
A semi-analytical, two-dimensional model for AlGaN/GaN
high-electron-mobility-transistor Schottky currents
at high reverse voltages

Rik Josa)

Microwave Electronics Laboratory, Chalmers University of Technology, Kemiv€agen 9, 41296 Gothenburg,
Sweden and NXP Semiconductors, Gerstweg 2, 6534AE Nijmegen, The Netherlands

(Received 18 July 2013; accepted 2 August 2013; published online 21 August 2013)

A semi-analytical model is derived for the reverse Schottky gate current in AlGaN-GaN high-

electron-mobility-transistors (HEMTs) in off-state at high drain voltage. At elevated drain voltages,

the depletion of the two-dimensional electron gas (2-DEG) not only exists directly underneath the

gate contact but also extends from the gate towards the drain. This increases the electric fields at the

gate edge on the drain side, which causes an increase in the gate leakage current. In this paper, a new

method is proposed to calculate the electric fields at the gate edge using conformal mapping of the

charge configuration in the device. This method also allows calculation of the influence of charges

trapped at the interface between the semiconductor and the passivation layer next to the gate. It is

shown that direct tunneling is the dominant current mechanism at high drain voltages, such that the

current becomes insensitive to temperature variation. Interface charges next to the gate exert a

large influence on the high voltage leakage current. It is argued that temperature variations of the

high voltage leakage current are caused by temperature dependent changes in trapped charge.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818832]

I. INTRODUCTION

AlGaN-GaN high-electron-mobility-transistors (HEMTs)

have attracted much attention over the last decade for possible

use in RF power applications like radar systems, cellular base

station, and microwave transmitters. One of the important fac-

tors limiting the usability of these HEMTs is a high Schottky

gate leakage current, especially when a high drain voltage is

applied. Any gate current flowing outwards from the gate

through a (parasitic) resistor somewhere in the gate path will

cause a voltage increase on the internal gate of the transistor

above the voltage that is externally applied. This gate self-

biasing effect will increase the drain current, which in turn will

lead to more power dissipation in the HEMT, higher device

temperature and therefore higher gate leakage current. This

mechanism can cause bias run-away, which destroys the tran-

sistor. A low leakage current is therefore required to achieve

rugged operation.

Although gate leakage has been studied in AlGaN-GaN

HEMTs, the leakage mechanism is still not fully understood

nor is it clear along which path the current flows in the device.

Goswami et al. have proposed a model in which the electrons

move from gate to drain by hopping between surface traps of

the AlGaN layer at the interface with the device passivation.1

In this paper, however, we argue that the gate current is

caused by electrons that transit through the AlGaN Schottky

barrier between gate and 2-DEG and from there move to the

drain via the 2-DEG. In our proposed model, the degree of

depletion of the 2-DEG is crucial. At low bias, between

threshold and zero Volt, the current can essentially be ana-

lyzed by a one-dimensional model as published before;2

while at high bias, the problem is fundamentally two-

dimensional. The low bias case was used to derive a physical

model for the current through the Schottky barrier. In this pa-

per, we will use that physical model in a situation with high

bias voltages. Conformal mapping techniques are used to cal-

culate the two-dimensional electric fields in the device. Two-

dimensional analysis of gate leakage current has been done

before3,4 using TCAD simulations. However, these studies

often use high reverse bias voltages (larger than the threshold

voltage), which makes it hardly possible to determine the

physics behind the current mechanism. An exception is5 in

which, just as in our model, a clear distinction is made

between mechanisms generating the current at reverse bias

below and above threshold voltage. Usually, reasonable fits

with measurements are obtained if charged traps are assumed

to reside in various places in the device. However, this

approach does not guarantee that such traps are actually pres-

ent, since similar results can also be obtained by many other

trap configurations. Since in this paper, we use a physical

model for the current flow through the Schottky barrier that is

verified and calibrated at low bias voltages, there are fewer

degrees of freedom at high bias. In fact, we will only use the

net surface charge of the AlGaN layer as variable.

In a previous paper,2 several models for the Schottky

gate current were evaluated at low reverse voltages, ranging

between the threshold voltage Vt (Vt< 0) and zero volt. It

was argued that the dominant mechanism is current flow

through defects in the Schottky barrier that have an abnor-

mally low barrier height of 0.58 eV. However, these defects

only form a fraction (�10�4) of the total junction area. In

this paper, we extend the analysis to the case of a high volt-

age on the drain, which increases the electric fields at the

gate edge and causes Schottky current increase. We assumea)rik.jos@nxp.com
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the 2-DEG under the gate is always fully depleted, which

means that there is no drain current flowing except for part

of the gate leakage current. Analytical expressions for the

field in two dimensions near the gate edge are derived. The

field is determined by the net charges in the 2-DEG under

and next to the gate and by possible net charges in the

semiconductor-passivation interface.

