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Abstract

The topic of this thesis is the analysis of large data sets of DNA sequence data
produced from modern high-throughput DNA sequencing machines. Using such
machines to sequence the genetic content of a microbial community produces a
metagenome. This thesis comprises three research papers, all connected to the
study of large metagenomic data sets.
In the first paper, we developed a method for discovering fragments of fluoro-
quinolone antibiotic resistance genes in short fragments of DNA. The method
uses hidden Markov models for identifying qnr genes in short DNA fragments.
Cross-validation showed that our method for classifying short fragments has
high statistical power even for fragments as short as 100 base pairs, a length
commonly encountered in modern next-generation sequencing data.
In the second paper, the putative qnr genes identified in the first paper were
verified using wet-lab experiments. This was a follow-up study to validate the
findings from the first paper. An expression system for qnr genes in Escherichia
coli hosts was developed and used to evaluate the resistance phenotype of the
novel gene candidates discovered in the first paper.
In the third paper, we developed an easy-to-use high performance method for
distributed gene quantification in metagenomic sequence data. It leverages high-
performance computing resources to provide high throughput while maintaining
sensitivity. This enables efficient and accurate gene quantification, suitable for
use in comparative metagenomics.
Next-generation DNA sequencing has had a big impact on molecular biology.
As the size of the produced data sets increases, there is an equally increasing
need for methods suited for the analysis of such data sets. This thesis presents
several new methods that are well adapted to analysis of modern terabase-sized
metagenomic data sets.

Keywords: metagenomics, DNA analysis, big data, antibiotic resistance, hid-
den Markov models, high-performance computing, distributed computing
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Chapter 1

Introduction

Bioinformatics is a multidisciplinary field of research at the intersection of biol-
ogy, computer science, mathematics, and statistics. Because of this combination
of disciplines there might be a lot of ground to cover before a person unversed
in all of these can appreciate the issues at hand. This chapter aims to describe a
minimal background so that the reader is equipped with some of the prerequisite
knowledge to understand the basic underlying concepts in the research papers
included in the thesis. The articles concern topics ranging from the identifica-
tion of novel antibiotic resistance genes in the environment using hidden Markov
models, to utilizing high-performance computing clusters to quantify gene con-
tent in order to compare microbial communities. To introduce the reader to this
relatively wide background the introduction will cover the essentials of DNA,
DNA sequencing, metagenomics, and antibiotic resistance. Furthermore, it will
try to highlight why large computer clusters are sometimes required to perform
analyses of metagenomic DNA sequence data.

This thesis contains three research articles. The first two articles have a natural
relation to each other; the second makes biological verifications of some of the
results that were discovered in the first. This relation highlights a modern way
of doing research where hypotheses are generated using computational methods
(i.e. bioinformatics) and then verified in the lab, rather than other way around
which has historically been more common. The third article included in the
thesis describes a method that leverages the parallelism of high-performance
computer clusters to perform analyses of very large metagenomic data sets being
produced today and in the future.

1.1 DNA

Deoxyribonucleic acid (DNA) is a biological molecule. It is used in all living or-
ganisms for storing genetic instructions (cf. a blueprint). It is a stable molecule
that is copied in cell division processes to transfer genetic information (i.e. in-
heritance). The molecule consists of basic building blocks called nucleotide bases
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2 1. Introduction

which are connected together to form almost arbitrarily long strands of DNA via
a sugar backbone (deoxyribose). There are four kinds of nucleotides, normally
abbreviated to single letters as such: adenine (A), cytosine (C), guanine (G),
thymine (T). The nucleotide bases also have the ability to form pairwise bonds;
A with T, and C with G. This is called base pairing and is what enables DNA
to form helical structures when two long complementary strands of DNA base
pair to each other (Watson and Crick, 1953). This is in part why DNA is such a
stable molecule and well suited for carrying the important genetic information
of an organism.

An important concept in molecular biology is The Central Dogma (Crick, 1970),
which states how information flows in biological systems. The key point is
that biological information is encoded in the DNA as sequences of adjacent
nucleotides. Throughout this thesis, I will refer to such regions as genes. Within
a gene, each sequence of three consecutive nucleotides encode for an amino acid.
There are 20 different standard amino acids that are encoded for in normal
DNA. The genes are translated through a number of processes into long chains
of amino acids (cf. a pearl necklace). Such chains of amino acids fold together
to become proteins. Proteins are large biological molecules and one of the
major constituents of every cell. They perform a wide variety of functions in
the cells, some of which will be further detailed in section 1.4. The central
dogma is vital for realising that proteins can be identified in DNA sequences
and (to some extent) vice versa. This relation is essential for all research papers
included in the thesis. For example, one of the concepts underlying Paper I is
that bacterial DNA sequences can be translated into amino acid sequences to
identify protein sequences that can provide its host organism with resistance to
antibiotic compounds.

