation need to be evaluated. An important comparison can be made if the exciter has
3 phases instead of 6. In the DC side of the exciter, both current and voltage levels will be investigated during
operation. Also the power ripple generated in the rotor will be analyzed in order to predict the mechanical
stability (especially the torque ripple). This ripple will depend on the interaction with the parasitic magnetic
energy storage, originated in the magnetic properties of the rotor windings.

1.4 Scope

The thesis is focusing on the electromagnetic, power electronic and mechanical analysis. The mechanical anal-
ysis is only shortened down to the torque ripple investigation. Analysis of eigenfrequencies to avoid interactions
with the environment is not done. The usage of FEM discretization in both time and space are important in the
thesis. The control system of the exciter is out of the scope of this thesis, although it is closely related to the
proposed analysis.

1.5 Method

A model for the thyristor controlled exciter was supposed to be developed in FORTRAN and integrated in the
FEM software ACE, developed by ABB. Since it was hard to get the solution converged, ACE was instead
used to find the time-dependent self and mutual inductances. This data from the FEM analysis was used to
simulate the circuit in a self developed code in MATLAB/SIMULINK. Because the exciter core materials was
far from saturated, the new approach gives good accuracy. The SIMULINK model forms a basis for control
system evaluations. Comparisons is also made experimentally on the hydroelectric generator system available
in the lab. This includes measurements of resistances and inductances.

4



Chapter 2

Machine Design Description

This chapter describes the machine design specifications of the excitation system investigated and it therefore
forms the basis for the other chapters of this thesis.

A generator is an energy converter that converts rotational motion energy to electric energy. An exciter is
also a generator because it generates the electrical energy needed to excite the rotor electromagnet of the main
generator. In that sense, an exciter can be regarded as an energy converter as well. The energy you get out from
the energy converter can never be higher than the amount of energy you put in. It is however a bit smaller and
this is a because the energy conversion process consumes some energy. This byproduct of the conversion is
known as losses. When you design a generator, you want to make the losses as small as possible. This is done
through electromagnetic analysis.

Brushless permanent magnet generator design relies on the conversion of energy from mechanical to mag-
netic to electrical. Since the magnetic energy plays an important intermediate role in the energy conversion
process, prediction of the magnetic field distribution is important to design a generator according to the spec-
ifications. There are a multiple of different methods to determine the magnetic field distribution within an
apparatus. For very simple geometries, the distribution can be found analytically. However, the field distribu-
tion often has to be approximated. If the direction of the magnetic field is assumed to be known throughout
the whole machine, the magnetic field can be calculated by magnetic circuit analysis, which is analogous to
electric circuit analysis. A more accurate method to calculate both magnitude and direction is obtained by finite
element analysis. Examples of possible methods are finite difference method, finite volume method and finite
element method (See Appendix A7.1-A.4 for more information).

2.1 Maxwell’s Equations

Maxwell’s equations are of high importance when it comes to electrical machine design. The reference for the
equations can be found in up to date design books [11].
Ampere’s law:

∇×H = J +
∂D

∂t
(2.1)

Faraday’s law:

∇×E = −∂B
∂t

(2.2)

Gauss’s law:
∇ ·D = ρ (2.3)

Continuity equation:
∇ ·B = 0 (2.4)

Magnetization equation:

H =
B

µ0
−M (2.5)

Polarization equation:
D = ε0E + P (2.6)

5



Chapter 2. Machine Design Description

Linear, isotropic and non-dispersive materials:

B = µ0µrH (2.7)

D = ε0εrE (2.8)

where B is the magnetic flux density [T ], H is the magnetizing field [A/m], M is the magnetization vector
[A/m], µ0 is the permeability of free space [H/m], µr is the relative permeability, E is the electric field [N/C],
D is the displacement field [C/m3], P is the polarization vector [C/m3], ε0 is the permittivity of free space
[F/m], εr is the relative permittivity, J is the current density [A/m2].

2.2 Magnetic Circuits

The magnetic circuit approximation is always good to use in the first state of the electric machine design
for rough estimates. For permanent magnet machine design, information about the hysteresis curve of the
permanent magnet material is needed. The hysteresis curve for a permanent magnet is defined by equation
2.9 [6].

H =
B

µ0µr
−Hc (2.9)

The permeability of the permanent magnet can either be constant for all operating points or it can be a function
of the local magnetic flux density. The equation is often written in terms of the reluctivity, just as in equation
2.10 [9].

H = ν(B)B−Hc (2.10)

When the H-field is zero, the magnetic flux density is equal to the remanent flux. Then one obtains the following
relation between the remanent flux and the coercive force [6]:

Br = µ0µrHc (2.11)

The relation between the coercive force Hc and the remanence Br gives the permeability of the permanent
magnet. The remanent magnetic flux through the permanent magnet is the product of the remanence Br and the
cross sectional area Am of the flux path in the permanent magnet. This is calculated for current source analogy
(norton equivalent) in magnetic circuits [6].

φr = BrAm (2.12)

The voltage source analogy (thevenin equivalent) in magnetic circuits is the magnetomotive force. It is the
product of the coercive force and the permanent magnet length [6].

Fm = Hclm (2.13)

The permanent magnet also has an internal resistance to the flow of the magnetic field, called reluctance (see
equation 2.14). It depends on the linearized hysteresis curve of the permanent magnet [6].

<m =
lm

µ0µrAm
(2.14)

The magnetic conductance is the inverse of the reluctance, and it is called permeance [6].

Pm =
µ0µrAm
rlm

(2.15)

The ohms law of magnetic circuits yields

φ =
F

<
= PF (2.16)

When solving the magnetic circuit, some of the flux is leaking, circulating in the shortest path around the
permanent magnet. Since there is a lot of space for the flux to flow between the poles, it can be assumed that
there is some leakage flux, which only circulates around the permanent magnets (See the leakage in figure 2.1).
Total flux linkage through a coil depends on the number of turns, shown in equation 2.17 [6].

Ψ = Nφ (2.17)
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2.3. Design Specifications

Fig. 2.1 Magnetic circuit of exciter (Explaination of the geometry in figure 2.3)

From the generalized form of Faraday’s law, voltage induced in a coil is equal to the negative rate change of
the flux linkage, which yields [6].

u = −dΨ

dt
(2.18)

To calculate the no-load induced voltage, one let the permanent magnets rotate virtually with the solved static
magnetic field. The rotation is discretized in time steps and the total flux linkage at every step is integrated.
The voltage at every step can be approximated to be the flux linkage at the last step minus the flux linkage at
the given step, divided by the time between. Another way is to find the induced voltage from the flux cutting
version of faradays law for a conductor (equation 2.19 [6]).

ucond = BLv (2.19)

In equation 2.19, B is the magnetic flux density, L is the length of the conductor that cuts flux and v is the
velocity of the conductor relative to the magnetic field. The equation relates the relative speed of the conductor
to the magnetic field. Since the speed is rotational, the speed is equal to the product of the radius and the angular
velocity. The angular velocity can be related to the nominal frequency and the number of poles. The induced
electric field is:

E = Bv = BωR =
2πRfB

np
= −dAz

dt
(2.20)

where E electric field induced along the conductor, ω is the angular velocity of the rotor conductor relative to
the stator, R is the radius of the circle the conductor rotates, f is the electrical frequency, np is the number of
pole pairs and Az is the magnetic vector potential at the conductor cross section.

2.3 Design Specifications

From figure 2.2, one can define the geometry of the permanent magnets used in the exciter.
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Chapter 2. Machine Design Description

Fig. 2.2 Permanent Magnet Geometry

The given data for the permanent magnets are the following:

Remanence Br 1.29T
Coercive force Hc 977666 A

m

Relative permeability µr 1.05
Length lm 6mm
Width W 30mm
Height L 200mm
Cross-Sectional Area Am 0.006 m2

Internal Reluctance <m 757881 A
Wb

Internal Permeance Pm 1.32 µWb
A

Remanent flux φr 7.74 mWb
Magnetomotive force Fm 5866 A

Fig. 2.3 One pole 2D geomtry
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Figure 2.3 shows the 2D geometry of one pole of the exciter. The height of the 2D geometry is the same as
the height of the permanent magnet shown in figure 2.2. The geometry has the following specifications:

Inner Rotor Radius r1 0.1m
Inner Winding Radius r2 0.145m
Outer Rotor Radius r3 0.2m
Inner Stator Radius r4 0.216m
Outer Stator Radius r5 0.2285m
Minimum Air Gap Distance gmin 12mm
Maximum Air Gap Distance gmax 16mm
Pole Width θp

π
6

For the given geometry, it is only needed to solve the magnetic circuit for half of the pole. This is because
of symmetry and that the magnetic flux divide equally. Because the air gap distance is not uniform, the mag-
netic circuit calculation will vary to some degree compared to the numerical FEM solution. To solve the total
magnetic circuit, the BH-curve in figure 2.4 should be used. Because of the non-linearity of the reluctivity
in the material, the magnetic circuit should be solved by iterations. However, since the air gap is very large
compared to other electrical machines, the reluctance of the iron cores will be negligible compared to the air
gap reluctance. This makes the magnetic circuit calculations much simpler. The magnetic circuit consists of
the internal reluctance of the source as well as the reluctance of the air gap. Since the air gap is not uniform in
length, an averaged air gap distance should be found.