II. GEOMETRY AND CONFORMAL MAPPING

In Ref. 2, we only considered a two terminal device

with a gate and a source. In this paper, a three terminal off-

state HEMT is treated. However, the source is not used as an

independent terminal but the gate source voltage is assumed

to always be equal to the threshold voltage, such that the 2-

DEG under the gate is completely depleted. So while the

source and gate potentials are tightly coupled, the Schottky

gate current will be described as function of the drain voltage

only. Conformal mapping6,7 is used to describe the gate ge-

ometry, the 2-DEG, and the interface layer between AlGaN

and passivation. We assign zero potential to the gate (note

that this implies a positive voltage –Vt on the source) and

assign a charge distribution in the 2-DEG and at the inter-

face. From a given charge distribution, the potential every-

where in the device is calculated. This implies that the drain

potential is a result of and not an input to the calculations.

The charge distribution therefore has to fulfill certain condi-

tions to achieve a physically valid solution. Details of the

charge distribution will be described in Sec. III. Since con-

formal mapping works in the complex plane and we like to

keep the mathematics as simple as possible, the gate is put in

the lower right part of the complex plane. This plane will be

denoted as the z-plane, where z¼ (�x,y) or, equivalently,

z¼�xþ jy and j¼ ��1. Fig. 1 shows the configuration of

the gate and the 2-DEG. Note that this figure is rotated by

180�. This way the figure conforms to the regular way of dis-

playing a FET’s cross section. We have used z¼ (�x,y)
rather than z¼ (x,y) such that the x-coordinate has positive

values towards the right of the figure, as is the usual conven-

tion. To calculate the electric field, the dielectric constants of

the passivation and AlGaN are assumed to be the same.

Since the actual values are usually quite comparable, this

will only introduce a minor error in the calculated electrical

potential. To simplify the mathematics further, we denote

the co-ordinate of the gate edge by (0,0) and we place the 2-

DEG at (x,1). Note that this choice defines all distances in

the structure in units of the AlGaN layer thickness. The inter-

face between AlGaN and passivation is placed at (x,0) for

x> 0. On the right side, the 2-DEG and the interface both

end at the drain contact, which is placed at (dgd,y). The angle

between gate edge and interface, which is determined by the

gate processing, is denoted by #. Note that the gate height in

this model is infinite, which is of course not realistic. In real

devices, the gate shape and possible field plates will influ-

ence the electric fields in the device. However, since the gate

current is mainly determined by electric fields very close to

the gate corner, our model represents the relevant physical

mechanisms that generate the current.

The complex z-plane is mapped onto another complex

plane: the w-plane, where w¼ (�u,v) or w¼�uþ jv by a

very simple conformal mapping

w ¼ za:

Herein, a ¼ p
pþ#.

Fig. 2 shows the gate, the 2-DEG, and the interface in

the w-plane. Note that also w¼ (�u,v) is used rather than

w¼ (u,v), such that the u-coordinate obtains positive values

towards the right in Fig. 2. The gate has been transformed

into a half plane (u,v) with v< 0. The two dimensional elec-

trical potential in the w-plane can be solved for any charge

distribution in the lower half plane. In the real three-

dimensional transistor, the charges in the 2-DEG and at the

interface are sheet charges. These can be represented by a

distribution of line charges. Since the complex plane is a

two-dimensional cross section of the three-dimensional

structure, every charge that is placed in Fig. 2 represents a

line charge. Every line charge in the lower half of the

w-plane contributes to the electrical potential by8

W u0; v0ð Þ ¼
�q

2pe
ln½ u0; v0ð Þ � u; vð Þ�

þ q

2pe
ln½ u0; v0ð Þ � u;�vð Þ� (1a)

FIG. 1. The complex z-plane showing the gate, the 2-DEG, and the AlGaN

to passivation interface. As an example, a possible configuration of net

charges is shown in the 2-DEG and at the interface. FIG. 2. The complex w-plane as a transformation of the z-plane of Fig. 1.
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or equivalently by

W u0; v0ð Þ ¼
�q

2pe
ln

reiu

r0eiu0

� �
¼ �q

2pe
ln

r

r0

� �
þ �q

2pe
i u� u0ð Þ:

(1b)

This is the potential contribution at (u0,v0) caused by a posi-

tive line charge q (in Coulomb per meter in the direction per-

pendicular to the complex plane) at (u,v), see Fig. 3. Note

that (1) is the so-called complex potential. The real part

describes the equipotential lines, while the imaginary part

describes the flow lines that are perpendicular to the equipo-

tential lines.