1.2 DNA sequencing

In order to investigate the sequence of the DNA of an organism, the actual DNA
molecule(s) in that organism needs to be sequenced. That means that the DNA
inside the organism must be extracted and the order of the nucleotide bases
determined. In 1975 a method now called Sanger sequencing (Sanger, 1977;
Sanger and Coulson, 1975) was published. Modern variants of this method
are in some cases still used because of its merits in sequencing relatively long
continuous stretches of DNA (700-900 bases) at a high quality. The throughput
of Sanger sequencing is however far too low to be time and cost effective in a
majority of scenarios, making it used mostly for smaller sequencing projects.

About a decade ago there was a revolution in DNA sequencing as the next-
generation sequencing (NGS) era began when novel methods for high-throughput
DNA sequencing started becoming commercially available (Stein, 2008). It
brought with it a wide use of a now common method called whole genome
shotgun sequencing. In this method DNA is extracted from samples of inter-
est and enzymatically broken into many shorter pieces. These short pieces of
DNA are put into a sequencing machine that determines what nucleotides are
present and in what order. One of the hallmarks of NGS technologies is that all
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fragments are sequenced in parallel, leading to the early designation "massively
parallel sequencing".

The output from NGS machines is called reads. Each read represents a short sec-
tion of DNA; historically machines produced reads as short as 25-50 bases, but
today’s current technologies can produce read lengths between 100-250 (some
up to 400+ bases), depending on what technology is used. Several different
NGS technologies exist which can be grouped into several categories. The most
common technologies that are currently available in the market and often en-
countered are based on techniques called sequencing by synthesis (e.g. Illumina,
454 pyrosequencing, and Ion Torrent), sequencing by ligation (e.g. ABI SOLiD)
and more recently single-molecule sequencing (e.g. Pacific Biosciences SMRT).

A majority of all the sequencing data used in this thesis was produced using
Illumina sequencers. They implement the sequence by synthesis approach to
DNA sequencing which starts with sample preparation where the DNA is ex-
tracted, purified, and fragmented into templates. These templates are attached
to a solid surface on a flow cell where they are amplified to produce many copies
of each template in small clusters on the surface. Each cluster thus consists of
many copies of short identical DNA strands sitting close together. The flow
cell of an Illumina HiSeq 2500 can have between 610,000-678,000 such clusters
per square millimeter (Illumina, 2013), which is one of the reasons for their
immense throughput. The actual sequence of nucleotides in the strand clusters
is determined by flowing a solution of free nucleotides across the flow cell. The
nucleotides attach to their complementary base on the strands, and emit a small
flash of light when they bind to the next available position in the strands in the
clusters. A high resolution camera detects the light emitted, coded with differ-
ent colours for each of the four nucleotides, to produce a sequence of images.
From these, the sequence of nucleotides on the strands in each cluster can be
determined. This constitutes the base calling process. For interested readers a
very good presentation of different NGS technologies is presented in (Metzker,
2010).

Because the DNA sequence data produced by NGS machines consist of short
reads it requires special techniques for analysis. Often the first step in an anal-
ysis is to assemble the reads, like a massively big and complex jigsaw puzzle,
before any further analysis is made. Unfortunately, the sequencing machines
are not perfect and occasionally return erroneous base calls (Treangen and
Salzberg, 2012). Different technologies are more prone to different types of
errors. In 454 pyrosequencing, insertions occasionally mistakenly occur (i.e. a
nucleotide that was not actually present in the real DNA strand is introduced
into the sequence), or the converse when nucleotides are removed when they
should actually be present (deletions). Illumina on the other hand, is more
prone to miscall bases, leading to incorrect nucleotides in the reads. The error
rate of modern sequencers is typically in the range of 0.01 − 1% (Huse et al.,
2007; Dohm et al., 2008; Hansen et al., 2010). Regardless of the type, errors
introduce complexities in the analysis (Meacham et al., 2011). They can make
it harder to correctly place from where the read originates in a reference, or
severely complicate assembly, making it important to consider the occurrence
of errors in sequence data. There has been a lot of research effort put into
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trying to model the occurrence of errors in reads and trying to correct them, as
highlighted by the vast numbers of available error correction algorithms, some
examples of which include the commonly used FASTX (Gordon and Hannon,
2010), and HTQC (Yang et al., 2013), as well as many others (Ilie and Molnar,
2013; Meacham et al., 2011; Ilie et al., 2011; Liu et al., 2011; Yang et al., 2010;
Kao et al., 2011).