Fig. 2.4 BH curves

2.4 Resistance calculation

The resistance of a wire is governed by the following equation:

R =
l

σA
(2.21)

9
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Since the machine is split into two parallel circuits, the total area becomes two times the conductor area.
Equation 2.21 modifies to

R =
l

2σAc
(2.22)

where

Ac =
1

4
πD2

c (2.23)

The total length of the wire through half of the machine is proportional to the length per turn (lt), the number
of conductors per coil (N ) and the number of series connected coils, which yields

l = 6Nlt (2.24)

where
lt = 2lz + 2le (2.25)

and

le = θp
r2 + r3

2
+
lh − lz

4
(2.26)

The generalized formula becomes

R =
6N(3lz + lh + θp

r2+r3
2 )

σπD2
c

(2.27)

where the parameters and calculations are described below

Conductor Diameter Dc 3mm
Conductor Area Ac 7.07 · 10−6m2

Conductivity Copper σ 5.96 · 107 Sm
Number of turns per coil N 12
Length of the copper tubes in the rotor lz 0.2m
Total height of the rotor lh 0.35m
Average conductor end turn length le 0.13m

Average length per conductor turn lt 0.66m

Total conductor length through half machine l 47.2m

Resistance per phase R 56mΩ

The measured resistance per phase was 62.5mΩ (from the rotor shown in figure 2.5), which gives an accu-
racy of 10 percent compared to the calculated value.

Fig. 2.5 Prototype of the Rotor
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2.5. Inductance calculation

2.5 Inductance calculation

A simplified analytical model for the inductance calculation is used where the iron core reluctance is ne-
glected [7]. The slot model is shown in figure 2.6. The magnetic field through the slot is calculated for every
y-coordinate based on the slot distance and the fact that the Ampère loop experiences no MMF drop over the
iron core.

Fig. 2.6 Slot inductance model

The integral form of Ampère′s law states that ∮
~H~dl = Ienc (2.28)

which simplifies to
Hx(y)x(y) = Ienc(y) (2.29)

and further to

Bx(y) =
µ0Ienc(y)

x(y)
(2.30)

The slot width for a given y-coordinate is linearized to

x(y) = b1 +
b2 − b1
d1

y (2.31)

for 0 =< y < d1, to

x(y) = b2 +
b3 − b2
d2

(y − d1) (2.32)

for d1 =< y < (d1 + d2), and to
x(y) = b3 (2.33)

for (d1 +d2) =< y =< (d1 +d2 +d3). The net current enclosed for a given y-coordinate can be approximated
by the total current in the slot multiplied with the ratio of the conductor area enclosed by the Ampère loop to
the total conductor area of the slot. This yields

Ienc(y) =
A(y)

Atot
NsI (2.34)

Insertion of equation 2.34 into equation 2.30 yields

Bx(y) =
µ0NsI

Atot

A(y)

x(y)
(2.35)
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Chapter 2. Machine Design Description

where
Atot =

b1 + b2
2

d1 +
b2 + b3

2
d2 (2.36)

and

A(y) =

y∫
0

x(y)dy (2.37)

The solved integral gives

A(y) = b1y +
b2 − b1

2d1
y2 (2.38)

for 0 =< y < d1, and

A(y) =

[
b2 −

d1
d2

(b3 − b2)

]
y +

b3 − b2
2d2

y2 +
b1 + b2

2
d1 (2.39)

for d1 =< y < (d1 + d2), and
A(y) = Atot (2.40)

for (d1 + d2) =< y =< (d1 + d2 + d3). A infinitesimal flux contribution can be calculated from the product
of magnetic flux density in a point and the infinitesimal area, which yields

dφ = Bx(y)lzdy (2.41)

To get the flux linkage, one needs to take into the account the number of turns the flux encloses, which yields

dλ = n(y)Bx(y)lzdy (2.42)

The number of turns a y-coordinate encloses can be approximated in the same way as for the calculation of the
enclosed current. This gives

n(y) =
A(y)

Atot
Ns (2.43)

Insertion of equation 2.35 and equation 2.43 into equation 2.42 yields

dλ =
µ0N

2
s Ilz

A2
tot

A(y)2

x(y)
dy (2.44)

The total flux linkage can be calculated as the product of the inductance of a slot and the current flowing, which
yields

λ = LI (2.45)

and in the differential form
dL =

dλ

I
(2.46)

which eliminates the current when you substitute the differential flux linkage into the differential inductance
equation. This gives

dL

dy
(y) =

µ0N
2
s lz

A2
tot

A(y)2

x(y)
(2.47)

The differential inductance equation should be integrated over the three defined slot regions. The total slot
inductance will then be the sum of the inductance from the three regions multiplied with a factor three. The
factor three comes from the fact that six slots are series connected and the fact that this inductance is parallel
connected with an identical inductance. This gives

Lslot = 3(L1 + L2 + L3) (2.48)

The integrals to be solved are:

L1 =

d1∫
0

[
dL

dy
(y)

]
dy (2.49)

and

L2 =

d1+d2∫
d1

[
dL

dy
(y)

]
dy (2.50)

12



2.5. Inductance calculation

and

L3 =

d1+d2+d3∫
d1+d2

[
dL

dy
(y)

]
dy (2.51)

The first integral is solved by the substitution of the inductance derivative for region 1, which yields

L1 =
µ0N

2
s lz

A2
tot

d1∫
0

(b1y + b2−b1
2d1

y2)2

b1 + b2−b1
d1

y
dy (2.52)

The integral simplifies by polynomial division

L1 =
µ0N

2
s lz

A2
tot

 d1∫
0

(b1y
2 +

b2 − b1
4d1

y3)dy − b1(b2 − b1)

4

d1∫
0

y3

d1b1 + (b2 − b1)y
dy

 (2.53)

to finally

L1 =
µ0N

2
s lzd

3
1

A2
tot

[
9b1
48

+
b2
16

+
b21

8(b2 − b1)
− b31

4(b2 − b1)2
+

b41
4(b2 − b1)3

ln(
b2
b1

)

]
(2.54)

In a similar way integral 2 is solved

L2 =
µ0N

2
s lz

A2
tot

d1+d2∫
d1

(
[
b2 − d1

d2
(b3 − b2)

]
y + b3−b2

2d2
y2 + b1+b2

2 d1)2

b2 − d1
d2

(b3 − b2) + b3−b2
d2

y
dy (2.55)

and by switching the integral boundaries, the integral simplifies to

L2 =
µ0N

2
s lz

A2
tot

d2∫
0

(b2y + b3−b2
2d2

y2 + b1+b2
2 d1)2

b2 + b3−b2
d2

y
dy (2.56)

Finally one will end up with

L2 =
µ0N

2
s lzd2

4A2
tot

(C1 + C2 + C3) (2.57)

where

C1 = d22

(
b2(2b2d1 − b2d2 − 2b3d1)

2d2(b2 − b3)
+ b1

d1
d2

+ b2 −
b2 − b3

4

)
(2.58)

and

C2 = −b2d2
2b1d1(b2 − b3) + b2(b2(2d1 + d2)− 2b3d1)

(b2 − b3)2
(2.59)

and

C3 =
(b1d1(b2 − b3) + b2(b2(d1 + d2)− b3d1))2

(b2 − b3)3
ln(

b2
b3

) (2.60)

The last region is very simple to calculate, and yields

L3 = µ0N
2
s lz

d3
b3

(2.61)

One will also have leakage inductance in the air gap as in the slot. However, here the air gap Ampère loop is
approximated by the slot opening plus two half circles as shown in figure 2.7.
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Fig. 2.7 Leakage inductance model

The Ampère loop can be used in a differential permeance model, given by the length for each permeance
element. This gives

l(x) = πx+ b3 (2.62)

where

dP =
µ0lzdx

l(x)
(2.63)

and

dL = N2
s

µ0lz
πx+ b3

dx (2.64)

The leakage inductance without the stator should be integrated over the whole pole pitch, which yields

Lσ∗ = µ0N
2
s lz

wp
2∫

0

1

πx+ b3
dx (2.65)

and finally

Lσ∗ =
µ0N

2
s lz
π

ln(1 +
πwp
2b3

) (2.66)

which gives the total inductance of

Lph∗ = 3(Ls + Lσ∗) (2.67)

The leakage inductance becomes smaller when the stator is in place. Then more permeance lines will be directed
through the stator. Therefore the leakage with stator is only integrated over the air gap length, which yields

Lσ =
µ0N

2
s lz
π

ln(1 +
πg

b3
) (2.68)

The inductance with stator can be calculated by magnetic circuit analysis given by figure 2.8.
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2.5. Inductance calculation

Fig. 2.8 Magnetic circuit for the inductance calculation with stator in place

The two air gap reluctances can be calculated as

<g =
ln(1 + g

r3 )

µ0lz
θp
2

(2.69)

The solution to the magnetic circuit with respect to the inductance is

Lph = 3N2

(
1

<s
+

1

<σ
+

1

2<g

)
(2.70)

Values of the parameters and the calculations are given below

Rotor pole width wp 104.7mm
Bottom rotor slot width b1 5mm
Upper rotor slot width b2 8mm
Rotor teeth opening b3 3mm
Rotor slot radial length d1 50mm
Bottom rotor teeth height d2 2mm
Top rotor teeth height d3 2mm
Number of conductors per slot Ns 24
Total slot conductor area Atot 3.36 · 10−4m2

Permeability of free space µ0 4π10−7Hm
Slot leakage inductance 1 L1 276.79µH

Slot leakage inductance 2 L2 55.52µH

Teeth slot leakage inductance L3 96.51µH

Total slot leakage inductance Ls 428.82µH

Air gap leakage inductance (Without stator) Lσ∗ 185.34µH

Air gap leakage inductance (With stator) Lσ 103.14µH

Total per phase rotor inductance (without stator) Lph∗ 1.8mH

Slot reluctance <s 1.3432 · 106A−turnsWb

Air gap leakage reluctance (without stator) <σ∗ 3.1078 · 106A−turnsWb

Air gap leakage reluctance (with stator) <σ 5.5845 · 106A−turnsWb

Air gap reluctance (with stator) <g 1.1697 · 106A−turnsWb

Total per phase rotor inductance (with stator) Lph 2.3mH

Since the stator has not been built yet, the self inductance was measured without the stator. The inductance
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was measured at 100Hz to be 1.5mH. This is within an accuracy of 20 percent compared to the analytically cal-
culated value (1.8mH). From the inductance calculation model it is possible to vary some design parameters to
see how sensitive the self inductance are to those. Figure 2.9, 2.10 and 2.11 shows how the inductance changes
with air gap, turns and slot opening (Carter’s factor are neglected for the slot opening since the slot pitch is
relatively large).

