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ABSTRACT 

Classification of software defects is a means to provide defect reports with a 

shared and well-defined structure. Quantitative analyses of the classification 

data facilitated by the shared structure are useful to industry practitioners and 

academic researchers. For practitioners, especially in large, complex or 

dynamic organizations, analyses can provide valuable information that 

characterize the development process, assist in identifying improvement 

opportunities, and provide one basis for predictions (e.g. product quality and 

resource needs). For researchers, classification data can facilitate evaluating 

effects of improved practices (e.g. new methods and tools) by analysing 

classified defect data before and after applying the hypothesized improved 

practice. 

Although recognized as a promising approach, there has to date been 

limited research reported on defect classification schemes—specifically on 

the efficiency of their application in industry, and on the reliability of the 

classification data. Efficient classification is desirable as it minimizes the 

time required to classify defects. Reliability of the classification data is 

important as it directly affects the reliability of conclusions drawn from 

analyses of the data.  

In this thesis, a defect classification scheme based on and compliant to the 

standard classification for software anomalies (IEEE Std. 1044) is described 

and evaluated. The classification scheme, LiDeC (Light-weight Defect 

Classification Scheme), was adapted to and applied in the development of 

automotive safety software. 

Through case studies and an experiment, LiDeC was evaluated with 

respect to its industrial applicability, efficiency and reliability. The results 

show that analyses of classification data can provide new and useful 

information about the effectiveness of current development practices. 

Applying a classification scheme adapted to the target organization results in 

analyses that are more directly relevant to that organization. Academic 

experimentation showed that classification schemes are easy to learn and to 

apply—the experiment subjects were able to arrive at rational classifications, 

even though lacking domain specific knowledge. 

The main contributions of the thesis include: the description of an 

adaptation of the standard classification scheme to a specific organization 

while maintaining standard compliance; an initial industrial evaluation of the 

applicability of the adapted classification scheme; a description of a 

methodology for comprehensively evaluating defect classification schemes; 

and finally, an investigation of current state-of-the-art with respect to defect 

classification, and a proposed roadmap for future research.  
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PREFACE 

On the final day of the 23rd IEEE Symposium on Software Reliability 

Engineering in November 2012, there was a panel debate titled “What you 

Always Wanted to Know about Software Reliability but Were Afraid to Ask”. 

Instead of focusing on a particular topic, the panel encouraged an open 

discussion on all things related to software reliability. At one point, the panel 

came to discuss that one current and general problem in the software 

development industry is a lack of overview; for instance, whether there are 

issues common among organizations with respect to the reliability of their 

software. While there may be many opinions on such matters, there is a 

distinct lack of more objective evidence. The panel stated that, in part, the 

reason is organizations’ reluctance to sharing defect data. Without access to 

such data from a large selection of companies and products, it is difficult to 

identify patters that might indicate common problems. 

During the discussion there was an interesting—and, I think, highly 

relevant—anecdote told by a professor emeritus from the Polytechnic 

Institute of New York. I would like in this preface to relay my recollection of 

that anecdote.  

According to the professor, there had been a tremendous increase in mass 

production in the US during and after World War I—from consumer products 

to infrastructure projects, such as railroad and bridges. In the following 

decades, there were a number of rare but catastrophic failures; e.g. collapsing 

bridges and buildings. A commonality among these cases was that there was 

not a single point of failure, but rather a series of faults that together caused 

the failure. Each incident appeared unique but overall it seemed systematic—

rarely, but regularly, large structures collapsed with catastrophic 

consequences. Furthermore, in these construction projects there were many 

different companies collaborating, but the causes of the failures were too 

complex for one company to analyse single-handedly. Still, the question how 

to prevent such issues was high on the agenda. 

In an attempt to address the problem, several of the concerned companies 

formed a consortium with the aim to collect and share defect data in what—

according to the anecdote—came to be known as the “black book”. The black 

book contained a variety of aspects of defects and their causes, from material 

fatigue to construction and manufacturing issues. As the black book 

contained a wealth of data from a large number of different products and 

organizations, it provided researchers with a much wider perspective than 

what would have been possible if a single organization had been studied. The 

data contributed over several years to detect complex and systematic issues, 
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and thereby improved both the quality of products and the efficiency of 

development. 

In a sense, the software development industry is currently in a similar 

position as the construction and manufacturing industries were before the 

black book; there has been a recent and substantial increase in use of 

software, yet there does not seem to be a unifying ground to compare issues 

between organizations or even between departments within an organization. 

An initiative similar to the black book might be an approach to establish such 

a common ground; for instance to evaluate the impact of a particular type of 

process model or test method. In order to do so, however, there is a need to 

investigate what type of data that should be collected to be useful, while also 

satisfying individual organizations’ need for confidentiality. The question is: 

(how) can that be done? 

While it is not the intention in this thesis to provide a comprehensive 

equivalence of the black book, it does propose and rigorously evaluate an 

approach that can provide initial stepping-stones towards such equivalence. 

This is elaborate on in Part V of this thesis. 

 

 



PART I—INTRODUCTION 

Good luck is science not yet classified;  

just as the supernatural is the natural not yet understood 

  ― Elbert Green Hubbard 

1 INTRODUCTION 

In Hubbard’s quote above, the concept of good luck is assigned factors that 

contribute to a successful outcome, and that are not known or fully 

understood. While good luck may certainly be a welcome addition to any 

engineer’s work, it is inherently unreliable. Therefore, an engineer would 

prefer not to rely on good luck, but to understand and be able to control the 

factors influencing the outcome of a project. While it is the work of an 

engineer to apply knowledge about these factors in order to successfully 

enact a process, it is the work of a scientist to create knowledge by 

uncovering and explaining such factors.  

The act of measuring aspects of a software development process is one 

way to facilitate the creation of such knowledge. It is through measurements 

that, for instance, the quality of products or the efficiency of development 

processes can be characterized, evaluated, predicted and improved (SEI, 

2013). By characterizing, a deeper understanding—e.g. regarding processes, 

products and resources—can be gained and communicated. Evaluation 

enables, for instance, determining current project status with respect to plans, 

and assessing effects of changes to the process, methods or tools used. 

Predictions are important, for example to foresee future project needs, and 

thereby facilitating more precise resource planning, but can also allow early 

product quality assessment. Finally, characterizing, evaluating and predicting 

contribute to the identification of development bottlenecks and roadblocks, 

and thereby the identification of process improvement opportunities. 

I 
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Much software engineering research with the goal to improve development 

efficiency and product quality consists of proposing new or modified 

practices (e.g. process models, methods and tools)—prominent examples 

include model-driven development (MDD) (Mellor et al., 2003), and agile 

process models (Korhonen, 2013). While such research is, no doubt, valid 

and valuable, it may often be difficult for practitioners to assess whether the 

benefits provided by the improved practices address the actual challenges 

faced by their specific organization. By establishing a system of metrics that 

can be used by researchers to evaluate and characterize the typical impact of 

new and improved practices, and that can be used by practitioners to 

characterize the current development organization, it would provide the 

practitioners with means to perform such assessments.  

In practice, furthermore, the selection of improvement initiatives may 

often be guided mainly by expert opinion. While important, such opinion is 

naturally biased by the knowledge and prior experience of the experts, thus 

calling as a complement for evidence that is more objective. In the research 

project reported in this thesis, we initially (as reported in chapter 5) found 

ourselves in a similarly biased position, in that we set out to investigate how 

MDD could be used to improve the development of automotive safety 

systems—essentially “equipped with a solution looking for its problem”. 

During that investigation, we encountered opinions from practitioners 

regarding which practices needed improvement, but also that they often 

found it difficult to get their voices heard within the organization (see chapter 

9.2). The perceived reason was precisely a lack of hard data to back those 

opinions up. Consequently, the second half of the research project, and the 

main contribution of this thesis, was dedicated to examining how to obtain 

such data—thus effectively changing the research focus from “how can MDD 

improve the development of automotive software?” to “how to identify 

improvement opportunities in automotive software development?”. 

As with other engineering disciplines, there are in software engineering 

numerous sources of measurements. One such source is defects reported 

during development and after deployment. Although expected during 

development, defects can be regarded as a symptom of deficiencies in the 

development practices—patterns may indicate systemic process problems. 

For this reason, defect reports can contain interesting data; such as, how the 

defects were detected, what type of defects they were and what action was 

required to resolve it. When analysed quantitatively, patterns may be 

discovered that can be used to characterize, evaluate and predict various 

process activities; for example, information about the effectiveness of 

specific test activities or facilitate prediction of product quality. Defect 
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reports, however, are often written in free text, making quantitative analyses 

difficult. Defect classification schemes (DCSs) address this problem, by 

providing the defect reports with a shared structure, and thus enabling more 

efficient data collection. 

Existing DCSs—such as ODC (Orthogonal Defect Classification) and 

IEEE Std. 1044—are generic and typically geared towards defects with an 

ultimate source-code manifestation. In addition, these DCSs typically target 

organizations that are in control of the entire development chain, especially 

the implementation phase. In the automotive software development domain, 

however, source-code is often developed by, and proprietary to, suppliers 

based on requirements and design specifications provided by the vehicle 

manufacturer (OEM1). The OEM, furthermore, is responsible for integrating 

the parts implemented by the suppliers, and thus the quality of the final 

product. This makes applying a generic DCS challenging for the OEM. 

Instead, it typically prompts the need to adapt a DCS to the specific 

development context.  

While DCS adaptations have previously been identified as necessary 

(Freimut, 2001), they bring new challenges that are currently not sufficiently 

addressed. One such challenge involves balancing generalizability and 

specificity of the classification data. More concretely, in order to use defect 

classification data to demonstrate effects of new or modified practices, and to 

be able to generalize such findings to a context beyond the particular 

organization studied, the classification data needs to be equally generalizable. 

By adapting the DCS to a particular development context, it may risk 

inhibiting such generalization. The IEEE Std. 1044 addresses this by 

describing a standard structure for DCS, and by establishing mandatory 

elements in order to be compliant. There is, however, a lack of published 

experience reports with regard to IEEE Std. 1044. In addition, while there 

have been reports on adaptations to DCSs, there is a lack of established 

methods for evaluating the adapted schemes.  

In this thesis, these challenges are addressed by first, in Part II, 

demonstrating through an industrial case study the need for data to 

supplement expert opinion. We then provide in Part III an in-depth 

description of a DCS adapted from the IEEE Std. 1044 to the development of 

automotive safety software. In Part IV, we report on the evaluation of the 

adapted DCS by first describing the results of an industrial case study 

assessing its practical viability. Additionally, we describe, in Part IV, a 

comprehensive method for evaluating DCSs. In Part V of this thesis, we 

                                                      
1 Original Equipment Manufacturer 
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elaborate of future research direction with respect to DCSs. In the final part, 

we summarize and conclude this thesis.  

The remainder of this introduction is structured as follows. Chapter 2 

presents background material relevant to this thesis; chapter 3 summarizes 

the research goal and, the specific research questions addressed and finally; 

chapter 4 elaborates on the research methodology applied in the thesis. 
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2 AUTOMOTIVE SOFTWARE DEVELOPMENT AND 

DEFECT MANAGEMENT 

Effective defect management is especially important in large, complex and 

dynamic organizations. In large organization there are usually many different 

roles involved in product development, e.g. managers, analysts, architects, 

designers, developers and testers. As an organization’s size increases so does 

the number of communication paths within and between development teams 

(Pareto et al., 2012), adding to the complexity of the development 

organization (further discussed in chapter 9.3). In dynamic organizations, 

developers may, once their particular development phase has concluded, be 

reassigned new projects or different roles within the projects. Thus, the 

knowledge and experience from prior projects and project phases is fleeting 

unless made explicit. It can therefore be challenging to systematically 

identify development issues, as the required knowledge may not be readily 

available. 

For this thesis, the development of software-intensive automotive active 

safety features at Volvo Car Corporation (VCC) has been studied. The 

organization developing the active safety features is large in that there are 

several hundred engineers involved. The organization is dynamic in that 

engineers are regularly reassigned between projects and project roles 

according to project needs and their specific expertise. For instance, as the 

development of a vehicle model may span several years, the engineers 

involved in specification will have been reassigned new projects by the time 

the software is implemented. The complexity of automotive software and its 

development comes to a considerable extent from the distributed nature of 

both the products (characterized in chapter 2.1) and the development process 

(described in chapter 2.2). An additional source of product complexity is the 

environment in which the active safety features are operating. Specifically, 

the features are designed to operate on a wide variety of road conditions 

around the world, and the consequences of malfunction can be severe—the 

amount of potential test cases the features must be put through is enormous. 

It is therefore important to be able to evaluate the efficiency of the various 

test methods—for instance, to evaluate whether the tests methods detect the 

intended types of defects (see chapter 8.5.2). 

Effective defect management provide valuable insights that can be used to 

address challenges met in large, complex and dynamic organizations. Figure 
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1 shows a simplified view of the software development process at VCC 

where defect management is an on-going activity throughout projects and 

after release (chapter 2.2 provides a more detailed description of the figure). 

Through the process, the defects are typically detected by a variety of 

methods and roles, and documented in a format that is suitable for that 

particular context—often with the sole purpose of facilitating its resolution.  

In order to enable efficient quantitative analyses, for instance to detect 

systematic development issues, structured defect documentation is needed (as 

indicated in Figure 3 on page 10). For this thesis, defect classification as an 

approach to provide structured defect documentation is examined and applied 

to the development of automotive safety software. 

 
The remainder of this chapter provides background and context for the 

thesis by first describing an example active safety feature. The description 

aims to illustrate the complexity of the products developed, and how that 

complexity contributes to the need for efficient defect management (for a 

more in-depth description of automotive software development, see e.g. 

Eklund (2013, chap. 5) and Hristu, Varsakelis and Levin (2005, pp. 741–

765)). In section 2.2, the development process is described in more detail. 

The section provides a specific focus on the defect discovery procedures and 

further emphasises the need for structured defect documentation. In section 

2.3, a more general discussion on defects, defect classification and its relation 

to relevant standards is provided. Finally, as a model-driven development 

 

Figure 1. A simplified overview of the software development process at VCC 
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(illustrated by the MDB block in Figure 1) is considered a promising 

approach to improving efficiency and effectiveness of software development 

at VCC, section 2.4 provides a more general description of software models 

and model-driven development (chapter 5 provides a more specific 

description of the use of software models at VCC). 

2.1 AUTOMOTIVE ACTIVE SAFETY FEATURES 

Automotive active safety features typically aim to assist the driver in 

preventing, or mitigating the effects of, various types of accidents. One 

example of such a safety feature is forward collision warning (FCW), which 

monitors objects in front of the vehicle using sensors (e.g. a camera and a 

radar/lidar). If there is a risk of collision, the feature issues the driver a 

visual/audible warning. Active safety features, such as the FCW, executes on 

a computer system deployed in the vehicle. 

The computer system in a modern car is a distributed computer platform; 

there may be 30 to over 100 different computers (Electronic Control Units, or 

ECUs) in the car, connected with a number of communication busses. Figure 

2 shows an example vehicle architecture, where ECUs are represented with 

rectangles connected with communication busses (in the example, two CAN2-

busses, and one MOST3-bus). Running on each ECU are a number of 

programs (referred to as Software Components, or SWCs), where each SWC 

has a specific responsibility.  

Often, a feature is realized by a number of cooperating SWCs. As a highly 

simplified example4, the FCW feature may be realized by SWCs running on 

three different ECUs:  

 An SWC running on the ECU labelled FSM (Forward Sensing 

Module), connected to a front-facing camera and a radar, that identifies 

and tracks objects in front of the vehicle;  

 An SWC running on the ECU labelled CEM (Central Electronic 

Module) that assesses a threat level of the objects identified. The CEM 

does this by periodically receiving information about the objects in 

                                                      
2  Controller Area Network (CAN) is a low-speed communication protocol specifically 

designed for and extensively used in the automotive industry. 
3  Media Oriented Systems Transport (MOST) is a high-speed communication protocol for 

multimedia and infotainment networking, intended for the automotive industry 

(http://www.mostcooperation.com). 
4  Note that the example is intended as an illustration of a possible system deployment, rather 

than an actual design. The ECU abbreviation spelled out in the text may therefore not 

correspond to the actual Volvo XC90 network topology. 

http://www.mostcooperation.com/
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front of the vehicle (from the SWC deployed on the FSM), and of the 

current vehicle’s speed and driving direction (which it receives from 

the Engine Control Module labelled ECM), and finally; 

 An SWC running on ECU labelled DIM (Driver Information Module) 

presents the driver with audible/visual warnings if there is a risk of 

collision. The warning is triggered by a signal sent from the SWC 

deployed on the CEM.  

 
Typically, the SWCs that cooperate in realizing a feature are developed by 

one team. There are, however, often cases where an SWC provides a service 

to multiple features; for instance, the SWC deployed on the FSM, in the 

example above, may also deliver information about objects in front of the 

vehicle to the parking assistant feature, deployed on the ECU labelled PSM 

(Parking Support Module). Also shown by the example above, the SWC 

deployed on the CEM depends on functionality deployed on the ECU 

labelled ECM—thus not part of the FCW feature. This example illustrates 

that the design and development of automotive safety features are distributed, 

which contributes to making defect management challenging; for instance, 

emphasizing the importance of a defect management approach that facilitates 

analyses of defects across the entire computer platform. 

In the cases where an SWC provides a service for external features, a 

communication interface is defined for the service as a set of signals. A signal 

 

Figure 2. The figure illustrates an example vehicle architecture. ECUs are 
represented as rectangles, and communication busses as lines connecting the 

rectngles (the image, showing a modified illustration of the Volvo XC90 network 
topology, is adapted from Eklund (Eklund 2013)) 
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is assigned to be sent over a specific communication bus (in this example on 

one of the high-speed CAN busses), has a data type and is sent at a specified 

interval. The communication interfaces typically need to be specified early in 

the project (discussed in chapter 5). Among the reasons is that the 

communication interfaces have an impact on the number and the types of 

communication busses that are needed. The choice of busses, in turn, has an 

impact on the physical design of the vehicle, which requires such information 

early—the physical design affects the vehicle’s structural integrity and crash 

resilience, which is a costly process to ensure. The validation of the 

communication interfaces, however, is typically done late in the project, as 

the developed components become mature enough to be properly tested. 

Although there are state-of-the-art approaches to achieve earlier validation 

(e.g. models-in-the-loop and continuous integration (Giese et al., 2011)), such 

approaches are typically expensive, or require substantial process changes. 

Thus, deciding to apply such approaches typically need justification. A 

system of proper measurements can support justifying such decisions, and 

also evaluating the eventual effect of the improved practices. 

2.2 AUTOMOTIVE SOFTWARE DEVELOPMENT PROCESS  

The studies included in this thesis have been conducted within the active 

safety department at Volvo Car Corporation (VCC). The description of the 

development process at that department, which is provided below, is also 

presented in chapters 5.4.1 and 6.2.3. In each of these chapters, the process is 

presented from the perspective, and emphasizing the details, relevant to the 

particular study presented in that chapter. 

In Figure 1, an overview of the development process is presented. On a 

highly abstract level, the in-house process of developing automotive software 

systems can be divided into three main phases as shown in Figure 1:  

 Function development: The objectives of the function development 

phase include developing requirements specifications and high-level 

designs for all functions in the vehicle model. Specifically, the high-

level design decomposes each function into a number of SWCs, and on 

which ECU each is to be deployed. In addition, a requirements 

specification for each SWC is developed. The design and requirements 

specification is provided as input to the following phase; 

 System development: The objective of the system development phase is 

to develop each ECU. This includes the physical component itself, and 

the various SWCs deployed on it. In this phase, a development team is 

assigned a number of SWCs to develop. The input to each team is the 
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set of requirements that apply to the SWCs. The output of the phase is 

a set of ECUs with SWCs installed on them; 

 Manufacturing line development: The objective of the final phase is to 

develop the factory assembly line in which the cars are mass-

produced. This development phase is relevant to the software 

development process, as certain components in the car are calibrated 

as part of the manufacturing process. Such calibrations are often 

realized by the software. 

The main focus in this thesis is on the System development phase. In the 

system development phase, each team develops a number of SWCs in 

accordance with the requirements specification. Normally, each SWC is 

implemented as an executable model in a tool such as Simulink. From these 

models program code, such as C, can be generated. This is illustrated in 

Figure 1 by the block labelled MBD (model-based development).  

 
Although, the main focus in this thesis is on the system development 

phase, defects discovered during this and the subsequent phase are of interest. 

The reason is illustrated by the arrows labelled ‘Cause’ and ‘Effect’ in Figure 

3. The arrows illustrate that defects introduced in system development may 

be detected in later project phases—this also applies to defects introduced in 

 

Figure 3. A simplified view of a defect management process  
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other artefacts, such as requirements and design. As indicated by the arrows, 

defects may remain in the system until triggered by specific tests. Identifying 

the effectiveness of the test activities, and which development artefacts are 

error-prone, in a distributed development environment is a challenge. 

Moreover, while expert knowledge can provide information about these 

aspects, such knowledge is typically tacit. As development often span over 

several years that knowledge may not be readily available when needed. This 

provides further justification for a defect management approach (illustrated in 

Figure 3) that makes the tacit knowledge explicit, and that facilitates efficient 

analyses. 

In addition, the distribution of development among in-house teams, the 

system development process typically involves a number of external 

suppliers in addition to engineers at the vehicle manufacturing company 

(OEM). Whereas the engineers at the OEM develop an executable model for 

each SWC, the suppliers are typically responsible for delivering the ECUs 

(the physical component) with SWCs installed. Specifically, the supplier 

generates C-code from the executable model, then optimizes the code and 

compiles it for the particular type of ECU on which it is to be deployed. The 

result is a binary SWC that is delivered to the OEM. While in most cases, the 

suppliers are responsible for the binary SWCs along with developing the 

ECUs themselves, in others cases, they are responsible only for the binary 

SWCs. This distribution of responsibility, both between process phases at the 

OEM, and between the OEM and the suppliers, makes root cause analyses a 

challenge. Without proper measurements, it may be difficult to identify the 

process interfaces—e.g. the artefacts delivered between project phases or 

between the OEM and the suppliers—that are problematic. 

Although the overarching process in the automotive domain is typically 

described as a waterfall—often visualized by the standard V-model—the 

systems development phase is in fact iterative. Throughout the phase, there 

are a number of milestones, each intended to test the functions at an 

increasing level of maturity. In early stages of the development phase, the 

majority of tests are so called bench-tests, in which a sub-set of the vehicle’s 

electrical system is simulated in a lab environment. In the bench-tests, ECUs 

may be simulated with regular computers or various types of specialized 

hardware (e.g. dSpace-modules). As the project progresses, the bench-test 

setup will include pre-production versions of the final ECUs, and later 

complete test vehicles are built to test the functions; running particular 

scenarios on dedicated test tracks, and field tests (called expeditions), where 

the vehicles are driven on regular roads. 
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More specifically, for each milestone, the development teams prepare a 

software delivery consisting of executable versions of the SWCs they have 

been tasked to develop. In preparation for each delivery, the development 

teams typically follow the testing procedure illustrated in Figure 4: 

 The executable models are tested on unit level by the development 

team at the OEM; 

 The binary components, generated from the executable models and 

optimized, are tested on unit level by the supplier. Any defects found 

are reported back to the OEM; 

 Initial integration tests are run on bench by the OEM. In these tests, a 

number of SWCs are cooperating to realize functionality. The focus of 

these tests is to ensure that communication and synchronization 

between SWCs are working as intended. An often used test method 

(re-sim) uses recorded data in place of sensors, for instance recorded 

video instead of a real camera; 

 In the final type of test (Functional test), the complete function is 

tested. In this type of test, a full vehicle is built with all the SWCs 

installed. In the first type of functional test, specific scenarios are run 

on a dedicated test track; for instance, the frontal collision warning 

 

Figure 4. An overview of the typical validation and verification procedures done 
for each milestone in the system development phase 
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system may be tested by driving the vehicle into balloon cars 

(inflatable objects). In later phases of development, vehicles are tested 

on regular roads (expeditions). The purpose of this type of test is to 

ensure that the functions behave as intended in their real environment; 

for instance, that the collision warning system does not give false 

warnings. 

While the test procedure, as shown in Figure 4, is typically followed for each 

milestone in the system development phase, the focus is gradually shifted 

towards functional test; i.e. initially mainly component and system tests are 

run, while in later project phases the focus is on specific scenarios on the test 

track, and on expeditions. 

Each of the types of tests shown in Figure 4 is associated with a cost—it is, 

for instance, generally cheaper to detect a defect in a unit test than in a 

functional test. It is of interest to the organization to evaluate that the test 

types are effective in detecting the types of defects they were designed to 

detect. Assessing the effectiveness, however, requires systematic data 

collection and analysis. 

2.3 DEFECTS 

As the concepts of a defect and of defect classification are central to this 

thesis, this section is dedicated to their definition and a discussion on their 

relation to relevant standards.  

2.3.1 Definitions 

The definition of the term defect is in this thesis taken from IEEE Standard 

for Classification of Software Anomalies (IEEE Std. 1044-1993 (IEEE, 

1993)). The standard was originally issued in 1993 with a subsequent 

revision issued in 2009 (IEEE, 2009). Interestingly, the two versions of the 

standard use different definitions of the entity intended for classification 

(both shown in Table 1). Whereas the 1993 version defines the classified 

entity as anomaly, the 2009 version instead uses the term defect. The 

definition of the term anomaly (shown in Table 1) is an expansion of the 

more limiting definition given in ANSI/IEEE 610.12-1990 (IEEE, 1990), also 

including “deviations from the user’s perceptions or experiences”. In the 

2009 revision, the more specific term defect is used instead. The reason—as 

stated in the introduction—was that the term anomaly was considered too 

broad to lend itself to efficient communication. 



14 Part I—Introduction  

 

 
In this thesis the term defect is used, but with the broader definition of 

anomaly from IEEE Std. 1044-1993. The justification for using that definition 

is that experience from our case company has shown that there are 

occasionally issues (as defined by (ISO/IEC/IEEE, 2010)) in which the 

design or implementation of functionality comply with the specification, but 

would not meet users’ expectations. As an illustrative example, in the initial 

phases of a vehicle project (referred to as the Strategic phase in chapter 5.4 

on page 38) high-level requirements on the expected behaviour of each 

feature are specified. Such high-level requirements may often be vaguely 

expressed; e.g. “feature shall be world leader in the premium car segment” or 

“feature shall interact with the driver in an unobtrusive and natural manner”. 

Even though subsequent refinements are considered to comply, it may be 

found when the feature is finally implemented that it fails user 

expectations—i.e. when the functionality is successfully verified but fails 

validation. Such cases would not be included in the more restrictive 

definition provided by the IEEE Std. 1044-2009. 

2.3.2 Preventing Defects 

Proper defect management is important in any software development domain. 

In the automotive domain, the importance is further emphasized by the safety 

aspects. For instance, a trend in recent years has been towards features which 

are able to make increasingly autonomous interventions, such as braking or 

Table 1 The definitions of the classified entity in the two revisions of the 
IEEE Standard Classification for Software Anomalies (IEEE Std. 1044) 

Source Definition 

IEEE 1044-1993 Term: Anomaly 

Any condition that deviates from expectations based on 

requirements specifications, design documents, user 

documents, standards, etc. or from someone’s 

perceptions or experiences. Anomalies may be found 

during, but not limited to, the review, test, analysis, 

compilation, or use of software products or applicable 

documentation. 

IEEE 1044-2009 Term: Defect 

An imperfection or deficiency in a work product where 

that work product does not meet its requirements or 

specifications and needs to be either repaired or 

replaced. 

 



 Automotive Software Development and Defect Management 15 

 

steering. Malfunctioning software may therefore cause severe injuries to the 

vehicle occupants, and to individuals in the vehicle’s surroundings. 

Standards, such as ISO/IEC 26262 (further discussed in section 2.3.4) aims to 

assist in analysing and thereby assuring safety of such features. 

Still, there are examples of malfunctioning automotive software. For 

instance, in 2010 there were reports concerning the new Toyota Prius model, 

where brake performance was decreased under specific circumstances5. 

While the specific fault(s) underlying the failure was quickly identified by 

Toyota and addressed in a software update, a more interesting question to the 

company would be how the fault was allowed to slip through the verification 

process. By identifying how this could happen it would also allow preventing 

similar incidents from happening in the future. Root-cause analysis (RCA) is 

one approach to providing such in-depth investigations. Equipped with 

knowledge of the root-cause, a plan of action to avoid similar future incidents 

can be set up. RCA, however, has been shown to require substantial effort 

(Chillarege and Inc, 2006) and may be feasible to apply only in exceptional 

cases. RCA is typically reactive in that it is applied after the fact. 

An additional approach to learning from experience is post-mortem 

reviews (Dingsøyr, 2005), which is indented as a continuous activity for 

process improvement. At the conclusion of a project, an appointed team is 

tasked to critically review the project and provide lessons learnt—positive as 

well as negative experiences. While RCA can be considered a point-effort to 

be applied in specific cases, post-mortem reviews are continuous in that they 

are intended as an integral part of the project life-cycle.  

Post-mortem reviews are, as with RCA, reactive in that they are performed 

after the fact. To enable pro-active defect management—i.e. to prevent 

defects—continuous in-process activities are required that provide 

information about likely sources of defects; techniques that, for instance, 

based on change patterns in source code can indicate increased risk of 

specific types of defects, thereby indicate which types of tests need to be 

performed. One of the required components in such a technique is structured 

defect documentation, and defect classification schemes are one promising 

approach. 

2.3.3 Defect Classification Schemes 

In practice, the purpose of a defect report is often limited to facilitating the 

resolution of the defect. In particular, defect reports are often free text 

                                                      
5 The investigation report (action number PE10006) by NHTSA is available from:  

http://www-odi.nhtsa.dot.gov/owners/SearchNHTSAID 

http://www-odi.nhtsa.dot.gov/owners/SearchNHTSAID
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(Wagner, 2008)—the reports do therefore not easily lend themselves to 

efficient quantitative analyses. To address this problem, various defect 

classification schemes have been proposed. Such classification schemes 

contribute to comparability of defect metrics between projects, and between 

companies (Chillarege et al., 1992).  

A useful classification scheme comprises a set of attributes, where each 

attribute captures a specific aspect of the defect—e.g. how the defect was 

detected, its severity and type. Moreover, for each attribute, the schemes 

typically provide a set of values that can be chosen from; this contributes to 

the efficiency as well as to the reliability of the classification.  

The most commonly referred (Freimut, 2001) classification schemes in 

literature are ODC (Orthogonal Defect Classification) (Chillarege et al., 

1992), the HP scheme (Grady, 1992) and the IEEE Std. 1044 (IEEE, 2009, 

1993). Common among these established classification schemes is that they 

have focus on source code, and on low level attributes related to the 

implementation. In addition to requiring access and detailed knowledge of 

the implementation, it also risks missing important aspects of defects in 

artefacts that does not have direct manifestations in the source code; e.g., 

quality of specifications and missing or inadequate test cases. 

In order to be useful, defects should be classified in-process, i.e. aspects of 

the defects should be documented according to the classification scheme as 

soon as the relevant information is revealed. One way is to incorporate the 

DCS into the organization’s issue-tracking system. The DCS will in such case 

serve as a defect report template, prescribing what aspects of the defect must 

be documented as part of the defect life-cycle (e.g. detection, analysis, and 

resolution). Performing the classification in-process—when the details of the 

defect are still in fresh memory—increases the likelihood of correct 

classification, and will likely minimize the time required (indications of 

which are reported in chapters 8.5.1 on page 132 and 8.6.1 on page 144). 

In this thesis a DCS based on and compliant with IEEE Std. 1044, and 

adapted to the development of automotive active safety software is described. 

The resulting DCS is named Light-weight Defect Classification scheme 

(LiDeC). 

2.3.4 Standards 

Applying a DCS for characterizing and documenting defects is important to 

organizations that want to comply with standards. Complying with standards 

contribute to repeatable defect management and to the consistency of the 

defect data over time. The standards, in addition to IEEE Std. 1044 as 
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discussed in the previous section, that are relevant to the DCS described in 

this thesis relate primarily to various aspects of product and process quality.  

ISO/IEC 9126 (ISO/IEC, 2001) defines a quality model that is relevant to 

the Effect attribute in LiDeC (see Appendix A, page 187). The ISO/IEC 9126 

is a standard for evaluating software quality. Specifically, it describes a 

quality model as a set of characteristics (i.e. quality attributes as defined by 

(ISO/IEC/IEEE, 2010)). The characteristics are Functionality, Reliability, 

Usability, Efficiency, Maintainability, and Portability. Each characteristic is 

further divided into more fine-grained sub-characteristics. Such sub-

characteristics are useful to be able to classify the Effect attribute with a 

higher granularity—thus, provide an extensibility mechanism for the 

attributes in the DCS. ISO/IEC 9126, furthermore, defines three types of 

metrics: internal metrics, external metrics and quality in use metrics. In this 

thesis, mainly external and quality in use metrics are relevant, as the main 

test activities at the case company involve code execution. There are a 

number of additional standards related to software quality assurance (SQA). 

While these standards specify aspects of various best software development 

practices, the specifics regarding their implementation are left for the 

individual development organization to select. Therefore, DCS are relevant as 

a concrete technique to implement concepts specified by these standards.  

The relevant SQA standards can be classified as quality management and 

project process standards (Galin, 2004, p. 473). The quality management 

standards focus on the SQA infrastructure while leaving the choice of 

particular methods and tools to the organization—i.e. they focus on what to 

achieve by the SQA process, rather than on how that is to be achieved. 

Prominent quality management standards include ISO 9000-3 (ISO, 2005, pt. 

3), CMMI (CMMI Product Team, 2010a, 2010b) and ISO/IEC 15504 (also 

known as SPICE, and with its more specialized version Automotive-SPICE) 

(ISO/IEC, 2004; The SPICE User Group, 2011). Project process standards on 

the other hand focus on how a project is to be implemented. The standards 

define which steps are to be taken, and what work products are to be 

developed. Prominent project process standards include ISO/IEC 12207 and 

IEEE Std 1012-1998. 

Quality management standards generally serve at least two purposes. 