One of the main advantages of modern NGS technologies is that they produce
a lot more sequence information in total than earlier methods. This turns out
to be both a blessing and a curse. Current NGS platforms such as Illumina can
produce as much as several gigabases per run (109 nucleotide bases). Recent and
coming data sets produced by consortia such as Meta-HIT (Qin et al., 2010), The
Earth Microbiome Project (Gilbert et al., 2011), and The Human Microbiome
Project (Turnbaugh et al., 2007) are expected to deliver data sets on the order
of petabases (1015 bases) over the next few years (Baker, 2010). DNA sequence
data storage organisations like the European Nucleotide Archive describe that
they experience a doubling of sequence data every 10 months (Cochrane et al.,
2013), a rate that is higher than the expected growth in e.g. harddrive sizes as
predicted by Kryder’s Law (Walter, 2005) and also surpasses the predictions of
Moore’s law (Schaller, 1997) that relates to computer processing power. This
means that to analyse data sets of such massive sizes will require novel methods
and approaches, because the currently employed algorithms and computational
methods will no longer be capable of handling the coming data deluge.

1.3 Metagenomics

Metagenomics is a subject central to this thesis. It concerns the examination of
genetic material extracted from environmental samples. Much like a genome is
the complete genetic material of a single organism, a metagenome is the collec-
tive genetic material of an entire community of organisms (e.g. bacteria). The
term was coined in 1998 (Handelsman et al., 1998) to describe the application of
genomic techniques to uncultured microorganisms. It has been shown that less
than 1% of environmental bacteria are possible to grow in the lab (Hugenholtz
et al., 1998). This would leave the remaining 99% of environmental bacteria
out of reach if culture independent methods like metagenomics did not exist.
Next-generation sequencing is the enabling technology that allows for the study
of the genetic makeup of such microbial communities.

Because of its low per-base cost, high throughput, and relatively low error rate,
Illumina sequencing is routinely used in many sequencing projects and has be-
come the de facto standard in large-scale metagenomic sequencing studies. Un-
fortunately, as a result of how modern whole genome shotgun NGS technology
works, the sequence data from a metagenomic sample consists of a massive
amount of of short reads with all the genetic material in the sample mixed to-
gether. This makes it difficult to determine (or piece together) exactly what
organisms were present in the sample, and in what quantities. In addition, the
DNA of highly abundant species in an environmental sample are overrepresented
in the sequenced DNA because of the random selection of DNA in shotgun se-
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quencing, due to their relative abundance. To determine the features of the
genomes of less abundant organisms a high coverage is required. Thus large
amounts of DNA needs to be sequenced to ensure that the less abundant organ-
isms have DNA fragments represented in the metagenomic sample. However,
because of the immense output of NGS machines the size of a large modern
metagenomic study can easily reach several gigabases, many even approaching
terabases. In fact, the size of the data sets is in itself creating the need for more
focused research efforts on making data analysis more efficient.

Nowadays metagenomics is often associated with, and thought of, as a way to
study bacterial communities. Among the first uses of metagenomics was how-
ever to study the presence of viral DNA in seawater. Seawater was also the
focus of Craig Venter’s ambitious Gene Ocean Sampling (Yooseph et al., 2007;
Williamson et al., 2008) project in which a sailing boat was equipped with
a DNA sequencing lab and set off to sail across the globe to sample seawa-
ter for DNA. It was a pioneering project in the investigation of environmental
metagenomes and helped mature the field, bringing many improvements in data
management and large-scale data analysis with it.

An application where metagenomics is often used is when trying to deduce dif-
ferences between samples or communities (Jones et al., 2010; Tringe et al., 2005).
In order to perform such comparisons it is necessary to quantify the presence of
genes or other features of interest (Delmont et al., 2013). Quantification enables
comparison between different samples, for example to compare the content of
resistance genes in the intestinal microbiota of healthy individuals not exposed
to antibiotics with that of people with chronic intestinal diseases that are depen-
dent on regular use of antibiotics. To perform gene quantification requires that
each read in the metagenomic sample is compared to a reference (e.g. databases
of known antibiotic resistance genes in bacterial genomes). After all reads have
been compared the number of matches to the references are counted and can be
used as a basis for comparison (Kristiansson et al., 2009). Sequence comparison
(i.e. sequence alignment) is a task of relatively high computational complexity,
both requiring clever algorithms and powerful computer hardware to perform
efficiently at the scale required for large modern metagenomic data sets.