Fig. 2.9 Self inductance sensitivity to number of conductors per slot and the air gap distance

Fig. 2.10 Self inductance sensitivity to number of conductors per slot and the slot opening with 16 mm air gap
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2.5. Inductance calculation

Fig. 2.11 Self inductance sensitivity to number of conductors per slot and the slot opening with 8 mm air gap

It can be shown that less number of turns reduce the self inductance drastically. A bigger slot opening will
reduce the inductance significantly less. Another issue with a bigger slot opening is that the cogging torque will
increase. The cogging torque are given by the following formula [11]:

Tcogging =
dWmag,PM

dθmec
(2.71)

where Wmag,PM is the magnetic energy generated from the permanent magnets in the stator and θmec is
the mechanical angular position. The cogging torque can be found through FEM by calculating the magnetic
energy for multiple angular positions. With low stepping the derivative of the magnetic energy with respect to
the angular position can be approximated.
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Chapter 3

Finite Element Analysis

The finite element analysis for a generator is often obtained in 2D, to simplify the analysis. Either scalar
magnetic potential or magnetic vector potential is solved directly to obtain the magnetic flux distribution. This
is much simpler than to try to find the magnetic field distribution directly. If the B-field should be directly
solved in 2D, two vector components should be obtained in every point.

3.1 Magnetic scalar potential

Magnetic ohm’s law [12]:
B = µH = −µ0µr∇Ω (3.1)

Electric ohm’s law [12]:
J = σE = −σ∇V (3.2)

The magnetic scalar potential (Ω) is analogous to electric voltage potential, and describes the magnetomotive
force (ampere-turns) in a certain point. In the same way voltage is the driving force for current; magnetic
scalar potential is the driving force for magnetic flux. Often in generators, the windings are designed to create
a sinusoidal MMF-distribution in order to produce a sinusoidal voltage when current flows in the windings
(armature reaction).

∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

= 0 (3.3)

From equation 3.3 [12] (magnetic continuity equation), the diffusion equation for scalar potential can be de-
rived:

∂

∂x

[
µ0µr

∂Ω

∂x

]
+

∂

∂y

[
µ0µr

∂Ω

∂y

]
+

∂

∂z

[
µ0µr

∂Ω

∂z

]
= 0 (3.4)

Laplace equation is obtained if the relative permeability is constant:

∂2Ω

∂x2
+
∂2Ω

∂y2
+
∂2Ω

∂z2
= 0 (3.5)

In the 2D analysis, the z-dependent part of the equation is neglected.

3.2 Magnetic Equivalent Circuit Method

The equation for the scalar magnetic potential can be discretized by integrating up rectangular ”volumes” [1].
In 2D analysis, the ”volume” is integrated in both x and y direction, as in equation 3.6.

n∫
s

e∫
w

∂

∂x

[
µ
∂Ω

∂x

]
dxdy +

n∫
s

e∫
w

∂

∂y

[
µ
∂Ω

∂y

]
dxdy = 0 (3.6)

(

[
µ
∂Ω

∂x

]
e

−
[
µ
∂Ω

∂x

]
w

)∆y + (

[
µ
∂Ω

∂y

]
n

−
[
µ
∂Ω

∂y

]
s

)∆x = 0 (3.7)[
µe∆y

∂xe

]
(ΩE − ΩP )−

[
µw∆y

∂xw

]
(ΩP − ΩW ) +

[
µn∆x

∂yn

]
(ΩN − ΩP )−

[
µs∆x

∂ys

]
(ΩP − ΩS) = 0 (3.8)
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It turns out that the constants multiplied with the potential differences is equal to the permeance per meter, the
inverse of the reluctance. Equation 3.9 then describes a network of mutual permeances.

Pe(ΩP − ΩE) + Pw(ΩP − ΩW ) + Pn(ΩP − ΩN ) + Ps(ΩP − ΩS) = 0 (3.9)

Finally the equation looks like a reluctance network of ”flux tubes” where Kirchhoffs current law for magnetic
flux is fulfilled (equation 3.10). It describes how the magnetic equivalent circuit can be used to not only find
the magnitude of the magnetic flux, but also the direction.

ΩP − ΩE
Re

+
ΩP − ΩW

Rw
+

ΩP − ΩN
Rn

+
ΩP − ΩS

Rs
= 0 (3.10)

The benefit of solving this equation, is that it needs less computational power than other finite methods. The
MEC method is one of the oldest methods to model magnetic devices. In the regions where you have coils or
permanent magnets, the reluctance equation needs to be modified for that region. Coils can be modeled with
a magnetomotive force that corresponds to the MMF produced at that given finite region. With a MMF in the
x-direction, the following equation is valid [1]:

ΩP − ΩE − Fe
Re

+
ΩP − ΩW − Fw

Rw
+

ΩP − ΩN
Rn

+
ΩP − ΩS

Rs
= 0 (3.11)

With uniform mesh, Fe and Fw will have equal magnitude but have opposite signs. The MMF sources are
connected in series with the reluctance elements. In a similar way, permanent magnets can be modeled with a
flux source parallel to the reluctance elements. The magnitude of the flux source is the product of the remanence
(Br) and the finite flux tube area (in 2D analysis it corresponds to the width of the element normal to the flux
direction). For PM source in the x-direction, the following equation is valid [1]:

ΩP − ΩE
Re

+ φe +
ΩP − ΩW

Rw
+ φw +

ΩP − ΩN
Rn

+
ΩP − ΩS

Rs
= 0 (3.12)

With a uniform mesh, φe and φw will be equal in magnitude but have different signs. The general equation that
will describe all effects in the given domain is [1]:

ΩP − ΩE − Fe
Re

+φe +
ΩP − ΩW − Fw

Rw
+φw +

ΩP − ΩN − Fn
Rn

+φn +
ΩP − ΩS − Fs

Rs
+φs = 0 (3.13)

It should be pointed out that the remanent fluxes cancel out for the nodes inside the permanent magnet, but
contributes at the edges. The remanent flux at one boundary should be calculated as the average of the remanent
flux at the two neighboring nodes of the boundary. However the MMF contributes in every element from the
current in the neighboring elements normal to the flux direction. For instance, the change in the MMF source
in series with the east reluctance from one element to the neighboring element is defined by equation 3.14 [1]

Fei,j−1 − Fei,j =
1

2
I =

1

2
J∆x∆y (3.14)

Where the current convection is in the positive z-direction. One can see from this equation that a change in
the MMF happens only at the edges of the coil where there is a current density. In the region inside the coil
where there is no current density, there is no change in the MMF. However the MMF can change inside if the
windings are distributed to create more sinusoidal like MMF.

3.3 Magnetic vector potential

B = ∇×A (3.15)

The vector potential (as shown in equation 3.15) is more complex than the scalar potential, but it becomes very
simple in 2D [12]. In air it has a very simple analytical solution, given in equation 3.16 [7].

A =
µ0

4π

∫
V

J

R
dV (3.16)

The vector potential in a point has the direction and magnitude determined by the superposition of the surround-
ing current density vectors, weighted by their distance to the point. In 2D analysis, there exists only current
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3.3. Magnetic vector potential

density vectors in the z-direction. Therefore, there exist only vector potentials in the z-direction (The other two
are zero). The vector potential then becomes a scalar potential. From the magnetostatic version of ampere’s
law:

∇×H = ∇×
[

1

µ0µr
B

]
= ∇×

[
1

µ0µr
∇×A

]
= J (3.17)

In 2D, equation 3.17 simplifies to the diffusion equation [11]:

∂

∂x

[
1

µ0µr

∂Az
∂x

]
+

∂

∂y

[
1

µ0µr

∂Az
∂y

]
= −Jz (3.18)

By assuming constant relative permeability in equation 3.18, poisson’s equation is obtained:

∂2Az
∂x2

+
∂2Az
∂y2

= −µ0µrJz (3.19)

The vector components of the magnetic flux density is found by the following equations (by the curl the A-
field) [11]:

Bx =
∂Az
∂y
− ∂Ay

∂z
(3.20)

By =
∂Ax
∂z
− ∂Az

∂x
(3.21)

Bz =
∂Ay
∂x
− ∂Ax

∂y
(3.22)

In 2D analysis, the equations are simplified [11]:

Bx =
∂Az
∂y

(3.23)

By = −∂Az
∂x

(3.24)

A great feature with the magnetic vector potential is that it can be used directly to compute the magnetic
flux integral if you apply stokes theorem (see equation 3.25 [11]).