Firstly, to enable assessing the maturity of an organization’s SQA 

infrastructure; this typically involves certification by an external accredited 

body. Such certification allows for instance OEMs to assess a supplier’s SQA 

process, and thereby provides an indication of an organizations ability to 

deliver high quality products. Secondly, the quality management standards 

can be used to guide an organization in improving their SQA system. 
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A prominent example of a quality management standard is ISO 9000-3, 

which define a set of requirements pertaining to all aspects of an 

organization’s software development process. In order for an organization to 

be certified, it must demonstrate its compliance to each of the requirements. 

Typically the certification process is conducted in collaboration with an 

authorized certification body. 

The capability maturity model integration (CMMI) is, similarly to ISO 

9000-3, a model used for assessing the capability of a software development 

organization. Whereas according to ISO 9000-3 an organization is either 

certified or not, CMMI defines five levels of process area maturity. As with 

ISO 9000-3, the five levels of maturity defined by CMMI allow both external 

assessment of an organizations capability, and internal guidance on how to 

reach the next level of capability. The particular focus of CMMI is on 

management methods based on quantitative approaches. This is reflected, for 

instance in that at the higher levels maturity, an organization is required to 

utilize product and process metrics to control performance and identify 

improvement needs and opportunities (Galin, 2004, p. 504). The goals and 

structure of the ISO/IEC 15504 standard is similar to CMMI in that it defines 

a number of maturity levels for a set of key process areas. The similarity 

between CMMI and ISO/IEC 15504 has been showed through mappings 

between the two standards (e.g. (Peldzius and Ragaisis, 2011; Rout and 

Tuffley, 2007)). Such mappings are justified by the desire of organizations 

that have been certified according to one of the two standards, to also become 

certified according to the other—indicating that the two standards are 

overlapping. 

The quality management standards typically focus on what a development 

organization shall be capable of without specifying how to achieve that 

capability. This is an intentional approach as the specific methods and tools 

most appropriate to achieve the capabilities may be different between 

organizations (for instance, depending on product domain). The methods and 

tools chosen, however, need to contribute to the capabilities defined by the 

standards. As such, defect classification schemes are a method contributing to 

the achievement of level 4 in CMMI and ISO/IEC 15504 (specifically 

Measurement). 

Project process standards specify, in contrast to quality management 

standards, how to perform a process. IEEE/EIA 12207 and IEEE 1012 are 

two such standards. Even though these standards describe which steps are to 

be taken and what work products are to be developed as part of the process, 

they still leave the concrete techniques (e.g. methods and tools) open to the 
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organizations. The concept of a DCS is, in this context, relevant as one 

technique to meet specific requirements posed by the standards. 

The main purpose of the project process standards is to define a common 

framework of best practices. These best practices are in the form of activities 

and sub-activities that should be performed as part of a project. While 

IEEE/EIA 12207 covers the entire project life-cycle, and IEEE 1012 focuses 

specifically on verification and validation activities (V&V), the two standards 

are closely related —Annex A in IEEE 1012 provide a mapping to IEEE/EIA 

12207 tasks.  

IEEE/EIA 12207 defines, using a hierarchal structure, processes (e.g. 

acquisition, supply, and development) and for each process a set of activities 

that shall be performed; for the supply process, activities may include 

initiation, preparation of response, planning, execution and control (Galin, 

2004, pp. 530–531). For each activity, furthermore, the standard defines a set 

of tasks in the form of requirements; the execution and control activity may, 

for example, include the task (Galin, 2004, p. 531):  

Supplier shall monitor and control the progress of development 

and quality of software products, including problem 

identification, analysis and resolution 

While the project process standards aim to define processes more 

concretely than the quality management standards, they still leave it open to 

organizations how to implement their processes. More specifically, the 

standards define requirements that need to be met in order to be compliant—

i.e. it is up to the organization to choose the particular methods and tools 

suitable for each activity. Defect classification schemes may therefore serve 

as a technique fulfilling certain task requirements. For instance, in the task 

requirement above, the supplier is to monitor the quality of software 

products, but the implementation of that monitoring activity is not specified. 

Defect classification can contribute with data regarding one aspect of the 

quality of the software.  

The ISO/IEC 26262 (ISO/DIS, 2011) standard is intended to support the 

development of safety-critical automotive features. Specifically, the standard 

defines a set of best practices in specifying, designing, implementing and 

verifying safety relevant aspects of automotive features. While the standard 

defines best practices for software testing at various levels (clauses 9-11 in 

ISO/IEC 26262-6 (ISO/DIS, 2011, pt. 6)), it does not specify details on how 

to document defects. DCS is one technique for documenting discovered 

defects that comply with the standard, while capturing data on additional 

aspects of the defects.  



20 Part I—Introduction  

 

In essence, defect classification schemes are a technique for extracting 

measurements from defects. As such, the standard ISO/IEC 15939, Systems 

and software engineering—Measurement process (ISO/IEC 15939, 2007) is 

of relevance to this thesis. ISO/IEC 15939 defines activities and tasks 

necessary for defining and applying a measurement process in a software 

development organization. Of specific interest for this thesis is the 

measurements information model in Annex A (ISO/IEC 15939, 2007). The 

information model defines key concepts related to measurements, and their 

relationships. In this thesis, chapter 5 describes a case study which came to 

reveal information needs (as defined by the standard) that were not satisfied. 

The act of classifying defects corresponds to measurement method in the 

standard, and the classification data to base measures. Furthermore, the 

design of LiDeC (as reported in chapter 6.3) followed the process defined by 

the standard. While the additional concepts shown in the standard’s 

information model are important to form a practical measurement product, it 

is outside the scope of this thesis—although, chapter 9 outlines a research 

roadmap that aims to incorporate the remaining concepts of the information 

model. 

2.4 MODELLING 

Improving development efficiency and product quality are typically on-going 

efforts in software development organizations. However, identifying 

improvement opportunities and evaluating the effects of undertaken 

improvement initiatives in a complex development organization is 

challenging. While defect classification data is one means of facilitating 

identification and evaluation of improvement initiatives, chapter 5 describes a 

case study exploring an alternative way.  

In the case study, it was presumed that adopting a model-driven 

development approach (MDD) would improve development efficiency and 

product quality. In the study, the centrality of software models in a non-

model-driven development organization was examined. More specifically, the 

study contrasted modelled and non-modelled development artefacts from the 

perspective of their respective perceived cost and benefit. The intended 

outcome was to be able to better identify which development activities would 

benefit most from applying an MDD approach. To provide chapter 5 with 

context, a more general definition of software models and model-driven 

development is given here. 

Representing development artefacts as models is common practice in many 

software development organizations. In the development of active safety 
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software at VCC, one of the most common type of model is implementation 

model (e.g. Simulink models (Mathworks, 2010)). Representing a 

development artefact as a model (such as Simulink model in place of source 

code) has the purpose of providing an abstraction for a particular purpose. 

Mellor et al. (Mellor et al., 2003, p. 15) provide the following definition of a 

model: 

A model is a coherent set of formal elements describing 

something (for example a system, bank, phone, or train) built 

for some purpose that is amendable to a particular form of 

analysis […] 

The principle of MDD (Kent, 2002; Mellor et al., 2003) is that models 

should be the primary development artefact, i.e. work should be done on the 

models, and other artefacts (such as document or code) should be (semi-

)automatically generated from the models. Ideally, the development should 

comprise a chain of model transformations, from requirements to source 

code. In each development step, analyses are conducted; information is 

refined and added to the models, allowing it to be transformed to the next and 

more concrete model eventually resulting in an executable artefact.  

Frequently cited reasons for improved development efficiency with MDD 

include: a) as each type of model is designed for a particular kind of analysis, 

that analysis should be more efficient, and b) as multiple types of artefacts 

can be generated from the models is should reduce the amount of manual 

development work.  

Improved product quality is typically attributed model transformations, 

which requires less manual work than code-centric development. For 

instance, as source code can be generated from the models, it significantly 

reduces the amount of manually written code, which is often error-prone. 

This means that verification and validation can be done on model level, 

enabling more direct validation of domain specific concepts, rather than 

obscured by specific programming language constructs. 

While MDD can improve aspects of software development, it also requires 

changes to the development organization. For instance, it has been shown that 

the focus of the organization needs to be shifted from writing source code, to 

developing meta-models and model transformations. Making such a 

transition in a large or complex development organization is challenging and 

risky. In order to mitigate such risks, a more targeted adoption may be 

effective (Selic, 2003)—i.e. to introduce modelling in the parts of the 

development process that present the best opportunity for improvement. In 

addition to methods for identifying such process parts, methods evaluating 
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the impact of improvement initiatives are required. In particular, a broad 

perspective needs to be considered in order to assess whether the initiatives 

accomplished the intended improvements, and not merely local optimizations 

while causing issues in other parts of the development process.  By analysing 

classified defect data, such effects can be evaluated. 
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3 RESEARCH FOCUS AND THESIS STRUCTURE 

The main research question in this thesis is summarized as: 

How to improve defect management in automotive software 

development using structured defect documentation? 

The majority of this thesis is a continuation of our previous research 

(Mellegård, 2010). In that research, the goal was to examine how model-

driven development methods could improve automotive software 

development practices. Among the results of that research were the 

realisation that, while project staff often have strong opinions of what 

development practices need improvement, a significant challenge is to 

provide evidence that those improvements actually targets the relevant 

development issues. Consequently, the main contribution of this thesis is the 

proposal and evaluation of a defect classification scheme that can be used as 

a source of such evidence—thus, the aim of the main research question is to 

improve defect management by extending the usefulness of defect 

documentation beyond merely facilitating the resolution of the defects. 

3.1 RESEARCH QUESTIONS 

The main research question was broken down into four separate research 

questions; each question is addressed in a separate part of this thesis. 

3.1.1 Characterizing Automotive Software Development 

The first research question, addressed mainly by our previous research 

(Mellegård, 2010), aim at characterizing the development of automotive 

software from a modelling perspective. The research question was: 

RQ 1 How important and effort intensive are software models in 

automotive software development, and what are the 

opportunities for improving the utilization of models?  

This research question is addressed in Chapter 5 in Part II by providing an 

overview of the current way of working with a focus on the use of software 

models. The aim of the chapter was to investigate how the use of software 

models could be made more efficient by characterizing the current way of 

working. More specifically, the chapter describes a study contrasting the 
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perceived cost and importance of the various model and non-model related 

development artefacts.  

3.1.2 Adapting a Defect Classification Scheme 

In addressing research question 1, we found that although there were many 

expert opinions regarding which development practices were in need of 

improvement, there was a lack of verifiable evidence. Consequently, the 

research focus shifted towards investigating how to obtain such evidence. In 

Chapter 6 of Part III, the following research question is addressed: 

RQ 2 How to improve efficiency of applying IEEE Std. 1044 in 

model-based automotive software development? 

The aim of research question 2 was to examine how to adapt the standard for 

classification scheme (IEEE 1044) to automotive software development, 

while maintaining compliance with the standard. As a result, LiDeC (Light-

weight Defect Classification scheme) was developed, as is reported in-depth 

in Part III. 

3.1.3 Evaluating a Defect Classification Scheme 

The third research question, addressed in Part IV, aims at providing an 

evaluation of LiDeC. Part IV addresses the two research questions: 

RQ 3.1 How feasible is LiDeC for model-based automotive software 

development? 

RQ 3.2 How to evaluate a defect classification scheme? 

The aims of the research question addressed in Part IV were two-fold; firstly, 

to evaluate the practical viability of LiDeC, as reported in chapter 7. 

Secondly, to examine, describe and reflect on a comprehensive method for 

evaluating defect classification schemes, as reported in chapter 8. 

3.1.4 Future Directions 

The final research question aimed at examining how the concept of DCS can 

be further developed. Specifically, chapter 9 of Part V addresses the research 

question: 

RQ 4  What are the future research directions for improving defect 

classification? 
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By examining the published research up to this point, three main areas in 

need of further research are outlined. Addressing these research areas would 

further the applicability of defect classification schemes as an industrial as 

well as academic tool for data collection. 

3.1.5 Mapping of Research Questions to Chapter Contributions 

Research question 1 is addressed in Chapter 5 by investigating the following 

more specific questions (prefixed with M for Modelling): 

M1.1 Which models are used? 

M1.2 Which modelling notations are used? 

M1.3 What information is conveyed by the models? 

M1.4 How much automation is used in the development of models? 

M1.5 Which documents are created from the information contained 

in the models? 

M2.1 What is the relative importance of the model-related artefacts 

in the software development process? 

M2.2 What is the relative cost (in terms of effort) for developing 

model-related artefacts in the software development process? 

Research question 2 is addressed in chapter 6 by investigating the following 

more specific questions (prefixed with L for LiDeC): 

L1 In an automotive safety feature development context where 

source-code is often not available, how can a standard defect 

classification scheme be suitably adapted? 

L2 As defect classification may often be considered an 

administrative task, how can the adaptation of a standard 

defect classification scheme be done to minimize required 

learning and classification time? 

Research question 3.1 is addressed in chapter 7. While the more specific 

questions L1 and L2 in chapter 6 focused on developing an adapted defect 

classification scheme, chapter 7 addresses two similar questions but with the 

focus on evaluating the classification scheme in an industrial context. The 

more specific research questions investigated in chapter 7 are (prefixed with 

E for evaluation):  
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E1 How can the IEEE Std. 1044 be adapted to a software 

development context with limited access to source-code? 

E2 How can the IEEE Std. 1044 be adapted to minimize its 

process foot-print in terms of required learning and 

classification time? 

Research questions 3.2 and 4 are addressed in chapters 8 and 9 respectively. 

The chapters do not pose more specific research questions. 

3.2 RESEARCH APPROACH AND THESIS STRUCTURE 

The overarching research approach employed in the work in this thesis 

followed the technology transfer model, as depicted in Figure 5 (adapted 

from Ivarsson (2010), originally published in Gorschek et al. (2006)). The 

purpose of the model is to facilitate smooth transfer of technology from 

academic research to industrial practice. More specifically (from Gorschek et 

al. (2006)): 

“Technology transfer, and thus industry-relevant research, 

involves more than merely producing research results and 

delivering them in publications and technical reports. It 

demands close cooperation and collaboration between industry 

and academia throughout the entire research process” 

To this end, the model defines a number of steps that each, when conducted 

properly, contributes with both knowledge building and industrial 

dissemination of that knowledge. Specifically, the approach begins, as can be 

seen in the figure, with identifying a problem. The problem is mainly situated 

in an industrial context but is also of academic interest. The second step is to 

formulate the problem in part by studying state-of-the-art. In the third step, a 

candidate solution is proposed, while steps 4–6 aim at evaluating the 

candidate solution. Specifically, in step 4, validations in academia are 

conducted. Static validation, shown as step 5 in Figure 5, represent a limited 

scale industrial evaluation, mainly feasibility studies—for instance, to 

evaluate whether the solution addresses the problem, or is applicable in the 

specific context. Step 6, dynamic validation, is generally larger scale 

industrial studies, such as a pilot study, in which the solution is applied in a 

real industrial context. Finally, when the validations are considered 

successful, the technology can be released (i.e. utilized in a full industrial 

scale).  
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The main contributions of this thesis, presented in chapters 5 to 9, add to 

each of the six first steps. For the first step, three separate but related 

problems identified and addressed in this thesis—one industrial and two 

academic problems.  

The industrial problem is described in chapter 5. The chapter describes an 

industrial case study in which a more objective source of evidence regarding 

process improvement opportunities was found lacking. Although the main 

contribution of chapter 6 is towards proposing a candidate solution (step 3), it 

also reports on an investigation of current state-of-the-art; an investigation 

that led to the examination of defect classification schemes as a promising 

approach for collecting such objective evidence. Chapter 6, furthermore, 

reports on a static validation by presenting a three-stage case study in which 

LiDeC was developed. Chapter 8 reports on a validation of LiDeC in 

academia using a controlled experiment, and a dynamic validation is 

presented in chapters 7 and 8. The dynamic validation was conducted as an 

industrial pilot study in which LiDeC was applied to a set of defects from a 

real project. 

In addressing the industrial problem identified in chapter 5, two related 

academic problems were identified. The first problem, described in chapter 8, 

 

Figure 5. An overview of the research approach (adapted from (Ivarsson 2010)) 
in this thesis, and how the chapters of the thesis relate to the approach 
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concerns that it is not clear how to validate efficiency, accuracy and 

reliability of adapted DCSs, even though it is recognized that a DCS need 

adaptation in order to be feasible. The chapter additionally presents a study of 

state-of-the-art, and a candidate solution, in the form of an in-depth 

description of a comprehensive method for evaluating a DCS.  

The second academically relevant problem is identified in chapter 9 by 

demonstrating that there is a general need to establish defect measurement 

methods, and that current state-of-the-art is lacking in several respects—

contributing to steps 1 and 2 in Figure 5. The chapter presents a candidate 

solution by proposing three main research areas that need addressing in order 

for DCS to become more widely adopted. 
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4 METHODOLOGY 

Although the work presented in this thesis is academic research, it has a 

strong empirical focus. This is illustrated by step 1 in Figure 5, in that the 

main problem the thesis addresses is situated in an industrial context. 

Specifically, the main research goal in this thesis was to develop a feasible 

method for identifying improvement opportunities in automotive software 

development. As a consequence, two related problems mainly of academic 

interest were identified.  

Due to this approach, a number of different research methods have been 

applied. The main methods and a brief validity evaluation are presented in the 

following two subsections.  

4.1 RESEARCH METHODS 

The work presented in this thesis is the result of five separate studies, 

presented in chapter 5 to 9. Each of the five studies had a number of specific 

goals, and each utilized the specific research method that was best suited for 

the purpose. As can be seen in Figure 6, a variety of methods has been 

applied—ranging from qualitative to quantitative and from empirical to 

analytical (Glass, 1994). Although quantitative methods collect data from a 

large number of cases, that data is typically shallow. More specifically, while 

interesting patterns can be detected in quantitative data using statistical 

methods, such analyses does not explain why specific patterns exist. In 

contrast, quantitative methods make deeper investigations into a small 

amount of cases, and aims precisely to gain understanding of underlying 

reasons or motivations.  

Moreover, the separation between theoretical and empirical methods 

attempts to illustrate the method’s proximity to the practice it intends to 

examine. In this thesis, the focus is, as can be seen in Figure 6, on empirical 

methods. This focus was chosen, as the goal of the work was to conduct 

research that was readily applicable. The analytical methods applied were 

literature study and review. 

As each chapter discusses in more detail the methods used, the following 

subsection provides a more general methodological discussion. 
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4.1.1 Case study 

The main method in this thesis, because of the strong focus on empiricism, 

has been the case study method. Yin (Yin, 2009, p. 18) defines the case study 

method as: 

“[…]an empirical inquiry that: investigates a contemporary 

phenomenon within its real-life context, especially when the 

boundaries between phenomenon and context are not clearly 

evident [...] and in which multiple sources of evidence is used” 

As the case-study methodology puts emphasis on the empirical study of the 

phenomenon in its real-life context, it was considered appropriate for 

addressing aspects of the first three research questions. Additionally, what 

was considered phenomenon and context—i.e. what parts of the development 

process that were relevant—was not clear, which further suggested the case-

study as an appropriate method to apply. 

In chapter 5, case study was applied in order to build an understanding of 

the current development process—partly from how that process is prescribed, 

but mainly how it is enacted. For that purpose, it was important to elicit 

qualitative evidence, in the form of document inspection and interviews, from 

the real-life context. 

 

Figure 6. Thesis methodology overview 
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In chapters 6 and 7, the case study method was applied in order to develop 

LiDeC. The case study method was considered appropriate because the 

industrial applicability of LiDeC was central. Thus, by conducting the study 

in the real-life context assisted in continuously evaluating the feasibility of 

LiDeC (shown in Figure 5 as static validation).  

While the case study method has the ability of providing nuanced results, 

its main weakness related to the universality of the results.  Precisely because 

the case study method is conducted within a real-file context, it can be 

questioned how representative that context is to a general population—i.e. 

whether the results can be generalized (external validity) (Yin, 2009, p. 38). 

Yin (Yin, 2009, p. 116), proposes triangulation in order to minimize the threat 

to external validity. In this thesis, data and method triangulation has been 

used. Data triangulation was implemented by incorporating subjects from 

different projects, and in different roles. More specifically, in the case study 

reported in chapter 5, subjects from a number of different subprojects were 

interviewed, and subjects in a project management role along with developers 

and testers. This widens the perspective of the data collected, and reduces the 

risk of acquiring only one specific view. Method triangulation was done 

mainly by literature study, in order to confirm or refute the findings from the 

case study. 

4.1.2 Controlled Experiment 

Whereas the case study method acknowledges that—for the validity of the 

results—complexity and context matters, a controlled experiment aims at 

isolating and examining specific aspects of the object under study. In chapter 

8, the aim was to examine whether LiDeC, as a classification scheme adapted 

to a specific context, provided additional benefits as compared to a generic 

classification scheme. In order to draw conclusions from such a comparison, 

it is necessary to eliminate all perceivable confounding factors. 

While the strength of a controlled experiment is precisely that any effects 

seen in the results can be attributed to the treatment used, the validity of those 

results in a real-world context may be disputed—the confounding factors that 

are eliminated as part of the experiment design can be significant in a 

realistic setting. In addition, controlled experiments are often used to perform 

academic evaluations (shown as step 4 in Figure 5), thus using university 

students as subjects. Such academic evaluations are generally chosen because 

they offer low-cost and low-risk alternatives to industrial evaluations 

(Gorschek et al., 2006). The drawback, on the other hand is that the 

representativeness of the results can be questioned. 
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The results of the experiment, reported in chapter 8, were triangulated with 

the results from the industrial evaluation (using a case study method) 

reported in the same chapter. The results from these two evaluations offered 

some overlap, which provided opportunity for discussion. This triangulation 

strengthens both results. 

4.1.3 Literature Study and Review 

In addition to the two empirical methods, two related analytical methods 

were used; literature study and literature review. Literature study is used in 

chapters 5 to 8 (although the literature study in chapter 7 is included and 

expanded in chapter 6) to provide context and motivation prior to planning 

the studies. The method is qualitative and analytical. It is analytical in that it 

summarizes existing knowledge without attempting to provide an explicit 

application. Literature study is qualitative, in that a selection of publications 

are examined, interpreted and described in a particular context. A weakness 

of this method is that the selection of publications is dependent on the 

researcher’s discretion. This weakness is to some extent mitigated by the 

peer-review procedure—serious inadequacies in the selection, interpretation 

or description of publication would likely be called into question as part of 

the review.  

Literature review, in contrast to literature study, aims at providing 

quantitative data. The purpose of a literature review is to give a broader 

overview of a research field, by conducting targeted searches in available 

publication databases. A review protocol established prior to the study is used 

as a selection mechanism, and the resulting matches are analysed and 

categorized. These categories are used to draw conclusions about the current 

state of research within the chosen research field.  

In this thesis, a small-scale literature review is reported in chapter 9. The 

review was conducted in order to conceptualize the use of defect 

classification schemes in industry and academia. The main weakness of this 

small-scale review is that the search for publications was limited to only one 

source (the IEEE Xplore6 database) which may not be representative to the 

research field under study. For this reason, the conclusions drawn from the 

study were considered indicative rather than conclusive. 

 

                                                      
6 http://ieeexplore.ieee.org 



 

PART II—CONTEXT 

In theory, there is no difference between theory and practice.  

In practice there is. 

― Yogi Berra 

5 CHARACTERIZING MODEL USAGE IN EMBEDDED 

SOFTWARE ENGINEERING: A CASE STUDY 

This chapter presents a case study in which the use of models in automotive 

software development was characterized. The study was conducted in order 

to gain a deeper understanding of the importance and cost of applying various 

modelling notations. The chapter was previously published as 

Mellegård, N., Staron, M. 

“Characterizing Model Usage in Embedded Software 

Engineering: A Case Study” 

Published at 8
th
 Nordic Workshop on Model Driven Software 

Engineering (NW-MoDE), Copenhagen, Denmark 2010 

5.1 INTRODUCTION 

Model-driven engineering (MDE) (Atkinson and Kuhne, 2003; Brown, 

2004a, 2004b) has the goal of increasing development productivity and 

quality of software-based products by raising the level of abstraction at which 

the development takes place. Several studies have provided evidence 

showing that the application of MDE in large industrial projects has indeed 

improved productivity and quality of the products (e.g. (Baker et al., 2005; 

Heijstek and Chaudron, 2009; Staron, 2008; Weigert et al., 2007)), while 

II 
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other studies have shown mixed results or indicate a lack of objective 

empirical evidence (Mohagheghi and Dehlen, 2008).  

Industrial software development, however, rarely provides the possibility 

to go from code-centric to model-driven software development in a single 

step and to the full extent. One example of software development domains 

where this is not possible is automotive software development. The domain is 

characterized by the existence of a significant amount of legacy software and 

high interdependence between car manufacturers and suppliers of car 

components. This high interdependence requires precise specifications that 

have to provide possibilities for interoperating of software development 

practices at the manufacturer’s side and the supplier’s side. This, in 

consequence, means that a number of practices for using models are used in 

parallel—e.g. UML and Simulink. Since modelling notations differ in the 

degree of formality and quite often can be used interchangeably, it is 

important to optimize the cost of using these notations. The cost has to be 

balanced with the benefits that these models bring and perhaps not used in 

those parts of software development where code-centric approach is already 

very efficient.  

In this chapter we describe the development process and explore the costs 

and efforts of using different modelling notations and different abstraction 

levels for specifying requirements and designing the software in the 

automotive domain. The case study was conducted at Volvo Car Corporation, 

within the department responsible for electronic and software systems in 

Volvo automobiles. The research question in the case study was: 

 What is the relative importance of models-related artefacts in 

a model-based software development process? 

 What is the relative cost (in terms of effort) for developing 

models-related artefacts in a model-based software 

development process? 

These two questions are important from a pragmatic perspective—when 

introducing model-based development, are we focusing on the right 

improvements?  

Addressing this research question provided the possibility to assess the 

costs of using different kinds of modelling notations in software 

development. The data was collected via document analysis and a sequence 

of interviews with architects and project managers. The main perspective of 

the results is the project managers’. The results show that there are a few 
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artefacts which require significantly more effort than other artefacts and that 

the perception of what is important is different from where the effort is spent.  

The rest of the chapter is structured as follows: Section 5.2 summarizes the 

method used, Section 5.3 outlines related work, Section 5.4 presents the 

results of the case study and Section 5.5 discusses the results. Section 5.6 

concludes the chapter. 

5.2 METHOD 

The goal of this study was to characterize the process of developing 

automotive software systems, with use of models as the storage of design 

information. The research approach consisted of two separate stages: we first 

conducted a series of interviews and document analyses in order to build a 

map of the artefacts created in the actual process—a development domain 

model (Mellegård and Staron, 2010a). We then used the domain model in the 

second stage intended to assess which artefacts were considered most 

important and which received the most effort. 

The first stage (Mellegård and Staron, 2010a) was conducted at VCC 

(Volvo Car Corporation) over the course of 18 months and consisted of semi-

structured interviews with function, system and component designers and 

document inspections. The stage specifically aimed at addressing the 

following research questions: 

M1.1 Which models are used?  

M1.2 Which modelling notations are used? 

M1.3 What information is conveyed by the models? 

M1.4 How much automation is used in the development of models? 

M1.5 Which documents are created from the information contained 

in models? 

The second stage (Mellegård and Staron, 2010b) consisted of interviews 

and followed the case-study design proposed by Yin (Yin, 2002). The 

subjects in that stage consisted of 6 function designers and function 

managers, in which we asked the subjects to distribute $100 among the 

artefacts corresponding to the amount of effort that was put into each. The 

main unit of analysis was the relative importance and amount of effort 

invested in the development artefacts, specifically requirements, different 

types of models and documents. We first presented and described the domain 

model showing the key artefacts we had identified in the development phase. 
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The purpose with this presentation was to provide the respondent with the 

context of the study and also to provide the opportunity to ask about and 

comment on the content and structure of the domain model—e.g. add 

concepts or change relationships among the shown concepts. We conducted 

this part as a focused interview (Yin, 2002). In order to ensure construct 

validity, we noted the comments and incorporated them in the following parts 

of the interview (in accordance with Yin (Yin, 2002)).  

5.3 RELATED WORK 

This paper contributes to our previous research published in (Mellegård 

and Staron, 2010a) and (Mellegård and Staron, 2010b). In (Mellegård and 

Staron, 2010a) we reported on a domain model showing the main artefacts 

developed throughout the entire development process, whereas we in this 

paper focus on one of the four identified phases—the function development 

phase. Furthermore, in (Mellegård and Staron, 2010b) the focus was on 

describing the case-study in which effort and importance of the artefacts in 

the function development phase were investigated. In (Mellegård and Staron, 

2010b) the preliminary results of 3 interviews were included, whereas this 

paper includes the result from 6 interviews.  

Mohagheghi and Dehlen (Mohagheghi and Dehlen, 2008) conducted a 

review of documented modelling experiences and concluded that there are 

few reported results of how the MDE scales to large system development. 

Furthermore, the paper concluded that there was often a lack of company 

baselines which resulted in subjective evaluations. Our case study intended to 

contribute to such a company baseline intended to be used to compare the 

development process with other companies.  

In (Staron, 2008) we contrasted how effort was distributed between the 

different development phases in model-driven and code-centric projects 

within a company in the telecommunication domain. The results showed that 

the overall efficiency of the development process improved by adopting an 

MDE approach. The evidence for the analysis and design phase, however, 

was not conclusive. In this case study we examined the analysis and design 

phase, specifically with respect to the development artefacts created. 

Furthermore, in (Staron, 2008) we found that the implementation phase had 

the most improvement potential; however, in the automotive domain the 

majority of implementation is done by third-party suppliers. This raises the 

question of how an MDE approach can be used to improve the efficiency of 

the analysis and design phase. In this case study we have taken the initial step 
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by examining the distribution of effort among and the perceived importance 

of the artefact developed in the phase.  

Bollain and Garbajosa proposed in (2009) an extension to the ISO/IEC 

24744 (ISO/IEC, 2007) meta-methodology standard. Their purpose was to 

extend the standard in order to better fit a document-centric (referred to as 

code-centric in this paper) development process. Our research has similar 

goals, but instead focuses on the use of models within an officially non-MDE 

development process. The case study reported in this paper provides evidence 

of which artefacts were considered the central ones, which in turn indicated 

where the focus of a modelling meta-model may be. 

Broy (2006) outlined the challenges in automotive software engineering, 

and specifically outlined a structural view on the development process which 

he called a comprehensive architecture. Our case study focused on one 

particular part of this architecture, namely what Broy refer to as the Design 

level (which we refer to as the function development phase). Moreover, Broy 

concluded that although models were used throughout the automotive 

software development process, their use was fragmented. This meant that the 

benefit of having a coherent model chain—such as automatic artefact 

generation and traceability—was lost. Our case study contributes with 

empirical evidence that characterizes the development process—with regard 

to effort and importance of the constituent artefacts—which we hope will 

contribute with further evidence of how such an integrated modelling chain 

can be created in an optimal way.  

Heijstek and Chaudron (2009) reported on an empirical study regarding 

model size, complexity and effort in a large model driven process, but 

whereas their study included the investigation of effort distribution among 

categories of development activities for the whole development process, our 

study focused on how effort was distributed among the artefacts produced in 

one of the development activities, and specifically on the effort distribution 

among types of models and requirements. Moreover, Heijstek and Chaudron 

reported on the importance and centrality of models in a pure MDE project, 

whereas our case study is conducted at a company which does not use an 

MDE approach. We elaborate on this in section 5.5. 

Niggemann and Stroop (Niggemann and Stroop, 2008) described different 

kinds of models commonly used in the development of automotive software 

and their purposes. In particular, they identified two fundamentally different 

types of models used for the purpose of function development (algorithmic 

solution) and system development respectively. In our case study, our 

intention was to contribute with empirical evidence of the perceived 
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importance and the estimated amount of effort spent on the models and other 

artefacts in the development of automotive software.  

5.4 RESULTS 

5.4.1 Development Domain Model 

The prescribed development process at VCC was a document-centric 

milestone driven process complying with the standard V-model. The process 

consisted of three main phases of development: the strategic phase, function 

development phase and the implementation phase in which the system and 

the physical components were specified. The prescribed process, however, 

stipulated what shall be delivered at each step of the development process, 

but not precisely how those deliverables shall be developed. In our domain 

model, shown in Figure 7, the top half represents the prescribed process and 

the bottom half shows the artefacts we found to be developed in the de-facto 

process. The domain model is described in the following sub-sections. 

The Strategic Phase 

The activities in the strategic phase (top half of Figure 7 as Product 

Planning), were focused around product planning and market positioning. 

The intended result of the phase was a feature list describing the planned 

vehicle model, including its feasibility in terms of required resources. Based 

on the outcome of this phase the decision was made whether the vehicle kind 

(e.g. a Volvo V50, V70) will continue into development or not. 
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In this phase the main stakeholders were product managers who work at 

the vehicle level. They consider such aspects as available technical solutions, 

competitor’s products, available resources in terms of time and cost. Initially, 

only high-level properties were of interest to the product managers, for 

example “the model shall be among the top 5 in the premium vehicle segment 

with respect to infotainment systems”.  

During this phase the high-level properties were analysed and broken 

down into the features the vehicle model should have in order to fulfil the 

properties. 

The example above shows that the descriptions here is high-level and that 

there was a need for a lot of intermediate steps in order to identify new 

functionality and which parts of that functionality would be realized in the 

software part of the car.  

 

Figure 7. Project structure; process stages and their main deliverables. Please note 
the simplicity of dependencies in the prescribed process (upper half) and the 

complexity of dependencies within the projects (lower half). 
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The Function Development Phase 

The activities in the function development phase were focused on 

designing and specifying the behaviour of each separate function that 

together make up the feature, e.g. the climate control feature contained 

functions such as front seat heating and air ventilation or air condition 

(depending on the configuration of the vehicle model). The challenges 

addressed in the phase revolved around developing control algorithms that 

satisfy the desired behaviour.  

The main input to the function development phase was a feature 

description (shown in Figure 7 as Feature List). Feature was a high-level 

description written from the end-user perspective. It described such 

properties as what functionality shall be offered, performance requirements 

and technology if it was of importance to the end-user. Additional input could 

be documentation such as function and system descriptions from similar 

previous systems. Such additional input was not present in all projects, only 

those where the documentation from similar features or previous versions 

existed.  