1.4 Antibiotic resistance

Paper I and II uses the previously described techniques to investigate the pres-
ence of antibiotic resistance genes in environmental bacterial communities. An-
tibiotics are substances, chemical or biological, that either prevent growth of,
or even kill, bacteria. Modern health care is therefore highly reliant on effec-
tive antibiotics to treat bacterial infections (Rosenblatt-Farrell, 2009). However,
bacteria are becoming resistant to many of our commonly used antibiotics (Neu,
1992) and many argue for careful usage of antibiotics (Andersson and Hughes,
2010, 2012).

Microbial organisms have a long history of withstanding antibiotics (D’Costa
et al., 2011; Davies and Davies, 2010; Sykes, 2010). At their disposal is a
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large toolbox of methods available for their use Allen et al. (2010). Some ex-
amples of how bacteria can acquire antibiotic resistance include: a) modifica-
tion/alteration of the active substance, e.g. β-lactamases that break down the
β-lactam antibiotics (penicillin is a common β-lactam antibiotic), b) alteration
of the target site, e.g. fluoroquinolone resistance by mutation of the amino acid
sequence of the protein gyrase that the antibiotic targets, c) transport of the
active substance out of the cell (e.g. using efflux pumps). Often these mecha-
nisms are available in the genome of the organism, but bacteria also have several
mechanisms with which they can exchange genetic material with other bacteria
through a process called horizontal gene transfer (Aminov and Mackie, 2007;
Bennett, 2008). This enables bacteria to share genes for antibiotic resistance.
The transfer often occurs via ring shaped DNA constructs called plasmids (Saly-
ers et al., 2004). Each plasmid can contain several genes and sometimes even
the instructions (genes) for how to construct the machinery required for the
transfer (Rajpara et al., 2009; Jacobsen et al., 2007; Hall and Collis, 1995).

Many common bacterial antibiotic resistance genes originate from the environ-
ment (Allen et al., 2010; Cantón, 2009). There are several examples of metage-
nomic sequencing projects that has focused on different types of microbial com-
munities, e.g. The Earth Microbiome Project (Gilbert et al., 2011, 2010), and
The Human Microbiome Project (Blaser, 2010; Turnbaugh et al., 2007), as well
as several others (Penders et al., 2013; Qin et al., 2010; Huttenhower et al.,
2012; Lazarevic et al., 2009; Jones et al., 2010; Eckburg et al., 2005; Gill et al.,
2006). With metagenomic and computational techniques it is possible to identify
antibiotic resistance genes in environmental microbiomes (Schmieder and Ed-
wards, 2012). The availability of such metagenomic data sets enable the study
of known antibiotic resistance genes in such environments, but also provides the
possibility of finding new, previously undiscovered antibiotic resistance genes.



Chapter 2

Introduction to papers

This chapter consists of brief introductions to the three papers included in this
thesis. The introductions provide an alternative, more accessible, angle to the
papers than their respective abstracts in order to provide unversed readers with
a basic introduction that can be further expanded by reading the abstracts and
the papers. I also try to highlight the main findings or main conclusions from
each paper to further make it easy for the reader to understand their respective
contributions.

2.1 Introduction to Paper I

In the first paper, A novel method to discover fluoroquinolone antibiotic resis-
tance (qnr) genes in fragmented nucleotide sequences, we developed a technique
that enables the identification of a special type of antibiotic resistance genes
called qnr, in short fragments of DNA. The qnr genes are a family of plasmid
mediated resistance genes that provide bacteria with resistance to commonly
used antibiotics in the fluoroquinolone family (e.g. ciprofloxacin). The method
we developed is based around the fact that qnr proteins have a specific repeat
pattern in their amino acid sequence, lending them the classification pentapep-
tide repeat proteins. As such, their sequence can be accurately discriminated
using a statistical modelling framework called hidden Markov models. Such
models are able to capture the repeating pattern in the amino acid sequence
while still allowing for high variability in the regions where there is little con-
servation of amino acids between the different gene family members.