ΦS =

∫
S

∇×A · dS =

∮
l

A · dl (3.25)

Where the closed line integral path l encloses the surface S. In 2D, the equation 3.25 simplifies to equation 3.26

Φ12 = lz [Az(x1, y1)−Az(x2, y2)] (3.26)

where lz represents the body in the direction normal to the x,y-plane. The line integral becomes zero along the
x,y-plane because the magnetic vector potential has zero x,y-components in 2D analysis. For time-dependent
FEM analysis, the armature reaction can be accounted for through insertion of the magnetic vector potential
into faradays law:

∇×E = −∇× ∂A
∂t

(3.27)

From before we know that the electric field in electrostatics is equal to the negative gradient of the potential.
The equation for the electric field in electrodynamics should fulfill both electrostatics plus faradays law. This
gives:

E = −∂A
∂t
−∇V (3.28)

The current density used for the time stepping FEM analysis is then:

J = −σ∂A
∂t
− σ∇V (3.29)

The final equation for the FEM analysis becomes then [2]:

∂

∂x

[
ν
∂Az
∂x

]
+

∂

∂y

[
ν
∂Az
∂y

]
= σ

[
∂Az
∂t

+
∂V

∂z

]
(3.30)
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The first source term on the right hand side is the armature reaction, induced currents that try to oppose the
change in the magnetic vector potential, thereby the change in the magnetic flux. The second term is the current
produced by the applied voltage. The voltage gradient in the z-direction is equal to the negative of the applied
voltage over the conductor divided by the length of the conductor. It should be noted that a small mesh in the
conductor area makes it possible to simulate the skin effect as well. The left side of the equation is the diffusion
equation for the vector potential. The right hand side corresponds to the sources of the diffusion of the vector
potential. The diffusion of A is proportional to the reluctivity, which is the inverse of the permeability. Iron
has low reluctivity, whereas copper, air and permanent magnets have high reluctivity. The vector potential will
diffuse a lot in the direction where the reluctivity is large. This is analogous to that the temperature will diffuse
(heat will flow) in the direction where the thermal conductivity is high. For the vector potential, equipotential
lines will go in the direction where the reluctivity is small and thereby the magnetic flux density will flow in the
lowest reluctivity direction. In opposition to heat flux and electric fields that flows normal to the equipotentials
(voltage and temperature), magnetic fields flows along the equipotential lines.

3.4 Finite Modeling of Permanent Magnets

The hysteresis characteristic equation for the permanent magnet can be inserted into amperes law (without
displacement currents) and then discretized. This is done to get equation 3.31 [4].

∇× [νB−Hc] = Jext (3.31)

The coercive force of the permanent magnet (excitation) in equation 3.31 can be moved over to the right side
of the get equation 3.32.

∇× (νB) = Jext +∇×Hc (3.32)

The equation can also be solved with respect to the magnetization vector [4], as in equation 3.33.

∇× (νB) = Jext +∇× (νµ0M) (3.33)

In the same way, it is possible to solve the equation with respect to the magnetic vector potential.

∇× (ν∇×A) = Jext +∇×Hc (3.34)

In 2D analysis, there is no excitation from the permanent magnet in the z-direction. The curl of the excitation
can then be simplified in two dimensions.

∂

∂x

[
ν
∂Az
∂x

]
+

∂

∂y

[
ν
∂Az
∂y

]
= −Jext +

∂Hcx
∂y

− ∂Hcy
∂x

(3.35)

The only region where there is a coercive force is in the permanent magnet region, but the sources of diffusion
applies only at the boundaries of the PM where Hc changes to zero. It is easy to see that the permanent magnet
has a current winding equivalent (Hl = NI).

3.5 FEM model implementation

In figure 3.1 the implementation of the exciter in FEM is shown. Because of symmetry, it is only needed to
simulate for one pole and to use anti periodic conditions at the top and bottom boundary. Anti periodic condition
means the flux from the permanent magnet divides equally to the top and the bottom boundary, but that the
direction of the flux is opposite. Zero vector potential is defined at the left and right boundaries. Zero potential
mean that no magnetic flux crosses those boundaries, since the reluctance of air is high. The phases and the
polarity of each set of conductors are also shown. Each conductor set is displaced five mechanical degrees with
respect to each other. Five mechanical degrees corresponds to 30 electrical degrees since the number of pole
pairs in the exciter is 6. The negative sign for the polarity of phase W and Wd in the implementation means that
the phases are phase shifted with U and Ud the given mechanical displacement of 5 and 10 degrees (30 and 60
degrees electrical) plus 180 electrical degrees because of the polarity (See figure 3.1). For the time dependent
solution, a rotating mesh interface is made in the middle of the air gap so that the two permanent magnets and
the outer stator core can move relative to the rotor. With a rotating exciter, the given time step with rotor and
stator symmetrically aligned, corresponds to zero voltage in phase U and maximum positive voltage in phase
Wd. This is because on constant mechanical rotation, the maximized flux linkage happens 90 electrical degrees
before the maximum voltage. The mesh used for the COMSOL simulation is shown in figure 3.3.
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3.5. FEM model implementation

Fig. 3.1 One pole implementation in COMSOL

Fig. 3.2 Winding connections for the Exciter
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Chapter 3. Finite Element Analysis

Fig. 3.3 Mesh of the geometry

3.6 FEM inductance calculation

The inductance calculation in FEM is based on the energy method [12]. Current densities are set in the different
conductors and the energy of the produced magnetic field is calculated.

Wmag = l

∫ ∫
1

2
B ·Hdxdy (3.36)

In equation 3.36, l means the length of the 2D geometry in the z direction. The linearized self inductance
parameter can be found by modifying equation 3.37 to equation 3.38.

Wmag =
1

2
LselfI

2 (3.37)

Lself =
2Wmag

I2
(3.38)

The current I in equation 3.37 is the current you put in the winding to find the self inductance for that winding.
The FEM calculation should be done for different current levels. It is found that it is hard to get the magnetic
material saturated and that the inductance stays the same at different amplitudes of the current. In FEM it
is simulated with current amplitudes from 1 to 50 Amperes and there is practically no difference. However,
the inductance has a little time dependent variation due to the rotation of the permanent magnets. The time
dependent solution can be found by the time stepping method. The mutual inductances between the phases
can be found in a similar way, but now current densities should be applied on two phases. The direction of the
current densities should be in accordance to the sign convention [12].

Wtot =
1

2
LiI

2
i +

1

2
LjI

2
j −

1

2
MijIiIj (3.39)

I should be noted that the self inductances has negative signs in the mutual inductance matrix. With the sign
convention above, the mutual inductance will be positive if the total magnetic energy is lower than the sum of
the magnetic energy from the individual self inductances. The mutual inductance will be negative if the total
magnetic energy is higher than the sum of the energy in the individual self inductances. In figure 3.4, 3.5, 3.6,
3.7 and 3.8, the different inductance components for the mutual inductance matrix is given as a function of
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3.6. FEM inductance calculation

time. Indexes are ordered in the way that 1, 2 and 3 corresponds to U, V and W accordingly and that 4, 5 and 6
corresponds to Ud, Vd and Wd accordingly.

Fig. 3.4 Time dependent self inductances and time dependent derivatives

Fig. 3.5 Time dependent mutual inductances and time dependent derivatives
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Chapter 3. Finite Element Analysis

Fig. 3.6 Time dependent mutual inductances and time dependent derivatives

Fig. 3.7 Time dependent mutual inductances and time dependent derivatives
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3.6. FEM inductance calculation

Fig. 3.8 Time dependent mutual inductances and time dependent derivatives

To find the three phase self inductances and mutual inductances, self inductances and mutual inductances of
series connected windings needs to be combined to create an equivalent self inductance. Mutual inductances
between the windings of the winding pairs also needs to be combined in order to get equivalent mutual induc-
tances as well. A small modification is done in the three phase calculation compared to the six phase calculation
by the fact that the length considered for the exciter is 0.1 meter, not 0.2 meter (to be able to operate in the same
voltage range). The matrix for the three phase connection is a three times three matrix and the components are
defined in figure 3.9 and 3.10.

Fig. 3.9 Time dependent self inductances and time dependent derivatives, three phase connection
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Chapter 3. Finite Element Analysis

Fig. 3.10 Time dependent mutual inductances and time dependent derivatives, three phase connection

The self inductance of the six phase connection was calculated to be 2.3mH in chapter 2 and this corresponds
very well with 2.25mH calculated by FEM, yielding a difference of 2 percent.

3.7 No load voltage calculation

The no load electric field can be calculated at the conductors as minus the change of the magnetic vector
potential as the the permanent magnets are rotated with the time stepping method. The total no load voltage can
be found by multiplying the electric field with the length in the z-direction. All the conductors of each phase
are added together. Since each half of the exciter is parallel connected, it is only needed to add up the voltages
for half of the exciter, to get the phase voltages (figure 3.11). The analytical solution for the no-load voltage
is found in chapter 5 to 120V and match well with the FEM results which are on average 110V, yielding a
difference of 9 percent.
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3.7. No load voltage calculation

Fig. 3.11 No load phase voltages, six phase

Considering the six phase parallel connection, two and two phases tend to commutate together. It is the pair with
the highest absolute value of the line to line voltage, that tend to commutate naturally in a diode rectification
bridge. This is shown in figure 3.12.