During the function development phase, the high-level Feature was broken 

down into a number of separate Functions. Characteristics such as 

complexity of the feature, and dependencies on other features determined 

how the feature was decomposed into functions. Each function was specified 

in a Function Description document, shown in the top half of Figure 7.  

The function description document began with one use-case that described 

the function from an end-user perspective. The use-case was intended to give 

an overview of the function, which formed a natural introduction to the 

document. However, this high level description was also important for 

validating the function against the feature description in the strategic phase.  

The use-case was refined into detailed functional requirements, which was 

commonly done using models such as state machine diagrams with detailed 

requirements written for the states and the transition between states. These 

models and requirements are shown as the artefact Requirement in the bottom 

half of Figure 7 and as Specification model and Requirement in Figure 8.  

The procedure of refining the initial use case into class diagrams, state 

machines and detailed requirements generally involved creating a simulation 

model (shown as the artefact Simulink in Figure 7). Simulation models were 

created for certain functions (mainly more complex ones) and based on the 

intended functional behaviour specified by the use case (shown in Figure 7 as 

the «realize»-relationship between Use-Case and Simulink). The purposes of 

the simulation model were found mainly (i) to assist the function developers 

in learning to understand the requirements, and (ii) to validate the behaviour 



 Characterizing Model Usage in Embedded Software Engineering: A Case Study 41 

 

of the function with customer representatives at an early stage. The purposes 

for creating the simulation models were found to range from merely 

illustrating intended functionality to formal models from which production 

code could be generated. Consequently, many different tools were found to 

be used, from formal ones such as Simulink to informal ones such as MS 

PowerPoint and video sequences.  

Close to the end of this phase the function designers together with system 

architects created an initial logical design for the function in form of a UML 

class diagram, in which functional responsibilities are assigned to logical 

components and their dependencies are shown. The logical design was 

further refined in the subsequent implementation phase. The function 

development phase is shown in more detail in Figure 8.  

The Implementation Phase 

The activities in the implementation phase were concerned with designing 

and specifying a system solution that satisfied the required behaviour of a set 

of functions (or parts of functions) on a particular physical platform—shown 

in the top half of Figure 7 as the many-to-many relationship between the 

documents Function Description and System Description. 

The main input to the implementation phase according to the prescribed 

process was a set of function descriptions (shown in the top half of Figure 7  

as Function Description). Furthermore, we found that simulation models (if 

available) and architecture specifications as well as documentation from 

previous version of the system provided additional input to the phase.  

The implementation phase was divided in (i) system design and (ii) 

component design. The system design activity focused on designing and 

specifying a system that fulfilled the requirements from a number of 

functions on a specific vehicle platform, whereas the component design 

activity focused on deploying the system requirements on a set of physical 

nodes (as determined by the vehicle platform architecture). As shown in the 

top half of Figure 7, the realization of a function could be distributed among 

a number of systems, and a system could be deployed on a number of 

physical nodes. Normally, however, a feature (i.e. all the functions within the 

feature) was realized by one system, and that system is in turn deployed on a 

set of nodes. It was, however, common that a node contained functionality 

from more than one system, e.g. a sensor may provide data to multiple 

functions in multiple systems. 

Given the above relationship between functions and systems we could see 

that the System Description document contains all requirements from 

functions that were realized by the system which is being described. The 
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system description document begins with listing all incoming requirements 

realized by the system—functional as well as non-functional. The document 

then presents the system from a logical, electrical, mechanical, and 

deployment view. 

An important artefact in this phase was the Logical Design—a class 

diagram showing the logical view of the system, shown in the bottom half of 

Figure 7. The design could initially be identical to the logical design in the 

preceding function development phase. The system design, however, refined 

the logical design by adapting it according to the specific platform on which 

the function would be. The Logical Design was composed of a number of 

logical software components. These logical components were considered 

atomic units of functionality with a well-defined interface in the form of 

input and output data. These data would later be translated into signals sent 

on the communication busses on the physical platform. The model was used 

when mapping a logical view of the function to the platform on which the 

function will be realized. The system description document contained 

detailed requirements for each of the components, as well as for the 

communication between the components.  

Logical software components were then mapped to Software Components 

(as defined by AUTOSAR (AUTOSAR, 2011)), which were deployed on a 

physical node, available on the target vehicle platform. 

All requirements affecting the software units deployed on the physical 

node were collected in the Component Description document. The 

Component Description document was used as the specification when 

commissioning the node from a supplier (as shown to the right in the top half 

of Figure 7). Furthermore, simulation models could also be included in the 

Component Description document. In many cases, however, only parts of the 

models were shared with the suppliers due to confidentiality reasons. As the 

supplier was only provided with a partial view of the function, it added to the 

need for the requirements documents to be complete and correct. 

Summary of results  

M1.1 – What models are used? 

We found that two types of models were mainly used (i) models-as-

specification (which could be categorised as prescriptive models according to 

(Ludewig, 2003)) and (ii) models-as-implementation (which could be 

categorized as descriptive models according to (Ludewig, 2003)).  

Specification models—such as use-cases, logical designs, and state 

machines—were used mainly to provide structure to requirements and to 
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serve as a communication medium for requirements, functional as well as 

non-functional. 

Simulation models were used to create functional solutions that fulfilled 

the behavioural specification of a function. We found functions in which the 

simulation models were used throughout the whole development process. We 

also found evidence of code generated from the models which served as the 

implementation integrated into the supplier provided nodes. However, we 

also found systems in which simulation models were only used within the 

development process to explore possible solutions, and as a support for the 

engineers to learn to understand the requirements of the function. 

M1.2 – What modelling notations are used? 

Specification models were represented using a subset of UML: use-cases, 

classes and state machines. Formal simulation models (models-as-

implementation) were mainly created with modelling tools with proprietary 

notation, such as Simulink, Statemate and Stateflow. We have however, also 

found cases where non-formal notations have been used (e.g. Microsoft 

PowerPoint and video sequences). 

M1.3 – What information is conveyed by the models? 

Specification models at the function definition level (e.g. use-cases and 

state machines) prescribed the required behaviour of the function. The 

specification models in the implementation prescribed mainly how 

responsibilities were partitioned between logical design elements, and then 

deployed on physical nodes. The simulation models used in both the function 

development and implementation phases, described a proposed solution that 

corresponds to the prescribed behaviour. We found simulation models that 

were only used internally in order to elaborate the requirements and 

specification models, but also found simulation models that were used as 

basis for generating production code. 

M1.4 – How much automation is used in development of models? 

We found two main cases where automation was used (i) to generate the 

required bandwidth on the platform communication busses from the 

deployment view based on UML class diagrams, and (ii) to generate 

production code from simulation models. The latter, however, was only done 

for some functions. 

M1.5 – Which documents are created from the information contained 

in models? 
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We found that use-cases were included in all document except the 

component description. Logical Design was an important part of the System 

Description, but initial versions of the design have also been found in the 

Function Description document.  

Although central to the development, simulation models were usually 

found not to be included in the official documentation. Rather, they existed as 

separate artefacts alongside the function documentation. Furthermore, in the 

cases where simulation models were provided to the supplier, it was found to 

be common to only provide the supplier with the parts of the model—due to 

confidentiality reasons. 

5.4.2 Effort Distribution and Importance 

In the case-study described in the previous section we found that there was 

differences between the prescribed process and the way products are actually 

developed. Whereas the prescribed process is document-centric and 

organized around milestones, the actual development process makes 

extensive use of models that are evolving throughout the process as 

advocated by MDE. This raises the question whether the distribution of effort 

and importance of models and other artefacts in our case is different from an 

MDE project.  
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In this case study, we collected evidence intended to address the following 

research questions: 

M2.1 What is the relative importance of the model-related artefacts 

in the software development process?  

M2.2 What is the relative cost (in terms of effort) for developing 

model-related artefacts in the software development process? 

In this case study we focused on the activities within the function 

development phase (as described in The Function Development Phase on 

page 40), as the main software development takes place in that phase. In the 

interviews, we used the diagram in Figure 8 to depict the main artefacts and 

their relationships. 

Proposition 1 – Importance of Artefacts 

We had initially anticipated that models would be the most important 

artefacts, as they are generally more expressive than text. However, we found 

that it was rather the level of detail and the need to express requirements 

 

Figure 8. Artefacts, documents, and software products in the function 
development phase 
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unambiguously that was considered most important from the project 

manager’s perspective. We found that the models were—from the project 

manager’s perspective—mainly seen as support for the requirements; 

specification models were used to provide structure to the requirements or to 

provide them with a context. In particular, the simulation models were used 

to explore possible algorithmic solutions in order to learn to understand what 

the detailed requirements were. 

Three of the subjects stated that use-cases were among the most important 

artefacts with the justification that they provided a high-level and easy to 

understand description of the function—i.e. as high-level requirements. 

However: 

 One of the subjects stressed the fact that it is the contents that is 

important, not the modelling notation itself 

 One subject explicitly stated that the use-case notation alone cannot be 

used as requirements provided to the third-party suppliers, as they 

leave too much room for interpretation 

These observations were also supported by statements from most subjects, 

that detailed requirements regarding the environment of the function were the 

most important information—for example requirements on interfaces with 

sensors, actuators and other auxiliary components that the function depended 

on. The justification provided by the subjects was that “without having these 

requirements for interfaces clearly and correctly stated, one would risk 

developing the function based on the wrong assumptions”. 

Interestingly, the simulation models—which can be considered as the 

implementation of the function and hence the main product to be developed 

in the phase—were not considered to be among the most important artefacts. 

One subject stated that “the most important thing is to agree on requirements 

regarding the environment of the function; the simulation model itself can 

easily be reworked, thus it is not that important”. However, it was also stated 

that traceability of these interface requirements between the specification and 

the simulation models was important. For instance in order to identify how 

the simulation model would be affected by changes in the interface 

specifications, as well as to be able to evaluate whether the simulation model 

complied to the interface requirements. 

Proposition 2 – Effort Distribution 

From the normalized result of the $100 technique, shown in Table 2 and 

summarized in Figure 9, we found that more than twice the effort was 

invested in models as compared to requirements. This finding supported our 
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anticipated result that the artefacts considered most important were not the 

same ones the most effort was spent on. However, we had not anticipated that 

the difference would be as big as it was in reality. Furthermore, it 

demonstrated that although the overarching development process was 

document-centric, on a project level models were considered to be more 

central. 

 

 
In particular, we have found that the majority of effort was spent on one of 

the artefacts as shown in Figure 10—simulation models. The reason for that 

was found to be  

(i) They were used to explore the requirements of the function and 

assist in making them more precise, and  

(ii) The simulation models were commonly used to generate the 

production code—the models could be considered as being the 

implementation, i.e. being the product to be developed.  

 

Figure 9. Distribution of effort among types of artefacts 

 

 

Figure 10. Distribution of effort among types of models 
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Table 2 also shows that only between 24% and 55% of the effort was spent 

on developing the simulation models, which means that there was 45% to 

76% overhead in the process of developing the production code. This large 

difference was not expected. 

Interestingly, all subjects believed that the distribution of effort they had 

given would not be representative to other projects at the department; one 

subject stated “you should probably take my numbers with a grain of salt, as I 

don’t think my experiences are very similar to others”. However, as Table 2 

shows, the distribution of effort between models and requirements, as well as 

between simulation and specification models was very similar.  

When discussing the results with the interviewees and their managers after 

the study, their reaction was that this was against their conceptual model—i.e. 

they expected more effort to be spent on the requirements than it is now. This 

called for a subsequent (planned for future) study about detailed optimization 

techniques how to improve the throughput of the process. Possible targets for 

optimization is the multitude of different modelling techniques and notations 

used that are compatible to a limited degree. 

Similar observations and how such challenges were overcome when 

Motorola successfully introduced MDE in their process are reported in 

(Weigert et al., 2007). 

5.5 DISCUSSION 

Model Driven Engineering advocate a systematic use of models and 

automated model transformations in software development projects. In our 

case study we have found that the studied organization applies the principles 

of MDE, but their process is still document-driven. We have found that the 

use of models is fragmented and there is no controlled sequence of models 

and transformations in the processes at the organization. This finding is 

similar to Broy (Broy, 2006) who found that even if models play a central 

role in organizations, their use is sometimes fragmented and notations are 

used inconsistently. That situation seems to be similar to the situation in the 

aerospace industry several years ago (Plant and Tsoumpas, 1995) and was not 

uncommon in the software industry more recently (Grossman et al., 2005). 

However, contrary to the early adopters of MDE which we studied in our 

previous work (Staron, 2006), the goals for adopting modelling at VCC are 

different than others. In the previous study the main reason to introduce 

models was as a tool for communication, whereas the use of automation was 

not prioritized. In the case study at VCC we found that automation was the 

main goal for adopting models and therefore the modelling notations and 
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tools used in the implementation phases have the ability to generate source 

code from models. This finding indicates that the goal of adopting MDE at 

VCC is the same as the goals of MDE itself—to raise the abstraction level 

and increase productivity.  

Furthermore, the ability to create executable models were considered 

important as such models were commonly created during the function 

development phase as the functional specification—this fining was also 

contrary to our previous study in which models in the initial phases were 

used mainly for communication and documentation. We also found that UML 

models were used together with other modelling approaches. We have seen 

that it was common to use different approaches for different purposes—

whether of legacy reasons, choice of most appropriate tool for the task or 

because widespread use in the supplier chain. This finding was in line with 

Farkas et.al (Farkas et al., 2009) in which they proposed to incorporate a 

variety of artefact types with one modelling approach. 

With a document-driven process—the studied development process 

corresponds to the code visualization level according to Browns modelling 

spectrum (Brown, 2004b)—one would expect documents to be the most 

important artefacts, the most effort intensive or both. Figure 9, however, 

indicate that the documents themselves were not the most effort intensive, 

nor did any of the subjects consider the documents very important. 

Nevertheless, it seems that the code visualization level will be applied in the 

nearest future due to the fact that documents are widely accepted by the 

suppliers as specifications, whereas models are not. 

Works such as (Bollain and Garbajosa, 2009; Das Beauftragte der 

Bundesregierung für Informationstechnik, 2009) aim at improving the 

efficiency of document-driven processes by focusing on how documents and 

their consistent parts are managed within the process. From our findings, 

however, documents do not seem to be considered very important or effort-

intensive. This would suggest that efforts to improve the process efficiency 

by focusing on the management of the documents themselves may not yield 

as significant results as focusing on artefacts within the documents and how 

they relate to each other. Furthermore, the distribution of effort between 

models and other types artefacts in our study was similar to the distribution 

found in studies of pure model-driven projects (Heijstek and Chaudron, 

2009), which suggests that pure model-driven projects and other types of 

projects where models are used extensively may share similar properties. In 

model-driven projects, however, the models are used to generate other 

artefacts and to establish automatic traceability between artefacts. In our 

study, we found limited use of model transformations and automatic 
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traceability. This indicates that even though there was a similar pattern in 

how effort was invested with respect to models and other artefacts, the non-

model-driven project did not use their models to their full potential. 

As can be seen in Figure 10, simulation models were considered the most 

effort-intensive type of artefact. This was expected, as this type of model 

would often eventually be used as the implementation; the code deployed on 

the nodes was to a large extent generated from the simulation models. 

However, between 45% and 76% (see Table 2) of the effort was spent on 

artefacts other than the simulation models, which further indicates that there 

was a large potential for cost savings. 

In (Niggemann and Stroop, 2008) Niggemann and Stroop note that the 

mapping between simulation and specification models (which they refer to as 

function and system models respectively) is very important. This was 

confirmed by the interviews, as most respondents stated that agreeing on a 

Table 2. Effort distribution in percent per artefact as estimated by the project 
managers 

 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 

Function     9.1  

Models (56.4) (50.0) (73.4) (52.4) (54.5) (81.8) 

Simulation 

models 
39.7 30.0 26.7 23.8 36.4 54.6 

Use-cases 7.9 20.0 20.0 4.8 0 3.6 

State machines / 

other 

specification 

models except 

UCs 

4.0  26.7   5.5 

Logical Design 4.8   23.8 18.2 18.2 

Requirements (23.8) (30.0) (26.7) (23.8) (27.3) (9.1) 

Requirements  

(all types) 
23.8 30.0 26.7 23.8 27.3 9.1 

Documents (19.8) (20.0)  (23.8) (9.1) (9.1) 

Design 

Description 
11.9     9.1 

Requirements 

Specification 
7.9   23.8 9.1  
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modular design and the communication between modules early in the 

development cycle was important. 

5.6 CONCLUSION 

The objective of this study was to investigate how effort and the perceived 

importance were distributed among artefacts identified in the function 

development phase of software-based vehicle functions. In this paper we 

have reported on a case study in which we interviewed project managers 

responsible for a software based safety and security related functions. 

The most interesting finding in this case study was that requirements were 

considered undoubtedly the most important artefact. However, it was on the 

behaviour models that the majority of effort was spent. It was also these 

models that were used to understand and refine the requirements. In 

particular, requirements concerning communication interfaces and properties 

of auxiliary components are considered very important. However, simulation 

models—which commonly were used by the third-party component suppliers 

to generate the production code—were not considered as important. In 

addition, we found that although the simulation models constitute the single 

artefact that receives the most effort, they only received between 24% and 

55% of the total effort spent. Considering these models as the 

implementation—i.e. the actual product under development—this means that 

45% to 76% of the effort is spent on overhead activities. 

Moreover, we have in this initial study of a non-MDE project found that 

the amount of the total development effort invested in models is similar to the 

pure MDE project reported in (Heijstek and Chaudron, 2009)—61% 

(average) in our case and 59% in the MDE case. In the case of a pure MDE 

project, model transformation is used to a large extent, whereas we only 

found limited use in our study. This indicates that although the distribution of 

effort between models and other artefacts are similar to an MDE project, the 

models are not used to their full potential. This in turn suggests that there are 

improvement opportunities by examining how existing models can be used 

more efficiently. 
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PART III—LIDEC 

It is easier to confess a defect than to claim a quality 

― Max Beerbohm 

6 A LIGHT-WEIGHT DEFECT CLASSIFICATION 

SCHEME FOR EMBEDDED AUTOMOTIVE 

SOFTWARE 

This chapter provides an in-depth description of a classification scheme 

adapted from IEEE Std. 1044 for the development of automotive safety 

software. The chapter was previously published as: 

Mellegård, N., Staron, M., Törner, F. 

“A Light-Weight Defect Classification Scheme for Embedded 

Automotive Software” 

Technical Report 2012:04, ISSN: 1654-4870, Chalmers 

University of Technology, Göteborg 

 

6.1 INTRODUCTION 

Software reliability is of central importance in modern cars as software 

controlled systems are becoming increasingly pro-active—recent safety 

functions are, for instance, able to automatically apply brakes to avoid 

crashes or mitigate their effects. Car manufacturers (OEMs) need, in order to 

achieve reliability, effective ways to manage defects during development (in-

process) and during run-time (e.g. fault tolerance mechanisms). For the in-

process defects it is important to identify, analyse and remove defects which 

III 
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could compromise the reliability of the cars. Furthermore, identifying 

patterns in the in-process defects enables effective detection and removal of 

defects, for instance by indicating which test activities to focus on. In order to 

identify such patterns, however, systematic and structured defect 

documentation is required. 

Defect documentation and analysis is common practice in most software 

development organizations. Its benefits are further emphasised through the 

inclusion in process maturity models—such as CMMI (CMMI Product Team, 

2010a) and SPICE (The SPICE User Group, 2011)—as they require 

systematic defect documentation, analysis and follow-up. Neither CMMI nor 

SPICE, however, specifies how such defect documentation and analysis is to 

be done. Companies thus have their own interpretations resulting in varying 

quality of defect documentation; for instance, ambiguous interpretation of 

data or subjective opinions of the reporter. Hence, there is a need for a 

structured approach to defect documentation. 

There have been several approaches proposed on how to perform 

structured collection and analysis of defect information; e.g. defect 

taxonomies (Beizer, 1990), root cause analysis (RCA) (Leszak et al., 2000) as 

well as various defect classification schemes such as Orthogonal Defect 

Classification (ODC) (Chillarege et al., 1992), the HP scheme (Grady, 1992) 

and IEEE Std. 1044 (IEEE, 2009). Although shown to be useful these 

approaches were designed for specific contexts (Freimut et al., 2005) causing 

the need for adaptations (Wagner, 2008); such adaptations have been 

identified as one of the major challenges in applying a defect classification 

scheme (Freimut et al., 2005; Wagner, 2008). Specifically, defect 

classification approaches often assume full knowledge of the defects, i.e. 

have a source-code focus and assume ownership of the software components 

(Freimut et al., 2005). Consequently, such defect classifications schemes need 

adaptations to be applicable to organizations where software is developed by 

suppliers—a situation common in the automotive software domain: even 

though software components (e.g. ABS or collision warning system) are often 

developed by suppliers, the quality of the complete product—the car—is the 

responsibility of the OEM. The need to systematically analyse and follow-up 

on the quality of the supplied software components is, nevertheless, 

important. 

Furthermore, defect documentation—however important—may be seen as 

a mainly administrative task that does not directly contribute to the end-

product. Thus, the defect documentation approach taken should require a 

minimum of analysis effort in addition to what is needed to identify and 

remove the defect, while still providing the additional benefit of 
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characterizing the quality of the product and development process (Freimut, 

2001). 

In this paper we address the challenges of efficient defect classification by 

pursuing the following research question: “How to efficiently support defect 

identification and resolution time by classifying in-process defects?” The 

research question is addressed by investigating how a defect classification 

scheme can be adapted to the automotive software development context by 

studying the development of active safety features. The aims of our adapted 

classification scheme—the Light-weight Defect Classification scheme 

(LiDeC)—include:  

(i) as existing classification schemes have a strong source-code focus, 

how can such a scheme be adapted to a development setting with 

limited insight into the source-code;  

(ii) as adding additional workload on development teams may reduce 

the likelihood of adoption, how can a classification scheme be 

adapted to minimize its process foot-print in terms of required 

learning and classification time. 

LiDeC was developed as part of a case-study at Volvo Car Corporation 

(VCC7) and initially evaluated with a sample of problem reports from a 

project finished a year prior to the study. As a result we present a defect 

classification scheme, compliant with the IEEE Std. 1044 (IEEE, 1996, 

1993), specifically adapted for the development of automotive safety-critical 

software. Furthermore, an initial evaluation showed that developers quickly 

learnt to apply the classification scheme, and that the required time to classify 

a defect was substantially lower than with other approaches to defect 

documentation.  

The rest of the chapter is structured as follows: section 6.2 provides the 

study with background, section 6.3 describes the method used, section 6.4 

summarizes the results and the final sections conclude the chapter and outline 

future work. 

6.2 BACKGROUND 

This section provides the research presented in this paper with background: 

first a summary of the terminology used is outlined, then related work is 

presented, and finally aspects of developing software at the case company is 

presented. 

                                                      
7 http://www.volvocars.com 
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6.2.1 Terminology 

In this report the terminology defined in the IEEE Std. 1044-2009 (IEEE, 

2009) is used. Specifically the following terms are used in the report: 

 Defect– An imperfection or deficiency in a work product where that 

work product does not meet its requirements or specifications and 

needs to be either repaired or replaced (IEEE, 2009). 

 Failure– (A) Termination of the ability of a product to perform a 

required function or its inability to perform within previously specified 

limits. (B) An event in which a system or system component does not 

perform a required function within specified limits. 

 Fault–  A manifestation of an error in software. 

Figure 11 shows how these terms relate and what is within the scope of the 

IEEE Std. 1044. 
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As shown in Figure 11, problems are sufficient but not necessary conditions 

for the recognition that the software is failing to behave in a desirable 

manner. The failure may be caused by faults in the software, which in turn 

can be corrected by a software change request. These relationships are 

described in Table 3. 

 

Figure 11. IEEE Std. 1044 concepts and their relationships (figure from IEEE 
Std. 1044-2009 (IEEE 2009)) 
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6.2.2 Related Work 

This report is an extension of our previous work (Mellegård et al., 2012a). 

Whereas our previous work focused on the evaluation of LiDeC this report 

instead focus on the description of LiDeC; more specifically: 

(i) The Background section has been extended with a terminology 

subsection 

(ii) The Background section has been extended with more related work  

(iii) The results has been extended with a new subsection with a 

comparison between LiDeC and IEEE Std. 1044 

(iv) The description of the attributes in the results section has been 

extended with more details 

(v) A full description of LiDeC has been added as Appendix A 

(vi) A classification guide has been added as Appendix B 

(vii) Two example classifications using LiDeC has been added as 

Appendix C 

(viii) An IEEE Std. 1044 compliance matrix has been added as Appendix 

D 

Table 3. Relationships between IEEE Std. 1044 Concepts (from IEEE Std. 1044-
2009 (IEEE 2009)) 

Class/Entity 

pair 
Relationships 

Problem - Failure A problem may be caused by one or more failures. 

A failure may cause one or more problems. 

Failure - Fault A failure may be caused by (and thus indicate the presence of) a fault. 

A fault may cause one or more failures. 

Fault – Defect A fault is a subtype of the supertype defect. 

Every fault is a defect, but not every defect is a fault. 

A defect is a fault if it is encountered during software execution (thus 

causing a failure). 

A defect is not a fault if it is detected by inspection or static analysis 

and removed prior to executing the software. 

Defect – Change 

Request 

A defect may be removed via completion of a corrective change 

request. 

A corrective change request is intended to remove a defect. 

(A change request may also be initiated to perform adaptive or 

perfective maintenance) 

 



 A Light-weight Defect Classification Scheme for Embedded Automotive Software 59 

 

(ix) A mapping between attributes of IEEE Std. 1044 and LiDeC has 

been added as Appendix E 

Defect reports are a valuable source of information about issues that arise in 

development: defect reports can reveal information about systematic 

problems with the development process such as the activities most prone to 

generating defects, or the efficiency of testing activities with respect to the 

number and type of defects they detect. Defect reports, however, are often 

used as a means to track and resolve the identified defect. But in order to 

systematically collect and analyse defect data there is a need to formalize the 

information collected about each defect. There are several proposed 

approaches which Wagner (Wagner, 2008) identifies as belonging to three 

main categories:  

 Defect taxonomies which are categorizations of faults mainly related to 

the implementation. Wagner mentions examples categories such as 

wrong variable declarations and wrong variable scope; 

 Root cause analysis (RCA) which is a more detailed approach. RCA 

not only analyses the fault itself, but also why the fault was introduced. 

The goal of RCA is to identify the root causes and eliminating them, 

thereby preventing similar faults from being introduced in future 

projects; 

 Defect classification is an approach in which data is collected about 

the defect in a similar manner to both defect taxonomies and root 

cause analysis, but does so in a more coarse-grained manner. 

Defect taxonomies are focused on the implementation and do not provide 

support for analysing what measures to take to prevent or mitigate any 

systematic issues it may reveal. RCA, in contrast, is focused on identifying 

why the identified defect was introduced into the system. RCA, however, is 

considered to be effort intensive and its cost/benefit is unclear (Wagner, 

2008). Defect classification, on the other hand, aims at reducing the effort 

required to analyse a defect while still retaining the power of analysis—such 

as what types of defects are most common, which artefacts are most prone to 

defects. The approach taken is to gather a wider but more coarse-grained 

range of data. In this paper we have chosen to adapt a defect classification 

scheme given our goal of small process foot-print. Defect classification 

schemes are discussed in more detail in the following subsection.  

In their paper Li et al. (Li et al., 2012) present experience from adapting 

existing issue tracking systems at two companies. The adaptations resembles 

our work as the pre-existing issue tracking system were mainly intended for 

in-process progress tracking of defect resolutions and resource management. 
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Their justification for adapting the issue tracking systems included 

inadequately designed attributes and attribute values which made the 

collected issue data poorly equipped for use as software quality assessment 

and software process improvement—data was entered inconsistently or 

omitted, resulting in the assembled data “behaving largely as an information 

graveyard” (Li et al., 2012). By redesigning the issue tracking systems—

incorporating parts of ODC (Chillarege et al., 1992) and the IEEE Std. 

1044—Li et al. were able collect higher quality data and use that data to point 

out improvement targets in both companies studied. Furthermore, follow-up 

analyses conducted after the process changes were able to detect 

improvement in terms of lower number of defects.  

The work presented in this paper complements the scheme presented by Li 

et al. in that our classification scheme targets a development context in which 

code to a large extent is written by sub-contractors and where the sub-

contractors own the source-code; thus, limiting the possibilities to analyse the 

exact nature of the defects. Furthermore contrary to the work presented by Li 

et al., where the classification scheme had to comply with legacy issue 

tracking systems—attributes were added to or modified in already existing 

defect databases—we had the opportunity to work alongside the team setting 

up a new issue management system. As a result, LiDeC is compliant with the 

IEEE Std. 1044. In addition, Li et al. identifies a number of lessons learnt that 

are of great interest in our work, as we currently are in the process of 

incorporating LiDeC in a new issue tracking system at our industrial partner. 

Dubey (Dubey, 2012) reports on a case-study applying ODC scheme to a 

project developing embedded systems in which a substantial amount of 

software was developed by suppliers. They concluded that the classification 

scheme’s focus on source-code required it to be adapted. Specifically, the 

attribute defect type needed adaptation. In their case there were many defects 

classified as “Functional” defects leading them to propose additional 

attribute values related to the design phase (as ODC originally only contained 

one value: “Functional defect”). 

In (Leszak et al., 2002, 2000) Leszak et al. report that conducting RCA on 

up to a year old defect reports in a distributed, component-based development 

process required on average 19 minutes per defect. Leszak et al. also 

concluded that analyses conducted in-process when detailed knowledge about 

the defects can easily be recalled would further reduce the required effort.  

Cavalcanti et al. (Cavalcanti et al., 2011) investigated the problem of 

identifying duplicate defect reports in a number of private and open source 

projects. Specifically, they examined the amount of time required to analyse a 

defect to determine whether it was a duplicate or not. The time required 
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varied in the projects they examined from 5-10 minutes per defect to 20-30 

minutes, with an average of 12.5 minutes. Furthermore, based on the size of 

staff and amount of defects reported, Cavalcanti et al. calculated that on 

average 48 man-hours per day was spent in search of duplicate defects in the 

examined projects. 

Software reliability growth models (SRGM) (Kan, 1995) estimate software 

reliability by statistically correlating the cumulative number of defects 

discovered to a known function (Wood, 1996). SRGMs can be used to predict 

the number of residual defects in a product. SRGMs, however, do not provide 

any data about the type of defects, or in which part of the product they are 

likely to occur. Consequently, SRGM provides limited guidance as to which 

testing activities should be focused on to detect the yet unknown defects. 

Defect classifications, on the other hand, provide more detailed 

information—e.g. about detection and injection phase, and type of defect—

and can be more precise than traditional SRGM (Ploski et al., 2007). 

There have been many methods on fault prediction proposed. Liparas et al. 

(Liparas et al., 2011) examine a statistical method for analysing what factors 

in a multivariate data set that are best suited for predicting the number of 

defects contained in a software module. In their paper, Liparas et al. use a set 

of complexity metrics—such as McCabe’s cyclomatic complexity, lines of 

code and branch count—to predict the fault-proneness of the modules. The 

method described predicted whether a module is within a normal cluster or 

not—where a module not in the normal cluster would contain more than the 

standard amount of defects. Such information is valuable when assigning 

resources; more resources can be assigned to the modules that are most likely 

to contain defects. While the number of defects may be used to indicate the 

modules in most need to testing, it does not, however, provide the testers with 

any indications of what to test for, nor which modules contain the most sever 

defects. In fact, in the comprehensive systematic literature review where Hall 

et al. (Hall et al., 2011) examined 36 studies (from a selection of 2,073) on 

fault prediction models published between January 2000 and December 2010, 

they found that few studies differentiate between the faults predicted; for 

instance, only one (Shatnawi and Li, 2008) of the 36 studies used fault 

severity in their prediction model. In order to differentiate between defects, 

more nuanced data about the defects are needed; our work aims at 

contributing to a model for assembling such defect data, thus enabling 

prediction of additional defect attributes. 
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Defect classification schemes 

Defect classification schemes define a set of attributes, where each attribute 

captures a specific aspect of the defect—e.g. how the defect was detected, its 

severity and type. Moreover, for each attribute the schemes typically provide 

a set of values that can be chosen from; this contributes to the efficiency as 

well as to the reliability of the classification. The most commonly referred 

(Freimut, 2001) classification schemes in literature are ODC from IBM 

(Chillarege et al., 1992), the HP approach (Grady, 1992) named Defect 

Origins, Types and Modes (Wagner, 2008) (here referred to as the HP 

scheme) and the IEEE Std. 1044 (IEEE, 2009).  

Regardless of which classification scheme is applied, the main challenge is 

to select the attributes and attribute values which are relevant to the specific 

development context (Freimut et al., 2005). In (Freimut, 2001), Freimut 

provides a framework for developing and using classification schemes; this 

framework has been followed in the work presented in this paper. 

Furthermore, in (Freimut, 2001) Freimut provides a comparison between the 

ODC, HP and IEEE Std. 1044 classification schemes and a mapping between 

the attributes of the different classification schemes.  

The HP Scheme 

The approach taken by the HP scheme is to define only three attributes: 

Origin, Type and Mode. The Type attribute is dependent on the value chosen 

for the Origin attribute. This first requires analysis of when the defect was 

injected into the system before its type can be established. Furthermore, the 

HP scheme does not explicitly capture data about how a defect was detected 

(its trigger (Chillarege and Ram Prasad, 2002; Chillarege et al., 1992)); there 

is thus no attribute available to identify which testing activities are effective 

in detecting particular defect types. Moreover, applying the HP scheme 

makes it difficult to identify effective testing techniques and investigate how 

late and severe defects can be identified earlier as the scheme does not 

include attributes such as: 

 Severity of the defect from an end-user perspective 

 The method by which the defect was detected 

 Timing of defect detection 

 The cause of the defect  

Such issues considered important for VCC, thus a wider range of attributes 

than provided by the HP scheme needed to be collected.  