The transformation w¼ za can be worked out in terms of

the co-ordinates x0, y0 and u0, v0 as

u0 ¼ � x0
2 þ y0

2
� �a=2

cos a atan
y0

�x0

� �� �
;

v0 ¼ x0
2 þ y0

2
� �a=2

sin a atan
y0

�x0

� �� �
:

(2a)

Of course, exactly identical relations exists between x, y and

u, v.

In case a charge is located in the 2-DEG, y¼ 1 in the z-

plane and therefore these relations reduce to

u ¼ � x2 þ 1ð Þa=2
cos½a atan �1=xð Þ�;

v ¼ x2 þ 1ð Þa=2
sin½a atan �1=xð Þ�:

(2b)

For charges at the interface, y¼ 0 and (2a) reduces to

u ¼ �jxja cos apð Þ;
v ¼ jxja sin apð Þ:

(2c)

Calculation of the potential in the z-plane is very easily done

by substituting (2) into (1).

Next, we may replace q in (1) by the infinitesimal charge

qdx, which gives us the potential W(x0,y0)dx in the z-plane as

a result of a certain line charge density q located at (x,y).
Now, W(x0,y0)dx is only depending on parameters in the

z-plane. Therefore, knowledge of the charge distribution in

the w-plane is not required, but W(x0,y0)dx can directly be

integrated using the charge densities in the z-plane. The inte-

gration over the interface charges runs from 0 to dgd, while

the 2-DEG charges are integrated from a position x� 0, far

enough under the gate where the electric field can be consid-

ered as one dimensional, to dgd.

III. CHARGE CONFIGURATION

A. 2-DEG charges

If a large drain voltage is applied, the 2-DEG will deplete

next to the gate on the drain side. Let us assume that full deple-

tion is achieved over a certain distance d2d next to the gate (see

Fig. 1). Also full depletion is assumed under the gate, which

would correspond to a situation where the source to gate bias

just equals the threshold voltage. So the 2-DEG is fully

depleted everywhere for x< d2d. For x> d2d, the 2-DEG will

only be partly depleted, which implies that there are mobile

electrons in the 2-DEG and the electric field must therefore be

zero to avoid current flow in a static situation. Starting from

x¼ d2d, the electron concentration rises gradually towards the

drain. Since there is no self-consistent equation that describes

the electron concentration in the 2-DEG, we will model the net

charge density in the 2-DEG by an empirical equation

for x < d2d : q2d ¼ qN

for x> d2d : q2d xð Þ ¼ qN

1� d2d þ xð Þk
; (3)

where k is a fitting parameter and qN is the concentration of

positive charge in the 2-DEG when it is fully depleted. As

can be seen from (3), the 2-DEG is fully depleted and has

maximum positive charge for x< d2d. For x> d2d, the elec-

tron concentration rises and compensates part of the positive

2-DEG charge, reducing the total net charge. Also other

functions, like an exponential function, can be used to

describe the 2-DEG charge density. After charge optimiza-

tion (see below), such functions will all describe almost the

same charge distribution. We have chosen the equation in (3)

because it only has one fitting parameter (since d2d and N are

given) and it gives a slightly better optimization than an ex-

ponential function with also just one fitting parameter.

Although the 2-DEG between gate and drain contains elec-

trons as well as positive charges from the AlGaN polariza-

tion, we found that the net 2-DEG charge is always positive

everywhere between gate and drain in all the cases that we

calculated, meaning that the electron concentration is always

less than the positive charge concentration in the 2-DEG.

B. Drain contact

Using conformal mapping, we cannot define a drain con-

tact and apply a voltage boundary condition to the edge of

that contact, like we did with the gate. Therefore, we define

a charge at the position of the drain in such way that the

appropriate boundary conditions for the drain contact are ful-

filled. A charge Nd is assigned to the 2-DEG at the position

of the drain contact, i.e., at (x,1) with x> dgd, the distance

between gate and drain. It turns out that the electrical poten-

tial near the gate edge hardly depends on the exact size of

FIG. 3. The potential at (u0,v0) caused by a positive charge at (u,v) in the w-

plane. The influence of the gate is taken into account by the negative mirror

charge at (u,�v).
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the drain charge, since Nd serves as a fitting parameter.

Therefore, we can simply distribute it over a certain distance

beyond dgd. We took very arbitrarily a distance of 20 AlGaN

thickness units, so Nd is distributed uniformly between

dgd< x< dgdþ 20.