Fig. 3.12 No load line to line voltages, six phase

The three phase voltages (figure 3.13).are calculated as the sum of two and two phases (U and Ud together,
V and Vd together and W and Wd together). The difference is that in the three phase connection, the phase
voltages are half because the length of the exciter is half.
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Chapter 3. Finite Element Analysis

Fig. 3.13 No load voltages, three phase
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Chapter 4

Simulation Model

This chapter examines the simulation model in Simulink, used to get out the results in chapter 5. The 6 phase ac
system on the rotor should deliver a rectified voltage to supply the rotating electromagnet of the hydroelectric
generator with dc current. This can be done in three different ways. First of all, it is possible to connect the
six phase voltages into three pairs of phase voltages and to rectify them with a six pulse thyristor rectifier. The
voltage of the pairs should be 30 degrees phase shifted with each other in order to get a new balanced three
phase system. The other option is to rectify two balanced three phase systems separately and to series connect
them on the dc side. The last option is to rectify the six phase system with a twelve pulse thyristor rectifier. The
six phase system can be described by vector quantities (assuming sinusoidally distributed windings), as i figure
4.1.

Fig. 4.1 6 phase system vector components

From the FEM calculated time dependent inductance matrix, the terminal voltage can be found. The induced
voltage is equal to the negative of the derivate of the flux linkage through the coils of each phase (equation
2.18). The flux contribution from the other phases are found from the inductance matrix [8]. Since this flux
contribution should be differentiated, the product rule is used. The major part of the armature reaction is due to
the inductance matrix times the derivate of current vector. The minor part of the armature reaction is due to the
derivative of the inductance matrix times the current vector. The last part which should be accounted for is the
voltage drop due to the parasitic resistance of the coil. That one is measured to be 62.5mΩ (Rs).
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For the three phase connection, the armature reaction equation becomes simpler.
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4.1 Three phase connection

Figure 4.3 shows the generalized circuit for simulation in Simulink for the three phase connection. The gen-
eralization is made from the true circuit in figure 4.2. The load circuit has a resistance (Rload 3 Ω and an
inductance of 0.53H. Two and two pairs of phases conducts the load current normally, but during the commuta-
tion, all phases conducts.The armature reaction for negative and positive current commutation is symmetrical.
The generalized voltages represents different phase voltages for different intervals. When commutation does
not occur anymore, the voltage vj is removed from the circuit. This means that the j index is not active as well
as the commutation integrator is not active.

Fig. 4.2 Circuit diagram for the Three Phase connection
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4.1. Three phase connection

Fig. 4.3 Generalized simulation circuit

Each index in the circuit is associated with a specific no load voltage and a specific position in the inductance
matrix for every interval of 60 degrees. Table 4.1 shows the connection between the indexes and the phases for
different intervals and the corresponding equations are as follows.

vi = ei +Mii
dii
dt

+Mij
dij
dt

+Mik
dik
dt

+ (
dMii

dt
−Rs)ii +

dMij

dt
ij +

dMik

dt
ik. (4.5)

vj = ej +Mji
dii
dt

+Mjj
dij
dt

+Mjk
dik
dt

+
dMji

dt
ii + (

dMjj

dt
−Rs)ij +

dMjk

dt
ik (4.6)

vk = ek +Mki
dii
dt

+Mkj
dij
dt

+Mkk
dik
dt

+
dMki

dt
ii +

dMkj

dt
ij + (

dMkk

dt
−Rs)ik (4.7)

where vi, vj and vk is source voltage, ei, ej and ek is the no load source voltage andRs is the internal resistance
of the phase coils. By applying Kirchoffs voltage law, equation 4.8 is found.

vi − vk = Rloadiload + Lload
diload
dt

(4.8)

Insertion of equation 4.5 and 4.7 into equation 4.8 gives

ei − ek + Li
dii
dt

+ Lj
dij
dt

+ Lk
dik
dt

+Riii +Rjij +Rkik = Rloadiload + Lload
diload
dt

(4.9)

where Li = Mii −Mki, Lj = Mij −Mkj , Lk = Mik −Mkk, Ri = dMii

dt −
dMki

dt −Rs, Rj =
dMij

dt −
dMkj

dt

and Rk = dMik

dt −
dMkk

dt + Rs. From Kirchoffs current law, it can be shown that ii = iload − icom, ij = icom
and ik = −iload. Insertion gives

ei − ek + (Lj − Li)
dicom
dt

+ (Rj −Ri)icom = (Rload +Rk −Ri)iload + (Lload + Lk − Li)
diload
dt

(4.10)

Kirchoffs voltage law also gives
vj − vi = 0 (4.11)

The armature reaction can be inserted into equation 4.11, yielding

ej − ei + L∗i
dii
dt

+ L∗j
dij
dt

+ L∗k
dik
dt

+R∗i ii +R∗j ij +R∗kik = 0 (4.12)

WhereL∗i = Mji−Mii,L∗j = Mjj−Mij ,L∗k = Mjk−Mik,R∗i =
dMji

dt −
dMii

dt +Rs,R∗j =
dMjj

dt −
dMij

dt −Rs
and R∗k =

dMjk

dt −
dMik

dt . By applying Kirchoff current law, equation 4.12 is modified to

ej − ei + (R∗i −R∗k)iload + (L∗i − L∗k)
diload
dt

= (R∗i −R∗j )icom + (L∗i − L∗j )
dicom
dt

(4.13)
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Equation 4.10 and equation 4.13 forms together two generalized coupled differential equations.

vmain = Rmainiload + Lmain
diload
dt

(4.14)

vcom = Rcomicom + Lcom
dicom
dt

(4.15)

The states (load current and commutation current) in equation 4.14 and 4.15 can be solved by Laplace trans-
formation in the simulink solver, yielding

iload =
vmain

Rmain + sLmain
(4.16)

icom =
vcom

Rcom + sLcom
(4.17)

where Lmain = Lload + Lk − Li, Rmain = Rload + Rk − Ri, Lcom = L∗i − L∗k and Rcom = R∗i − R∗k,
vmain = ei− ek + (Lj −Li)dicomdt + (Rj −Ri)icom and vcom = ej − ei+ (R∗i −R∗k)iload+ (L∗i −L∗k)diload

dt .
Given constant parameters are: Rload = 3Ω, Lload = 0.53H and Rs = 0.0625Ω.

Table 4.1 Associated voltages and indexes for different intervals
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4.2. Six phase connection

4.2 Six phase connection

Figure 4.5 shows the general simulation circuit for the six phase connection (derived from the main circuit in
figure 4.4. The commutation circuit is a result of the fact that in the six phase system, the commutation happens
in two phases at the same time. There are six phases, but only four phases are active during each commutation.
When there is no commutation, the j index and the l index are not active, as well as the commutation integrator
is not active.

Fig. 4.4 Circuit diagram for the Parallel connection

Fig. 4.5 Generalized simulation circuit
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The simulation model for the six phase system can be derived the same way as in the three phase connection.
The interval table is found in table 4.2 and the equations are

vi = ei +Mii
dii
dt

+Mij
dij
dt

+Mik
dik
dt

+Mil
dil
dt

+ (
dMii

dt
−Rs)ii +

dMij

dt
ij +

dMik

dt
ik +

dMil

dt
il (4.18)

vj = ej +Mji
dii
dt

+Mjj
dij
dt

+Mjk
dik
dt

+Mjl
dil
dt

+
dMji

dt
ii + (

dMjj

dt
−Rs)ij +

dMjk

dt
ik +

dMjl

dt
il (4.19)

vk = ek+Mki
dii
dt

+Mkj
dij
dt

+Mkk
dik
dt

+Mkl
dil
dt

+
dMki

dt
ii+

dMkj

dt
ij +(

dMkk

dt
−Rs)ik+

dMkl

dt
il (4.20)

vl = el +Mli
dii
dt

+Mlj
dij
dt

+Mlk
dik
dt

+Mll
dil
dt

+
dMli

dt
ii +

dMlj

dt
ij +

dMlk

dt
ik + (

dMll

dt
−Rs)il (4.21)

First KVL loop forms the following equation

vi − vk = Rloadiload + Lload
diload
dt

(4.22)

Equation 4.18 and 4.20 can be inserted into equation 4.22 to get

ei− ek +Li
dii
dt

+Lj
dij
dt

+Lk
dik
dt

+Ll
dil
dt

+Riii+Rjij +Rkik +Rlil = Rloadiload+Lload
diload
dt

(4.23)

where Li = Mii −Mki, Lj = Mij −Mkj , Lk = Mik −Mkk, Ll = Mil −Mkl, Ri = dMii

dt −
dMki

dt − Rs,
Rj =

dMij

dt −
dMkj

dt , Rk = dMik

dt −
dMkk

dt +Rs and Rl = dMil

dt −
dMkl

dt . From Kirchoff’s current law, it can be
shown that ii = iload − icom, ij = icom, ik = −iload + icom and il = −icom. Considering Kirchoff’s current
law, equation 4.23 is simplifyed to

ei−ek+(Lj−Li+Ll−Lk)
dicom
dt

+(Rj−Ri+Rl−Rk)icom = (Rload+Rk−Ri)iload+(Lload+Lk−Li)
diload
dt

(4.24)
Another KVL loop yields

vj − vl + vk − vi = 0 (4.25)