 A Light-weight Defect Classification Scheme for Embedded Automotive Software 63 

 

IEEE Std. 1044 

The IEEE Std. 1044 and ODC, in contrast, define a set of failure and defect 

life-cycle phases each containing a number of attributes (independent of each 

other) that are to be recorded; the life-cycle defined by IEEE Std. 1044 is 

shown in Table 4. The phases represent the states the defect can be in: 

initially a failure is recognized, then investigated, which might lead to 

discovering the cause of the failure (fault), an action to resolve the defect is 

then planned and the possible impacts of the chosen action/resolution are 

analysed, and finally what was actually done to close the defect. The 

attributes that are to be recorded in each of the phases represent information 

about the defect that is relevant for that particular phase; the information 

would be required to understand/resolve defects regardless of whether a 

defect classification is applied or not. This matched our requirements for 

LiDeC in that we—in order to minimize the process foot-print—intended to 

capture what was currently tacit knowledge in the defect analysis process.  
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Table 4. IEEE Std. 1044 attributes (adapted from (Freimut 2001)) 

Life-cycle 

Phase 

Attribute Name Attribute Meaning 

Recognition Project activity What were you doing when the defect occurred? 

Project Phase In which life-cycle phase is the product? 

Suspected Cause What do you think might be the cause? 

Repeatability Could you make the defect appear more than once? 

Symptom How did the defect manifest itself? 

Product Status What is the usability of the product with no 

changes? 

Investigation Actual Cause What caused the anomaly to occur? 

Source Where (part of the system and its documentation) 

was the origin of the defect? 

Type What type of defect/enhancement at the code level? 

Action Resolution What to do to prevent the defect from happening 

again? 

Corrective action What action to take to resolve the defect? 

Impact 

Identification 

Severity How bad was the defect in more objective 

engineering terms? 

Priority Rank the importance of resolving the defect? 

Customer value How important is a fix to the customer? 

Mission safety How bad was the defect wrt. project objectives or 

human well-being? 

Project schedule Relative effect on the project schedule to fix? 

Project cost Relative effect on the project budget to fix? 

Project risk Risk associated with implementing a fix? 

Project 

Quality/Reliability 

Impact to the product quality or reliability to make a 

fix? 

Societal Impact of society of implementing the fix 

Disposition Disposition What actually happened to close the anomaly? 
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6.2.3 Study context – Automotive Software Development 

The case-study presented in this paper was conducted at the department 

developing active safety features—such as collision warning, lane departure 

warning and driver alert control—at Volvo Car Corporation (VCC). In the 

following subsection we describe the development of software for such 

features at VCC. 

Development process 

The development process of active safety features at VCC (Mellegård and 

Staron, 2010a; Mellegård, 2010) can at a high level of abstraction be 

visualized by the V-model (Pfleeger, 2001). As shown by the left leg in 

Figure 12: product requirements are specified on vehicle-level and then 

refined through the development process into (sub-)system requirements and 

design. The system specifications are further refined into requirements and 

design of the individual hardware and software components that will realize 

them.  

The bottom of Figure 12 shows the implementation of the components 

which is often done by suppliers; VCC commissions a component from a 

supplier based on requirement and design specifications. As VCC may have 

limited insight or control over the implementation phase—the in-house 

development activities are to an extent limited to design, specification and 

integration testing—applying defect classification schemes that have code 

focus consequently presents a challenge. 

Furthermore, the test phases are shown by the right leg in Figure 12: 

components delivered by the suppliers are tested on unit level, subsystems 

are integrated and tested and finally the whole car is tested; it is in this phase 

that defects are reported.  
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Even though the overarching development process can be visualized by the 

V-model, in practice the process is better described as a federated 

development process (Bennet and Wennberg, 2005). As shown in Figure 13 

development is iterative in three stages. In the first stage, corresponding to 

“System Design” in Figure 12, a system—e.g. collision detection or driver 

alert control—is designed and specified. The main focus of this stage is to 

develop algorithms that fulfil the high-level requirements. In addition to 

system requirements and design, the results from this stage may include 

executable models (e.g. Simulink models) that can be  validated in simulated 

environments, e.g. using a test rig, or cars equipped with simulated hardware 

(e.g. dSPACE8). 

                                                      
8 http://www.dspace.com 

 

Figure 12. The V-model 
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The second stage of development is shown in Figure 13  as “Software, 

Component” and corresponds to “Software / Component Design” in Figure 

12. The focus of this stage is to decompose a system into individual software 

and hardware components that realize the system. The result of this stage is a 

set of component specifications that are used as base when commissioning 

components from suppliers. 

In the final loop in Figure 13—corresponding to the right leg of Figure 

12—software testing is done. As shown in Figure 13, the component design 

and test stages are intertwined. In practice, this means that the suppliers are 

involved from an early stage delivering a number of revisions of the 

components; each revision is tested by VCC, defects are discovered and 

corrected, and a new iteration is started. More specifically, the testing 

procedure done by VCC in each iteration of the third loop can be separated in 

three categories (illustrated in Figure 4 on page 12): 

 Component/Unit tests. The algorithms—often in the form of 

executable models (Mellegård and Staron, 2010c)—are tested on unit 

level before being provided to the supplier. The supplier provides VCC 

with an implementation in the form of a component (e.g. optimized 

binary software component, or a hardware component with the 

software installed). VCC verifies that the component complies with the 

requirements; 

 System tests. System tests are done on simulations of the system on a 

test rig using recorded data. The focus of this phase is on initial 

integration testing; 

 

Figure 13.Federated development process  
(adapted from (Bennet and Wennberg 2005) ) 
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 Functional tests. Finally, function tests are done on builds of the 

system in a real car. Initial functional tests are run on test tracks, while 

in later project phases expeditions on roads are done. The focus of this 

test phase is on the whole vehicle, i.e. that high-level requirements are 

met (e.g. that features behave as intended from an end-user 

perspective)  

In addition to the test activities done by VCC, suppliers conduct units test 

which may not be reported to the OEM.  

In this case-study the focus was on defects discovered during the last two 

stages in Figure 13 (indicated in the figure by “Defect Discovery”). The 

reasons for this delimitation include the challenges associated with supplier 

implemented software—it is in this stage that the suppliers get involved in 

the development. Furthermore, initial analysis of the defect inflow—shown 

in Figure 14 as the defect backlog9 (number of open defects over time)—

revealed that there was a considerable spike in defects during the component 

development and integration testing phase (the start of which is shown in the 

figure as “Software Phase”). The increasing inflow of defects is expected as 

testing of supplier developed hardware and software—specifically integration 

testing—is conducted during this phase. 

                                                      
9 The total number of defects has been scaled to 100 and the time scale has been removed due 

to confidentiality reasons. In addition, the time scale has been cropped (indicated by the 

ellipsis in the star and end of the curve) and does therefore not include the last phase leading 

up to start of production. 
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However, the increase in open defects (i.e. unresolved defects) during the 

software phase, and especially the peak close to software release (a major in-

development milestone), raised the interest of our case company. Therefore, 

in the evaluation of LiDeC we analysed a sample of defects from the last 

peak shown in Figure 14. 

6.3 METHOD 

The research presented in this paper followed the case-study method 

described by Yin (Yin, 2002). The case-study method was considered 

appropriate as the applicability of the adapted classification scheme was of 

importance; adapting a classification scheme in the same context as it will be 

deployed would increase the chances of it being useful in that context. 

Specifically, we have used a single-case design by applying the classification 

scheme to defect reports from one project at our case company. The rationale 

of this was that the defect inflow profile from the project (shown in Figure 

14) was considered representative by the developers—similar inflow profiles 

had been observed in other projects. Using the defect reports from the 

project, we developed an adapted defect classification scheme; in particular, 

we addressed the following main research question: 

 

Figure 14. Defect backlog from the studied project 
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RQ How to efficiently support defect identification and resolution 

time by classifying in-process defects? 

As the development context under study have specific properties (described 

in section 6.2.3), the main research question was broken down into: 

L1 In an automotive safety feature development context where 

source-code is often not available, how can a standard defect 

classification scheme be suitably adapted? 

L2 As defect classification may often be considered an 

administrative task, how can the adaptation of a standard 

defect classification scheme be done to minimize required 

learning and classification time?  

As a practical guideline to adapting a defect classification scheme we 

followed (Freimut, 2001). The study was conducted in the following three 

stages: 

Stage 1: Establish terminology. The aim of the first stage of the study was to 

establish a set of classification attributes using terminology aligned with the 

case company. 

As a base for developing the classification scheme we used the IEEE Std. 

1044 (IEEE, 2009) and its guide (IEEE, 1996). In this stage we began by 

choosing attributes and the set of values available for each attribute from the 

IEEE Std. 1044 that we—based on our previous research (Mellegård and 

Staron, 2010a, 2010b, 2010c)—found relevant for the specific development 

context at the company; for instance attributes related to customer value was 

not considered relevant for the development phase under study. 

During two one hour-long interviews, we explained the initial 

classification attributes to the interviewee (project leader), and asked the 

interviewee to relate these attributes to the case company. We took notes 

during these interviews and refined the classification scheme according to 

these notes.  

Stage 2: Tune feasibility. The second stage of the case-study aimed at 

streamlining the set of values each attribute could be assigned. 

The stage consisted of a two hour long interview with a developer in which 

a number of defects were classified. The set of values available for each 

attribute was evaluated during the classification session, where for each 

attribute: 
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(i) If an attribute value was never used and the interviewee could not 

think of an example when the value would be used, the value was 

considered for removal; 

(ii) If the interviewee did not consider any of the available values 

described the defect sufficiently, a new value was considered for 

addition. 

As a result the final classification scheme was defined and depicted in the 

form of flowcharts with short questions providing a guide to arrive at the 

correct attribute value. Each attribute value was provided with a short 

illustrative example. 

Stage 3: Evaluate scheme. The final stage of the study aimed at evaluating 

the efficiency and effectiveness of the classification scheme.  

In this stage defect reports were classified according to the scheme. Four 

subjects involved in the project participated in six separate two hour long 

classification sessions (two subjects participated in two consecutive 

classification sessions). Three of the subjects were not involved in the 

previous two stages of the project.  

The project used as case had finished one year prior to the study and 

contained over 100 problem reports10. All subjects involved in the study had 

been part of the project with the following roles: two developers, one tester 

and one project leader. 

During the third stage of the study we were able to classify 22 defects. Of 

the 22 defects 12 were randomly selected from the last peak (as shown in 

Figure 14) and the remaining 10 from the rest of the project. This selection 

was done because of an expressed interest by members of the project to gain 

more insights in the defect peak. The results of the evaluation are reported in 

(Mellegård et al., 2012a). 

6.3.1 Validity Evaluation 

We have identified and grouped the threats to validity in our study according 

to recommendations of Yin (Yin, 2002): 

 Construct validity–  By basing our defect classification scheme on the 

IEEE Std. 1044 and by keeping careful notes on how to map concepts 

specific to our case to the standard, we consider that the threat to 

construct validity to have been minimized. Furthermore, as both the 

adaptation of the classification schemes and the evaluation was done 

using real defect data from an industrial project with the assistance of 

                                                      
10 Exact number cannot be disclosed due to confidentiality reasons 
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the developers involved in the project, we consider the threat to 

construct validity to have been further reduced. 

 Internal validity– As any interview study we anticipated some 

personal bias in the answers from the interviewees. In order to 

minimize this threat we triangulated the results by including multiple 

subjects in our interviews. In addition, a set of defects were classified 

by multiple subjects thereby allowing evaluation of the repeatability of 

the classification scheme; section 6.4.2 reports the results from this 

evaluation. 

 External validity– There is a risk that the results are too specific to 

Volvo Car Corporation. However, as we documented and justified the 

modifications done to the IEEE Std. 1044 as well as described the 

particular development context of our case, we believe that our results 

can be generalized to similar contexts outside our specific case. 

Moreover, we consider the mapping between attributes of the 

classification schemes provided by Freimut (Freimut, 2001) to 

contribute to the generalizability of our classification scheme; e.g. the 

mapping between classification schemes enables analysis methods 

utilized with other schemes to be applicable to LiDeC as well, and 

therefore we believe that results are also comparable. 

 Reliability– As part of the case study design, we have created a case 

study protocol which ensured that we conducted the study and 

collected the data in a consistent manner. By using this protocol, we 

believe that the study can be reliably reproduced. 

6.4 RESULTS 

The main challenge of adapting the IEEE Std. 1044 included tailoring the 

attributes relating to the fault and its resolution; specifically attributes in the 

phases Investigation, Action and, Impact Identification as the attributes in 

these phases have a strong focus on source-code aspects.  

The results are reported below in two parts; first, the classification scheme 

is presented, and second, a comparison with the IEEE Std. 1044 is presented; 

for results from the initial industry evaluation of LiDeC, see (Mellegård et 

al., 2012a). 
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6.4.1 LiDeC 

LiDeC captures – as shown by the scheme overview in Figure 15 – attributes 

from four phases of the defect life-cycle (IEEE, 1996, chap. 8.1) (described 

in more detail below as well as in Appendix A and Appendix B): the first 

phase captures information about the recognition of the defect, i.e.  observing 

a deviation (failure) from intended or specified requirement (ISO, 2005); the 

second phase captures information about the underlying cause of the defect 

(referred to as Investigation in (IEEE, 1996)); in phase three information 

about the defect resolution is captured (referred to as Action in (IEEE, 

1996)); and the last phase captures information about what was actually done 

about the defect (referred to as Disposition in (IEEE, 1996). Table 5 shows a 

comparison between the life-cycle phases of IEEE Std. 1044, ODC and 

LiDeC. 

 

 

 

Figure 15. Overview of the LiDeC Scheme 
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As can be seen by the number of attributes in each phase (described in Table 

6 to Table 9 in the subsections below), the main focus of LiDeC is on 

recognition and analysis of a defect. The justification is that the later a defect 

is discovered the more costly its resolution tend to be (Boehm, 1981). In 

addition, as implementation is done mainly by suppliers, the most promising 

areas of process improvement lies in more efficient verification and 

validation. Consequently, the main focus of the classification scheme is on 

how defects are discovered, how the product is affected by them, and what 

types of defects they are. Analysing this information will contribute to 

understanding which phases of the development process contain the most 

improvement potential.  

The phases of the classification scheme are aligned with the defect 

management process at the case company and directly correspond to the 

states a defect can be assigned: recognized, analysed, resolution proposed and 

post-mortem. The following sections describe the attributes of each phase. 

Appendix A provides an exhaustive list of attributes and their description and 

Appendix B provides a classification guide that was used in the case study. 

The classification guide in Appendix B contains a more detailed description 

of each attribute value along with typical examples expressed in the 

terminology of the company; the purpose is to maintaining consistency of the 

classification over time and between reporters. In addition, Appendix C 

contains classification examples. 

Table 5 Mapping of life-cycle phases 

Defect 

life-cycle 

phase 

IEEE 1044 ODC LiDeC 

1 Recognition 

Open 

Recognition 

2 Investigation Analysis 

3 Action  

Close 
Resolution 

4 
Impact 

Identification 

5 Disposition Post-mortem 
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Recognition 

The attributes in the first phase of the defect life-cycle (shown in Table 6) 

relate to data about the discovery of a failure and its effects on the system in 

question, i.e. the manifestation of the defect. The attributes capture project 

related information: 

 Timestamp of detection 

 Resolution urgency 

 End-user perceived severity of the defect, and  

 How the defect affects the product, including whether ASIL 

requirements are affected (ISO/IEC 26262 (ISO/DIS, 2011)). 

This information will be used in analysis, for example, to assess how timely 

the most serious defects are detected, or which activities are more effective in 

detecting defects. 
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Table 6 Summary of attributes in the Recognition phase 

Attribute Question Values 

Timing / 

Detection 

When was the defect detected? Date and project phase 

Timing / 

Preferred 

When should the defect have 

been detected (subjective)? 

Project phase if different from 

Timing / Detection 

Affects S/W Does the defect affect software? Yes / No 

Detection 

Activity 

What was done to detect the 

defect? 

Inspection/Requirements, 

Inspection/Design, 

Unit test/In-house, 

Unit test/Supplier, 

System test/bench, 

Functional test/Test track, 

Functional test/Expedition 

Production/Manufacturing 

Production/Customer report 

Urgency How urgently does the defect 

need to be addressed? 

Immediately, 

Next development release, 

Before start of production, 

Deferrable 

Severity How severe is the defect with 

respect to product quality? 

None, 

Nuisance, 

Limited Functionality, 

Show-stopper 

Effect How does the defect primarily 

affect the product? 

Capability/Undesired activation, 

Capability/Inactive on true positive, 

Capability/Other, 

Function Safety, 

Maintainability, 

Usability,  

Testability, 

Configurability 

Functional 

Safety Impact 

Does the defect have impact on 

a software component with 

ASIL-classified requirements? 

Yes, 

No 
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Analysis 

The attributes in the second phase of the defect life-cycle (shown in Table 7) 

aim at capturing data about the cause of the failure; e.g. in what work product 

and product component contained the defect, what type of defect it was, and 

which process step caused the problem. 

 

Resolution 

The attributes in the third phase of the defect life-cycle (shown in Table 8) 

aim at capturing data about the proposed resolution. As implementation 

specific details of the resolution may not be available, the attributes in this 

phase focus on capturing the cost of resolving the defect in terms of 

development effort. More specifically, to capture what impact a resolution 

would have on the product and on the process; the impact on the product is 

captured in terms of how much of the product would be affected by the 

Table 7 Summary of attributes in the Analysis phase 

Attribute Question Values 

Artefact Which software work 

product contained the 

defect? 

Req./Internal, 

Req./Cross-function, 

Req./External, 

Design model, 

Impl./Executable model, 

Impl./Code, 

Impl./Configuration params, 

Tool 

Injection activity When was the defect 

injected? 

Specification, 

Design, 

Impl./In-house modelling, 

Impl./Suppl. mdl. transform., 

Impl./Supplier coding, 

Configuration 

Component / 

Asset 

Which design component 

contained the defect? 

Internal (product) module name 

also identifying its version 

Type What type of defect was it? Description, 

Data, 

Interface / Timing, 

Logic / Algorithm, 

Tooling, 

Tuning 
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modification, and impact on the process in terms of amount of regression 

testing needed.  

 

Furthermore, the attributes of the Resolution phase capture data about a 

proper resolution of the defect. In practice, a defect could be resolved by 

means of workarounds (this data is captured in the final phase of LiDeC). 

Post-mortem 

In the last phase of the defect life-cycle the single attribute (shown in Table 

9) records what was finally done to close the defect; to what extent the defect 

was resolved. 

 

 

Table 8 Summary of attributes in the Resolution phase 

Attribute Question Values 

Removal time When was the defect 

report closed? 

Date and project phase 

Product impact What would the impact of 

a proper resolution be on 

the product? 

None, 

Local (unit) modification, 

Multiple components, 

Funct. changes (re-design) 

Required 

Verification 

Level 

What level of regression 

testing would a proper 

resolution require? 

None, 

Inspection, 

Unit test, 

System test, 

Expedition 

 

Table 9 Summary of attributes in the Post-mortem phase 

Attribute Question Values 

Resolution state What was the final 

state of the defect 

when the problem 

report was closed? 

Corrected (proper resolution applied), 

Workaround/Fix, 

Workaround/Product de-scoped, 

No Action/Deferred, 

No Action/Referred, 

No Action/Not found, 

No Action/No action 
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6.4.2 Comparison with IEEE Std. 1044 

In the process of adapting IEEE Std. 1044, compliance with the standard was 

considered an important requirement (Appendix D shows the compliance 

matrix as proposed in (IEEE, 1996)). Retaining compliance with the standard 

contributes to the generalizability of the results—e.g. data collected with 

LiDeC and analyses conducted on that data should be comparable with IEEE 

Std. 1044 compliant data from other companies.  

The main differences between the IEEE Std. 1044 and LiDeC are 

described below. The full mapping of attributes between the IEEE Std. 1044 

and LiDeC is presented in Appendix E. 

General Modifications 

The main adaptation made to LiDeC consists of raising the abstraction level 

of the attributes, i.e. choosing attribute values that are less fine-grained than 

their IEEE Std. 1044 counterpart. Furthermore, the set of values available for 

each attribute expressed in the terminology of the company and provided 

with examples; for example the attribute “Type” has been shown to be 

problematic (e.g. “to me everything is a logic problem” (Freimut et al., 

2005)); in LiDeC typical examples for each available value (see for instance 

Figure 42 in Appendix B) are provided.  

Furthermore, attribute values that in IEEE Std. 1044 consisted of “Low, 

Medium and High” (e.g. Project Risk and Priority) has been replaced by 

more descriptive values (see, for instance, the LiDeC attributes Urgency and 

Severity in Appendix A and figures Figure 37 and Figure 38 Appendix B). 

This contributes further to making values less ambiguous by limiting the 

amount of interpretation needed by the reporter. 

Moreover, supporting data items from the standard, e.g. cost and time 

estimations, defect reporter, developer assigned to the defect) has been 

omitted from LiDeC unless they have a specific purpose related to the 

analysis of the defect data (e.g. the LiDeC attribute Component/Asset is 

originally a supporting data item in the IEEE Std. 1044 Action phase). Such 

supporting data items, however, are assumed to be part of the company’s 

normal issue tracking process as needed. 

Added Attributes 

The attributes described in the following subsections were added in LiDeC. 

Timing/Preferred 

The attribute was added to the Recognition phase in order to capture—at the 

time of detection—the reporter’s subjective opinion of whether there was a 
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previous test phase in which this type of failure should have been uncovered. 

The intention of the attribute is to be able to gauge the fault-slip-through rates 

of the test activities. 

Affects Software 

The attribute was added to the Recognition phase in order to capture whether 

the defect has an impact on software. As the products developed are software 

intensive mechatronic systems, there may be defects that are not related to 

software; the purpose of the attribute is thus to be able to filter defects based 

on whether they affect the software. The definition of whether a defect affects 

software, however, is broad; see the example given in the classification guide 

in Figure 35 in Appendix B. 

Component/Asset 

The attribute was added to the Analysis phase in order to be able to evaluate 

the distribution of faults among components in the system. The attribute is 

originally part of the supporting data items of the IEEE Std. 1044 Action 

phase – thus whereas the IEEE Std. 1044 records the component(s) in need of 

modification, LiDeC records the component(s) containing the fault. This 

redefinition was made as the main focus of LiDeC is on capturing data about 

the defects rather than their solution; as the majority of implementation is 

done by suppliers, it is of more interest to the company to identify which 

components contain the defects rather than which components need 

modification (e.g. a workaround may require modifications to other 

components than the one containing the defect). 

Removal Time 

The attribute Removal Time was to the Resolution phase added in order to 

allow evaluation of defect longevity. The attribute is originally part of the 

supporting data items in the IEEE Std. 1044 Action phase. 

Omitted Attributes 

In this section the attributes available in the IEEE Std. 1044 that were omitted 

in LiDeC are listed. All omitted attributes are listed as optional in IEEE Std. 

1044.  

Suspected cause 

While the Suspected cause attribute may provide valuable input during the 

process of analysis a failure, it was not considered important from LiDeC’s 

point of view. LiDeC aims at capturing attributes of the defect itself, rather 

than speculations done as part of the defect analysis process.  
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Repeatability 

The Repeatability attribute was omitted (as a separate attribute) in the LiDeC 

for the same reasons as the Suspected cause attribute (above). In LiDeC, the 

attribute is instead partly represented as an attribute value in the Disposition 

attribute of the Post-mortem phase; non-repeatable defects would be reported 

as No action / Not found. 

Corrective action 

The IEEE Std. 1044 attribute Corrective action records detailed data about 

what action was taken in order to resolve the issue. The attribute values 

proposed by the standard—such as revising the developing process or 

implementing a training program—would not generally be applicable to the 

context of VCC based on a single observed defect; rather such actions would 

instead be taken based on analysing defect data from a number of projects.  

Furthermore, the exact action taken may not easily be identified as a 

substantial amount of defects relates to code, and code is generally produced 

by suppliers. Instead, LiDeC captures data about the estimated repercussions 

of the corrective action(s) by the attributes Resolution Impact and Required 

Verification Level.  

Customer value, Mission/safety and Project risk 

As the roles responsible for reporting defects may not have the necessary 

insight in, for instance, product planning the (explicit) attributes Customer 

value and Mission/Safety were omitted. Instead the data are in LiDeC implicit 

in the attribute Severity—i.e. how severely the defect affects the product from 

a customer perspective.  

The attribute Project risk was omitted in LiDeC as a defect reporter may 

not have necessary knowledge of project planning (defects may be reported 

by suppliers, as well as various in-house testers) to be able to assess project 

risk. The risk can, however, be assessed by analysing the LiDeC attributes 

Resolution impact and Required verification level together with Severity and 

Time of detection; late sever defects that have a large impact on the product 

and/or require the more costly verification types would constitute a higher 

risk. 

Project quality/reliability 

The intention of the IEEE Std. 1044 attribute Project quality/reliability is to 

appraise the impact on the project quality if a defect is addressed. The 

attribute was omitted in LiDeC as the data was not considered relevant to 

study context—the subjects in the case-study had difficulty relating the 

attribute to the defects analysed, indicating that the roles responsible for 
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defect reporting may not have the necessary insight in project planning to be 

able to reliably assess the attribute.  

The LiDeC field Required Verification Level, however, captures data with 

similar intentions: when addressing the defect how much additional re-

verification effort would be required (also see Project schedule below). 

Redefined Attributes 

A number of IEEE Std. 1044 attributes have in LiDeC been redefined. The 

redefinitions have been done with care to retain the intention of the original 

attribute, but adapted to the context of VCC; e.g. by changing the available 

attribute values (for instance the Symptom attribute) or by using a different 

measurement unit than the IEEE attribute originally specified (for instance 

the Project cost attribute). 

The following subsections describe the attributes that have been redefined. 

Symptom 

The IEEE Std. 1044 attribute Symptom has been redefined in LiDeC in that, 

whereas the original attribute captured more detailed data about the 

behaviour of the system, the LiDeC attribute Effect captures less fine-grained 

data about what quality aspect of the product—i.e. the product’s “-ablities”—

is affected.  

Furthermore, the attribute values chosen for the Effect attribute has been 

tailored specifically for the context of active safety systems. For instance, the 

Capability attribute values (which would correspond to the values available 

in the Symptom attribute) has been subdivided into the two categories that are 

most relevant (the function triggering on a false positive and the function 

being inactive despite a true positive) as well as a catch-all third capability 

related value, see Figure 39 in Appendix B. 

Product Status and Severity 

Both the IEEE Std. 1044 attributes Product status and Severity are included 

in the LiDeC attribute Severity. Whereas the IEEE attribute Severity captures 

the severity of the fault, the LiDeC attribute Severity captures the severity of 

the failure (i.e. the manifestation of the fault)—as does the IEEE Product 

Status attribute. LiDeC’s focus on the failure aspect of a defect rather than the 

fault causing it is due to the limited in-house implementation done, and the 

specific interest in the ability to evaluate test activities. 

Furthermore, the attribute values available in the LiDeC attribute Severity 

have been defined to describe the impact of the failure in more objective 

terms than the original values proposed by the IEEE Std. 1044 (which are 

“Urgent, High, Medium, Low and None”), see Figure 38 in Appendix B. 
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Societal 

The attribute Societal is in LiDeC covered by the attribute Functional Safety 

Impact. Whereas the IEEE Std. 1044 does not define the Societal attribute 

clearly, in the attribute Functional Safety Impact is specific with respect to 

defects that may cause harm. In particular, LiDeC attribute captures whether 

the defect have impact on a software component that has ASIL-classified 

requirements (as defined by ISO/IEC 26262 (ISO/DIS, 2011)). 

Actual cause 

Whereas the IEEE Std. 1044 captures data about the artefact that caused the 

defect, LiDeC captures data about in which project phase the fault was 

injected. This redefinition was made as it was, in the case-study, found that 

the attributes Actual cause and Artefact was treated identically. By referring 

to the activity causing the defect it was clearer to the subject how to use the 

attribute (see Example 2 Appendix C). 

Type 

The IEEE Std. 1044 attribute Type has a strong focus on source code, and 

provides a detailed set of attribute values. In the LiDeC case-study the 

attribute was found difficult to assign of two main reasons: i) as the access to 

source-code may be limited, identifying detailed data about type of defect is 

often not possible; ii) the detailed set of values proposed by the IEEE Std. 

1044 were shown to make distinction between values difficult (this is also 

corroborated in (Freimut et al., 2005) by the quote “to me everything is a 

logic problem”).  

The approach taken in LiDeC is to substantially reduce the resolution in 

the available attribute values, and to provide each attribute value with a 

typical example in the terminology of the company (see Appendix A for a 

description of the LiDeC attribute and Figure 42 in Appendix B for examples 

of each attribute value). 

Resolution and Priority 

The IEEE Std. 1044 attribute Resolution captures data about both the urgency 

of the resolution and what type of resolution that will be applied (IEEE, 

1996). In LiDeC, the urgency of resolving a defect is captured by the 

Urgency attribute while data about the type of resolution is not explicitly 

captured by LiDeC (instead, it is partly covered by the Disposition attribute).  

Furthermore, whereas the IEEE Std. 1044 Resolution attribute relates to 

the urgency of applying a specific resolution, the LiDeC attribute Urgency 

relates to the urgency of removing a failure from the system; thus, the focus 

is on detecting and prioritizing the removal of the manifestation of defects 
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rather than on details of the actual resolution (as the resolution may be 

developed and applied by the supplier, the OEM may not have the necessary 

insight). 

Project schedule 

The IEEE Std. 1044 attribute Project schedule aims at capturing data about 

the direct impact of the resolution on the project schedule. In LiDeC this is 

instead captured in terms of amount of re-testing needed after applying a 

resolution; as verification activities constitutes a substantial amount of the 

development efforts, the attribute captured data with the same intention as the 

Project schedule attribute. Furthermore, the amount re-testing needed for a 

resolution is more straight-forward to assess for an engineer reporting the 

defect than objectively estimating the impact on project schedule. 

Project cost  

Whereas IEEE Std. 1044 attribute Project cost captures data about the cost of 

a resolution in terms of real money, LiDeC instead makes the estimate in 

terms of how much of the product will be affected by the resolution in the 

attribute Product Impact—the assumption is that the more of the product that 

is affected the more expensive the resolution will be. This redefinition was 

made as the engineer reporting a defect may not have sufficient insight into 

the budget or may have limited ability to make a reliable estimation of the 

cost of applying a resolution. Thus, LiDeC captures data with the same 

intention as the Project cost attribute but in more objective engineering terms.  

6.5 CONCLUSION 

In this report we have described the adaptation of IEEE Std. 1044, the IEEE 

standard for defect classification, to the automotive safety feature 

development context. The specific properties of the development context that 

influenced the adaptation include a strong reliance on supplier side 

implementation, which may limit the access and insight into the source-code. 

Furthermore, as defect classification does not directly contribute to the 

development of the end-product, it was considered important to adapt the 

classification scheme to minimize the time required to use the scheme while 

still providing the additional benefits of characterizing the defects. More 

specifically, we have addressed the research questions: 

L1 In an automotive safety feature development context where 

source-code is often not available, how can a standard defect 

classification scheme be suitably adapted? 



 A Light-weight Defect Classification Scheme for Embedded Automotive Software 85 

 

L2 As defect classification may often be considered an 

administrative task, how can the adaptation of a standard 

defect classification scheme be done to minimize required 

learning and classification time?  

We addressed L1 by: 

 Shifting the focus of the classification scheme from detailed aspects of 

the fault and its resolution to aspects of the discovery of the defect. As 

the implementation is mainly done by suppliers, most in-house process 

improvement potential lies in more efficient defect discovery 

activities. LiDeC reflects this by providing more detailed attributes in 

the Recognition phase (e.g. Detection activity, Urgency, Severity and 

Effect), while granularity of the attributes in subsequent phases have 

been reduced; e.g. the Type attribute is less granular than in IEEE Std. 

1044 and detailed aspects of the resolution (captured by the IEEE 

attribute Resolution) has been omitted; 

 Adapting attributes for safety specific purposes. In LiDeC the attribute 

Functional Safety Impact (which maps to the IEEE attribute Societal) 

records whether a defect impacts ASIL-classified requirements 

(ISO/DIS, 2011). In addition, the values of the Effect attribute (which 

maps to the IEEE Symptom attribute) was adapted specifically to 

provide a high-level characterization of safety feature problems (e.g. 

unintentional activation of a feature).  

We addressed L2 by:  

 Raising the level of abstraction of attributes. For instance, by 

providing only higher-level categories as values for the Type attribute 

 Providing more descriptive attribute values, e.g. instead of Low, 

Medium, High, more descriptive values expressed in the terminology 

of the organization were used 

 Providing attribute descriptions and values phrased using the 

terminology of the company 

 Providing a classification guide with a flow-chart structure, and 

including typical examples for each attribute value 

 Streamlined the attributes by removed or redefining attributes that 

required insights that the typical reported may not have (project 

schedule and risk). Attributes were redefined with care to retain the 

intentions of the original attribute but measured in more specific 

engineering terms; for instance, whereas the IEEE Std. 1044 attribute 

Project schedule aimed at appraising the direct impact on the project 
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plan, LiDeC instead appraises the estimated amount of re-verification 

(an activity that may have a large impact on the project schedule). 

In conclusion, by putting focus on capturing data about the discovery of 

defects, streamlining the available attributes with respect to the expertise of 

the engineers reporting defects, and conforming to the terminology of the 

company, we have developed an IEEE Std. 1044 compliant classification 

scheme well suited to the development of automotive safety features at VCC. 

As a result, we are now in the process of incorporating LiDeC into the issue 

tracking system of the company.  

6.6 FUTURE WORK 

The next step in our research concerns analysis recipes—guidelines on how 

to analyse the collected data. We envision two distinct types of analysis 

recipes: post-mortem and in-process—post-mortem recipes will mainly be 

support for organizational learning, whereas in-process would serve as a tool 

for project control. 

Post-mortem recipes would concentrate on analysing the collected data in 

order to learn about a finished project; e.g. evaluating whether changes in the 

way of working in the project yielded any noticeable effects, or analysing 

weak spots in the way of working as promising candidates for future 

improvements. 

In contrast, in-process recipes would be guidelines on how to use collected 

defect data from previous project phases in order to predict future phases 

within the project. As part of this we will need to identify relevant predictors. 

The challenges include the absence of source-code predictors; instead there is 

a need to identify predictors based on specification and design artefacts, e.g. 

requirements and design model complexity.  