C. Interface charges

There are also net charges outside the 2-DEG, like polar-

ization charges and charged donors, acceptors, and traps.9–11

The most important net charges outside the 2-DEG are

located at the interface between the AlGaN and the passiva-

tion, due to the AlGaN polarization and surface traps. In our

model, we will assume that the only charge outside the 2-

DEG is located at the interface. This means that we ignore

any net charge in the AlGaN and GaN bulk as well as at the

GaN to substrate interface. From theoretical calculations12

for an Al percentage of 18% and an AlGaN thickness of

25 nm, we find: N¼ 1.0 � 1013 cm�2. The equilibrium electron

concentration in the 2-DEG is calculated to be12

n0¼ 6.8 � 1012 cm�2, which agrees well with Hall measure-

ments of the electron concentration that vary between 6 and

7 � 1012 cm�2. In equilibrium, i.e., far from any contact, the

material must be neutral. So the net 2-DEG charge which is

q(N� n0) must be compensated by an exactly opposite inter-

face charge �qNif. Hence, in the absence of other charges,

Nif¼ 3.2 � 1012 cm�2. It is reasonable to assume that this is

also the interface charge between the gate and drain contacts.

D. Charge distribution optimization

The potential in the 2-DEG underneath the gate has a

positive value of –VT. Next to the gate, the potential rises in

the region where the 2-DEG is fully depleted and has to

become constant for x> d2d, since the electric field is zero in

that region. This constant value must equal the drain voltage.

First, we start with assigning a net interface charge density

between gate and drain. This could, for example, be given by

a uniform density �qNif everywhere. Next, we take a value

for d2d. Then, there are only 2 fitting parameters, k and Nd,

that need to be optimized such that the electric field becomes

zero for x> d2d. This ensures that the charge distribution is

physically sound. Once that is done, the drain voltage is

obtained by averaging the potential, i.e., Re[W(x,1)], over

the region between d2d and drain contact. Of course, optimi-

zation of k and Nd can best be done by a simple routine opti-

mizing the error between Re[W(x,1)] and the obtained drain

voltage. Fig. 4 shows examples of the potential Re[W(x,1)]
in the 2-DEG for the HEMT structure. The gate angle was

set to #¼ 45�. The gate edge is located at x¼ 0. The AlGaN

layer thickness is 25 nm, and the gate to drain distance is

1.5 lm, which corresponds to x¼ 60. The drain voltages and

their errors are calculated as

Vd ¼
1

dgd � d2d

ðdgd

d2d

Re½W x; 1ð Þ�dx

error2 ¼ 1

dgd � d2d

ðdgd

d2d

fVd � Re½W x; 1ð Þ�g2dx:

The parameters are optimized till the error is minimal.

Fig. 5 shows the equipotential lines Re(W) and the flow

lines Im(W) at the gate edge for the example transistor at a

drain voltage of 24.95 V. Note that the 2-DEG is not visible

in these figures since the maximum y-value is 0.5. The dotted

area in the upper right corner denotes the passivation layer,

which we assume to be an isolator. So the flow lines passing

through that region do not carry any current.

IV. TWO-DIMENSIONAL GATE CURRENT

In Sec. III, we derived a method to calculate the two-

dimensional electric field and associated flow lines near the

FIG. 4. Real part of the 2-DEG potential between gate and drain in a transis-

tor example for 4 different fitting parameter settings: Curve A: d2d¼ 25,
k¼ 0.16, Nd¼ 7 � 1017 cm�1 give Vd¼ 33.70 6 0.19 V, Curve B: d2d¼ 18,
k¼ 0.175, Nd¼ 5.3 � 1017 cm�1 give Vd¼ 24.95 6 0.16 V, Curve C: d2d¼ 10,
k¼ 0.22, Nd¼ 3.5 � 1017 cm�1 give Vd¼ 15.01 6 0.16 V, Curve D: d2d¼ 5,
k¼ 0.25, and Nd¼ 2.7 1017 cm�1 give Vd¼ 9.5 6 0.2 V.

FIG. 5. Equipotential and flow lines at 24.95 V. The gate contact is indicated

by the dark shaded area. The passivation is shown by the transparent lightly

shaded area. Current flow is indicated by arrows, while the equipotential

lines are perpendicular to the flow lines. Note that, although flow lines are

defined in the passivation, no current flows through it.
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gate edge. Our aim in this section is to develop a method for

calculating the gate current that flows near the gate edge.