The same type of insertion method can be used to obtain

ej − el + ek − ei + L∗i
dii
dt

+ L∗j
dij
dt

+ L∗k
dik
dt

+ L∗l
dil
dt

+R∗i ii +R∗j ij +R∗kik +R∗l il = 0 (4.26)

where L∗i = Mji −Mli + Mki −Mii, L∗j = Mjj −Mlj + Mkj −Mij , L∗k = Mjk −Mlk + Mkk −Mik,
L∗l = Mjl−Mll+Mkl−Mil,R∗i =

dMji

dt −
dMli

dt + dMki

dt −
dMii

dt +Rs,R∗j =
dMjj

dt −
dMlj

dt +
dMkj

dt −
dMij

dt −Rs,
R∗k =

dMjk

dt −
dMlk

dt + dMkk

dt −
dMik

dt −Rs and R∗l =
dMjl

dt −
dMll

dt + dMkl

dt −
dMil

dt +Rs. Further simplification
by introducing iload and icom gives

ej−el+ek−ei+(R∗i −R∗k)iload+(L∗i −L∗k)
diload
dt

= (R∗i −R∗j +R∗k−R∗l )icom+(L∗i −L∗j+L∗k−L∗l )
dicom
dt

(4.27)
The same type of coupled integrator differential equation system is obtained for the six phase system as well
(See equation 4.28 and 4.29), but the parameters are modified.

iload =
vmain

Rmain + sLmain
(4.28)

icom =
vcom

Rcom + sLcom
(4.29)

where Lmain = Lload + Lk − Li, Rmain = Rload + Rk − Ri, Lcom = L∗i − L∗j + L∗k − L∗l and Rcom =

R∗i − R∗j + R∗k − R∗l , vmain = ei − ek + (Lj − Li + Ll − Lk)dicomdt + (Rj − Ri + Rl − Rk)icom and
vcom = ej − el + ek − ei + (R∗i − R∗k)iload + (L∗i − L∗k)diload

dt . Given constant parameters is: Rload = 3Ω,
Lload = 0.53H and Rs = 0.0625Ω.
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4.3. Double three phase series connection

Table 4.2 Associated voltages and indexes for different intervals

4.3 Double three phase series connection

Fig. 4.6 Circuit diagram for the double three phase series connection

For the double three phase series connection, it is possible to have two commutation processes at the same
time and also to have different firing angles at the upper and the lower bridge. This makes the simulation model
very complex. The armature reaction is also more complex because the commutation of one bridge is dependent
on the polarity of the commutation in the other bridge. A model was made with the assumption of same firing
angles on both bridges and that the commutations does not overlap. Because of too high inductances in the
matrix, the simulation was shown to fail because the commutation did indeed overlap.
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Chapter 5

Results

This chapter will begin with the analytical magnetic circuit results and continue further with the simulation
results. All simulations are done in Simulink with the time-dependent self and mutual inductances and the no
load voltages as input data (calculated from FEM). The model developed in chapter 4 is used and with post
processing in Matlab, all the data has been calculated. The post processing starts by converting load current
and commutation current to actual phase currents. The same is done for the derivative of the currents. Then
the phase currents and the derivative of the phase currents is used to calculated the terminal voltage when the
armature reaction is accounted for. Phase voltages and phase currents are multiplied with each other to get the
instantaneous phase powers. The phase powers are used to predict the torque ripple. Full load refers to a delay
angle of 10 degrees. The angle should not be lower because some commutation voltage is needed from the start
to be able to fire the thyristors.

5.1 Analytical results

Analytical results as shown below are calculated from the theory developed in chapter 2. The calculated induced
phase voltage should be regarded as no-load amplitude, as the design was optimized for that given voltage. In
the three phase machine, the exciter is half in height and the phase voltage will be half of the calculated one in
this section.

Average air gap length lg 14mm
Air gap width Wg 30mm
Air gap reluctance Rg 1856808 A

Wb

Air gap permeance Pg 0.539 µWb
A

Flux leakage factor Kl 0.75
Total flux φ 3.16 mWb
Leakage flux φl 0.789 mWb
Air gap flux φg 2.37 mWb
Air gap flux density Bg 0.39T
Rotor speed nmech 1000 rpm
Pole pairs np 6
Frequency f 50 Hz
Rotor radius R 0.2m
Induced electric field E 4.14 V

m

Number of turns per phase, per half pole Nw 12
Number series connected coils Ns 6
Induced phase voltage u 120 V

5.2 Three phase simulation results

The voltage in figure 5.1 shows the difference in the terminal voltage for full load and no load conditions. The
reaction is symmetrical for all three phases.
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Fig. 5.1 U phase voltage, no load and full load

In the direct current side of the exciter, reactive power does not exist. Figure 5.2 shows how the phase current
and phase voltage are phase shifted on the alternating current side of the exciter. This results in reactive power
consumption. The reactive power is accumulated in the magnetic field during the commutation process.

Fig. 5.2 Delay plot, no load phase voltage and full load phase current

Figure 5.3 shows that the phase currents are symmetrically shifted. The figure also shows that commutation
occurs nearly all the time since neither of the phases has zero current for a very long time.
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5.2. Three phase simulation results

Fig. 5.3 Phase currents

The power absorbed by each phase is very time varying. This is shown in figure 5.4. The net power generated
by the exciter is the sum of all the three powers generated. The total instantaneous power generated by the
exciter is the source of the torque that the exciter produces. This ripple is plotted in figure 5.5

Fig. 5.4 Instantaneous power for each phase
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Fig. 5.5 Instantaneous torque variation, full load

5.3 Six phase simulation results

Figure 5.6 and 5.7 shows that the armature reaction for the dotted and the non-dotted phases are different. This
is because the phase shift between the phase current and the phase voltage are different for the dotted and the
non-dotted (See figure 5.8 and 5.9). This again results in different waveforms for the phase powers shown in
figure 5.11 and 5.12. However, the waveforms for the power of the dotted phases are equal but phase shifted
and same for the non-dotted phases. The individual phase currents are shown in figure 5.10. The phase currents
are symmetrical to each other in order to make the load current stiff.

Fig. 5.6 U phase voltage, no load and full load
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5.3. Six phase simulation results

Fig. 5.7 Ud phase voltage, no load and full load

Fig. 5.8 Delay plot U phase, no load phase voltage and full load phase current
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Fig. 5.9 Delay plot Ud phase, no load phase voltage and full load phase current

Fig. 5.10 Phase currents
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5.3. Six phase simulation results

Fig. 5.11 Instantaneous power for each phase, no dotted phases

Fig. 5.12 Instantaneous power for each phase, dotted phases

The torque variation (figure 5.13) is still big for the six phase system. The relation between the load power and
the varying input power is shown in figure 5.14.
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Fig. 5.13 Instantaneous torque variation, full load

Fig. 5.14 Instantaneous power generation and load consumption

5.4 Comparison between six phase and three phase simulations

This section is about comparing the three phase system and the six phase system to difference in voltage,
current, commutation time and torque. The comparison between the three phase and the six phase system shows
that the commutation process is faster for the six phase system (see figure 5.18). This results in less magnetic
energy accumulation, which causes a lower torque ripple for low angles (see figure 5.19). For unrealistically
high steady state delay angles, the torque ripple becomes higher for the six phase system (above 45 degrees).
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5.4. Comparison between six phase and three phase simulations

The ripple in the load current is not so much to worry about since it is constantly low for all simulated delay
angles (see figure 5.20). Figure 5.16 shows that the no load voltage is very different from the full load voltage
for the same delay angle. This is because a lot of the voltage is lost in the armature reaction.

Fig. 5.15 Comparison, load current

Fig. 5.16 Comparison, load voltage
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Fig. 5.17 Comparison, Average torque

Fig. 5.18 Comparison, commutation time
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5.4. Comparison between six phase and three phase simulations

Fig. 5.19 Comparison, torque ripple

Fig. 5.20 Comparison, current ripple
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Chapter 6

Conclusions

The thesis was shown to be more complicated than what was assumed in the beginning of the project. The first
goal was to build a coupled FEM and circuit equation model to account for all non-linear effects. It was hard
to get convergence with the coupled simulation method.

Therefore ACE was used to find the time-dependent self and mutual inductances between the phases. Be-
cause the core material was simulated to be far from saturation for all operating conditions, the inductance
linearization was shown to be a very good approximation. The no load voltage waveforms also came from the
FEM simulation in ACE. The same geometry was investigated in COMSOL as well with similar results.

The analytical calculations in chapter 2 (results shown in chapter 5) was shown to be close to the results
from FEM in chapter 3. The results were close in both magnetic flux density and no-load voltage. The only
hard thing to figure out was the flux leakage in the magnetic circuit. The leakage is introduced because the
permanent magnets are not placed over the whole pole of the exciter, which creates more circulating fluxes and
makes the simple magnetic circuit approximation less valid. The leakage became even worse for the magnetic
flux density created by the current in the rotor windings. In that magnetic circuit, the leakage flux was not the
minor part of the circuit, but the major part of the circuit. This made the inductance calculation hard. The air gap
was very big (compared to normal electrical machines) and most of the flux from the currents in the windings
circulated without moving in to the stator core. This in combination with the rotor winding design made the
self and mutual inductances to be very high (this is confirmed by measurements and analytical calculations in
chapter 2).

The high inductances made the commutation process very slow, which again resulted in a lot of magnetic
energy accumulation (reactive power). The load power at the dc side was shown to be very stiff, but the exciter
torque is produced as a result of the power consumed on the ac side of the exciter, not the dc side. Because of
the high amount of reactive power, the torque ripple on the exciter shaft was shown to be huge, even for low
delay angles. Comparisons made between the three phase and the six phase system shows that it is actually
possible to reduce the torque ripple. It is possible that with a better design of the exciter, the comparison of the
three phase and the six phase system will turn out differently.