By establishing a defect profile baseline per development phase, we aim at 

developing a way to predict future defect inflow. Such a prediction model 

would, for instance, assist in resource planning in a similar way as presented 

by Bijsma et al. (Bijlsma et al., 2011) where mainly source-code related 

predictors were used to estimate the time it would take to resolve a defect—a 

metric that can be used to assist in prioritizing defects.  
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PART IV—EVALUATION 

The only man who behaves sensibly is my tailor; he takes my  

measurements anew every time he sees me, while all the rest  

go on with their old measurements  

and expect me to fit them 

― George Bernhard Shaw 

7 AN INITIAL EVALUATION OF THE PRACTICAL 

FEASIBILITY OF LIDEC 

The chapter presents an initial industrial evaluation of LiDeC. The chapter 

provides initial validation of the practical viability of the adapted 

classification scheme. The chapter11 was previously published as: 

Mellegård, N., Staron, M., Törner, F. 

A Light-weight Defect Classification Scheme for Embedded 

Automotive Software and its Initial Evaluation 

Published at 23rd IEEE International Symposium on Software 

Reliability Engineering (ISSRE) 2012 

 

7.1 INTRODUCTION 

Software reliability is of central importance in modern cars as software 

controlled systems are becoming increasingly pro-active—recent safety 

                                                      
11 In this chapter, the background section has been removed as it was also published as part of 

the study reported in chapter 6.  

IV 
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systems are, for instance, able to automatically apply brakes to avoid or 

mitigate the effects of a crash. The car manufacturers (Original Equipment 

Manufacturer, OEMs) need, in order to achieve reliability, effective ways to 

manage defects during development (in-process) and during run-time (e.g. 

fault tolerance mechanisms). For the in-process defects it is important to 

identify, analyse and remove defects which could compromise the reliability 

of the cars. Furthermore, identifying patterns in the in-process defects enables 

effective detection and removal of defects, for instance by indicating which 

test activities to focus on, or supporting fault injection strategies. Such 

patterns may also serve as a maturity assessment metric for the software 

under development and as a prediction model of defect inflows in future 

project phases. In order to identify such patterns, however, systematic and 

structured defect documentation is required. 

Defect documentation and analysis is common practice in most software 

development organizations. Its benefits are further emphasised through the 

inclusion in process maturity models—such as CMMI (CMMI Product Team, 

2010a) and SPICE (The SPICE User Group, 2011)—as they require 

systematic defect documentation, analysis and follow-up. Neither CMMI nor 

SPICE, however, specifies how such defect documentation and analysis is to 

be done. Companies thus have their own interpretations resulting in varying 

quality of defect documentation; for instance, ambiguous interpretation of 

data or subjective opinions of the reporter. In addition, the automotive 

industry is implementing the ISO 26262 standard (ISO/DIS, 2011) for 

assuring functional safety, where functional safety assessment is one 

important confirmation measure of achieved safety. Defect reports are part of 

the overall safety documentation and are as such included in the base for the 

safety assessment. Hence, there is a need for a structured approach to defect 

documentation. 

There have been several approaches proposed on how to perform 

structured collection and analysis of defect information; e.g. defect 

taxonomies (Beizer, 1990), root cause analysis (RCA) (Leszak et al., 2000) as 

well as various defect classification schemes such as Orthogonal Defect 

Classification (ODC) (Chillarege et al., 1992), the HP scheme (Grady, 1992) 

and IEEE Std. 1044 (IEEE, 2009). Although shown to be useful these 

approaches were designed for specific contexts (Freimut et al., 2005) or may 

be too generic to be directly applicable, causing the need for adaptations 

(Wagner, 2008); such adaptations have been identified as one of the major 

challenges in applying a defect classification scheme (Freimut et al., 2005; 

Wagner, 2008). Specifically, defect classification approaches often assume 

full knowledge of the defects, i.e. have a source-code focus and presuppose 
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ownership of the software components (Freimut et al., 2005). This poses 

challenges for organizations where software is developed by suppliers—a 

situation common for the development of software systems in the automotive 

domain: even though software components (e.g. ABS or collision warning 

system) are often developed by suppliers, the quality of the complete 

product—the car—is the responsibility of the OEM. This entails the need to 

systematically analyse and follow-up on the quality of the supplied software 

components. 

Furthermore, defect documentation—however important—may be seen as 

a mainly administrative task that does not directly contribute to the end-

product. Thus, the defect documentation approach taken should require a 

minimum of analysis effort in addition to what is needed to identify and 

remove the defect, while still providing the additional benefit of 

characterizing the quality of the product and development process (Freimut, 

2001). 

In this paper we address these challenges by investigating how a defect 

classification scheme can be adapted to the automotive software development 

context by studying the development of active safety features. More 

specifically, the aims of our adapted classification scheme—the Light-weight 

Defect Classification scheme (LiDeC)—include: 

 To be useful in a development context with limited insight into source-

code 

 To minimize the learning and classification time required 

The LiDeC scheme was developed as part of a case study at Volvo Car 

Corporation (VCC12) and initially evaluated with a sample of problem reports 

from a project finished a year prior to the study. The results from the initial 

evaluation showed that developers quickly learnt to apply the classification 

scheme, and that the required time to classify a defect was substantially lower 

than with other approaches to defect documentation. Moreover, we were, 

from initial analyses of the defect data, able to discover patterns in the defects 

that were contrary to what was anticipated by the development teams. These 

findings may contribute to future improvements to the development practice. 

The rest of the chapter is structured as follows: section 7.2 describes the 

method used, section 7.3 summarizes the results and the final sections 

conclude the chapter and outlines future work. For background and context, 

see section 6.2. 

                                                      
12 http://www.volvocars.com 
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7.2 METHOD 

The research presented in this paper followed the case study method 

described by Yin (Yin, 2009). The case study method was considered 

appropriate as the applicability of the adapted classification scheme was of 

importance; adapting the IEEE Std. 1044 in the same context as it will be 

deployed would increase the chances of it being useful in that context. 

Specifically, we have used a single-case design by applying the classification 

scheme to defect reports from one project at our case company. The rationale 

for this was that the defect inflow profile from the project (shown in Figure 

14) was considered representative by the developers—similar inflow profiles 

had been observed in other projects. Using the defect reports from the 

project, we developed an adapted defect classification scheme; in particular, 

we addressed the following research questions: 

E1 How can the IEEE Std. 1044 be adapted to a software 

development context with limited access to the source-code? 

E2 How can the IEEE Std. 1044 be adapted to minimize its 

process foot-print in terms of required learning and 

classification time? 

As a practical guideline to adapting a defect classification scheme we 

followed Freimut (Freimut, 2001). The study was conducted in the following 

three stages: 

Stage 1: Establish terminology. The aim of the first stage of the study was to 

establish a set of classification attributes using terminology aligned with the 

case company. 

As a base for developing the classification scheme we used the IEEE Std. 

1044 (IEEE, 2009) and its guide (IEEE, 1996). In this stage we began by 

choosing attributes from the IEEE Std. 1044 that we—based on our previous 

research (Mellegård and Staron, 2010a, 2010b, 2010c)—found relevant for 

the specific development context at the company; for instance attributes 

related to customer value or societal impact was not considered relevant for 

the development phase under study. 

During two one hour-long interviews, we explained the initial 

classification attributes to the interviewee (project leader), and asked the 

interviewee to relate these attributes to the case company. We took notes 

during these interviews and refined the classification scheme according to 

these notes.  
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Stage 2: Tune feasibility. The second stage of the case study aimed at 

streamlining the set of values each attribute could be assigned. 

The stage consisted of a two hour long interview with a developer in which 

a number of defects were classified. The set of values for each attribute were 

evaluated during the classification session: (a) if an attribute value was never 

assigned and the interviewee could not give an example of when the attribute 

value would be given, it was considered for removal, and; (b) if a defect was 

to be classified according to an attribute and the interviewee did not consider 

any of the available attribute values sufficiently described the defect, a new 

value was considered for addition. 

From the results of the second stage the final classification scheme was 

compiled and depicted in the form of flowcharts with short questions 

providing a guide to arrive at the correct attribute value. Each attribute value 

was, furthermore, provided with a short illustrative example. 

Stage 3: Scheme evaluation. The final stage of the study aimed at evaluating 

the efficiency and effectiveness of the classification scheme.  

In this stage defect reports were classified according to the scheme. Four 

subjects involved in the project participated in six separate two hour long 

classification sessions (two subjects participated in two consecutive 

classification sessions). Three of the subjects were not involved in the 

previous two stages of the project.  

The project used as case had finished one year prior to the study and 

contained over 100 problem reports13. All subjects involved in the study had 

been part of the project with the following roles: two developers, one tester 

and one project leader. 

In the third stage of the study we were able to classify 22 defects selected 

randomly using blocking; the defect reports were divided into two blocks, 

where the peak close to software release (shown in Figure 14 on page 69) 

was assigned as one block and the remainder of the project as the second 

block. 

The results included measuring: 

 Learning time– we measured the time taken to classify each defect. 

Since we explained the classification scheme while doing the actual 

classification, we could measure the improvement in time per defect 

and use this as a metric to estimate required time to learn the 

classification scheme; 

                                                      
13 Exact number cannot be disclosed due to confidentiality reasons 
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 Efficiency – Efficiency was considered the time required per defect 

once the scheme was known by the subject. Because the project had 

been finished a year prior—and that the defect reports spanned a 

number of years—we consider this to be a worst-case scenario; if the 

defect classification is done in-process instead of post-factum, we 

believe that the time required to classify a defect should be equal or 

less than in this study; 

 Repeatability– Four randomly selected defects were classified by all 

four subjects. The results were compared in order to evaluate the 

repeatability of the scheme; 

 Effectiveness– In order for the classification scheme to be effective we 

must be able to analyse the collected data and use it learn about the 

process. As we lowered the level of detail of the data captured by the 

classification—compared to e.g. ODC or IEEE Std. 1044—there was a 

risk that too much details were removed for the data to lend itself to 

meaningful analysis. In order to evaluate the effectiveness of the 

scheme we stratified the space of defects and chose a random sample 

from one stratum: the spike in defect inflow after one late test phase of 

the project (see Figure 14). Although the developers did anticipate 

reasons for the spike in defect inflow, getting more formal evidence 

about these defects was considered interesting by the case company. 

7.2.1 Validity Evaluation 

We have identified and grouped the threats to validity in our study according 

to recommendations of Yin (Yin, 2009): 

 Construct validity –  By basing our defect classification scheme on the 

IEEE Std. 1044 and by keeping careful notes on how to map concepts 

specific to our case to the standard, we consider that the threat to 

construct validity to have been minimized. Furthermore, as both the 

adaptation of the classification schemes and the evaluation was done 

using real defect data from an industrial project with the assistance of 

the developers involved in the project, we consider the threat to 

construct validity to have been further reduced. 

 Internal validity – As any interview study we anticipated some 

personal bias in the answers from the interviewees. In order to 

minimize this threat we triangulated the results by including multiple 

subjects in our interviews. In addition, a set of defects were classified 

by multiple subjects thereby allowing evaluation of the repeatability of 
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the classification scheme; section 7.3.2 reports the results from this 

evaluation. 

 External validity – There is a risk that the results are too specific to 

Volvo Car Corporation. However, as we documented and justified the 

modifications done to the IEEE Std. 1044 as well as described the 

particular development context of our case, we believe that our results 

can be generalized to similar contexts outside our specific case. 

Moreover, we consider the mapping between attributes of the 

classification schemes provided by Freimut (Freimut, 2001) to 

contribute to the generalizability of our classification scheme; e.g. the 

mapping between classification schemes enables analysis methods 

utilized with other schemes to be applicable to LiDeC as well, and 

therefore we believe that results are also comparable. 

 Reliability – As part of the case study design, we have created a case 

study protocol which ensured that we conducted the study and 

collected the data in a consistent manner. By using this protocol, we 

believe that the study can be reliably reproduced. 

7.3 RESULTS 

As described in section 7.2 we aimed at designing a classification scheme, 

based on the IEEE Std. 1044, adapted to the development of automotive 

safety features, while being light-weight with respect to learning and 

classification time. The main challenge of adapting the IEEE Std. 1044 

included tailoring the attributes relating to the fault and its resolution; 

specifically attributes in the phases Investigation, Action and, Impact 

Identification. Furthermore, the classification scheme was validated with 

respect to its required process foot-print and the usefulness of the resulting 

data. 

The results are reported below in two parts; first, the classification scheme 

is presented, and then its initial evaluation is presented. 
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7.3.1 The LiDeC Scheme 

The LiDeC scheme captures—as shown in Figure 16—attributes from four 

phases of the defect life-cycle (IEEE, 1996, chap. 8.1) (described in more 

detail below): the first phase captures information about the recognition of 

the defect, i.e.  observing a deviation (failure); the second phase captures 

information about the underlying cause of the defect (referred to as 

Investigation in IEEE Std. 1044.1 (IEEE, 1996)); in phase three information 

about the defect resolution is captured (referred to as Action in IEEE Std. 

1044.1 (IEEE, 1996)); and the last phase captures information about what 

was actually done about the defect (referred to as Disposition in IEEE Std. 

1044.1 (IEEE, 1996). Table 10 shows a comparison between the life-cycle 

phases of IEEE Std. 1044, ODC and LiDeC schemes. 

 

Figure 16. Overview of the LiDeC Scheme 

 



 An initial Evaluation of the Practical Feasibility of LiDeC 97 

 

 

As can be seen by the number of attributes in each phase (described in detail 

in the subsections below), the main focus of the LiDeC scheme is on 

recognition and analysis of the defect. The justification is that the later a 

defect is discovered the more costly its resolution tend to be (Boehm, 1981). 

Consequently, the main focus of the classification scheme is on how defects 

are discovered, how the product is affected by them, and what types of 

defects they are. Analysing this information will contribute to understanding 

which phases of the development process contain the most improvement 

potential. 

The phases of the classification scheme are aligned with the defect 

management process at the case company and directly correspond to the 

states a defect can be assigned: recognized, analysed, resolution proposed and 

post-mortem. The following sections describe the attributes of each phase. 

Recognition 

The attributes in the first phase of the defect life-cycle (shown in Table 11) 

relate to data about the discovery of a failure and its effects on the system in 

question, i.e. the manifestation of the defect. The attributes capture project 

related information—timing of detection and how urgently the defect needs 

to be removed—and product related information—end-user perceived 

severity of the defect and how the defect affect the product. 

Table 10 Mapping of defect life-cycle phases 

Defect 

life-cycle 

phase 

IEEE 1044 ODC LiDeC 

1 Recognition 
Open 

Recognition 

2 Investigation Analysis 

3 Action  

Close 
Resolution 

4 
Impact 

Identification 

5 Disposition Post-mortem 
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This information will be used in analysis, for example, to assess whether 

the most serious defects are detected timely, investigate which activities are 

more effective in detecting the most severe defects. 

 

Analysis 

The attributes in the second phase of the defect life-cycle (shown in Table 12) 

aim at capturing data about the underlying fault causing the failure; e.g. in 

Table 11 Classification attributes for the Recognition phase 

Attribute Question Values 

Timing / 

Detection 

When was the 

defect detected? 

Date and project phase 

Timing / 

Preferred 

When should the 

defect have been 

detected 

(subjective)? 

Project phase if different from 
Timing / Detection 

Affects 

S/W 

Does the defect 

affect software? 

Yes / No 

Detection 

Activity 

What was done to 

detect the defect? 

Inspection/Requirements, 
Inspection/Design, 

Unit test/In-house, 

Unit test/Supplier, 
System test/bench, 

Functional test/Test track, 

Functional test/Expedition 
Production/Manufacturing 

Production/Customer report 

Urgency How urgently does 

the defect need to 

be addressed? 

Immediately, 
Next development release, 

Before start of production, 

Deferrable 

Severity How severe is the 

defect with respect 

to product quality? 

None, 
Nuisance, 

Limited Functionality, 

Show-stopper 

Effect How does the 

defect primarily 

affect the product? 

Capability/Undesired activation, 

Capability/Inactive on true positive, 

Capability/Other, 
Function Safety, 

Maintainability, 

Usability,  
Testability, 

Configurability 
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what work product and product component the problem originated, when in 

the process the problem was injected and the type of defect.  

 

 

Resolution 

The attributes in the third phase of the defect life-cycle phase (shown in Table 

13) aim at capturing data about the proposed resolution. As implementation 

specific details of the resolution may not be available, the attributes in this 

phase focus on capturing the cost of resolving the defect in terms of 

development effort. Specifically, to capture what impact a resolution would 

have on the product and on the process; the impact on the product is captured 

in terms of how much of the product would be affected by the modification, 

and impact on the process in terms of amount of regression testing needed.  

Table 12 Classification attributes for the Analysis phase 

Attribute Question Values 

Artefact Which software 

work product 

contained the 

defect? 

Req./Internal, 

Req./Cross-function, 
Req./External, 

Design model, 

Impl./Executable model, 
Impl./Code, 

Impl./Configuration params, 

Tool 

Injection 

activity 

When was the 

defect injected? 

Specification, 
Design, 

Impl./In-house modelling, 

Impl./Suppl. mdl. transform., 
Impl./Supplier coding, 

Configuration 

Component 

/ Asset 

Which design 

component 

contained the 

defect? 

Internal (product) module 
name also identifying its 

version 

Type What type of 

defect was it? 

Description, 

Data, 
Interface / Timing, 

Logic / Algorithm, 

Tooling, 
Tuning 

 



100 Part IV—Evaluation  

 

 

Furthermore, the attributes of the Resolution phase are intended to capture 

data about a proper resolution of the defect; in practice, one could choose to 

resolve defects by means of workarounds (this data is captured in the final 

phase of the classification scheme). 

Post-mortem 

In the last phase of the defect life-cycle the single attribute (shown in Table 

14) record what was finally done to close the defect; to what extent the defect 

was resolved.  

 

Table 13 Classification attributes for the Resolution phase 

Attribute Question Values 

Removal time When was the 

defect report 

closed? 

Date and project phase 

Product impact What would the 

impact of a proper 

resolution be on 

the product? 

None, 

Local (unit) modification, 

Multiple components, 

Funct. changes (re-design) 

Required 

Verification 

Level 

What level of 

regression testing 

would a proper 

resolution 

require? 

None, 

Inspection, 

Unit test, 

System test, 

Expedition 

 

Table 14 Classification attributes for the Post-mortem phase 

Attribute Question Values 

Resolution 

state 

What was the 

final state of the 

defect when the 

problem report 

was closed? 

Corrected (proper resolution 

applied), 

Workaround/Fix, 

Workaround/Product de-scoped, 

No Action/Deferred, 

No Action/Referred, 

No Action/Not found, 

No Action/No action 
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7.3.2 Evaluation—Efficiency and Effectiveness 

This section reports on the initial evaluation of the classification scheme. The 

evaluation was made based on efficiency and effectiveness. Efficiency was 

measured in terms of the time required to learn the classification scheme, and 

the time required to classify a defect. Effectiveness, on the other hand, was 

measured in terms of classification repeatability and what conclusions can be 

drawn from analysing the classification data.  

Efficiency—Learning time and Classification Rate 

In the third stage of the study, the time required to classify each defect was 

measured in order to evaluate learning time and classification rate; Figure 17 

shows the time series for the two subjects that participated in the two 

consecutive classification sessions. As can be seen in the chart, the first 2  – 4 

defects in the first session took substantially longer to classify, but after that 

the time remained stable. Furthermore, the learning time required in the 

second session was substantially lower (there was approximately one week 

between sessions for both subjects). We consider this as an indication that the 

scheme is understandable and quick to learn. 

In addition, once the classification scheme was understood by the subject, 

the time required to classify a defect remained stable around 5  – 10 minutes. 

Considering that the project had been finished one year prior to the study, and 

that some of the defect reports included were several years old, we believe 

that this may be considered a worst-case scenario with respect to 

classification time.  

When asked, all subjects said that the information captured by the 

classification scheme would be known at the time of reporting the defect. 

Consequently, if applied in-process, classifying according to the LiDeC 

scheme would require no additional analysis effort; the scheme would thus 

capture tacit knowledge and could therefore be considered cheap in terms of 

project resources. 

Effectiveness—Repeatability  

To provide initial data to evaluate the repeatability of the classification 

scheme four randomly selected defects were classified by all subjects in the 

final stage of the study. Differences were found in 6 of the 15 attributes, 

specifically: Detection activity, Severity, Effect, Type, Required Verification 

Level and Resolution State. These differences can in part be attributed to the 

fact that the classification was done based on sparsely documented defect 

reports.  
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However, we found that illustrative examples for each attribute value 

would contribute to the repeatability. For instance, in one case for the 

attribute Resolution State, where the defect report indicated that a defect had 

already been resolved in an earlier release of the software, one subject 

classified the defect as Corrected (as the defect had been properly resolved) 

while another subject chose No Action (as nothing had been done in response 

to that particular defect report). 

 

Effectiveness—Data Analysis 

In order to evaluate the trade-off between classification effort required and 

the analysis power of the data, an initial data analysis was done. The project 

from which the defect reports were used had an inflow spike in a late project 

stage (as shown in Figure 14 on page 69)—similar spikes had been observed 

in both previous and subsequent projects. The hypothesis posed by the 

development teams was that the defects were related to integration issues—

the spike in defects correlated with the first test vehicle built entirely with 

components intended for production. In the final stage of the case study 8% 

of the defects from the inflow spike were classified with the intention to 

evaluate the hypothesis. 

The results showed that—contrary to the hypothesis of the teams, and also 

contrary to the results of our previous studies (Mellegård and Staron, 2010a, 

2010b, 2010c)—the predominant defect type reported was related to 

 

Figure 17. Classification time per defect 
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algorithms and code logic. Furthermore, the results indicated that these late 

issues—in the opinion of the subjects—should have been detected on unit or 

system testing level.  

The predominance of algorithm and code logic defects in the classified 

data was explained by the domain expert and was logical for the studied 

organization and development process. Improvements based on this 

explanation were also identified by the expert, which indicates that the defect 

classification scheme forms a useful contribution to the efficiency of software 

development at the company. 

7.4 CONCLUSION 

In this chapter we have examined how efficiency of defect classification can 

be improved in a development context where code is developed by suppliers 

and the full knowledge about the source code is linked with intellectual 

property rights. Specifically, we have adapted the IEEE Std. 1044 to 

minimize its process foot-print in terms of required learning and 

classification time. We also evaluated the adapted classification scheme—the 

LiDeC scheme—at Volvo Car Corporation. The adaptation consisted mainly 

of raising the abstraction level of the attributes related to source-code and to 

the resolution of the defect. Focus was instead shifted to the recognition 

phase to enable evaluation of the efficiency of detection activities. 

Lowering the granularity of the attributes may, however, risk 

compromising the usefulness of the results of the classification; a risk that 

was assessed by conducting an initial evaluation of the collected data. This 

initial evaluation showed that even though the granularity of the attributes 

were lower, analyses of the data collected were still able to contribute with 

new information about the development process; for instance, whereas the 

typical type of late defects were anticipated to be integration issues, such as 

timing, the classification indicated the it was instead algorithms and code 

logic defects. 

Furthermore, the attributes selected in the LiDeC scheme were considered 

by the subjects of the study to be knowledge already possessed by the 

developers when reporting the defect; thus capturing tacit knowledge. 

As a result of this initial study, we are currently in the process of 

incorporating the classification scheme in the company’s defect reporting 

system. 
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7.5 FUTURE WORK 

The next step in our research concerns analysis recipes—guidelines on how 

to analyse the collected data. We envision two distinct types of analysis 

recipes: post-mortem and in-process. Post-mortem recipes will mainly be 

support for organizational learning, whereas in-process would serve as a tool 

for project control. 

Post-mortem recipes would concentrate on analysing the collected data in 

order to learn about a finished project; e.g. evaluating whether changes in the 

way of working in the project yielded any noticeable effects, or analysing 

weak spots in the way of working as promising candidates for future 

improvements. 

In contrast, in-process recipes would be guidelines on how to use collected 

defect data from previous project phases in order to predict future phases 

within the project. As part of this we will need to identify relevant predictors. 

The challenges include the absence of source-code predictors; instead there is 

a need to identify predictors based on specification and design artefacts, e.g. 

requirements and design model complexity.  

By establishing a defect profile baseline per development phase, we aim at 

developing a way to predict future defect inflow. Such a prediction model 

would, for instance, assist in resource planning in a similar way as presented 

by Bijsma et al. (Bijlsma et al., 2011) where mainly source-code related 

predictors were used to estimate the time it would take to resolve a defect—a 

metric that can be used to assist in prioritizing defects.  
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8 A COMPREHENSIVE EVALUATION OF DEFECT 

CLASSIFICATION SCHEMES 

The chapter presents a comprehensive evaluation of LiDeC, consisting of a 

controlled experiment and an industrial case study. In addition to evaluating 

LiDeC, the chapter provides a detailed description and reflection of the 

evaluation methodology. In doing so, the chapter is intended to propose an 

established process to assess efficiency and effectiveness of defect 

classification schemes. The chapter has been submitted for publication as: 

Mellegård, N., Staron, M., Törner, F. 

Evaluation of Defect Classification Schemes — An Experiment 

Submitted to Software Quality Journal in 2013 (Ref. no: 

SQJO829) 

 

8.1 INTRODUCTION 

Reliable and relevant measurements are essential in order to manage a 

complex software development process. It is through measurements that, for 

instance, the quality of products or the efficiency of development processes 

can be characterized, evaluated, predicted and improved (SEI, 2013). One 

source of measurements is defects reported during development and after 

deployment. Defect reports can contain much interesting data; such as, how 

the defects were detected, what type they were and what action was required 

to resolve them. When analysed quantitatively, patterns in the defect reports 

may be discovered that, for example, could provide information about the 

effectiveness of various test activities or facilitate prediction of product 

quality. Defect reports, however, are often written in free text, making 

quantitative analyses difficult. Defect classification schemes address this 

problem, by providing defect reports with a shared structure, and thus 

enabling more efficient data collection. 

Even though the concept of DCS has, since the introduction of ODC 

(Orthogonal Defect Classification) (Chillarege et al., 1992) and IEEE Std. 

1044 (IEEE, 1993, 2009), been around for more than two decades, it has to 

our best knowledge (Mellegård et al., 2013) received little research attention. 

In particular, while it has been recognized that a major challenge in applying 
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a DCS in an organization is to adapt it to suit the particular development 

context (Freimut, 2001), it is not clear how to evaluate the adapted scheme 

with respect to its efficiency (time required to learn and apply the DCS) and 

effectiveness (quality and usefulness of the classification data).  

In this paper, we report on a two-part evaluation of LiDeC (Light-weight 

Defect Classification scheme) (Mellegård et al., 2012a, 2012b), a DCS 

adapted to the development of automotive active safety features. The two 

parts of the evaluation aim at examining aspects of the two main phases of 

the defect classification approach, illustrated in Figure 18. Denoted by A in 

Figure 18, initially defect reports, often written in free text, are classified 

according to a classification scheme. The classification data can then be 

analysed (denoted by B in the figure) to discover patterns, which may reveal 

information about quality of the products or efficiency of the development 

process.  

The first part of the evaluation—aimed at examining aspects of LiDeC as a 

data collection tool (as denoted by A in Figure 18)—was conducted as a 

controlled experiment using university students as subjects. In the 

experiment, the quality of classifications done using LiDeC was compared to 

classification done using ODC. The results were analysed in terms of 

classification time, accuracy and consistency. In the second part of the 

evaluation, the focus was on the analysing the classification data collected 

using LiDeC (denoted by B in Figure 18). The evaluation was conducted as 

an industrial case study at Volvo Car Corporation (VCC) in which a sample 

of defects from a finished project was classified. The main objective of the 

case study was to evaluate how the data collected using LiDeC can provide 

useful information in an industrial context. 

This paper is intended for both practitioners and researchers. For 

practitioners, specifically with an interest in software quality management, 

the paper provides an evaluation of DCS as a data collection tool. In the 

evaluation is included the cost of using a DCS in terms of classification time, 

and the reliability of the data collected. In addition, the potential benefit of 

the data is examined through an industrial case study with the aim to 

characterize what insights analyses of the data can bring. For researchers, the 

paper describes a rigorous and comprehensive method for evaluating DCSs. 

Although evaluations of specific aspects of a DCS have been reported 

previously, this paper contributes with a more comprehensive methodology 

for evaluating both efficiency and effectiveness. Such evaluations are 

important, as DCS data, for instance, is often used to demonstrate effects of 

applying new techniques in software development—we elaborate on this in 
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the following section. In order to use DCS data as means of such validation, 

it must be shown to be reliable. 

 
The remainder of the chapter is structured as follows. Section 8.2 presents 

a selection of work related to the present article. Section 8.3 outlines defect 

classification schemes in general, and ODC and LiDeC in particular. Section 

8.4 gives a detailed methodological description, and section 8.5 presents the 

results. Section 8.6 highlights and discusses the main findings and section 8.7 

concludes the chapter. 

8.2 RELATED WORK 

The importance of establishing a reliable system of process and product 

metrics is demonstrated by its inclusion in process maturity models, such as 

CMMI (CMMI Product Team, 2010b) and Automotive Spice (The SPICE 

User Group, 2011). In these models, a prerequisite for advancing in levels of 

maturity is that aspects of the products and their development process are 

measured, and defects detected during development and after deployment is 

one source of such measurements.  

There are numerous approaches to acquire data from defects. While 

approaches such as post-mortem reviews (Dingsøyr, 2005) and root-cause 

 

Figure 18. Defect classification, and the focus of the current study. The focus of 
the current study is on the two processes A and B, where A denotes the process of 
applying a classification scheme to defect reports, and B denotes analyses of the 

classification data 
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analysis can provide valuable information about process issues and their 

underlying cause, they are qualitative, rather than quantitative as would be 

required in higher levels of process maturity in the models. To obtain 

quantitative data from defects, fault taxonomies (e.g. (Beizer, 1990)) aim at 

classifying the type of defect. The type of fault, however, is merely one 

aspect of a defect. Defect classification schemes aim at capturing data from 

multiple aspects, where defect type is one such aspect. There have been a 

number of DCSs proposed; for instance, ODC (Chillarege et al., 1992), HP 

(Grady, 1992), LiDeC (Mellegård et al., 2012b), and an adaptation of 

ISO/IEC 9126  (Vetro’ et al., 2012). While IEEE Std. 1044 aims at 

standardizing the structure of a DCS, there have been few reports on its 

applicability (Freimut, 2001). Instead, ODC seems to be the most widely 

used (Vetro’ et al., 2012) and reported on in literature. In his paper, Freimut 

(2001) provides an overview of defect classification schemes in general, and 

ODC, HP and IEEE Std. 1044 specifically.  

Freimut, furthermore, identifies that a major challenge in applying a DCS 

in an organization is to adapt it to the specific development context of that 

organization. Research on such adaptation has, for instance, been reported by 

Li et al. (2010b) in which ODC was adapted specifically to black-box testing. 

In our previous work, we have reported on the adaptation of IEEE Std. 1044 

to the development of automotive active safety software (Mellegård et al., 

2013, 2012a). Other approaches to improving DCS include automating the 

classification, fully (Thung et al., 2012) or partially (Huang et al., 2011; 

Wang He et al., 2009). In their paper, Vetro et al. (2012) examined one 

attribute from ODC specifically (the Impact attribute) and redefined it 

according to the ISO/IEC 9126 standard for software product quality 

(ISO/IEC, 2001). The adaptation results, according to the authors, in a more 

comprehensive definition of the attribute. Additionally, the adapted attribute 

is hierarchical, with a main characteristic (e.g. maintainability), and a number 

of sub-characteristics (e.g. analysability, stability, testability). 

Evaluations of a DCS—the focus of the present study—have been 

conducted, both in academy and in industry. In their paper, El-Emam and 

Wieczorek (1998) conducted a controlled experiment that aimed at 

examining the repeatability of classification. In their experiment, El-Emam 

and Wieczorek examined agreement between two subjects (practitioners) 

classifying the Type attribute as defined by ODC, for 605 defects. The results 

of the experiment were analysed using Cohen’s kappa (Landis and Koch, 

1977; Sim and Wright, 2005) and showed a high degree of agreement (a 

replication by Freimut (2005) showed similar results). Henningsson and 

Wohlin (2004) conducted a similar experiment in which eight student 
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subjects classified the Type attribute for 30 defects. In contrast to El-Emam 

and Wieczorek, the results, also analysed using Cohen’s kappa, showed low 

classification agreement among the subjects. A third study on the 

repeatability of classification was conducted by Vetro et al. (2012) on their 

proposed adaptation of the ODC Impact attribute. In their experiment, six 

subjects classified the adapted attribute for 78 defects. Three of the subjects 

were students and three were researchers (non-practitioners). While the 

results, analysed using Cohen’s kappa, showed fair agreement among the 

subjects (according to the scale presented by Lanis and Koch (1977)) for the 

main attribute characteristic, on the more detailed sub-characteristic level the 

agreement was considerably lower. While these evaluations, conducted in an 

artificial setting, provide evidence on the efficiency of certain aspects of 

DCSs, there are, to our best knowledge, no comprehensive studies on 

applying classification schemes—as is the aim of the present study.  

Evaluations on the industrial applicability of DCSs have been reported, for 

instance by Butcher et al. (2002), Chillarege and Prasad (2002), Freimut 

(2005), and Li et al. (2012). Butcher et al. conducted case studies where ODC 

was applied at three software development organizations. In all three cases, 

the classification was found to contribute to improving the practice; for 

instance, the pre-release test effectiveness was improved by identifying the 

typical triggers for defects that escaped into the field. All three companies, 

furthermore, decided to continue the defect classification practice. Li et al., 

conducted two-round case studies at two companies. In the first round, they 

analysed defect classification data from projects to identify process 

improvement opportunities. In the second round, conducted 6 and 12 months 

later, classification data was analysed to evaluate whether effects of the 

improvement initiatives could be found. At both companies, expected effects 

were indeed found. These studies show that defect classification data can 

contribute to characterize a process, to identify improvement opportunities, 

and to evaluate the effects of changes to that process.  