The current will flow along the flow lines (Fig. 5) that origi-

nate at the gate metal contact to the AlGaN, so at (x,0) where

x< 0. It is assumed that there is no current flowing through

the passivation. The electric field E is always directed tan-

gential to the flow lines. If we parameterize a flow line by

parameter s, we have

~r � ~E ¼ dE

ds
¼ q

e
:

In the absence of charge, as is assumed between the gate and

the 2-DEG, q¼ 0 and hence E is constant along the flow

lines. This means that the electrons from the gate experience

a triangular barrier that is described by the vertical electric

field Ey(x,0) at the edge of the gate contact

Ey x; 0ð Þ ¼ �
dRe½W x; yð Þ�

dy

����
y¼0

: (4)

This field can be calculated directly from the expressions for

the potential as given in the Appendix. The 2-DEG contribu-

tion to the E-field, E2d, is given by

E2d x; 0ð Þ ¼ q

2pe

ðdgd

D

q2d tð Þ �xð Þa�12a t2 þ 1ð Þa=2
sin½a atan �1=tð Þ�

f �xð Þa � t2 þ 1ð Þa=2
cos½a atan �1=tð Þ�g2 þ t2 þ 1ð Þasin2½a atan �1=tð Þ�

dt: (5)

The interface charge contribution, Eif, is

Eif x; 0ð Þ ¼ q

2pe

ðdgd

0

qif tð Þ �xð Þa�12atasin apð Þ
f �xð Þa � tacos apð Þg2 þ �tð Þ2a

sin2 apð Þ
dt: (6)

The contribution from the drain contact, Ed, can be directly found modifying (5)

Ed x; 0ð Þ ¼ qNd

2peDd

ðdgdþDd

dgd

�xð Þa�12a t2 þ 1ð Þa=2
sin½a atan �1=tð Þ�

f �xð Þa � t2 þ 1ð Þa=2
cos½a atan �1=tð Þ�g2 þ t2 þ 1ð Þasin2½a atan �1=tð Þ�

dt: (7)

In Ref. 2, it was reported that the Schottky current is flow-

ing through defects that locally lower the junction barrier

height. In such defects, the electric field is lower than what

is calculated via (4). In Fig. 6, we assume a fully depleted

2-DEG and a triangular barrier. The height of the intact

barrier is defined as uB0, and the barrier height in the

defects as uB. The electric field of the intact barrier is

given as2

E0 ¼ �
uB0 þ Vr � DV

dAlGaN
;

where Vr is the reverse Schottky bias and DV is the sum of

the conduction band offset between AlGaN and GaN and the

GaN flatband voltage. See Fig. 6.

In the two-dimensional model, in which the 2-DEG is

fully depleted, the potential under the gate, far away from

the gate edge is given by W(�1,y), and hence

W �1; 1ð Þ ¼ uB0 þ Vr � DV:

Note that, assuming a triangular barrier, there is a direct rela-

tion between N and uB0, since

FIG. 6. Potential underneath the gate far from the gate edge when the 2-

DEG is fully depleted. The height of the intact barrier uB0 relates directly to

the 2-DEG sheet charge concentration. The current flows through defects

with lower barrier height uB.
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W �1; 1ð Þ ¼ qNdAlGaN

e
:

Using dAlGaN¼ 25 nm, N¼ 1.0 � 1013 cm�2, Vr¼�2.5 V, and

DV¼�0.4 V, we find uB0¼ 2.656 eV. In two dimensions,

the electric field in the defects can be calculated by scaling

E2d, Eif, and Ed to E02d, E0if, and E0d, respectively, by

E02d ¼ e
uB þ Vr � DV

qNdAlGaN
E2d;

E0if ¼ e
uB þ Vr � DV

qNdAlGaN
Eif ;

E0d ¼ e
uB þ Vr � DV

qNdAlGaN
Ed:

(8)

In Ref. 2, it was shown that the current density, J(x), can be

modeled assuming contributions by tunneling, thermionic

field emission, and thermionic emission through and over a

triangular barrier

J xð Þ ¼ 4pmmq3

h3

ðuFþuB

0

ðuFþuB�uy

0

�
exp � as

ETOT xð Þ uF þ uB � /tunð Þ3=2
	 


1þ exp
q /y þ /== � uF

� �
kT

	 
 d/==d/y

þ 4pmmqk2T2

h3
exp

�quB

kT

� �
: (9)

The meaning of the symbols: mm is the electron mass in the

metal, uF is the metal Fermi energy, uB is the barrier height,

/y is the electron energy in the metal in the y-direction

towards the junction: /y¼ �h2ky
2/2 mm, u// is the electron

energy in the metal parallel to the junction: ///¼ �h2kx
2/

2 mmþ �h2kz
2/2 mm and /tun is the part of the electron energy

available for tunneling: /tun¼/yþ///(ms�mm)/ms, where

ms is the electron mass in the AlGaN and �h¼ h/2p is

Planck’s constant. Furthermore,

as ¼
4
ffiffiffiffiffiffiffiffiffiffi
2msq
p

3�h
:

The total Schottky current can now be found by adding the

contributions in (8) to: Etot(x)¼E02d(x,0)þE0if(x,0)
þE0d(x,0), insert Etot(x) in (9) and integrate over the

Schottky contact area. Although this procedure would give

an analytical expression for the Schottky current, the equa-

tion would become intractable. Therefore, we use a more nu-

merical approach. The gate contact surface is divided in the

x-direction into small segments with widths Dxi. Note that

the Dxi do not need to be of equal size, so we take very small

segments widths close to the gate edge and larger widths for

segments further under the gate. ETOT,i and the current den-

sity Ji are both calculated per segment. The total gate current

is obtained by I ¼ W
P

JiDxi, where W is the total gate width

of the HEMT.

V. MEASUREMENTS

Measurements have been done on the AlGaN-GaN

HEMT described at Fig. 4 with a total gate width of 2.4 mm

by measuring the gate current as function of gate-drain volt-

age with open source terminal. The Schottky current was

measured in the gate-drain voltage range between �60 V and

0 V and at temperatures of 25 �C, 75 �C, 125 �C, and 175 �C.

To see the influence of voltage stress on the GaN HEMT, the

current-voltage characteristics were measured from 0 V to

�60 V and back from �60 V to 0 V. Both curves did not

coincide fully between �20 V and threshold voltage, espe-

cially at lower temperatures. The current is less when meas-

ured from 0 V to �60 V than when measured from �60 V to

0 V, see Fig. 7.

To investigate the influence of temperature stress, the

current voltage characteristics at 25 �C were measured once

more after the measurements at elevated temperature of Fig.

7. Measurements before and after this temperature stress are

shown in Fig. 8.

Both in Fig. 7 as in Fig. 8, a kink in the I-V curves can

be observed at �2.5 V, which is the threshold voltage of

the HEMT. At high reverse voltages, i.e., below -2.5 V, the

2-DEG depletes next to the gate such that the additional volt-

age drops in the region between gate and drain. This is a

strong indication that the leakage current is not caused by

electron-hopping along the interface. Note that the current

between threshold voltage and 0 V is not influenced by the

voltage and temperature stresses. Since the current in this

range is determined by the intrinsic gate contact as described

in Ref. 2, we conclude that the intrinsic Schottky contact is

not affected.

This low voltage current can very well be calculated by

the model of Ref. 2 if we assume defects in the Schottky bar-

rier that have a reduced barrier height of 0.58 eV and a total

surface area that is a fraction 6� 10�4 of the total Schottky

FIG. 7. Schottky current vs. gate-drain voltage for several temperatures,

measured from 0 to �60 V (lower curves) and back (higher curves). Only

the voltage range between �20 and 0 V is displayed to show the hysteresis.

074512-6 Rik Jos J. Appl. Phys. 114, 074512 (2013)



area. Note that the barrier height is equal to that found on the

transistor in Ref. 2, while the total surface area of the defects

is 3 times larger.

The high voltage current is calculated using (9) for a

transistor in which the negative interface charge density is

Nif¼ 3.2 � 1012 cm�2 and the positive sheet charge density is

N¼ 1013 cm�2. The results are shown in Fig. 9. It is clear

that the assumed charge configuration, which was based on

theoretical calculations, cannot explain the observed current.

The measurements as well as the calculations in Fig. 9

show that at very high reverse voltages, all results converge

and become nearly independent of temperature and voltage.

Our calculations show that under these conditions, the cur-

rent is for a large part dominated by Fowler-Nordheim tun-

neling through the reduced barrier in the defects. Any

residual temperature dependence at high reverse voltages

can be explained by changes in the interface charge density

Nif due to temperature dependent occupancy of interface

traps.

We have calculated several cases with different interface

charge densities, while keeping N¼ 1013 cm�2, to find

charge conditions that can explain the measured data. If the

interface charge is varied, while N is kept constant, a cross

section of the transistor along the y-axis is in general not

charge neutral. Compensating charges will reside elsewhere

in the device apart from the 2-DEG and the interface. Our

model calculations show that compensation charges that

would reside deep in the device, e.g., at the GaN-substrate

interface, will not influence the electric fields near the gate

and therefore also not the Schottky current. In Fig. 10, we

compare measurements at 25 �C with calculations done with

several charge configurations. Case 1 is the default negative

interface charge density of �3.2 � 1012 cm�2 as also depicted

in Fig. 9. The minus sign indicates that the net charge at the

interface is negative. Case 2 has zero interface charge. Case

3 is with a positive interface charge of 1013 cm�2. Case 4

also has a positive interface charge of 1013 cm�2 for x> 5
but a local, negative interface charge is assumed directly

next to the gate between 0< x< 5, which corresponds to a

distance of 125 nm adjacent to the gate. Case 5 has zero

interface charge, like case 2, but the gate angle (see Fig. 1)

#¼ 90� instead of 45� for the other cases.