An alternative design solution is proposed in the appendix A.5. There it is shown that it is possible to reduce
the self inductance with up to 75 percent. A air gap minimum distance of about 4mm is the limiting factor for
further reductions.

6.1 Future Work

In the future a new design of the exciter should be done to reduce the magnetic energy oscillations. FEM
simulations should be done on the proposed alternative designs (or even other designs as well). A new optimal
combination of air gap distance and number of conductors per slot in the rotor should be verified in FEM. Also
more advanced simulations with a double three phase series connection should be done with different firing
angles at the top and the bottom bridge. The stator could be improved by some adjustable electromagnets in
addition to the permanent magnets to increase complexity, but to be able to analyze more solutions for the
exciter design.
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Appendix A

A.1 Finite Difference Method

The finite difference method is based on Taylor expansion [3]:

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +

h4

24
f ′′′′(x) (A.1)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(x) +

h4

24
f ′′′′(x) (A.2)

In this application, second derivative is treated in the differential equations. The second derivative can be
approximated like this:

f(x+ h)− 2f(x) + f(x− h)

h2
= f ′′(x) +O(h2) (A.3)

Insertion of the taylor expansions into the equation gives the following error function:

O(h2) =
h2

12
f ′′′′(x) (A.4)

The discretization technique is second order accurate. It means that if the step size (h) is half, the error is
one fourth. The finite difference method in 2D solves (in this application) an equation like this:

∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
= C (A.5)

The obtained discretized equation is then:

f(x+ h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)− 4f(x, y)

h2
= C (A.6)

In discretized matrix notation:

fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j
h2

= C (A.7)

Magnetic scalar potential in 2D (with uniform mesh, constant permeability and without source term):

Ωi+1,j + Ωi−1,j + Ωi,j+1 + Ωi,j−1 − 4Ωi,j = 0 (A.8)

Magnetic vector potential in 2D:

Ai+1,j +Ai−1,j +Ai,j+1 +Ai,j−1 − 4Ai,j = −µ0µrh
2Jz (A.9)

One way of solving the equations, is by using the Gauss-Seidel numerical method:

Ωn+1
i,j =

1

4
(Ωni+1,j + Ωni−1,j + Ωni,j+1 + Ωni,j−1) (A.10)

An+1
i,j =

1

4
(Ani+1,j +Ani−1,j +Ani,j+1 +Ani,j−1 + µ0µrh

2Jz) (A.11)

The new value of a given cell is computed by the old values of the neighboring cells. To be able to solve
for a domain; boundary conditions should be applied on all edges (east, west, south, north). With the Dirichlet
condition, the values are specified at the boundary. With the Neuman condition, the derivative is specified at
the boundary.
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A.2 Finite Volume Method

A more modern version of the finite difference method is the finite volume method. The method is used a lot in
computational fluid dynamics [10].

n∫
s

e∫
w

∂

∂x

[
ν
∂A

∂x

]
dxdy +

n∫
s

e∫
w

∂

∂y

[
ν
∂A

∂y

]
dxdy =

n∫
s

e∫
w

∂Hcx
∂y

dxdy −
n∫
s

e∫
w

∂Hcy
∂x

dxdy (A.12)

(

[
ν
∂A

∂x

]
e

−
[
ν
∂A

∂x

]
w

)∆y+(

[
ν
∂A

∂y

]
n

−
[
ν
∂A

∂y

]
s

)∆x = (Hcx,n−Hcx,s)∆x+(Hcy,e−Hcy,w)∆y (A.13)[
νe∆y

∂xe

]
(AE−AP )−

[
νw∆y

∂xw

]
(AP−AW )+

[
νn∆x

∂yn

]
(AN−AP )−

[
νs∆x

∂ys

]
(AP−AS) = (Hcx,n−Hcx,s)∆x+(Hcy,e−Hcy,w)∆y

(A.14)
Each point can be solved by Gauss Seidel iteration, by treating the neighbor potentials as constant and solve
for the point [10]

AP =
cWAW + cEAE + cSAS + cNAN + SU

cP
(A.15)

where:
cW =

νw∆y

∂xw
(A.16)

cE =
νe∆y

∂xe
(A.17)

cS =
νs∆x

∂ys
(A.18)

cN =
νn∆x

∂yn
(A.19)

cP = cW + cE + cS + cN (A.20)

SU = (Hcx,n −Hcx,s)∆x+ (Hcy,e −Hcy,w)∆y (A.21)

An alternative is to make a matrix system of all the equations and solve it by Newton-Raphson method. The
number of equations is equal to the number of discretized finite volumes.

A.3 Finite Element Method

Instead of defining discretized points, the finite element method defines entire elements. The shape and size
of the elements can vary throughout the whole domain. The elements are often made as triangles with either
linear, quadratic or cubic shape functions to describe the potential along the element [7].
Linear shape function:

f(x, y) = α1 + α2x+ α3y (A.22)

Quadratic shape function:
f(x, y) = α1 + α2x+ α3y + α4x

2 + α5y
2 (A.23)

Cubic shape function:

f(x, y) = α1 + α2x+ α3y + α4x
2 + α5y

2 + α6x
3 + α7y

3 (A.24)

The linear function has three unknown coefficients, the quadratic has five and the cubic has seven. Each ele-
ment needs the solver to compute for the same number of points in the elements as the number of unknown
coefficients. To solve for the coefficients of the linear shape function, one uses the computed values from the
three corners of the element triangle. This gives three equations, three knowns and three unknowns:

fi = α1 + α2xi + α3yi (A.25)

fj = α1 + α2xj + α3yj (A.26)

fk = α1 + α2xk + α3yk (A.27)
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A.3. Finite Element Method

A.3.1 Variational Method

The variational method is an energy method that utilizes the information about the energy in the magnetic
field [7]. For linear materials, magnetic energy is:

wmag =
1

2
B ·H =

1

2
µ0µr|H|2 =

1

2

|B|2

µ0µr
(A.28)

In the general case if the material is non-linear:

wmag =

B∫
0

H · dB (A.29)

The magnetic energy density is expressed in joules per meter cube. A more complete expression for the system
energy can be found from the following vector identity:

∇ · (E×H) = H · (∇×E)−E · (∇×H) (A.30)

The identity can be simplified with Faraday’s law and Ampere’s law, neglecting displacement currents.

∇ · (E×H) = −H · dB
dt
− J ·E (A.31)

∇ · (E×H) + H · dB
dt

+ J ·E = 0 (A.32)∫
V

∇ · (E×H)dV +

∫
V

H · dB
dt
dV +

∫
V

J ·EdV = 0 (A.33)

Gauss’s theorem: ∮
S

E×H · dS +

∫
V

H · dB
dt
dV +

∫
V

J ·EdV = 0 (A.34)

The cross product of the E-field and the H-field has only a z-component, and the net flux of it out of the volume
is zero. ∫

V

H · dB
dt
dV +

∫
V

J ·EdV = 0 (A.35)

Insertion of the definition of the magnetic vector potential into Faraday’s law gives:

∇×E = − ∂

∂t
(∇×A) (A.36)

By assuming negligible electrostatic potential:

E = −∂A
∂t

(A.37)

This equation can be used for simplification.∫
V

H · dB
dt
dV −

∫
V

J · ∂A
∂t

dV = 0 (A.38)

∂

∂t

∫
V

 B∫
0

H · dB

 dV − ∂

∂t

∫
V

 A∫
0

J · dA

 dV = 0 (A.39)

∂

∂t
Wmag +

∂

∂t
We = Pmag + Pe = 0 (A.40)

A converged solution is found when the sum of the electrical and magnetic energy is maximized, because then
the power balance equation is statisfied.

wmag =

B∫
0

H · dB =

Bx∫
0

HxdBx +

By∫
0

HydBy (A.41)

57



Appendix A.

we = −J ·A = −JzAz (A.42)

For linear materials, the magnetic energy integral simplifies to

wmag =
B2
x +B2

y

2µ0µr
(A.43)

The magnetic energy function can be expressed for both scalar potential and vector potential in 2D.

wmag =
1

2µ0µr

[(
∂Az
∂x

)2

+

(
∂Az
∂y

)2
]

(A.44)

wmag =
µ0µr

2

[(
∂Ω

∂x

)2

+

(
∂Ω

∂y

)2
]

(A.45)

F =

∫
S

(wmag + we)dS (A.46)

The function F (joule per meter) should have a zero derivative with respect to every node potential in every
triangle in the whole domain you solve for.

A linear shape function describes the magnetic vector potential along the element.