The academic value of defect classification data has been demonstrated, 

for instance by Nagappan et al. (2004), Zheng et al. (2006) and, Jin and Jiang 

(2009). In the papers by Nagappan et al. and Zheng et al., the effects of 

applying automated software inspection techniques analyses were examined 

by using defect classification data. Specifically, the distribution of defect 

types was compared between projects that used inspection techniques and 

projects that did not. In both paper, the authors were able to demonstrate 

specific and statistically significant differences in the distribution of the 

defect types, thus providing evidence of the effect of using automated 

inspection techniques. In their paper, Jin and Jiang used ODC data to develop 
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a fault injection scheme for embedded systems. Specifically, they examined 

the mapping of faults in a high-level language (C code) to their mutation in 

machine code. The purpose was to evaluate fault-injection on machine code 

level, to be used when source code is not available. These studies show that 

defect classification data can be used to demonstrate effects of applying 

various techniques—a common theme in much software engineering 

research. This, however, presumes that the data produced by a classification 

scheme is reliable; something that has not been shown conclusively in the 

current body of knowledge.  

8.3 DEFECT CLASSIFICATION 

In any larger software organization, many factors add complexity to the 

development process. To manage a complex software development process, 

effective measurement practices are needed; defects detected during 

development and after deployment is one source of such measurements. 

Defects, although expected during development, can be seen as a symptom of 

weaknesses in the process—especially if defects, for instance, tend to slip 

through the test activities that are meant to detect them. 

One method of collecting data about defects is DCSs. A DCS intends to 

provide defect reports with a shared and formal structure by defining a set of 

attributes, and for each attribute a set of values that can be assigned. Each 

attribute captures data about one aspect of the defect – for instance, in which 

type of test the defect was discovered. Typically, the aspects of a defect can 

be divided into the major life-cycle phases: Detection and Resolution. The 

detection phase consists of identifying a problem (e.g. a failure) and 

analysing what caused it (i.e. the underlying fault), while the resolution phase 

consist of identifying a suitable action to remove either the fault or its 

manifestation. 

In the first part of our study, the efficiency and effectiveness of two 

classification schemes are examined; ODC and LiDeC. In the following two 

subsections each of these two schemes are described in more detail.  

8.3.1 ODC 

In ODC the attributes are organized into the two life-cycle phases Open and 

Close. As can be seen in Table 15, showing an overview of ODC, the 

attributes in the Open phase focus on the detection of the defect, whereas in 

the Close phase the attributes focus on aspects of the fault and its resolution. 
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In the Open phase, the Activity and Trigger attributes relate to the test 

procedures that were used to detect the defect. The values available for the 

Trigger attribute are dependent on the value chosen for the Activity attribute; 

for instance if the value Unit test is chosen as the detection activity, then only 

the Trigger values relevant for unit tests are available (i.e Simple path and 

Complex path). The third and final attribute of the Open phase, Impact, 

captures how the customer would have perceived the defect if it had 

remained in the system—e.g. reliability, usability, capability etc.). The 

attributes in the Open phase capture data about the black-box properties of 

the defect. In the following phase, focus is shifted to aspects of the 

underlying fault and its resolution. 

In the Close phase, the attributes Target, Source and Age relate to aspects 

of the work product that was modified in order to resolve the defect. These 

attributes provide data about which artefact contained the fault (e.g. 

requirements, design, code, etc.), who was responsible for developing it (e.g. 

in-house, outsourced, etc.) and whether it was the creation or a modification 

of the artefact that caused the defect. The attributes Type and Qualifier are 

related to the aspects of the fault. Type aims at capturing data about the 

(mainly source code related) nature of the fault (e.g. assignment or checking), 

and whether something was missing, incorrect or extraneous (e.g. a missing 

variable assignment). 

Table 15 Overview of ODC (adapted from (Freimut 2001)) 

Phase Attribute Meaning 

Open Activity When did you detect the defect? 

Trigger How did you detect the defect? 

Impact What would the customer have noticed if the 

defect had escaped into the field? 

Close Target What high-level entity was fixed? 

Source Who developed the target? 

Age What is the history of the target? 

Type What had to be fixed? 

Qualifier Was the defect caused by something missing, 

incorrect or extraneous? 
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8.3.2 LiDeC 

In LiDeC the attributes are divided into four separate phases (illustrated in 

Figure 19):  

 The Recognition phase in which an issue is identified;  

 The Analysis phase in which the underlying cause of the issue is 

identified;  

 The Resolution phase in which the various possible modifications to 

rectify the issue are developed, and finally;  

 The Post-mortem phase in which the actual action taken is analysed. 

In the recognition phase, shown in the top right of Figure 19, a failure is 

identified and attributes related to its manifestation are captured: what was 

done to detect the failure (Detection activity, corresponding to Activity in 

ODC), the estimated urgency of finding a solution (Urgency) and the 

estimated impact on the product (Severity, Effect and Functional Safety 

Impact).   

In the following phase, shown in the top left of Figure 19, the cause of the 

failure (i.e. fault) is identified and attributes related to the fault are captured. 

These attributes include: which software work product contained the defect 

(Artefact, corresponding to the ODC attribute Target), e.g. requirement, 

design component or code; what activity caused the fault to occur in the 

artefact (Injection activity); and finally what the type of defect was (Type).  

The third life-cycle phase, shown in the bottom left of Figure 19, capture 

data about the proposed resolution of the defect in terms of its impact on the 

product (Resolution Impact)—specifically, to what extent the product needs 

to change—and on the process in terms of the type of testing needed to verify 

the resolution (Required Verification Level).  

In the final life-cycle phase, shown in the bottom right of Figure 19, the 

single attribute (Resolution State) capture what was actually done to close. 

Although there may be an action proposed on how to resolve the defect 

properly, in practice workarounds can be an alternative to applying a proper 

resolution (i.e. removing the manifestation of the fault, rather than the fault 

itself). 
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8.4 METHODOLOGY 

The evaluation aimed at examining LiDeC from two perspectives, as shown 

in Figure 18: applying the classification scheme (denoted by A in the figure), 

and analysing the classification data (denoted by B in the figure). The first 

part of the evaluation was conducted as a controlled experiment, while the 

second as an industrial case study. The methodologies of the two studies are 

described in the subsections below. 

8.4.1 Part I: Experiment 

The aim of the experiment was to examine whether applying a classification 

scheme adapted to a specific context (LiDeC) have significant advantages or 

disadvantages compared to a generic classification scheme (ODC). For this 

purpose, a single factor, two-treatment experiment design was applied. The 

factor in the experiment was the defect classification scheme (LiDeC and 

ODC used as the treatments). In the experiment, two groups of subjects 

classified five shared defects according to one of the two classification 

schemes. The comparison between the two schemes was done by examining 

three main aspects of conducting a classification: time, accuracy and 

consistency.  

 

Figure 19 LiDeC overview 
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The time aspect was evaluated from two perspectives, learning time and 

classification time. Classification time refers to the time required to classify a 

defect. This time should ideally be kept low, as classification of a defect may 

be seen as an additional activity that is not strictly necessary for resolving the 

defect. Furthermore, as defects may be reported by a variety of project 

stakeholders, it is important that a classification scheme can be learnt quickly. 

As each defect report was designed to be comparable in scope, a decrease in 

classification time for each defect will be taken as evidence of the learning 

time.  

The classification accuracy aspect was also assessed from two 

perspectives. Firstly, the amount of correctly classified attributes was 

compared between the two schemes. The comparison was made in order to 

evaluate whether a DCS adapted to the target domain facilitated a more 

accurate classification than generic DCS. Secondly, the accuracy of each 

experimentation group was compared to randomly generated classifications. 

This comparison was done to assess how reliable the classification data was. 

Finally, the consistency of classification within each experiment group was 

examined. Consistency is important as a large variation in how subjects 

classify the defects would indicate that the classification is dependent on who 

performs the classification rather than on properties of the defects. 

In the following subsections, we report on the experiment sample and 

population, and instrumentation. The instrumentation includes the experiment 

material, dependent and independent variables, and, hypotheses and analysis 

methods. Finally, we elaborate on the validity of study. 

Subjects and Population 

The subjects in this experiment were students (convenience sampling). The 

experiment was conducted in two sessions, in which 50 subjects participated. 

In the first session, 19 first year master students (i.e. in their 4th year of 

university studies) attending Software Engineering and Management 

programme participated. In the second session 31 first year bachelor students 

from the same programme participated. 

The population of this experiment is software engineers working with 

implementation and quality assurance of automotive safety software. As the 

subjects generally lack the industrial experience and domain knowledge 

which can be expected for the population, we consider—based on our 

previous work (Staron, 2007)—the subjects as a worst-case sample. 
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Instrumentation 

The same instrumentation—the experiment material and procedures—was 

used in both experiment sessions (Table 16 summarizes the experimentation 

material used14). The procedure followed was: 

1. A shared 20 minute long lecture providing a general introduction to 

defect classification and to automotive software and their development 

was given to the subjects; 

2. Each experimentation group received a document with a detailed 

description of the classification scheme. This document differed 

between the experimentation groups only in the classification scheme 

it described. The subjects were asked to read the whole document 

before beginning the tasks; 

3. A shared set of five defect reports were classified by the subjects. For 

each defect, a pre-printed answer sheet was to be filled in. The answer 

sheet contained a field for the time started, fields for each attribute of 

the classification scheme, a classification confidence assessment (five-

point Likert), and a field for noting the finish time; 

4. After all five tasks were finished the subjects were asked to fill in a 

background assessment form, and an experiment evaluation form 

The experiment was designed to take approximately 2 hours. 

                                                      
14 The full set of experimentation material can be downloaded from: 

http://www.cse.chalmers.se/~nikmel/DCS/instruments.zip 
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Table 16. Summary of experiment objects 

In
tr

o
d

u
ct

io
n

 

Lecture An introductory lecture was given to both experiment groups. The 

lecture described the principles of defect classification, and an 

overview of automotive active safety features and the development 

process 

Detailed 

introduction 

A detailed written description of the specific classification scheme 

(ODC or LiDeC) was provided to the experiment groups. The 

description included an overview of the classification scheme, an 

example defect report and its classification, a detailed description 

of the classification scheme, a detailed description of the attributes 

and values of the scheme, and a selection of slides from the 

introductory lecture 

E
x

p
er

im
en

t 

Experiment 

tasks 

The experiment tasks consisted of five defect reports that were to 

be classified by the subjects. The defect reports were based on real 

defect reports selected from the same project as the case study was 

conducted on. The defect reports were abbreviated considerably 

and edited to maintain confidentiality  

Answer 

sheet 

For each experiment task, a pre-printed answer sheet was filled in. 

The sheet contained a field for the time started, a field for each 

attribute of the classification scheme, a field for assessing the 

confidence with the classification (a five-point Likert scale), and 

finally a field for the finish time of the classification 

B
a

ck
g

ro
u

n
d

 a
n

d
  

E
x

p
er

im
en

t 
E

v
a
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a

ti
o

n
 Background 

assessment 

After the experiment, the subjects were to fill in a background 

assessment form, and an experiment evaluation form. The 

background assessment consisted of four questions assessing, on a 

five-point Likert scale the subject’s experience with industrial 

software engineering, programming, defects and software quality, 

and automotive software 

Experiment 

evaluation 

The experiment evaluation assessed whether the tasks were 

understood, how difficult the tasks were perceived (Likert). In 

addition, for each attribute in the classification scheme, the subject 

was to assess their classification confidence 
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Table 17. Summary of dependent variables measured in the experiment. The column 
Measure Type denotes whether the variable was measured directly in the experiment or 

calculated (derived) from directly measured variables 

Aspect Variable Measure 

Type 

Unit / Values Description 

T
im

e 

Td Derived Minutes Td denotes the time required per subject to 

classify defect d. The variable was calculated 

from the start and end time noted by the 
subjects for each defect 

Ttot Derived Minutes Ttot denotes the total time for classifying all 
five defects per subject. The variable was 

calculated as the sum T1 to T5 for each subject 

Classi-

fication 

Clad Direct  Clad denotes the classification of attribute a for 

defect d 

A
cc

u
ra

cy
 

Coad Derived Booelan Coad denotes whether the classification Clad 

was correct. This variable was derived by 
comparing each Clad with a classification key 

we had created as part of the experiment 

design 

Cod Derived ODC: {0-8} 

LiDeC: {0-10} 

Cod denotes the total number of correctly 

classified attributes for defect d 

Cotot Derived ODC: {0-40} 

LiDeC: {0-50} 

Cotot denotes the total number of correctly 

classified attributes for all five defects 

Confi-

dence 

Cfd Direct Likert {1-5} Cfd denotes the self-assessed confidence in 

classifying defect d 

B
a

ck
g

ro
u

n
d

 

BSW Direct Likert {1-5} Self-assessed amount of previous industrial 

experience in software engineering 

BP Direct Likert {1-5} Self-assessed amount of previous experience in 
programming 

BSQ Direct Likert {1-5} Self-assessed amount of previous experience 
with defect management and software quality 

BASW Direct Likert {1-5} Self-assessed amount of previous experience 

with automotive software development 

E
x

p
er

im
en

t 

ev
a

lu
a

ti
o
n

 

BD Direct Likert {1-5} Perceived difficulty of the experiment as a 

whole 

BU Direct Tasks {1-5} Self-assessed list of tasks that the subject did 

not understand 

Cfa Direct Likert {1-5} Self-assessed confidence with classifying 

attribute a. This assessment reflects the 

subject’s confidence for each attribute of the 
classification scheme, over all five defects 
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A summary of the variables used in the analyses of the experiment results 

is presented in Table 17. Time per defect was directly measured by the 

subject noting the start and end time of each defect classification (a clock 

with current time was projected throughout the experiment sessions). The two 

time variables shown in Table 17 were derived from these measures. The 

subjects were asked to classify each defect in order, and to note start time 

before reading the defect text.  

The classification of each attribute consisted of noting the value code (as 

shown in appendix A in (Mellegård et al., 2012b) for LiDeC, and in (IBM, 

2012) for version 5.11 of ODC). The accuracy variable Coad, showing 

whether attribute a for defect d was classified correctly, was derived by 

comparing the classification code to the classification key developed by us in 

conjunction with the defect reports. The variables Cod and Cotot were 

derived by counting the number of correctly classified attributes per defect, 

and over all five defects respectively. In addition, for each defect, the subjects 

were to assess their overall classification confidence on a five-point Likert 

scale.  

The background of each subject was, as can be seen in Table 17, assessed 

by four questions, each recorded on a five-point Likert scale. The questions 

aimed at assessing generic software engineering knowledge (industrial 

software engineering and programming experience), and knowledge specific 

for the experiment (defect management and software quality, and automotive 

software development).  

Finally, the experiment evaluation consisted of a self-assessment of 

whether each of the five tasks (BU in Table 17) were understood, how 

difficult the experiment as a whole was perceived (BD in Table 17), and for 

each attribute of the classification scheme, how confident the subject was in 

classifying it (Cfa in Table 17). 

Hypotheses and Analysis Methods 

The hypotheses evaluated by the experiment are summarized in Table 18 and 

Table 19. The hypotheses in Table 18 aim at comparing the two data sets 

(MSc and BSc students) to evaluate whether differences in experience and 

skill affect classification performance. The hypotheses in Table 19 aim at 

comparing the two experiment groups (ODC and LiDeC) to evaluate whether 

the type of DCS affects the classification performance. 

As the variables could not be shown to fit a normal distribution, the non-

parametric method Mann-Whitney’s U-test was used to evaluate differences 

between the two data sets and between the two experimentation groups. All 

inferential statistics, except for hypothesis DCS_a, were generated using 
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IBM SPSS Statistics for Windows, Version 21.0 (SPSS, 2013). All 

descriptive statistics were generated using SPSS, except the bar chart for 

hypothesis DCS_Cod which was created using LibreOffice Calc, and the 

bubble diagram for hypothesis DCS_a which was generated using R (R 

Core Team, 2012)15. For hypothesis DCS_CoRnd, 50 random classifications 

for each classification scheme was generated using R (R Core Team, 2012)16. 

For hypothesis DCS_a, Krippendorff’s  was calculated using bootstrapping 

with 1000 iterations. Krippendorff’s alpha was calculated in R (R Core Team, 

2012) with the package irr (Gamer et al., 2012), and the bootstrapping 

provided by kripp.boot (Gruszczynski, 2013). 

                                                      
15 The R script for generating the bubble diagrams can be found here: 

http://www.cse.chalmers.se/~nikmel/DCS/generateBubbleDiagram.zip 
16 The R script for generating the random classification can be downloaded from: 

http://www.cse.chalmers.se/~nikmel/DCS/GenerateRandomClassifications.R 
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Table 18. Summary of hypotheses for examining the two data sets (BSc vs MSc students). 
These hypotheses are indented to provide information on the effect of experience on the 

classification performance 

 Hypothesis Var. Description Analysis 

method  

B
a

ck
g

ro
u

n
d

 EXP_Bx BSW, 

BP, 

BSQ, 

BASW, 

BD 

H0: There is no difference in each of the background 

variable between the two data sets. 

H0 was tested for each of the background variables 

and used to characterize the differences in experience 

between the subjects in the two data sets  

Mann-Whitney’s 

U-test 

p < 0.05 is 

required to reject 

H0 

C
o

n
fi

d
en

ce
 

EXP_Cfa Cfa H0: There is no difference in the perceived confidence 

between the two data sets for each attribute 

H0 was tested for each variable of each classification 

scheme. The result is used to characterize whether 

experience has any impact on the understandability of 

each attribute in the two classification schemes 

Mann-Whitney’s 

U-test 

p < 0.05 is 

required to reject 

H0 

EXP_Cfd Cfd H0: There is no difference in the perceived 

classification confidence between the data sets for 

each defect 

H0 was tested for each defect regardless of which 

classification scheme that was used. The result is 

used to characterize whether experience has any 
impact on the understandability of each defect 

Mann-Whitney’s 

U-test 

p < 0.05 is 
required to reject 

H0 

T
im

e 

EXP_Ttot Ttot H0: There is no difference between the two data set in 
the total amount of time needed for the 

experimentation tasks 

H0 was tested to evaluate if experience had effect on 
the time required to classify the defects 

Mann-Whitney’s 
U-test 

p < 0.05 is 

required to reject 
H0 

A
cc

u
ra

cy
 

EXP_Cotot Cotot H0: There is no difference in accuracy between the 

two data set in the total number of correctly classified 

attributes 

H0 was tested for each classification scheme 

separately, and used to evaluate if experience can be 

shown to have an effect on the precision of 
classification 

Box plots are used 

to provide 

descriptive 
statistics 
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Table 19. Summary of hypotheses for examining the two treatments (ODC vs LiDeC). 
These hypotheses are indented to provide information on the effect of the 

classification scheme on the classification performance 

 Hypo-

thesis 
Var. Description Analysis method 

B
a

ck
g

ro
u

n
d

 

DCS_Bx BSW, 

BP, 

BSQ, 

BASW, 

BD 

H0: There is no difference in each of the background variable 

between the two experiment groups 

H0 was tested for each of the background variables and used to 

evaluate whether the two experiment groups backgrounds were 

comparable. Any differences may affect the experiment validity 

Mann-Whitney’s U-

test 

p < 0.05 is required to 

reject H0 

C
o

n
fi

d
en

ce
 DCS_Cfd Cfd H0: There is no difference between experiment groups in the 

perceived classification confidence per defect 

The result is used to characterize whether the DCS used has any 

impact on how certain each subject was about the classification. 

Any differences may be explained by properties of the defect 

Mann-Whitney’s U-

test 

p < 0.05 is required to 

reject H0 

T
im

e 

DCS_Ttot Ttot H0: There is no difference between the experiment groups in the 

total amount of time needed for the experimentation tasks. 

H0 was tested to evaluate if the DCS had an effect on the time 

required to perform the classification 

Mann-Whitney’s U-

test 

p < 0.05 is required to 

reject H0 

DCS_Td Td By plotting the classification time per defect and experiment 

group the time to learn each classification scheme can be 

assessed 

A decreasing slope is 

taken as evidence of a 

learning curve 

A
cc

u
ra

cy
 

DCS_Cod Cod H0: There is no difference in accuracy between the experiment 

groups in the amount of correctly classified attributes per defect 

As the two classification schemes have different number of 

attributes, the percentage of correctly classified attributes per 

subject and defect was calculated. H0 was tested to evaluate 

whether the DCS had an effect on the precision of classification 

Mann-Whitney’s U-

test 

p < 0.05 is required to 

reject H0 

A bar chart is used to 

provide descriptive 

statistics 

DCS_CoRnd Cotot H0: There is no difference in accuracy between each of the 

experiment groups and a random classification using the same 

DCS 

The hypothesis was tested in order to evaluate whether the 

classification accuracy was due to factors relating to properties 

of the defect reports. If the hypothesis cannot be rejected – 

meaning that a human classifier is no more accurate than chance 

– it would suggest that the classification data is not reliable. H0 

was tested for each classification scheme separately 

Mann-Whitney’s U-

test 

p < 0.05 is required to 

reject H0 

Box plots are used to 

provide descriptive 

statistics 

C
o

n
si

st
en

cy
 DCS_a  Clad H0: There is no good agreement among the subjects in their 

classification of each attribute  

The inter-rater agreement was calculated in order to assess the 

classification consistency. Consistency is desirable to minimize 

the dependency on who is performing the classification.  

In addition, bubble diagrams were generated for two attributes of 

LiDeC to illustrate the distribution of values. The choice if 

attributes was done based on experiences from the case study 

Krippendorff’s alpha 

statistic for inter-rater 

agreement 

 > 0.667 is required 

to reject H0 

Bubble diagram for 

descriptive statistics  

 



122 Part IV—Evaluation  

 

Validity Evaluation 

The main threats to the validity fall into the categories internal, external, 

construct and conclusion validity (Wohlin et al., 2000). We now briefly 

discuss the main threats to each of these categories of validity. 

Internal validity – Internal validity concerns unforeseen influences on the 

independent variables. Such influences may pose a threat to the validity of 

conclusions about the causal relationship between treatment and outcome. 

The main threat to internal validity, in this experiment, would be 

inappropriately designed instrumentation. For example, it was considered 

important (for external validity) to use defect reports that resembled real 

reports as closely as possible. This, however, might risk making them too 

domain specific to be understandable to non-domain experts. In order to 

minimize the threat to internal validity a pilot experiment with seven PhD 

students was conducted. The pilot experiment included eight defect reports. 

The instrumentation was evaluated after the experiment, which resulted in a 

number of modifications to the material—e.g. in the data collection forms—

and selecting the five defect reports that were considered most readily 

understandable; 

External validity  – External validity relates to whether the results and 

conclusions can be generalized to a context outside of the experiment, which 

in our case is industrial automotive software design. The main threats in our 

case relate to selection and setting (Wohlin et al., 2000), i.e. the selection of 

subjects and the experimentation material used. The use of student subjects 

poses a threat to the generalizability of the results, as the subjects might not 

be representative to the population. However, based on previous research 

student subject can be seen as a worst-case sample. In an industrial setting, it 

can be assumed that the population has considerably more domain knowledge 

(which we found indications on being a factor in both accuracy and 

consistency). The experimentation material (the defect reports, ODC and 

LiDeC) were selected and adapted from actual industrial cases, making the 

experimentation material representative for the target context; 

Construct validity  – Construct validity refers to whether the experiment 

instrumentation is appropriate for the theory it was designed to measure. In 

our case, the main threats to construct validity concerns mono-method bias 

and confounding constructs and level of constructs (Wohlin et al., 2000). 

 Mono-method bias  – In the experiment we measured several aspects 

of classification performance (time, accuracy and consistency). 

Furthermore, results from the experiment and case study can be 
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crosschecked to validate the results. A possible source of mono-

method bias is the classification key that was developed by the 

researchers and used to determine whether a classification was correct. 

As the classification key was developed by the researchers in 

conjunction with the defect reports, it is assumed to match 

appropriately. The key, however, was not validated with practitioners, 

thus there might be a risk of introducing researchers bias in the 

accuracy variables; 

 Confounding constructs and levels of constructs  – There is a risk that 

the extent of the subjects’ prior knowledge (e.g. programming skills) 

may influence their performance. To investigate this, the experiment 

was conducted in two sessions with groups of students; one group with 

more experience subjects. The results of these two groups were 

compared, and differences elaborated on. 

Conclusion validity – Conclusion validity concerns threats to the ability to 

draw the correct conclusions about the relationship between treatment and 

outcome. As the measured variables were not normally distributed, the less 

powerful non-parametric tests were used. This may increase that risk of 

making type-II errors. We minimize this threat to validity by being careful to 

draw conclusions based on inability to reject the null hypothesis. An 

additional threat to conclusion validity is random heterogeneity of subjects. 

However, as all subjects were university undergraduate students, they can be 

assumed to have similar knowledge and background. In order to validate this 

assumption a background questionnaire was submitted by each subject. 

8.4.2 Part II: Case study 

The industrial evaluation of LiDeC was originally the final part of a three-

stage case study (Mellegård et al., 2012a). Whereas the two initial stages 

aimed at adapting IEEE Std. 1044 to the development context of the case 

company (resulting in LiDeC), the final stage aimed at validating the adapted 

DCS. The validation consisted of classifying a sample of defects from a 

finished project.  

The case study method was considered appropriate as the applicability of 

the adapted classification scheme was of importance. The methodology of the 

study is based on Yin (2009), specifically, a single-case design by applying 

the classification scheme to defect reports from one project at our case 

company. 

In the case study, four subjects involved in the project participated in six 

separate two-hour long sessions (two subjects participated in two consecutive 
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classification sessions) in which 22 defects were classified. All defects had 

been reported in the project, which had finished one year prior to the study 

and contained several hundred defect reports17. All subjects involved in the 

study had been part of the project with the following roles: two developers, 

one tester and one project leader. 

The 22 defects were selected randomly using blocking. The defect reports 

were divided into two blocks, where the peak close to software release (as 

shown in Figure 28) was assigned as one block and the remainder as the 

second block. In the analyses reported in this paper, only defects from the 

peak were used. This decision was made because of an expressed interest by 

the company to examine those defects more closely. The sample constituted 

approximately 10% of the defects from the peak. 

The results from the case study included classification data from the 

selected sample of defects. The collected data was analysed and the results 

presented at a company workshop for validation. Additionally, the time 

required to classify each defect was recorded. The classification time was 

plotted in order to provide an initial estimate on learning and classification 

time requirements. This chart is, in this paper, compared to the results from 

the experiment—any similarities will be used to argue in favour for the 

external validity of the experiment results.   

8.5 RESULTS 

The results from the experiment and the case study are presented in the 

following two subsections. 

8.5.1 Experiment Results 

In this section, we present an analysis of the data from two perspectives. 

Firstly, the experiment was conducted in two sessions—forming two data 

sets—one with master students (MSc) as subjects and one with bachelor 

students (BSc). This presents the opportunity to examine whether the amount 

of acquired knowledge and skill affect classification performance (the related 

hypotheses are presented in Table 18). In addition, if significant differences 

were found, it might not be appropriate to conduct analyses on the merge of 

the two sets. Secondly, aspects pertaining to the type of classification scheme 

used were analysed. Specifically, classification learning time, accuracy and 

consistency of classification were examined for the two schemes (the related 

                                                      
17 Exact number cannot be disclosed due to confidentiality reasons 
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hypotheses are presented in Table 19). Each of these two perspectives are 

presented in the two subsequent sections. 

From analysing the BU variable, one subject (in the BSc/LiDeC group) 

stated that they did not understand any of the tasks. The subject, furthermore, 

classified only one defect and did not submit the evaluation form. Therefore, 

the subject was removed from the data.  

Missing data was excluded pair-wise in the hypothesis analyses. 

Impact of Experience 

Statistically significant differences between the two data sets were found. As 

can be seen in Table 20, showing the comparison of the background 

assessments from the two data sets, there was a significant difference 

between the data sets in terms the subjects’ self-assessed prior experience. 

The differences, which were limited to generic software engineering 

knowledge, were anticipated as the MSc students, in addition to being further 

advanced in their studies, have to a larger extent industrial experience. This 

difference may have effect on the subjects’ ability to understand the 

experiment material. There was, however, no significant difference in the 

subjects’ experience with automotive software systems, which might have 

had greater effect on the understanding of the experiment material. There was 

also no significant difference in the perceived difficulty of the experiment 

material. Thus indicating that the differences in generic software engineering 

experience may have had limited impact on how difficult the material was to 

assimilate. 

 

Table 20. Results of testing hypothesis EXP_Bx, i.e. the differences in background 
assessment and perceived difficulty between the two data sets (MSc vs BSc 

students). Statistically significant results on the 0.05 level have been highlighted 

 
Mann-

Whitney U 

Asymp. Sig. 

(2-tailed) 
Reject H0 

Industrial Exp (BSW) 213.500 0.050 Yes 

Programming Exp (BP) 83.000 0.000 Yes 

Defects and SQ Exp (BSQ) 135.500 0.000 Yes 

Automotive SW Exp. (BASW) 278.000 0.558 No 

Difficulty (BD) 258.500 0.423 No 
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A comparison of the subjects’ perceived confidence per attribute is shown 

in Table 21 and Table 22 (for ODC and LiDeC respectively). As can be seen 

in the tables, there were no differences in perceived confidence for the 

attributes in LiDeC, while there were two attributes in ODC that showed 

significant difference.  

 

Table 21. Results of hypothesis EXP_Cfa (for the ODC group), comparing 
perceived confidence per attribute between the MSc and BSc student groups  

(statistically significant results on the 0.05 level have been highlighted) 

ODC Mann-Whitney U 

Exact Sig. 

 [2*(1-tailed 

Sig.)]b 

Activity 56.500 0.220 

Trigger 54.500 0.182 

Impact 51.000 0.135 

Target 52.000 0.150 

Source 41.000 0.041 

Age 58.000 0.262 

Type 37.000 0.023 

Qualifier 45.500 0.068 

b Not corrected for ties 
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A comparison between the MSc and BSc students in terms of their 

perceived classification confidence per defect is shown in Table 23. As can be 

seen, the MSc students were significantly more confident than the BSc 

students in their classification of defect 2.  

Table 22. Results of hypothesis EXP_Cfa (for the LiDeC group), comparing 

perceived confidence per attribute between the MSc and BSc student groups 

LiDeC Mann-Whitney U 
Exact Sig. 

 [2*(1-tailed Sig.)]
b
 

Detection 42.500 0.201 

Urgency 51.500 0.477 

Severity 40.500 0.159 

Effect 62.500 0.975 

Artefact 44.500 0.250 

Injection 49.000 0.403 

Type 58.500 0.781 

Product Impact 52.500 0.516 

Verification level 39.500 0.141 

Resolution State 37.500 0.109 

b Not corrected for ties 
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In terms of the time required to classify defects, there was no significant 

difference. Table 24 shows the comparison of the total time required to 

classify all five defects.  

 
 

Table 23. Results for hypothesis EXP_Cfd, comparing perceived  
classification confidence per defect, MSc vs BSc students  

(statistically significant results on 0.05 level have been highlighted) 

 
Data set N 

Mean 

Rank 

Mann-

Whitney U 

Asymp. Sig.  

(2-tailed) 

Defect1 

MSc 19 29.03   

BSc 31 23.34   

Total 50  227.500 0.156 

Defect2 

MSc 19 30.71   

BSc 31 22.31   

Total 50  195.500 0.035 

Defect3 

MSc 19 26.74   

BSc 30 23.90   

Total 49  252.000 0.477 

Defect4 

MSc 19 28.74   

BSc 31 23.52   

Total 50  233.000 0.197 

Defect5 

MSc 19 27.74   

BSc 31 24.13   

Total 50  252.000 0.376 

 

Table 24. Results for hypothesis EXP_Ttot, analysis of total time required  
for classifying all 5 defects, MSc vs BSc students 

 TotalTime 

Mann-Whitney U 288.500 

Asymp. Sig. (2-tailed) 0.904 
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A comparison of the classification accuracy between the BSc and MSc 

students is shown in Figure 20 and Figure 21 for ODC and LiDeC 

respectively. In both figures, the vertical axis denote the total number of 

correctly classified attributes over all five defects18. As can be seen in the 

figures, the mean value seem to be slightly lower for  the BSc students for 

                                                      
18 Please note that, as the number of attributes in ODC and LiDeC differs, the absolute number 

(as shown in the vertical axis in each figure) is not comparable between the schemes 

 

Figure 20. Results for hypothesis EXP_Cotot, comparing 
accuracy between the MSc and BSc datasets (for ODC) 

 

Figure 21. Results for hypothesis EXP_Cotot, comparing 
accuracy between the MSc and BSc datasets (for LiDeC) 
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both schemes. The variance within the samples, however, is large (with the 

exception of MSc students using LiDeC, shown to the left in Figure 21), thus 

the apparent difference in means is not statistically significant.  

The notably lower variance within the MSc students classifying according 

to the LiDeC scheme might indicate that more experienced subjects in 

combination with a classification scheme adapted to the specific domain of 

the defect reports contribute to a more uniform classification performance. 

Extrapolating this to an industrial context, it would suggest that an adapted 

classification scheme increases the consistency of the classification and 

therefore also the reliability of the classification data. 

In summary, as the differences found between the datasets were in the 

students own assessments (background and confidence) while no differences 

could be shown for the main dependent variables (time and accuracy) the two 

datasets were merged. All subsequent analyses were done on the merged 

dataset.  

Impact of Classification Scheme 

In order to evaluate the threat to internal and conclusion validity, the 

background survey for each experimentation group was analysed. If 

significant differences between the groups were found it would confound any 

effects found in the experiment, as they may not necessarily be attributable to 

the treatments provided to the experimentation groups. 

 
As can be seen in Table 25, no statistically significant differences in the 

subjects’ background survey could be shown. However, the difference 

between the groups in their perceived difficulty of the experiment (shown in 

Table 25. Results of testing hypothesis DCS_Bx, i.e. the differences in background 
assessment and perceived difficulty between the experiment groups (ODC vs 

LiDeC) 

 

Mann-Whitney 

U 

Asymp. Sig. (2-

tailed) 

Industrial Exp (BSW) 269.000 0.312 

Programming Exp (BP) 284.000 0.558 

Defects and SQ Exp (BSQ) 274.000 0.393 

Automotive SW Exp (BASW) 292.000 0.491 

Difficulty (BD) 233.000 0.088 
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Table 25 as Difficulty) was close to being significant at the 0.05 level, where 

the ODC group considered the experiment more difficult than the LiDeC 

group. This difference can be attributed the fact that LiDeC is adapted to the 

same technical domain as the defect reports, and might therefore be perceived 

less difficult to apply than the more generic ODC.  

 
As can be seen in Table 26—showing the subjects’ self-assessed 

confidence per classified defect—the LiDeC group was significantly more 

confident in their classification of defect 4.  