From Fig. 10, it is clear that the measurements can only

be understood if there is a positive interface charge density

that is larger than 1013 cm�2. This means that the interface

charge would be comparable to the 2-DEG sheet charge.

Although the transistor used in the measurements has a gate

angle of 45� considerable current increase will occur if the

gate angle would be 90�, as can be seen comparing case 2

with case 5. This is due to a sharper gate angle that directly

leads to a higher electric field at the corner. In Fig. 11, the

vertical electric field underneath the gate, ETOT(x), is plotted

for case 2 at �33.1 V and for case 5 at �34.9 V, so at compa-

rable bias voltages. Note that the x-axis is on a logarithmic

scale. ETOT(x) determines the Schottky current via (9). Near

the gate corner at x¼ 0, the field increase leads to a very

rapid rise in current density. The increase of ETOT(x) near the

FIG. 10. Schottky current vs. voltage at 25 �C. Solid line is measured data.

Dotted lines are calculations for several different interface charge

configurations.

FIG. 8. Gate current vs. gate-drain voltage, measured from 0 to �60 V and

back, at 25 �C before (solid lines) and after (dotted lines) the measurements

at higher temperatures, indicating the device changes due to stresses during

these higher temperature measurements.

FIG. 9. Schottky current vs. gate-drain voltage for 25 �C, 75 �C, 125 �C, and

175 �C. Solid lines are measured data, dotted lines are calculations for a neg-

ative interface charge of Nif¼ 3.2 � 1012 cm�2 and a 2-DEG sheet charge of

N¼ 1013 cm�2. Higher curves belong to higher temperatures both for meas-

ured and calculated data.
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gate corner is much steeper for an angle of 90� than for one

of 45�. This explains the much higher current for case 5 com-

pared to case 2 in Fig. 10. It underscores the importance of

careful gate angle and field plate design. Note that our model

only takes the gate angle but not any field plate into account.

Comparing cases 3 and 4 shows what happens if elec-

trons from the gate are injected into traps at the interface

next to the gate.13,14 The Schottky current would decrease

because the electric fields at the gate edge are reduced by the

negative interface charges. The hysteresis observed in Figs.

7 and 8 cannot be understood by this mechanism. On the

contrary, the hysteresis seems to point to an increase of the

positive interface charge due to high voltage stresses. This is

in conflict with the proposed model in Ref. 1 in which a high

drain voltage would lead to an increase of the electron con-

centration at the interface.

Comparing cases 1, 2, and 3, it is clear that the current

increases if the interface charge becomes more positive (or

less negative). A more positive interface charge will also

lead to more electrons in the 2-DEG and a higher maximum

drain current and output power. Since GaN suppliers strive

to increase the output power of the device, careful process

optimization should be done to avoid an increase in gate

leakage current.

VI. CONCLUSIONS

A model has been derived for the gate current in a

GaN HEMT device with a Schottky gate. At high reverse

voltages below threshold, the current is increased due to

high electric fields at the gate edge. A two-dimensional

model is derived that calculates these fields and the subse-

quent current if the 2-DEG sheet charge density and the

charge configuration at the semiconductor-passivation inter-

face are given. Experiments show that voltage and tempera-

ture stresses change the charge configuration, such that

measured drain-gate I-V curves show hysteresis. These phe-

nomena can be understood as a change in interface charge

density. At high enough reverse bias, the gate current is

dominated by Fowler-Nordheim tunneling, making the cur-

rent almost independent of temperature and only slightly

on voltage. The currents at low and at high bias are both

determined by defects that have locally reduced the

Schottky barrier height and that have a total surface area

that is only a fraction (10�3 to 10�4) of the total gate con-

tact area.

Reduction of the gate current can be obtained in two

ways.

(1) By reduction of the number of defects or by increasing

the defect barrier height. This route focusses on the epi-

taxial layer quality and the Schottky gate processing.

Improvements should be visible by reduction of the cur-

rent between threshold voltage and zero volt.