A = α1 + α2x+ α3y (A.47)

The vector potential at the three nodes of the triangular element must be:

Ai = α1 + α2xi + α3yi (A.48)

Aj = α1 + α2xj + α3yj (A.49)

Ak = α1 + α2xk + α3yk (A.50)

This system of equations can be written in matrix form:AiAj
Ak

 =

1 xi yi
1 xj yj
1 xk yk

α1

α2

α3

 (A.51)

By matrix inversion, one can obtain the coefficients.α1

α2

α3

 =

1 xi yi
1 xj yj
1 xk yk

−1 AiAj
Ak

 (A.52)

The inversion can be made efficiently by Cramers rule and then the matrix looks like this:α1

α2

α3

 =
1

2∆

ai aj ak
bi bj bk
ci cj ck

AiAj
Ak

 (A.53)

The solved coefficients are:

ai = xjyk − xkyj (A.54)

aj = xkyi − xiyk (A.55)

ak = xiyj − xjyi (A.56)

bi = yj − yk (A.57)

bj = yk − yi (A.58)

bk = yi − yj (A.59)

ci = xk − xj (A.60)

cj = xi − xk (A.61)
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ck = xj − xi (A.62)

∆ =
1

2
[(xjyk − xkyj) + xi(yj − yk) + yi(xk − xj)] (A.63)

It is interesting to notice that ∆ is didactically equal to the area of the triangle element defined by the nodes i, j
and k. The coefficients are then:

α1 =
1

2∆
(aiAi + ajAj + akAk) (A.64)

α2 =
1

2∆
(biAi + bjAj + bkAk) (A.65)

α3 =
1

2∆
(ciAi + cjAj + ckAk) (A.66)

The derived coefficients can be inserted into the general shape function.

A =
1

2∆
[(aiAi + ajAj + akAk) + (biAi + bjAj + bkAk)x+ (ciAi + cjAj + ckAk)y] (A.67)

A =
1

2∆
[(ai + bix+ ciy)Ai + (aj + bjx+ cjy)Aj + (ak + bkx+ cky)Ak] (A.68)

A = NiAi +NjAj +NkAk (A.69)

A =
[
Ni Nj Nk

] AiAj
Ak

 (A.70)

Ni =
1

2∆
(ai + bix+ ciy) (A.71)

Nj =
1

2∆
(aj + bjx+ cjy) (A.72)

Nk =
1

2∆
(ak + bkx+ cky) (A.73)

The N-functions make an interpolation of the point with respect to the defined node potentials. At the point
(xi, yi), Ni = 1, Nj = 0 and Nk = 0. At the point (xj , yj), Ni = 0, Nj = 1 and Nk = 0. At the point
(xk, yk), Ni = 0, Nj = 0 and Nk = 1. From the definition of the vector potential, the numerical solution of
the magnetic flux density can be solved.

Bx =
∂A

∂y
(A.74)

By = −∂A
∂x

(A.75)

Bx =
1

2∆
(ciAi + cjAj + ckAk) (A.76)

By = − 1

2∆
(biAi + bjAj + bkAk) (A.77)

The magnitude of the magnetic field:

|B| =
√
B2
x +B2

y (A.78)

|B| = 1

2∆

√
(biAi + bjAj + bkAk)2 + (ciAi + cjAj + ckAk)2 (A.79)

Note that the magnetic flux density B is constant over the triangle. Since the reluctivity is a function of the
amplitude of B, it is evident that ν is also constant over the region.

ν =
1

µ0µr
=
|H|
|B|

(A.80)

|H| = f(|B|) (A.81)
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The magnetizing force H is fund by interpolation from the BH-curve for the material you solve for. The function
that should be minimized is:

F =

∫
S

(
ν

2

[(
∂A

∂x

)2

+

(
∂A

∂y

)2
]
− JA

)
dS (A.82)

∂F

∂Ai
=

∂F

∂Aj
=

∂F

∂Ak
= 0 (A.83)

∂F

∂Ai
=

∫
S

(
ν

[
∂A

∂x

∂

∂Ai

(
∂A

∂x

)
+
∂A

∂y

∂

∂Ai

(
∂A

∂y

)]
− J ∂A

∂Ai

)
dS (A.84)

The components of the discretizated vector potential gradient is:

∂A

∂x
=

1

2∆
(biAi + bjAj + bkAk) (A.85)

∂A

∂y
=

1

2∆
(ciAi + cjAj + ckAk) (A.86)

After differentiation with respect to the node potential:

∂

∂Ai

(
∂A

∂x

)
=

bi
2∆

(A.87)

∂

∂Ai

(
∂A

∂y

)
=

ci
2∆

(A.88)

∂A

∂Ai
= Ni (A.89)

∂F

∂Ai
=

1

2∆

∫
S

( ν

2∆
[bi(biAi + bjAj + bkAk) + ci(ciAi + cjAj + ckAk)]− J(ai + bix+ ciy)

)
dS

(A.90)
∂F

∂Ai
=

ν

4∆
[bi(biAi + bjAj + bkAk) + ci(ciAi + cjAj + ckAk)]− J

2∆

∫
S

(ai + bix+ ciy)dS (A.91)

Since the integration over the area of a triangle is equivalent to integrating a weighted function at its centroid,
one can write: ∫

S

(ai + bix+ ciy)dS =

∫
S

(ai + bix+ ciy)dS (A.92)

The weighted coordinated can be viewed as the ”centre of gravity” of the triangle.

x =
xi + xj + xk

3
(A.93)

y =
yi + yj + yk

3
(A.94)

Finally it can be proven that: ∫
S

(ai + bix+ ciy)dS =
2∆2

3
(A.95)

This simplifies the final equation:

∂F

∂Ai
=

ν

4∆
[bi(biAi + bjAj + bkAk) + ci(ciAi + cjAj + ckAk)]− J∆

3
(A.96)

The minimized function for the other nodes in the triangle becomes very similar. All of them can be put into a
matrix together.

∂F
∂Ai
∂F
∂Aj

∂F
∂Ak

 =
ν

4∆

 b2i + c2i bibj + cicj bibk + cick
bibj + cicj b2j + c2j bjbk + cjck
bibk + cick bjbk + cjck b2k + c2k

AiAj
Ak

− J∆

3

1

1

1

 =

0

0

0

 (A.97)
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The product of the current density (J) and the area of the triangle (∆) gives the total current flowing through
the triangle.

ν

4∆

 b2i + c2i bibj + cicj bibk + cick
bibj + cicj b2j + c2j bjbk + cjck
bibk + cick bjbk + cjck b2k + c2k

AiAj
Ak

 =
1

3

II
I

 (A.98)

The matrix equation can be written more compactly:Sii Sij Sik
Sji Sjj Sjk
Ski Skj Skk

AiAj
Ak

 =
1

3

II
I

 (A.99)

This matrix gives a relationship between the nodes in an element. Some of the same nodes are part of neigh-
boring elements. By numerating the nodes and adding all the matrixes together, one will obtain the so called
stiffness matrix. Since FEM is an evolved technique originating from structural mechanics the name of the
matrix doesn’t make so much sense. Therefore in magnetic fields it is also called the reluctivity matrix.

A.4 Comparision between FVM, MEC and FEM

The exciter was evaluated with the three different methods: FVM, MEC and FEM. The results are similar for a
simulation of a half pole of the exciter:

Fig. A.1 Comparision of the solved static magnetic field for a half pole with FVM, MEC and FEM

All the flux is simulated to flow between the neighboring poles and with a symmetry line a the middle of
a pole. No magnetic flux cross that line for a static simulation. For FVM and FEM, zero vector potential is
implemented and for MEC Neumann condition is implemented. In the border between the poles Neumann is
implemented for FVM and FEM, but zero reference scalar potential is implemented for MEC.

A.5 Alternative Designs

In the alternative design evaluation it is used three permanent magnets instead of two. The geometry for the
magnetic circuit of the permanent magnets are shown in figure A.2, with the magnetic circuit in figure A.3. The
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magnetic circuit for the inductance calculation will be the same as the one derived in chapter 2 of the thesis
(with b3 equal to 3mm). It is important to note that the air gap distance for the permanent magnets are always
3mm smaller than distance between the stator and rotor core. The equivalent air gap for the magnetic circuit of
the rotor slot conductor currents, considering that the permanent magnets have a relative permeability close to
air, will be around 2.6mm larger (averaged value).

Fig. A.2 Permanent Magnet Geometry

Fig. A.3 Magnetic circuit for the permanent magnets
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Using radial flux assumption, the air gap reluctance yields

<g =
ln(1 + g/r3)

µ0lzθp
(A.100)

where
Φr,tot = 3Φr (A.101)

and
<m,tot =

<m
3

(A.102)

The solution of the air gap flux will then be

Φg =
<m,tot

<m,tot + <g
Φr,tot (A.103)

where
Bg =

Φg
lzθpR

(A.104)

The total no load voltage can be found by the flux cutting form of Faradays law, multiplying the voltage induced
in each conductor with the number of conductors per slot (N) and a factor depending on the number of parallel
circuits (p). This gives

U = Nu
2np
p

(A.105)

where
U = 4πBgNr3lzf

1

p
(A.106)

when the equation 2.20 is inserted. The required air gap flux density for a given voltage (U), a given number of
parallel circuits (p) and given number of slot conductors (N), is

Bg =
Up

4πNRlzf
(A.107)

The magnetic circuit is tried out for different combinations of the parameters which govern 120V induced no
load voltage. The results are shown in A.1.

Table A.1 Magnetic circuit solution and inductance solutions for 120V induced no-load voltage

Data:<m = 757881A−turns/Wb, r3 = 0.2m, lz = 0.2m, f = 50Hz, np = 6, θp = π
6 , U = 120V . With no

parallel circuits, it is actually possible to reduce the self inductance with a factor of 73 percent. Another issue
with this configuration is that the amount of current flowing in the windings will be doubled. With two parallel
circuits, approximately 25A will flow in each circuit. With one circuit, 50A has to flow in all conductors. The
cross sectional area of the conductor is 7.07mm2 with a diameter of 3mm. This yields a current density in the
conductors of approximately 7.07A/mm2, which is an upper limit of what copper can handle at the specified
cooling conditions (natural cooling).
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