In summary, no significant differences in the subjects’ self-assessed 

background experiences were found that would pose a threat to the internal 

validity of the experiment. Therefore, it will be assumed that the effects seen 

Table 26. Results for hypothesis DCS_Cfd, comparing perceived  
classification confidence per defect, ODC vs LiDeC  

(statistically significant results on 0.05 level have been highlighted) 

 

Group N 

Mean  

Rank 

Sum of 

Ranks 

Mann-

Whitney U 

Asymp. 

Sig. (2-

tailed) 

Defect1 

ODC 26 24.40 634.50 

  
LiDeC 24 26.69 640.50 

  Total 50 
  

283.500 0.558 

Defect2 

ODC 26 22.27 579.00 

  
LiDeC 24 29.00 696.00 

  Total 50 
  

228.000 0.082 

Defect3 

ODC 25 24.88 622.00 

  
LiDeC 24 25.13 603.00 

  Total 49 
  

297.000 0.950 

Defect4 

ODC 26 21.17 550.50 

  
LiDeC 24 30.19 724.50 

  Total 50 
  

199.500 0.022 

Defect5 

ODC 26 23.42 609.00 

  
LiDeC 24 27.75 666.00 

  Total 50 
  

258.000 0.274 
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in the subsequent analyses can be attributed to the differences in the 

classification schemes used (the treatment). 

Classification time 

As can be seen in Table 27, there was no significant difference between the 

groups in the total amount of time required to classify all five defects 

(p>0.05). Presumably, the time required to read and understand each defect 

report outweighs any differences that may have been contributed by the 

classification schemes themselves. 

 
As can be seen in Figure 22—showing classification time per defect—both 

the average time required per defect and the variance within each group is 

similar. This corroborates the conclusion that there is no significant 

difference between the groups. What can be seen in Figure 22, however, is a 

clear indication of a learning curve, where the initial defects require 

considerably longer time than the subsequent ones.  

The classification time, as seen in Figure 22, seems to converge at 

approximately 4 to 5 minutes per defect. In the experiment, this includes the 

time required for the subjects to read the defect report, suggesting that the 

actual classification time may be only a fraction of that. In an industrial 

setting, a defect would be classified at the time of reporting when the reporter 

would already have detailed knowledge about the defect. Thus, the additional 

time required to classify a defect will most likely be small. 

Table 27. Results for hypothesis DCS_Ttot, analysis of total time required  
for classifying all 5 defects, ODC vs LiDeC 

 TotalTime 

Mann-Whitney U 258.000 

Asymp. Sig. (2-tailed) 0.294 
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Accuracy 

The accuracy of the classification was examined in two ways. Firstly, the 

amount of correctly classified attributes was compared between the schemes. 

Secondly, the accuracy of each scheme was compared to random 

classifications. 

Figure 23 shows the classification accuracy (as percentage of correctly 

classified attributes) for each defect, and Table 28 shows the statistical 

analysis of the difference between the groups (using Mann-Whitney’s U-test). 

As can be seen in Figure 23, the classification accuracy (varying between 

31% and 53%) appears similar for both schemes. One interesting observation 

is that the accuracy of the LiDeC groups appears higher for defect 4, which is 

corroborated by the analyses shown in Table 28—only defect 4 showed a 

statistically significant difference. Defect 4 also had (as can be seen in Table 

26) a significantly higher perceived classification confidence; thus suggesting 

that the higher perceived confidence is justified.  

 

Figure 22. Results for hypothesis DCS_Td, showing classification time per defect 
for each of the two classification schemes. A decrease in classificaion time indicate 

learning time 

 



134 Part IV—Evaluation  

 

 

 
Figure 24 and Figure 25 show the accuracy of a human classifier compared 

to classifications done at random. As can be seen in the figures, human 

classifiers performed significantly better than a random classification (p<0.01 

using Mann-Whitney U).  

 

Figure 23. Bar chart for hypothesis DCS_Cod, representing the amount of 
correctly classified attributes per defect (ODC vs LiDeC) 

Table 28. Results for hypothesis DCS_Cod, comparing the accuracy as the  
percentage of correctly classified attributes per defect (ODC vs LiDeC) 

 

Group N 
Mean 

Rank 

Sum of 

Ranks 

Mann-

Whitney U 

Asymp. 

Sig.  

(2-tailed) 

Defect1 

ODC 26 26.04 677.00 
  

LiDeC 24 24.92 598.00 
  

Total 50 
  

298.000 0.782 

Defect2 

ODC 26 28.90 751.50 
  

LiDeC 24 21.81 523.50 
  

Total 50 
  

223.500 0.083 

Defect3 

ODC 26 26.60 691.50 
  

LiDeC 24 24.31 583.50 
  

Total 50 
  

283.500 0.577 

Defect4 

ODC 26 20.44 531.50 
  

LiDeC 24 30.98 743.50 
  

Total 50 
  

180.500 0.010 

Defect5 

ODC 26 27.65 719.00 
  

LiDeC 24 23.17 556.00 
  

Total 50 
  

256.000 0.275 

Total 

ODC 26 25.87 672.50 
  

LiDeC 24 25.10 602.50 
  

Total 50 
  

302.500 0.853 
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Consistency 

The classification consistency was examined using the Krippendorff’s alpha 

statistic. As can be seen in Table 29 and Table 30, showing the alpha statistic 

for each attribute in ODC and LiDeC respectively, the calculated inter-rater 

agreement is low. Krippendorff (2004, p. 241) recommends alpha values to 

 

Figure 24. Results for hypothesis DCS_CoRnd (ODC), comparing the accuracy 
of a human classification to that of a randomly generated one (ODC).  

The difference is statistically significant (p<0.01) 

  

Figure 25. Results for hypothesis DCS_CoRnd (LiDeC), comparing the accuracy of 
a human classification to that of a randomly generated one.  

The difference is statistically significant (p<0.01) 
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exceed 0.667 in order to be considered as acceptable, and to exceed 0.8 to be 

considered a (near) perfect match. This low agreement statistic is in line with 

one previous study (Henningsson and Wohlin, 2004), but also in contrary to 

the findings of others (El Emam and Wieczorek, 1998; Freimut et al., 2005). 

We elaborate further on this in section 8.6.2. 

 
As can be seen in Table 30, the detection attribute has the highest alpha, 

while the injection attribute has the lowest. Figure 26 and Figure 27 illustrate 

the distribution of answers for these two attributes respectively. In the figures, 

the horizontal axis represent each of the five defects in the experiment, the 

vertical axis represent the available values for the attribute, and the area of 

each bubble is proportionate to the number of subjects that assigned the value 

to the defect.  

In Figure 26, it can be seen that for each defect (with the exception of 

defect 4) one bubble is considerably larger than the others are, while in 

Figure 27 the bubbles are more similar. This indicates indeed a higher degree 

of agreement among the subjects for the Detection than the Injection 

attribute. This is, futhermore, in line with a finding from the industrial case 

study, were the Injection attribute was removed. The reason was that the 

subjects considered it too difficult to deduce the necessary information from 

the defect reports to reliably assign the Injection attribute.  

Table 29. Results for hypothesis 
DCS_a, showing the Krippendorff's 
alpha statistic for the ODC attributes 

with 5 defects and 26 subjects 

Attribute Alpha 

Activity  0.241 

Trigger  0.103 

Impact  0.008 

Target  0.128 

Source  0.042 

Age  0.028 

Type  0.201 

Qualifier  0.124 
 

Table 30. Results for hypothesis  
DCS_a, showing the Krippendorff's 

 alpha statistic for the LiDeC attributes  
with 5 defects and 24 subjects  

Attribute Alpha 

Detection  0.268 

Urgency  0.191 

Severity  0.087 

Effect  0.108 

Artefact  0.070 

Injection  0.019 

Type  0.209 

Product  0.051 

Verification  0.083 

Resolution  0.082 
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Figure 26. Bubble diagram for hypothesis DCS_a, illustrating the distribution of 
assigned values per defect for the Detection activity attribute in LiDeC. The size 
of each bubble is proportional to the number of subjects that assigned that value 

for each defect. 

 

 

Figure 27. Bubble diagram for hypothesis DCS_a, illustrating the distribution of 
assigned values per defect for the Injection activity attribute in LiDeC. The size of 
each bubble is proportional to the number of subjects that assigned that value for 

each defect. 
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8.5.2 Case Study Results 

In this section, we report on the results from the industrial case study. The 

aim of the study was to characterize defects found late in projects. 

Specifically to provide evidence of whether the defects were caused by 

integration issues, as was anticipated by expert opinion. Additionally, we 

examined the time required to perform the classification in order to evaluate 

classification efficiency.  

Cause of Late Defects 

To complement the broad experiment, we conducted an in-depth case study 

(Mellegård et al., 2012a) of in-process defects from one system developed at 

the department. We found, in the initial analyses of the defect data, that there 

was a substantial inflow of defects in late project phases. Figure 28 shows the 

number of unresolved defects through the project (the defect backlog). 

According to established software reliability growth models (for instance, s-

shaped models such as the Rayleigh model (Kan, 1995)), a defect backlog 

should typically resemble a bell shaped curve. Initially, when focus is on 

feature development, the number of reported defects is low. In the middle of 

the project, focus is shifted towards shoring up the system and testing 

therefore intensifies, typically resulting in a substantially increased defect 

inflow. As testing continues and defects are resolved, there should ideally be 

fewer defects in the system to find, and therefore the inflow of defects should 

decrease.  
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As can be seen in Figure 28, the shape of the backlog curve resembles the 

typical bell curve with one striking exception: the sharp spike in unresolved 

defects very late in the project. Similar spikes were found in one previous 

project and one that was currently on going, suggesting a systemic cause. 

Furthermore, the timing of the late spike, close to software release (a major 

in-development milestone), seemed to confirm the hypothesis of integration 

issues. To evaluate the hypothesis, LiDeC was applied to a sample of defects 

from the defect inflow spike shown in Figure 28, and the resulting 

classification data was analysed.  

 

 

Figure 28 Defect backlog, showing the number of open defects throughout the 
project. Note that the total number of defects (y-axis) has been scaled to 100 and 

the time scale (x-axis) has been removed due to confidentiality reasons. In 
addition, the time scale has been cropped (indicated by the ellipsis in the start and 
end of the curve) and does therefore not include the last phase leading up to start 

of production 
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Figure 29 shows a sample of the analysis using four LiDeC attributes (see 

(Mellegård et al., 2012b)), providing information from three perspectives: 

detection of the failure, the type of the underlying fault, and finally product 

and project impact of applying the resolution. Using these three perspectives, 

the defects were examined to evaluate whether they were integration issues 

as anticipated.  

As can be seen in the top two charts in Figure 29, while the majority of 

defects were indeed detected during integration testing—system or 

functional—the defect types were not typical for integration issues. Whereas 

the anticipated type would be Interface, Data or Tuning, the majority of 

defects were of the type Logic—i.e. computational or algorithmic faults. 

Such defects would normally be present already in the simulation models. 

This was corroborated by the Resolution impact attribute, shown in the 

 

Figure 29 Preliminary analysis results, showing the distribution of classification values 
for the attributes Detection activity, Defect type, Resolution impact and  

Re-verification level 
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bottom left of Figure 29, indicating that most defects required changes to a 

single unit – integration issues would typically have an impact on multiple 

units, or require changes to the specification (denoted as Functional 

changes).  

However, the Re-verification Level attribute—showing the activity 

required to test a resolution—indicates that it is not a clear-cut case. On the 

one hand, a significant amount of defects required only inspection or 

component test, indicating unit problems. On the other hand, most defects 

would require new system or functional tests, indeed indicating integration 

impact—finding the root cause of these defects could bring significant 

benefits. 

Our (careful) conclusions from this study is that the majority of late 

defects—although to a large extent requiring new integration tests—are not 

of the type typically associated with integration problems. Thus, the 

classification of defects provided the development teams with new 

information that may contribute to better test planning—e.g. put effort into 

improving testability of requirements on unit level. 

Finally, we would like to emphasize that the analysis presented here was 

conducted on a sample of defects from a project that had finished a year prior 

to the study. The results should therefore be treated as proof-of-concept rather 

than as a basis for recommended change of practice. We can however 

conclude that the classification contributed with new information that in part 

contradicted expert opinion. This raised interest and inspired discussions 

regarding possible causes; the case study provides evidence that conducting 

defect classification and analysis contributes to constructive review of the 

state-of-practice. 

Classification time 

In addition to the classification data, the classification time per defect was 

measured. In the study, two subjects participated in two classification 

sessions conducted more than a week apart. Figure 30, shows the 

classification time per defect for both subjects and session, provides an 

interesting comparison to the results from the experiment (see Figure 22). As 

can be seen in Figure 30, the initial defects in the first session by the two 

subjects (denoted S1.1 and S2.1 in the figure) took considerably longer than 

the subsequent defects; on average twice as long as in the experiment. This 

can be explained by the difference in size of the defects in the case study and 

the ones used in the experiment. As can also be seen in Figure 30, the time 

required to classify defects in the second session (denoted S1.2 and S2.2) was 
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considerably less than in the initial session, suggesting that the learning that 

took place in the first session was retained by the subjects. 

Interestingly, in both the experiment and the case study the classification 

time seemed to stabilize around 5 minutes per defect. It should be noted that 

reading the defect description is included in that time.   

 

8.6 DISCUSSION 

In this section, we discuss general observations on the impact of experience 

and the choice of DCS on defect classification performance. We also provide 

methodology reflections. 

8.6.1 Observations about Defect Classification 

DCSs are quickly learnt, and knowledge is retained. Although the results 

showed no statistically significant difference in classification time between 

the two DCSs, the results did show a clear indication of learning time (see 

Figure 22). The same pattern could also be found in the industrial case study 

(see Figure 30), where the classification time per defect was similar, although 

slightly longer. A likely reason for this is that the defect reports classified in 

 

Figure 30. Classification time per defect in the industrial case study. Sx.y denote 
session y for subject x. Note especially the learning time for session 1 (dashed 
lines), and that the knowledge seems to have been retained by both subjects for 

session 2 (solid lines) 
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the case study were significantly longer than the edited ones used in the 

experiment. Nevertheless, results from the two studies indicate that the 

classification time stabilizes already after 3 – 5 defects, suggesting that the 

subjects are quickly able to learn the DCS. In addition, the knowledge 

acquired after practicing is retained. As shown by the solid lines in Figure 30, 

the two subjects that participated in a second classification session classified 

the initial defect considerably more quickly than in the first session (shown 

with dashes lines in Figure 30), even though there was more than a week 

between session.  

DCS applied accurately, even without domain knowledge. In terms of 

accuracy, human classifications were significantly more accurate than 

random classifications for both DCSs (see Figure 24 and Figure 25). This 

shows that, even though lacking domain-specific knowledge, the subjects 

could still analyse the defect description and arrive at a rational classification. 

However, by examining the lower whisker of the right-most boxplots in 

Figure 24 and Figure 25, there exist subjects in both groups that do not 

perform better than random. This suggests, although rather trivially, that in 

order to ensure reliable defect classification data, experience (and perhaps 

training) is necessary. 

Experience and domain-specific DCS contributes to classification 

performance. Interestingly, the variance in classification accuracy differed 

considerably with experience for LiDeC but not for ODC (as can be seen in 

Figure 20 and Figure 21). This means that the more experienced subjects 

using domain specific DCS perform a more consistent classification. This 

indicates that both the experience of the staff and the design of the DCS are 

factors influencing the reliability of the data. 

Classification should be done in-process, and contain regular reviews. Still, 

the accuracy in the experiment can be considered low—approximately 40 – 

50% of the attributes in both schemes were classified correctly. However, in 

the industrial case study, which had a similar setup (in that defect reports 

from a finished project were analysed post-factum), a number of attributes 

were considered difficult to classify because the defect descriptions were 

lacking the necessary information; for instance, the Injection Activity 

attribute. In these cases, the practitioners stated that the necessary 

information would have been known to the staff at the time of reporting. 

Moreover, as the classifications were analysed on a nominal scale, there is no 

notion of degree of correctness, even though such can be identified in 

practice. For instance, for the Injection Activity attribute in LiDeC, there may 
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be multiple valid classifications depending on what is considered the actual 

root cause. In addition to contributing with an apparent lower accuracy in the 

experiment, it highlights a need to establish and maintain organizational 

classification praxis—for example, by regularly reviewing sample 

classifications. 

Domain-specific DCS provides more relevant guidance. As can be seen in 

Table 20, the MSc students had more software engineering experience than 

the BSc students did, while no difference in their experience with automotive 

software (i.e. domain knowledge) were found. Even so, there was no 

significant difference in perceived difficulty of the experiment, suggesting 

that general software engineering experience may not be a significant factor 

in understanding the material. Instead, it may be domain specific knowledge 

that is needed. As can be seen in Table 21 and Table 22, the less experienced 

subjects were significantly less confident in classifying two ODC attributes 

(Type and Source). The Type attribute has a quite technical (source code 

related) description, which might require more software engineering 

experience to understand. The Source attribute, captures data on whether the 

defect was found in an artefact developed in-house of outsourced. One 

explanation to the significant difference in confidence is that the defect 

descriptions use the word “supplier” to indicate that an artefact was 

outsourced. This may have caused the BSc students to feel less confident than 

the MSc students. In LiDeC, however, no such difference could be shown. 

This suggest that LiDeC, designed for the target development context, 

provides more relevant guidance; thus, indicating a benefit of adapting the 

DCS to the development context. 

A domain-specific DCS provides more data with no extra effort. There was 

no significant difference in the time required to classify the defects (see Table 

27), even though the LiDeC group classified two additional attributes, 

producing 20% more data compared to the ODC group. This indicates that 

the time it takes to perform the classification is small in comparison to 

reading the defect report (which in an industrial setting would correspond to 

documenting the defect). Thus, as the defect data proved useful in the case 

study, classifying defects can be considered a cost-effective approach to 

structured defect data collection.  

A domain-specific DCS may increase likelihood of adoption. While no 

statistically significant difference in accuracy could be shown, the LiDeC 

group perceived the experiment as less difficult (see Table 25, where the BD 

variable was close to being significant), and classified the defects that were 
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more domain specific with higher confidence (see defect 2 and 4 in Table 

26). Thus, by adapting a classification scheme to the target domain, its 

perceived difficulty is reduced and the confidence of the classification is 

increased—at least for the defects that are more domain-specific. This, in 

turn, may contribute to making practitioners more inclined in adopting defect 

classification in the process, and retaining that practice—which is needed in 

order to establish and maintain company baselines. 

Risk with a too specific DCS. The results described above show that there is 

value in adapting a DCS to the specific development context in which it is to 

be deployed. A concern, however, is that a too specific classification scheme 

risk making the collected data equally specific, and therefore risk impeding 

comparisons between organizations or even departments within an 

organization. One solution, may be to design the attribute values in a 

hierarchical manner, as the adapted Impact attribute presented by Vetro et al. 

(2012) and the Detection activity attribute in LiDeC (Mellegård et al., 

2012b). In LiDeC, the top-level values in the Detection activity attribute are 

chosen such that they should be applicable to most organizations (the values 

include Inspection, Unit, System, Function, and Customer report). Each top-

level value is then broken down into the specific types of detection activities 

that apply to the domain; the domain-specific values are used in the 

classification, while the top-level values are intended to provide a way to 

generalize the data.  

Low classification consistency might indicate methodological problems. The 

classification consistency was found to be low for both schemes (see Table 

29 and Table 30), where the highest alpha-values where between 0.201 and 

0.268, far below the 0.667 threshold that Krippendorff recommends for good 

agreement. This apparently poor classification agreement among the subjects 

would suggest the classification data to be unreliable—i.e. that the 

classification outcome may be too dependent on who performs the 

classification, rather than on properties of the defects. However, the bubble 

diagrams generated for the LiDeC attributes with highest and lowest alpha 

(see Figure 26 and Figure 27) do indicate a considerable difference; whereas 

in Figure 27 the bubbles have similar sizes, showing no consensus in 

classification, in Figure 26 a clear pattern can be seen. Even though the 

visualization does not provide conclusive evidence, it suggests that there 

might be problems with the statistical method used to assess the agreement 

(further elaborated on in section 8.6.2). 
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8.6.2 Methodological Reflections 

In part, we have in this paper aimed to describe a rigorous method for 

evaluating the efficiency and effectiveness of DCSs. In the method, the 

efficiency of the scheme is evaluated through a controlled experiment, while 

the effectiveness is evaluated using an industrial case study.  

The aspects related to efficiency of a DCS were classification and learning 

time, accuracy and consistency—providing evidence regarding the cost of 

classifying defects, and the reliability of that data. While the method to 

analyse the first two aspects are straightforward (as described in section 8.4), 

the consistency aspect warrants further elaboration. Whereas previous studies 

evaluating the consistency of classification have used Cohen’s kappa statistic, 

in our experiment Krippendorff’s alpha was used instead; reasons include 

that Krippendorff’s alpha can be applied for more than two subjects19, and is 

more flexible in handling data with missing values (Hallgren, 2012; Hayes 

and Krippendorff, 2007).  

Previous studies on classification consistency have delivered contradictory 

results, whereas the studies by El-Emam and Wieczorek (1998) and Freimut 

et al. (Freimut et al., 2005) showed fair to good agreement for the type 

attribute in ODC, the study by Henningsson and Wohlin (2004) could not 

show such agreement for the same attribute. It should be noted, however, that 

in the latter study, university students were used as subjects, whereas in the 

former two practitioners were used. Nevertheless, the criticism of Cohen’s 

kappa as a coefficient for measuring inter-rater agreement has been 

extensively documented (see e.g. (Feinstein and Cicchetti, 1990; Feng, 2012; 

Lombard, 2004)). The main criticism relates to its sensitivity to prevalence 

and bias in the data, which also affects Krippendorff’s alpha (Feng, 2012). 

While Cohen’s kappa was used in by Vetro et al. (2012), they also included 

analyses to evaluate the degree of prevalence and bias, and were thereby able 

to evaluate the reliability of the kappa coefficient. According to Gwet (2008) 

and Feng (2012), a more reliable statistic for evaluating inter-rater agreement 

might be Gwet’s AC1 although it too has been shown to be affected by 

prevalence (Feng, 2012). Feng, furthermore, describes a method to evaluate 

the degree of prevalence and its implications on the choice of analysis 

method (Feng, 2012). Taken together, this shows that existing methods to 

evaluate consistency are not sufficiently reliable, and conclusions based on 

these methods should be taken with care. Still, as consistency is an important 

                                                      
19  Note that, while this refers to the individual that performs the rating, in the statistics 

literature ‘subject’ refers to the objects being rated and the ‘rater’ to the individual who is 

performing the rating 
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aspect of assessing reliability of classification data, one interesting way of 

characterizing the inter-rater agreement is by using bubble diagrams as 

shown in Figure 26 and Figure 27.  

Finally, while the use of university students as subjects is disputed in terms 

of external validity, it provides a convenient sample to acquire quantitative 

data. In our experiment, we applied blocking on amount of experience and 

acquired skill to evaluate its impact on classification performance. 

Extrapolating the differences provided means to reason about the 

generalizability of the results to an industrial setting. 

8.7 CONCLUSION 

In this paper, we have reported on a two-part study aimed at providing a 

comprehensive evaluation of defect classification schemes. In the first part of 

the study, two classification schemes—on generic scheme (ODC) and one 

adapted to the specific context under study (LiDeC)—were compared using a 

controlled experiment with university students as subjects. The experiment 

examined the two DCSs from three perspectives: learning and classification 

time, accuracy and consistency. Additionally, as comprehensive evaluations 

of DCSs have received little previous research attention, we have provided an 

in-depth description of and reflection on methodology. 

In the second part of the study, we reported on an industrial case study in 

which LiDeC was applied to defects from a project. The aim of the study was 

to evaluate how the classification data could be shown useful in an industrial 

context. The results showed that the analysis of classification data could 

provide new information. In our study, that information raised interest at our 

case company and inspired discussions and critical evaluation of the 

development process.  

Put together, the results from these two studies have provided evidence of 

defect classification as an efficient and effective approach to collecting data, 

which in turn can provide important insights into process and product quality. 
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PART V—FUTURE DIRECTION 

Plans are of little importance, but planning is essential 

― Winston Churchill 

9 FURTHERING THE USEFULNESS OF DEFECT 

CLASSIFICATION 

The chapter examines current state-of-the-art defect classification and 

proposes a three-part research roadmap that is argued would advance the 

applicability of defect classification—both as a practical tool and as a 

research instrument. The chapter has previously been published as: 

Mellegård, N., Staron, M., Törner, F. 

Why Do We not Learn from Defects?  

Towards Defect-Driven Software Process Improvement 

Published at International Conference on Model-Driven 

Engineering and Software Development (ModelsWard), 

Barcelona Spain 2013 

9.1 INTRODUCTION 

Software defect classification schemes—such as ODC, HP and IEEE 1044—

have the purpose of providing defect reports with a common structure. Such a 

structure allows for efficient quantitative analyses, which can provide 

evidence of the efficiency and effectiveness of various process activities. 

Following ODC, defect classification schemes (DCS) have been around for 

more than two decades—during which, software development has evolved 

V 
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from being code- and document centric to be model-driven. Based on the 

number of publication in the area, however, we conjecture that DCS have had 

limited industrial impact—this limited impact is taken as a symptom of that 

the approach has failed to meet its target.  

Despite limited adoption, publications—our own case study included—

show that defect reports can provide valuable information for improving 

modelling when aggregated and analysed; to be an efficient tool to draw 

attention of various stakeholders to the most common, important or 

dangerous problems with software products.  

We approach this apparent contradiction by addressing the question: “As 

academic evidence show that DCS can be successful, why has it not had a 

more industrial impact and what can be done?” We first address this 

question by concretely showing the value of DCS, using the synthesis of two 

industrial case studies from our previous work. We then provide evidence in 

support of the conjectured limited industrial adoption of DCS, and present 

reasons why. Finally, we provide a roadmap that would fill the gaps in current 

state-of-research that we envision would allow for a more successful 

approach to DCS.  

In particular, we envision that the roadmap will contribute to making the 

results of defect analyses more useful to project stakeholders in control of 

resources, in particular in the system modelling phase. This is in contrast to 

the current state-of-the-art where analyses of classification data primary are 

intended for developers. By refocusing the DCS approach we envision that it 

will better serve as a tool for fact-based decisions during modelling—based 

on descriptive and predictive measures and indicators. The improvement 

would contribute to more accurate targeting of process improvement 

initiatives, to serve as the basis for defect-driven software improvement 

initiatives. 

In practice, the purpose of a defect report is often limited to facilitating the 

resolution of the defect. For instance, defect reports are often free text 

(Wagner, 2008) which makes quantitative analyses effort intensive. In 

response, various DCS have been proposed. DCS also contribute to 

comparability of defect metrics between projects and between companies 

(Chillarege et al., 1992).  

Classification schemes typically define a set of attributes, where each 

attribute captures a specific aspect of the defect—e.g. how the defect was 

detected, its severity and type. Each attribute typically contain a set of values 

that can be chosen from; this contributes to the efficiency and reliability of 

the classification. In literature, the most commonly referred (Freimut, 2001) 
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DCS are ODC (Orthogonal Defect Classification) (Chillarege et al., 1992), 

the HP approach (Grady, 1992) and the IEEE Std. 1044 (IEEE, 2009, 1993). 

The attributes of ODC and IEEE Std. 1044 are organized into the defect’s 

life-cycle phases; ODC, for instance, defines the phases open and close 

(shown in Table 31). The attributes in the opener section of ODC focus on 

aspects of the failure, whereas the closer section focuses on aspects of the 

fault.  

 
DCS typically focus on technical aspects of the defects and their source 

code manifestations; IEEE Std. 1044, for instance, lists 80 different values 

for its Type attribute. 

9.2 IMPORTANCE OF DEFECT CLASSIFICATION 

In our earlier work (Mellegård and Staron, 2010c; Mellegård, 2010) we 

investigated the importance of various artefact types in the automotive 

software development—such as requirements, types of software models, and 

documents. Specifically, we investigated the perceived importance of the 

artefacts and the relative effort required to create them. The particular focus 

of the case study was to characterize the use of software models in relation to 

other types of development artefacts.  

Among the conclusions of the case study were that most effort was spent 

on simulation models (e.g. Simulink models), while the most important 

artefacts were the requirements and design artefacts. This result was in itself 

Table 31 Overview of ODC (adapted from (Freimut 2001)) 

Process Attribute Meaning 

Open Activity When did you detect the defect? 

Trigger How did you detect the defect? 

Impact What would the customer have 

noticed if the defect had escaped 

into the field? 

Close Target What high level entity was fixed? 

Source Who developed the target? 

Age What is the history of the target? 

Type What had to be fixed? 

Qualifier Was the defect caused by 

something missing, incorrect or 

extraneous? 
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not surprising as the simulation models serve as a base for the 

implementation, and as development is highly distributed—both among in-

house teams and external suppliers—the quality of specifications is crucial to 

preventing eventual integration problems. In fact, during the case study we 

repeatedly encountered statements from our interviewees—expert opinions—

that integration was a considerable challenge, in particular during the late 

project phases. Additionally, we frequently encountered concerns about lack 

of more objective evidence to support these expert opinions.  

These findings directed our interest towards in-process defects, specifically 

to defects detected during late project phases; did integration issues cause 

these, and could we find evidence that the cause was as had been anticipated? 

9.2.1 Cause of Late Defects 

In a second study (chapter 7), we set out to make an in-depth examination of 

in-process defects from one system developed at the department. We found, 

in the initial analyses of the existing defect data, that there was indeed a 

substantial inflow of defects in late project phases; shown in Figure 31 as the 

defect backlog.  

 

 
The timing of the late spike in defects close to software release (a major in-

development milestone) seemed to confirm the hypothesis of integration 

issues. Merely examining the quantity of defects, however, would not reveal 

the nature of the defects and as the defect reports were in free text, they were 

not suitable for quantitative analysis. We therefore used IEEE Std. 1044 as 

 

Figure 31 Defect backlog 
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base to develop a DCS adapted to the context of our case company. The result 

was the Light-Weight Defect Classification scheme (LiDeC) (chapter 6).  

As part of the case study, LiDeC was applied to a sample of defects from 

the late defect inflow spike as shown in Figure 31 and reported in (Mellegård 

et al., 2012a), and the analysis results were presented and discussed at a 

workshop at the company.  

Figure 32 shows a sample of the analysis using four attributes from LiDeC 

(see Appendix A. LiDeC Attribute Description), from three perspectives: 

detection of the failure, type of fault and finally product and project impact of 

the resolution. Using these three perspectives, the defects can be examined to 

evaluate whether they were integration issues as anticipated.  

While the majority of defects was, as can be seen in Figure 32, indeed 

detected during integration testing—system or functional—the defect types 

were not typical for integration issues. Whereas the anticipated type would be 

Interface, Data or Tuning, the majority of defects were of the type Logic—

i.e. computational or algorithmic faults. Such defects would normally be 

present already in the simulation models. This was corroborated by the 

Resolution impact attribute, shown in the bottom left of Figure 32, indicating 

that most defects required changes to a single unit—integration issues would 

typically have an impact on multiple units, or require changes to the 

specification (denoted Functional changes).  

 
However, the Re-verification Level attribute—showing the activity 

required to test a resolution—indicates that it is not a clear-cut case. On the 

one hand, a significant amount of defects requires only inspection or 

 

Figure 32 Preliminary analysis results 
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component test, indicating unit problems. On the other hand, most defects 

would require new system or functional tests, indeed indicating integration 

impact—finding the root cause of these defects could bring significant 

benefits. 

Our (careful) conclusions from this study is that the majority of late 

defects—although to a large extent requiring new integration tests—are not 

of the type typically associated with integration problems. Thus, the 

classification of defects provided the development teams with new 

information that may contribute to better test planning—e.g. put effort into 

improving testability of requirements on unit level. 

Finally, we would like to emphasize that the analysis presented here was 

conducted on a sample of defects from a project that had finished a year prior 

to the study. The results should therefore be treated as proof-of-concept rather 

than as a basis for recommended change of practice. We can however 

conclude that the classification contributed with new information that in part 

contradicted expert opinion. This raised interest and inspired discussions 

regarding possible causes; the case study provides evidence that conducting 

defect classification and analysis contributes to constructive review of the 

state-of-practice. 

9.3 PROBLEM DESCRIPTION 

As we illustrated above, the use of DCS can be an effective approach to 

extracting data from problem reports, and can provide new information about 

the development process. In addition, there have been studies reporting 

similar results, e.g. Butcher et al. (Butcher et al., 2002), or Li et al. (Li et al., 

2012). 

However, we conjecture—partially based on our observations—that DCS 

has had limited industry adoption; we take this as a symptom that state-of-

the-art DCS as a means of extracting process metrics has missed its target. To 

find evidence in support of this conjecture we searched IEEE Xplore 

(http://ieeexplore.ieee.org) using the search term: (‘defect classification’ 

AND ‘software’). The search, performed Oct. 25 2012, yielded 70 

publications between 1986 and 2012. By reading titles and abstracts, we 

found that the publications fell into the following categories: 

 Proposing new DCS, e.g. (Chillarege et al., 1992; IEEE, 2009; Paul et 

al., 2002) 

 Improving existing DCS, e.g. by assisting a user in conducting the 

classification (Huang et al., 2011; Wang He et al., 2009), or adapting 

the scheme to a specific context (Li et al., 2010a) 

http://ieeexplore.ieee.org/
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 Academic evaluation of a DCS, e.g. (Henningsson and Wohlin, 2004; 

Vetro’ et al., 2012) 

 Industrial evaluation of a DCS, e.g. (Butcher et al., 2002; Chillarege 

and Ram Prasad, 2002; Freimut et al., 2005; Li et al., 2012) 

 Analysis techniques for classification data (Li et al., 2010b)  

 Using classification data for other purposes, e.g. to evaluate efficiency 

of inspections (Nagappan et al., 2004), to evaluate static analysis for 

fault detection (Zheng et al., 2006), to propose reliability estimation 

models (Paul et al., 2000), or to evaluate fault injection techniques (Jin 

and Jiang, 2009) 

Notably, we found no publications evaluating industrial adoption of DCS, nor 

investigating what companies would require from such an approach; 

specifically in terms of the information that analyses of the data need to 

provide. 