The main findings of Paper I are that the qnr family of antibiotic resistance
genes are very suitable to describe using a hidden Markov model. Such a model
can is able to accurately identify the amino acid sequence of a qnr fragment
and distinguish it from other similar pentapeptide repeat sequences that lack
a resistance phenotype. In our study we also discovered several fragments that
indicate a presence of previously unknown qnr gene variants in the environment.
This paper was published in BMC Genomics 2012 13:695. (Boulund et al.,
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8 2. Introduction to papers

2012).

2.2 Introduction to Paper II

The second paper, Functional verification of computationally predicted qnr genes,
is a follow up study of the results from Paper I. The paper describes the devel-
opment of a bacterial expression platform for evaluation of the resistance pheno-
type of antibiotic resistance genes. The chosen host organism was Escherichia
coli and the expression platform was evaluated using synthesized genes of sev-
eral types of well-known qnr genes as well as some of the novel candidates we
discovered in Paper I.

Paper II shows that two putative qnr genes discovered in Paper I do provide an-
tibiotic resistance when expressed in an E. coli host. The experimental work was
performed by collaborator Carl-Fredrik Flach from The Sahlgrenska Academy at
University of Gothenburg. It is also an example of how computational methods
can be used in exploratory studies to generate novel hypotheses and interme-
diary results that can be verified in the lab, rather than the other way around
which has traditionally been more common. This paper has been submitted to
a peer-reviewed scientific journal.

2.3 Introduction to Paper III

In the third paper, A framework for distributed gene quantification, we addressed
the challenge of working with very large scale metagenomic data sets. Since the
size of metagenomic data sets are continually increasing and this increase is
showing no signs of slowing down, novel methods for analysing these quantities
of data are required. The aim of this project was to enable researchers to
perform gene quantification in metagenomic data sets in sizes of up to several
terabases (1012 nucleotide bases).

The fundamental result of Paper III is a new method for distributed gene quan-
tification in very large metagenomic data sets. The method is based on a bioin-
formatics pipeline consisting of the components required to perform gene quan-
tification in metagenomic data, which is then distributed across several nodes
in high-performance computer clusters in a data parallel manner, exploiting the
independence and inherent possibilities for parallelism in read mapping. This
is a paper in manuscript form, expected to be submitted for peer-review later
this year.



Chapter 3

Future work

A natural continuation of the work in Paper I is to apply the method to more
recent and larger data sets. This work has already begun with a project student
that I co-supervised during the summer of 2013. We will focus on continuing
to improve the throughput of the pipeline to allow for terabase-scale short read
data. In addition, the method has been evaluated for use in scenarios other
than the identification of qnr genes, e.g. with β-lactamases, to further broaden
the utility of the method.

There are several improvements to the framework described in Paper III cur-
rently in progress. Some details to improve the overall ease-of-use is still re-
quired. This includes the production of a solid API reference and tutorial mate-
rial to enable widespread usage of the framework. One major missing feature of
the framework is support for blastx-like functionality to enable mapping to pro-
tein databases using unmodified FASTQ read data. As the framework reaches
maturity and further optimizations to parts of the pipeline has been made the
ambition is to make it capable of handling input data sizes up to 10 terabases.

Next-generation sequencing has enabled whole community analysis of the ge-
netic content of environments such as the human gut. As mentioned in section
1.4, there is a great interest in studying the complex bacterial communities that
occupy this habitat. A pilot project studying the antibiotic resistance gene
content in the human gut was performed by me in my master thesis project
(Boulund, 2010). With the availability of the pipeline described in Paper III it
is now possible to further investigate the presence of antibiotic resistance genes
in the large gut metagenomes published in recent years. This work will continue
in collaboration with people from The Systems and Synthetic Biology group at
the Department of Chemical and Biological Engineering at Chalmers University
of Technology.

In addition, our ambition is that the method from Paper III will find itself ap-
plied in several collaborative efforts where quantification of metagenomic data is
required. One such project is NICE (Novel Instruments for effect-based assess-
ment of Chemical pollution in coastal Ecosystems; www.nice.gu.se) which

9
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10 3. Future work

studies how marine microorganisms are affected by pollution. The effects will
be studied, in part, by comparing marine samples of polluted and pristine en-
vironments using comparative metagenomic techniques. Another project where
the method is well suited and expected to be applied is in collaboration with
members of the INTERACT project (www.interact.gu.se), where bacterial
resistance to metals and antibiotics is studied.

www.interact.gu.se
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