(2) By reducing the positive interface charge density. This

can be done by improving the passivation layer process-

ing. Such improvements will lead to less current increase

with higher drain bias. Since it will generally also lead to

less variation in interface charges, it will also improve

hysteresis and memory effects in the drain-gate I-V
curves.
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APPENDIX: CALCULATION OF THE POTENTIAL

The potential of a sheet charge with density q2d in the

2-DEG is given by (1b) where r2d is given by

r2d x;y;tð Þ¼


x2þy2ð Þa=2

cos aatan
y

�x

� �� �
� t2þ1ð Þa=2

cos aatan
�1

t

� �� �( )2

þ x2þy2ð Þa=2
sin aatan

y

�x

� �� �
� t2þ1ð Þa=2

sin aatan
�1

t

� �� �( )2
vuut

and r02d by

r02d x;y;tð Þ¼


x2þy2ð Þa=2

cos aatan
y

�x

� �� �
� t2þ1ð Þa=2

cos aatan
�1

t

� �� �( )2

þ x2þy2ð Þa=2
sin aatan

y

�x

� �� �
þ t2þ1ð Þa=2

sin aatan
�1

t

� �� �( )2
vuut :

FIG. 11. Vertical electric field underneath the gate at y¼ 0 as function of

distance x to the gate corner for cases 2 (45�) and 5 (90�). Note that the x-

axis in on a logarithmic scale. The higher electric field for 90� at the gate

corner explains why case 5 has a much higher current than case 2.
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The real part of the potential is

Re½W2d x; yð Þ� ¼
q2dqdAlGaN

2pe

ðd2d

D
ln

r2d x; y; tð Þ
r02d x; y; tð Þ

 !
dt: (A1)

So t is the integration variable for the 2-DEG charge from a position D that is far enough underneath the gate, where the cur-

rent flow is one-dimensional, to its depletion boundary d2d. In practice, any value D��1 will suffice. The factor dAlGaN is a

correction for taking the dimensions of the z-plane in units of the AlGaN thickness dAlGaN.

The contribution of interface charges is calculated in an analogous way using

rif x; y; tð Þ ¼


x2 þ y2ð Þa=2

cos a atan
y

�x

� �� �
� tacos apð Þ

	 
2

þ x2 þ y2ð Þa=2
sin a atan

y

�x

� �� �
� tasin apð Þ

	 
2
s

r0if x; y; tð Þ ¼


x2 þ y2ð Þa=2

cos a atan
y

�x

� �� �
� tacos apð Þ

	 
2

þ x2 þ y2ð Þa=2
sin a atan

y

�x

� �� �
þ tasin apð Þ

	 
2
s

and

Re½Wif x; yð Þ� ¼
qif qdAlGaN

2pe

ðdgd

0

ln
rif x; y; tð Þ
r0if x; y; tð Þ

 !
dt: (A2)

It is easy to see how to extend (A1) and (A2) to include any

arbitrary charge distribution in the 2-DEG and at the passiva-

tion interface, respectively. For example, to include also the

charges of the partially depleted 2-DEG for x> d2d as

described by q2d(x) in (3), we have to modify (A1) to

Re½W2d x; yð Þ� ¼
qdAlGaN

2pe

ðdgd

D
q2d tð Þln r2d x; y; tð Þ

r02d x; y; tð Þ

 !
dt: (A3)

Note the change in the upper integral boundary.

The drain contact is modeled by an additional charge Nd

in the 2-DEG uniformly distributed between dgd and dgdþDd

and its contribution to the potential is

Re½Wdrain x; yð Þ� ¼
NdqdAlGaN

Dd2pe

ðdgdþDd

dgd

ln
r2d x; y; tð Þ
r02d x; y; tð Þ

 !
dt:

(A4)

Dd can be chosen rather arbitrarily since Nd is used as a fit-

ting parameter. We take Dd¼ 20. The total potential is sim-

ply the sum of (A2)–(A4).
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“Observation of surface charging at the edge of a Schottky contact,” IEEE

Electron Dev. Lett. 27(4), 211–213 (2006).

074512-9 Rik Jos J. Appl. Phys. 114, 074512 (2013)

http://dx.doi.org/10.1016/j.sse.2012.10.005
http://dx.doi.org/10.1016/j.sse.2012.10.005
http://dx.doi.org/10.1063/1.4764866
http://dx.doi.org/10.1109/TED.2004.842710
http://dx.doi.org/10.1109/TED.2004.842710
http://dx.doi.org/10.7567/JJAP.52.04CF12
http://dx.doi.org/10.1063/1.126940
http://dx.doi.org/10.1063/1.1530729
http://dx.doi.org/10.1109/TED.2009.2015822
http://dx.doi.org/10.1063/1.369664
http://dx.doi.org/10.1109/LED.2006.871177
http://dx.doi.org/10.1109/LED.2006.871177