Further support for our conjecture can be found in the systematic literature 

review by Hall et al. (Hall et al., 2011). In their paper, Hall et al. examined 36 

fault prediction models and noted that the vast majority of the models were 

limited to predicting the quantity of faults per module. In fact, Hall et al. 

could only find one model that incorporated fault severity as a predicted 

variable. In their paper, Hall et al. argue that one reason may lay in the 

difficulty of defining severity. An additional reason, however, may simply be 

a lack of available data; companies tend to collect only the defect data 

necessary to facilitate the resolution of the defect. This brings our thesis to a 

point: although defect classification has been shown to be an effective 

approach to acquiring process metrics, why has it not had a wider industrial 

adoption? 

We can consider this point in the context of communication paths (Pareto 

et al., 2012). In their paper, Pareto et al. argue that a source of problems in 

projects is miscommunication because the needs and concerns of developers 

are not expressed in terms that managers and architects need in order to make 

informed decisions—rather developers express their needs in highly detailed 

and specific technical terms. In order to make an impact on the stakeholders 

in power, developers need to create abstractions suitable for that specific 

stakeholder; to provide evidence that level of abstraction.  

In this context, we contend that established DCS are too focused on the 

developers’ context—illustrated, for instance, by the high granularity of the 

Type attribute in both ODC and the IEEE 1044. In particular, established 

DCS fail at providing sufficient guidance to translate the results into the 
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language needed to make an impact on the stakeholders that are in control of 

the resources.  

Furthermore, unnecessarily high level of detail in classification brings a 

risk that may have a double impact: on the one hand, it adds to the effort 

needed to make a classification (and thus reduces the available resources to 

resolve the problem). On the other hand, it adds to the required analysis effort 

needed to adapt results to the stakeholders in control. Consequently, effort 

risks being put into collecting data that remains unused (Li et al., 2012). 

9.4 ROADMAP 

The roadmap is divided into three parts: investigation of current DCS state-

of-practice; investigation of how the design of DCS could meet the needs 

better; and finally, investigation of how to analyse the data to meet the 

organizational information needs.  

9.4.1 State-of-practice 

As we found a notable lack of research into current DCS state-of-practice in 

general and in modelling specifically, we envision surveying: 

 To what extent do companies use DCS—in particular in the context of 

how DCS provides input to decision formulation and execution 

processes; 

 What alternative approaches are used to facilitate analyses of defect 

reports on an aggregate level (e.g. none, defect taxonomies, root-cause 

analysis etc). 

Furthermore, the results of the surveys should be correlated with aspects such 

as the size of the company and development teams, types of products 

developed and types of development processes used. Such an in-depth 

understanding of current practice would contribute to improving state-of-the-

art DCS. 

Additionally, there is a need to investigate the information needs of 

relevant project stakeholders—mainly product and project managers, and 

architects. In their paper Buse and Zimmerman (Buse and Zimmermann, 

2011) examine general information needs among the stakeholders at a large 

software organization, exemplified by Microsoft. We, however, call for a 

more targeted investigation into which stakeholders are relevant, and what 

their information needs are, with the specific focus on defect data. We 

envision the needs falling into two main categories: descriptive and 

predictive.  
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Descriptive information would characterize project phases in terms of their 

defect profile (patterns). Descriptive information could be used in-process for 

benchmarking against a company base-line (Chillarege et al., 1992), for 

instance to provide evidence for evaluating process improvements. 

Predictive information needs relate to the challenges of resource planning. 

For instance, in assigning resources of test phases in a project, there may be a 

need to predict the anticipated amount and type of defects—fault prediction 

models, such as reviewed in Hall et al. (Hall et al., 2011) aim at that. 

However, more granular defect data may enable more precise prediction 

models, thus enable defect-driven proactive decision support. 

9.4.2 Design of DCS 

The state-of-practice investigations should be complemented with 

establishing a library of best practices and lessons learnt in both the design 

and application of DCS. Li et al. (Li et al., 2012) made a recent contribution 

in part by reporting a number of lessons learnt when applying DCS in two 

organizations, however more studies are necessary. 

Even though the design of DCS is already well represented in state-of-the-

art, there are aspects that are not sufficiently developed. For instance, DCS 

should be refocused from aspects of the implementation (source code) to 

covering all project phases – in particular modelling. There is, additionally, a 

need to build abstraction mechanisms into the DCS in order to reduce the 

required analysis effort, and to improve the comparability of data between 

projects and organizations. 

LiDeC (Mellegård et al., 2012a, 2012b) contributes to this for the 

automotive domain, but studies in other domains are needed. For instance, 

the attribute values in LiDeC are structured hierarchically, which is an 

inherent abstraction mechanism. This allows attributes to be extended with 

values at more detailed levels while retaining comparability at higher levels 

of abstraction.  

In addition, the design of DCS should maintain reference to the ISO/IEC 

15939 standard (ISO/IEC 15939, 2007) in order to facilitate integration with 

other measures (e.g. for the purpose of predictions). 

9.4.3 Data analysis 

The arguably most challenging aspect of DCS is in analysing of the data. The 

thesis put forward in this paper is that state-of-the-art DCS have failed partly 

due to insufficient analysis methods. We propose therefore the need for 

research into analysis and visualization methods that satisfy typical 
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information needs and attract attention to the most important defect patterns 

(as proposed in section 9.4.1). For instance, identifying product and project 

characteristics, such as change patterns in source code or software models (by 

inspecting versioning systems), that correlate with defect inflow profiles 

would enable defect inflow prediction models based on data mined from 

software repositories. 

We envision an analysis reference manual that maps a stakeholder’s 

information need with a set of best practices—for instance as a 

recommendation on which attributes to include in the analysis and how to 

visualize the data. 

Moreover, we assert that reporting on industrial case studies where specific 

organizational problems have been addressed by analysis of defect 

classification data would be of valuable—the work by Li et al. (Li et al., 

2012) contributes to this end.  

9.5 CONCLUSION 

In this paper, we have examined defect classification schemes as a tool for 

collecting process metrics in model based automotive software development 

projects. Specifically, we have critically examined the quality of state-of-the-

art defect classification by investigating its industrial adoption. Our thesis 

was that defect classification has had limited industrial adoption which we 

have argued to be a symptom of knowledge gaps in state-of-the-art DCS.  

One main reason for limited industrial adoption is—in our view—that 

state-of-the-art DCS are inadequate for their purpose. In particular, there is a 

too strong of a focus on low-level aspects of the implementation; i.e., a tool 

primarily intended for developers. DCS thus fail to address that project 

stakeholders in control of resources need information on a different level of 

abstraction to make informed decisions. This means that state-of-the-art 

classification approaches are poorly designed to produce the results that are 

needed in order to make an impact in an organization; thus the effort invested 

in collecting data risks being in vain, as a large potential of the data remain 

unused.  

We have proposed a roadmap for an improved defect classification 

approach that would contribute towards developing new proactive evidence-

based software process improvement strategies—defect-driven software 

process improvement. The roadmap includes: making a deeper investigation 

of the current adoption rate in industry; investigation of the typical 

information needs of the project stakeholders that have control over 

resources; investigation of how to design DCS to support multiple levels of 
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abstraction, and finally; to investigate methods of data analyses to 

accommodate the information needs of the various project stakeholders. 

These actions will contribute to making DCS more appropriately adapted 

to organizations’ needs. This in turn, we conjecture, will result in wider 

industrial adoption.  
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PART VI—IN CONCLUSION 

Finally, in conclusion, let me just say this. 

― Peter Sellers 

10 SUMMARY AND CONCLUSION 

This thesis reports on an investigation of defect classification as a continuous 

in-process tool for extracting well-structured data about defects. Analysing 

such data can reveal interesting information regarding the development 

practices. For instance, patterns in the data may indicate systemic issues with 

the development process or its enactment. 

The main contributions of the thesis, presented in chapters 5 – 9, are based 

on five academic publications. Three of these publications have been peer-

reviewed (chapters 5, 7 and 9), one is a technical report (chapter 6) and one is 

submitted for publication (chapter 8): 

 Chapter 5 describes an industrial case study in which the use of 

software models was investigated. The aim of the case study was to 

characterize model-related development artefacts compared to non-

model ones. The characterization was done based on practitioners’ 

perception of the cost and benefit of developing the various artefacts. 

The case study provided interesting insights into the complexity of 

automotive software development, and the need for objective data in 

order to identify improvement opportunities 

 Chapter 6 provides an in-depth description of a defect classification 

scheme based on IEEE Std. 1044 and adapted to the development of 

automotive safety software. The resulting classification scheme, 

named LiDeC (Lightweight Defect Classification scheme), maintains 

compliance with the standard. Although the chapter is based on a 

VI 
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technical report, the main contributions of the report have previously 

been published and peer-reviewed (Mellegård et al., 2013, 2012a). The 

additional contributions (described in more detail in section 6.2.2 on 

page 58) of the technical report include:  

 a significantly more detailed background description and research 

motivation 

 a description of the method used for adapting the IEEE Std. 1044 

 a significantly more detailed description of LiDeC, including a 

comparison with and a mapping to IEEE Std. 1044  

 Chapter 7 provides a description of an initial industrial evaluation of 

LiDeC, in which a sample of defects were classified and analysed 

 Chapter 8 provides a description of a comprehensive evaluation of 

defect classification schemes. In addition, the chapter reports the results 

of applying that evaluation by comparing LiDeC to ODC 

 Chapter 9 provides an investigation of the current state-of-the-art defect 

classification and identifies research areas that need to be addressed. As 

a result, the chapter describes a research roadmap that would further the 

usefulness of defect classification schemes in industry, as well as 

academia. 

10.1 SUMMARY OF RESULTS 

The main research question in this thesis was: 

How to improve defect management in automotive software 

development using structured defect documentation? 

This research question was broken down into four separate research 

questions, for which the main findings are summarized in the subsections 

below. 
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10.1.1 Characterizing Automotive Software Development 

Chapter 5 in Part II of this thesis reported on an industrial case study in 

which the development of automotive software was characterized from a 

model-driven development perspective. The main research question 

addressed in Part II was: 

RQ 1 How important and effort intensive are software models in 

automotive software development, and what are the 

opportunities for improving the utilization of models? 

The objective of chapter 5 was to characterize the development of automotive 

safety features with respect to the use of software models. Specifically, the 

characterization was done by investigating how perceived development effort 

and importance were distributed between various model and non-model 

related artefacts in the development of software-based vehicle features. The 

investigation was conducted as an industrial case study in which project 

managers responsible for a software based safety and security related 

functions were interviewed. 

The results of the study include that, while requirements were considered 

the most important type of artefact, executable models were the most effort 

intensive. Executable models are commonly used as in-house simulation 

models during development and by suppliers to generate production code. 

Even though these models were not considered as important, they constituted 

the single artefact that received the most effort—an appraised 24% to 55% of 

the total effort spent. Considering these models as the implementation (i.e. 

the actual product under development), it means that 45% to 76% of the 

effort is spent on overhead activities. This in turn suggests that there is room 

for improvement; the question is “what to improve?” 

Although not surprising in itself, the finding that the most effort-intensive 

artefacts were not considered the most important, it highlights an important 

challenge. Requirements—in particular concerning communication interfaces 

and auxiliary components—are a prerequisite for early modularization. Such 

modularization allows individual development teams in a distributed 

development organization the peace of mind to focus on their specific part of 

the implementation. What is interesting, such requirements are typically 

specified early in the development cycle, but can often only be validated in 

late stages when the various components are mature enough to allow more 

extensive testing. This gap between specification and validation was 

perceived by the interviewees as one of the main development challenges, 

and that would typically manifest as late integration problems. Although 
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perceived as a major source of late issues, it was not clear precisely which 

types of requirements that caused the most sever issues, or what improvement 

initiatives to undertake to avoid such issues. 

An additional finding was that the use of software models was fragmented. 

For instance, various modelling notations were used in parallel and 

interchangeably, and no controlled sequence of models or transformations 

was used. Such a sequence of transformations is a tenet of MDD’s claim to 

improve efficiency, for instance in order to reduce the required manual labour 

for generating artefacts (such as code) or to automatically maintain 

traceability. This limited use of model transformation and automatic 

traceability, suggest that while models receive a substantial amount of effort, 

they are not used to their full potential (similar indications have been found 

in other organizations (Burden et al., 2014)). However, suggesting the 

introduction of model transformations as a development silver bullet would 

fail to recognize the complexity of automotive software development. More 

specifically, transitioning to a MDD paradigm has been shown to change 

substantially the way-of-working (Staron, 2008). Such substantial changes 

are not feasible in the automotive domain, as the development of a car 

involves the parallel development of a large number of interdependent 

heterogeneous components—mechanical, electrical and software-intensive 

parts. Instead, one approach to improve the efficiency of software 

development may be in line with how Selic (Selic, 2003) proposes adopting 

of a model-driven process; to introduce locally in projects tools that are most 

appropriate for the tasks at hand, and that addresses current development 

challenges. To identify objectively the tasks and challenges in need for 

improved practices in a complex development context, however, is not 

straightforward.  

10.1.2 Adapting a Defect Classification Scheme 

The concept of defect classification schemes was in this thesis investigated as 

means to identify tasks and challenges in need for improved practices. 

Although the IEEE Std. 1044 defines a standard structure for defect 

classification, it requires adaptation to be efficient in a specific development 

organization. Chapter 6 in Part III, presents an adaptation of the standard to 

the development of automotive software. The research question addressed in 

chapter 6 was: 

RQ 2 How to improve efficiency of applying IEEE Std. 1044 in 

model-based automotive software development? 
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In chapter 6, the research question was addressed by investigating how IEEE 

Std. 1044 can be adapted to automotive software development. The specific 

properties of the automotive domain that motivates the adaptation include the 

strong reliance on supplier side implementation. This limits the usefulness of 

generic classification schemes, such as IEEE Std. 1044, as they tend to have a 

substantial focus on source code manifestations of defects. In addition, as 

defect classification does not directly contribute to the development of the 

end-product, it was considered important to adapt the classification scheme to 

minimize classification effort while still providing the additional benefits of 

characterizing the defects. More specifically, the research questions 

addressed in the chapter were:  

L1 In the context of automotive safety-feature development, where 

source-code is often not available, how can a standard defect 

classification scheme be suitably adapted? 

L2 As defect classification may be considered an administrative 

task, how can the adaptation of a standard defect 

classification scheme be done to minimize required learning 

and classification time?  

As reported in chapter 6, L1 was addressed by: 

 Shifting the focus of the classification scheme from detailed aspects of 

the fault and its resolution to aspects of the discovery of the defect. As 

the implementation is mainly done by suppliers, most in-house process 

improvement potential lies in more efficient defect discovery 

activities. LiDeC reflects this by providing more detailed attributes in 

the Recognition phase (e.g. Detection activity, Urgency, Severity and 

Effect), while granularity of the attributes in subsequent phases have 

been reduced; e.g. the Type attribute is less granular than in IEEE Std. 

1044 and detailed aspects of the resolution (captured by the IEEE 

attribute Resolution) has been omitted; 

 Adapting attributes for safety specific purposes. In LiDeC the attribute 

Functional Safety Impact (which maps to the IEEE attribute Societal) 

records whether a defect impacts ASIL-classified requirements 

(ISO/DIS, 2011). In addition, the values of the Effect attribute (which 

maps to the IEEE Symptom attribute) was adapted specifically to 

provide a high-level characterization of safety feature problems (e.g. 

unintentional activation of a feature).  
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L2 was addressed by:  

 Raising the level of abstraction of attributes. For instance, by 

providing only higher-level categories as values for the Type attribute 

 Providing more descriptive attribute values. For instance, for the 

Severity attribute, instead of values such as Low, Medium and High 

more descriptive values aligned with the company’s vocabulary were 

chosen values  

 Providing attribute descriptions and values phrased using the 

terminology of the company 

 Providing a classification guide with a flow-chart structure, and 

including typical examples for each attribute value 

 Streamlined the attributes by removed or redefining attributes that 

required insights that the typical reported might not have (project 

schedule and risk). Attributes were redefined with care to retain the 

intentions of the original attribute but measured in more specific 

engineering terms; for instance, whereas the IEEE Std. 1044 attribute 

Project schedule aimed at appraising the direct impact on the project 

plan, LiDeC instead appraises the estimated amount of re-verification 

(an activity that may have a large impact on the project schedule). 

An additional contribution of chapter 6 is that the description of the 

adapted classification scheme, together with the mapping to the standard is 

intended to add to the generalizability of the data collected—i.e. to allow 

comparisons between organizations. This description aims to contribute to a 

baseline on how to adapt and document a classification scheme, in order for 

data collected from various organizations to be compared. Such comparisons 

may in turn contribute to a deeper understanding on issues common among 

organizations, and the effects of initiatives to resolve them. 

10.1.3 Evaluating a Defect Classification Scheme 

While the need to adapt generic defect classification schemes has previously 

been recognized, it has not been established how to evaluate the resulting 

classification scheme. In Part IV, two research questions relating to the 

evaluation of DCS were addressed: 

RQ 3.1 How feasible is LiDeC for model-based automotive software 

development? 

In chapter 7, a pilot study evaluating the applicability and usefulness of 

LiDeC was presented. The evaluation was conducted as an industrial case 
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study in which practitioners classified a sample of defects from a finished 

project.  

This evaluation is of interest for two main reasons. Firstly, despite being 

published already in 1993, there are to date few experience reports evaluating 

the applicability of IEEE Std. 1044. Secondly, as LiDeC was adapted from 

the standard, it is of interest to evaluate what impact the adaptation has. More 

specifically, as the adaptation mainly consisted of raising the level of 

abstraction of the attributes, there is a risk that the lower granularity of the 

data impedes its usefulness.  

The case study showed that even though the granularity of the attributes 

were lower, analyses of the data still contributed with new information about 

the development process. For instance, whereas the typical type of late 

defects was anticipated to be integration issues—such as timing of signals 

between software modules or mismatches in communication interfaces—the 

analysis indicated that it was instead algorithms and code logic defects. As 

these types of defect would typically be present already in the executable 

models, it suggested that more improved unit level tests or more advanced 

simulation environments would contribute to detecting a substantial quantity 

of late defects earlier in the process. While these results did not provide a 

specific course of action, they did provide the experts with evidence that can 

be considered more objective. Such evidence inspired discussions and critical 

evaluations of the development process.  

Moreover, observations from the case study showed that the practitioners 

quickly understood the attributes in LiDeC and were able to efficiently 

perform classification—classification time stabilized around 5 – 10 minutes 

per defects already after classifying 3 – 4 defects (see Figure 30 on page 

142). The understanding of LiDeC was, furthermore retained by the 

practitioners, as can be seen by the significantly shorter classification time for 

the initial defects in the second classification session (also shown in Figure 

30). As the classification time included the time required to read and analyse 

the defect report, it can safely be assumed that when performed in-process—

when the details about the defect are in fresh memory—the additional time 

required to perform the classification is small. 

Thus, as the time required for learning and performing defect 

classifications according to LiDeC is short and analysing the classification 

data provide valuable information, the adaptation of IEEE Std. 1044 can be 

considered a feasible approach for extracting well-structured defect data. 
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RQ 3.2 How to evaluate an adapted defect classification scheme? 

Chapter 8 adds to the initial evaluation, presented in chapter 7, by providing a 

detailed description of a comprehensive evaluation method for defect 

classification schemes. In addition to evaluating the effectiveness of a 

classification scheme (i.e. its usefulness, as presented in chapter 7), the 

method evaluates its efficiency. As reported in chapter 8, the evaluation, 

conducted as a controlled experiment, compares LiDeC with a baseline 

classification scheme (ODC was chosen for this experiment). In the 

experiment, university students participated as subjects—i.e. convenience 

sampling. 

The efficiency aspect is in the proposed method evaluated from three 

perspectives: time, accuracy and, consistency. The time perspective includes 

the time required to learn the classification scheme, and the time required to 

perform a classification. The accuracy perspective represents the extent to 

which the subjects are able to assign the correct attribute values to a given 

defect report. Finally, the consistency perspective represents the classification 

agreement among the subjects for a given defect report. While the time 

perspective is important in assessing the resources required to classify 

defects, accuracy and consistency facilitate assessing the reliability of the 

data. 

The results of the evaluation showed that DCSs are quick to learn, and the 

classification requires little time—the required classification time appeared to 

stabilize already after classifying 3 – 5 defects, approximately 5  – 10 

minutes in the case study and under 5 minutes in the experiment. It should be 

noted that in the classification time is included the time required to read the 

defect report. In an industrial setting, this time would correspond to the time 

required to document the defect, an activity that is done regardless of whether 

classification is performed. The evaluation of the reliability of the 

classification data indicated that subjects, even when lacking domain-specific 

knowledge, are able to analyse the defect reports and arrive at rational 

classifications that were significantly better than random classifications. 

Furthermore, as shown in chapter 8, more experienced subjects, using the 

domain-specific classification scheme (LiDeC) performed classification that 

is more consistent. These results extrapolated to an industrial setting, where 

the classification is performed by experts, suggest that classification data 

would be reliable.  

However, in light of experiences from the industrial case study, there are 

cases where classification requires subjective interpretation of the defect 

reports. Such interpretations may result in inconsistencies in the data—i.e. 
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that the classification may be dependent on who is performing the 

classification rather than on properties of the defect in question. One specific 

example was the LiDeC attribute Injection Activity that intends to capture the 

underlying reason why the defect was introduced into the system (similar to 

root cause analysis). In the case study, the information necessary to assign a 

value to this attribute was often found lacking in the reports. Although this 

information would, according to the case study subjects, be known at the time 

of reporting, it would still need expert judgement. This highlights the need 

for process support; for instance, regular reviews of sample classifications in 

order to establish and maintain organizational classification praxis. 

10.1.4 Future Directions 

In final part of this thesis, chapter 9 investigates areas in need of research 

with respect to defect classification schemes. The specific research question 

addressed in Part V is: 

RQ 4 What are the future research directions for improving defect 

classification? 

In chapter 9, the current state-of-the-art defect classification was investigated, 

and as a result of that investigation three research areas was described that 

would benefit from further investigation. Specifically, a literature review was 

conducted in order to—based on published scientific work—assessed the 

industrial adoption and the academic recognition of DCS.  

The result of the literature review shows that there are few published 

studies reporting on the use of DCS. Specifically lacking are industrial 

studies on how classification data are used in organizations. In chapter 9, this 

lack of academic publications is taken as an indicator of limited industrial 

adoption. One main reason for limited industrial adoption is—in our view—

that state-of-the-art DCS are inadequate for their purpose. In particular, there 

is a too strong of a focus on low-level aspects of the implementation; i.e., a 

tool primarily intended for developers. DCS thus fail to address that the 

project stakeholders in control of resources need information on a different 

level of abstraction in order to make informed decisions. This means that 

state-of-the-art classification approaches are poorly designed to produce the 

results that are needed in order to make an impact in an organization—thus 

the effort invested in collecting data risks being in vain, as a large potential of 

the data remain unused.  

In addition, the academic recognition of DCS is demonstrated by its use as 

a tool for validation. In the literature review, cases were found where 
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researchers used DCS data to show effects of various improved practices. For 

instance, in their paper Nagappan et al. (2004) demonstrated which types of 

faults their proposed automated software inspection technique was able to 

identify. In this case, Nagappan et al. used defect classification as a means to 

generalize their results—an organization could compare the typical defect 

type distribution to examine whether that organization could benefit from 

using the proposed technique. In light of this example, defect classification 

data has interesting academic applications. Still, from the results of the 

literature review, it seems to have had limited adoption. 

As an attempt to address this limited adoption, a research roadmap is 

proposed in chapter 9. The roadmap includes: making a deeper investigation 

of the current adoption rate in industry; investigation of the typical 

information needs of the project stakeholders that have control over 

resources; investigation of how to design DCS to support multiple levels of 

abstraction, and finally; to investigate methods of data analyses to 

accommodate the information needs of the various project stakeholders. In 

addition to contributing to making DCS more appropriately adapted to 

organizations’ needs, it may also contribute to establishing a wider baseline 

with respect to defects. Such a baseline can be used by researchers to 

demonstrate effects of various improved practices, and by practitioners to 

evaluate whether such practices would address the challenges in their 

particular organization. This in turn, we conjecture, will result in a wider 

industrial adoption.  

10.2 CONCLUSION 

In this thesis, we have investigated defect classification schemes as a means 

for collecting structured defect data. More specifically, we have provided an 

experience report characterizing challenges in identifying improvement 

opportunities in automotive software development. These challenges 

exemplify information needs present in a complex software development 

organization, and furthermore highlights the need for a light-weight 

technique to extract data from defect reports—defects considered as 

symptoms of process issues, which in turn may constitute improvement 

opportunities.  

In addition, we have reported on a novel classification scheme, adapted 

from a generic one to the development of automotive active safety software. 

The classification scheme, LiDeC, was described in detail and evaluated in 

an industrial context. We have also described a comprehensive method for the 
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evaluation of adapted classification schemes, with a focus on effectiveness 

and efficiency. 

Finally, a research roadmap has been proposed in which identified current 

knowledge gaps with respect to defect classification will be closed. This, we 

envision, will lead to using defect classification data as a means to propose 

and evaluate various process improvement initiatives. 
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Appendix A. LIDEC ATTRIBUTE 

DESCRIPTION 

This appendix provides a detailed description of the attributes and each 

attribute value in LiDeC.  
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Life-cycle phase 1 – Recognition 

Table 32 LiDeC Scheme – Attributes in the Recognition phase 

Attribute Attribute Description Values Value Description 

Timing/Detection 

[RTD] 

When was the defect discovered?  Date  

 

[RTD1] 

Date/project phase of detection 

Timing/Preferred 

[RTP] 

Was the defect discovered in the proper 

test phase according to the goals of the 

phase? 

Yes 

 

[RTP1] 

The discovery was timely; there was no previous test phase in 

which the specified goal included detection of this type of defect 

No 

 

[RTP2] 

This value is only provided if it is apparent that the defect 

should have been caught in an earlier test phase.  

Also specify which test phase, e.g. E1-Ex, M, VP, TT 

Affect SW 

[RAS] 

Does the defect affect software? 

  “Affect” is used here to denote either 

defects that are caused by anomalies in 

the software or whose resolution have an 

impact on software – an example of the 

latter may be that dirt causes a sensor to 

degrade, but if the system fails to detect 

this (through diagnostic software) and 

notify the  driver of degraded 

performance, it still affects software. 

This attribute will be used as a way to 

filter the defect reports as we are mainly 

interested in defects that are either 

caused by software or where the 

resolution may affect the software 

Yes 

[RAS1] 

 

The defect affects software 

No 

[RAS2] 

The defect has no relationship with software at all, e.g. testing of 

vibration resilience of the physical component failed 
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Attribute Attribute Description Values Value Description 

Detection activity 

[RDA] 

What was done when the defect was 

discovered? 

Detection activity captures the type test 

action that was conducted to detect the 

defect.  

Inspection / 

Requirements 

[RDA11] 

The defect was detected during inspection of requirements 

specification 

Inspection / 

Design 

[RDA12] 

The defect was detected during inspection of design 

specification, e.g FMEA 

 Component test / 

VCC 

[RDA21] 

The defect was detected while running a unit test in-house, e.g. 

unit testing of an isolated component using a SimuLink model. 

 Component test / 

Supplier 

[RDA22] 

D.o but the defect was detected by the supplier 

System test / 

System-bench 

 

[RDA31] 

The defect was detected while running an integration test 

(multiple cooperating components realizing functionality) on a 

simulation of the target platform done in-house. As “simulation” 

of the target platform are considered “box-car” (early E-series) 

as well as “mules” (M-series) 

System test / 

Whole car-bench 

 

[RDA32] 

This refers to system testing done on system simulation on rigs 

with the whole electrical system present; though not necessarily 

with the final hardware present 

 

E.g bench tests with the whole electrical system  

Functional test / 

Test track 

 

[RDA41] 

Functional testing of system using a car-build – a mule of a test 

build of the final hardware. Test-track refers to testing isolated 

scenarios on a test-track i.e. with real sensor input, but a 

simulated test-setup (e.g. with balloon cars or dummies) 
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Attribute Attribute Description Values Value Description 

Functional test / 

Expedition 

 

[RDA42] 

Functional testing of the whole car using a test-build  – mule or 

the final hardware build.  

The defect was detected on an expedition with real data 

Production 

platform / 

Manufacturing 

 

[RDA51] 

Defect was detected during manufacturing, e.g. calibration or 

configuration of a function, such as calibration of sensors in the 

production line 

Production 

platform / 

Customer reported 

 

[RDA52] 

The defect was detected by customer post-release, e.g. car owner 

or maintenance staff 

 

Urgency 

[RU] 

How urgently does the defect need to be 

addressed? 

Denotes how urgent the defect needs to 

be removed from the product – thus 

urgency is related to the project.  

In late stages of the project defect will 

naturally be more urgent than in earlier 

stages. However, defects in early project 

phases that are blockers (i.e. blocking 

other functionality from being testable), 

should be considered urgent 

Immediate 

 

[RU1] 

The defect should be removed in the current development cycle; 

i.e. before the next development release (e.g. detected in E3.1 

and should be removed in E3.2). 

E.g. defects that are blocking vital functionality should be 

classified as “immediate” (as they are inhibiting testing of that 

functionality) 

Next major 

release 

 

[RU2] 

The defect should be removed before the next major 

development release.  

E.g. detected in E3.x and should be removed by E4. 

 Before SoP 

 

[RU3] 

The defect should be removed before the software is released, 

i.e. SoP (Start of Production). 

E.g. minor flaws or functionality that can be adjusted using 

tuneable parameters, or documentation issues 
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Attribute Attribute Description Values Value Description 

 Deferrable 

 

[RU4] 

Defects that are not considered to have much of an impact on 

product, and can be deferred until later versions or revisions of 

the product 

Severity 

[RS] 

How severely does the defect affect the 

product? 

Severity denotes the end-user perceived 

impact on the product if the defect is left 

in the released product – thus severity is 

related to the product (i.e. vehicle)  not 

the project. 

Note, this attribute shall not consider the 

timing of the defect detection, i.e. 

regardless of when a defect is detected 

during the project it shall receive the 

same severity (whereas its Urgency may 

vary). 

Also note that end-user refer to the 

intended target of the feature, e.g. vehicle 

occupants as well as manufacturing and 

maintenance personnel.  

None 

 

[RS1] 

The defect would not be noticed by the end-user 

Nuisance 

 

[RS2] 

The defect would be limited to a nuisance for the end-user – 

though the product would still realize the full functional 

specification.  

E.g. a warning system would still be able to function in all 

scenarios originally specified, but may give an increase amount 

of false warnings 

 Limited 

functionality 

 

[RS3] 

The defect would limit the functionality of the product – e.g. the 

product would still function but not to the extent originally 

specified. 

Show-stopper 

 

[RS4] 

A “show-stopping defect” is one that would prevent the product 

from being released; e.g. defect that would result in increased 

risk of injury, or that block other functions from performing 

according to specifications. 

Effect 

[RE] 

How does the defect primarily affect the 

product? 

Note that these may be overlapping to 

some extent but classification should be 

done on the effect, not the cause (as life-

Capability / 

Undesired 

activation 

 

[RE11] 

The defect causes the function to trigger on a false positive 
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Attribute Attribute Description Values Value Description 

cycle phase 1 is focussed on the detection 

of defects) – e.g. low performance of the 

software in a sensor may affect the 

functionality of the system, thus defect 

should be classified as 'Functionality' 

Capability / 

Inactive despite 

True Positive 

 

[RE12] 

The defect inhibits activation of functionality despite presence 

of a true positive 

 Capability / 

Other capability 

related defect 

[RE13] 

The defect affects the capability of the product; i.e. the product 

does not behave as intended or to the extent intended 

Maintainability 

 

[RE4] 

The defect would affect the maintainability of the system; e.g. 

documentation issues, too complex design, cryptic internal error 

codes, wrong or missing diagnostic codes. 

Usability 

 

[RE5] 

The defect affects the systems ease of use; e.g. complex user 

interface, missing or wrong visual cues to driver 

 Configurability 

 

[RE6] 

The defect affects configuration or calibration of the function; 

e.g. configuration of vehicle model variations or calibration of 

components during manufacturing 

Testability 

 

[RE7] 

The defect affects the testability of the product; e.g. radar 

software the fails to detect a balloon car at the test site 

Functional Safety 

Impact 

[RFS] 

Does the defect have an impact on a 

software component with ASIL-classified 

requirements (ISO 26262)? 

Yes 

[RFS1] 

The defect have an impact on ASIL-classified requirements 

according to the ISO 26262 standard (ISO/DIS, 2011). 

  No 

[RFS2] 

The defect does not affect ASIL-classified requirements. 
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Life-cycle phase 2 – Analysis 

Table 33 LiDeC Scheme   – Attributes in the Analysis Phase 

Attribute Attribute Description Values Value Description 

Artefact 

 [AA] 

Which software work product 

contained the defect? 

This attribute relates to the work 

product in which the fault causing 

the failure was contained. Note 

that the underlying reason for 

introducing the fault may lie in 

another work product (see 

Injection activity) 

Requirement / 

Internal 

[AA11] 

Defect was contained in a requirement for the module itself 

Requirements / 

Internal cross-function 

[AA12] 

The defect was contained in a requirement the module posed on 

an external module. E.g wrong required resolution posed on a 

sensor which is not part of the module itself. 

 Requirements / 

External 

[AA13] 

The defect was contained in a requirement posed on the module 

by another module. E.g an external module required wrong 

resolution of a sensor which is part of the module itself. 

Design model 

 

[AA2] 

The defect was contained in a design model, e.g logical design 

(class diagram) 

 

 Implementation / 

Executable model 

[AA31] 

The defect was contained in a simulation model, e.g. Simulink 

Implementation / 

Code 

[AA32] 

The defect was contained in code, either written in-house or by 

supplier, or code generated from models. 

Note, if code was correctly generated from a defective model, 

the defect should be classified as [AA31] 

 Configuration 

Parameters 

 

[AA33] 

The defect was contained in the tuning parameters for the 

function 
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Attribute Attribute Description Values Value Description 

 Tool 

 

[AA4] 

Defect was contained in tools used during development; e.g. 

simulation environments for sensors 

Injection activity  

[AI] 

In which project activity was the 

defect injected? 

This attribute shall capture the 

reason why the defect was 

contained in the work product (as 

specified in the Artefact attribute); 

i.e. what caused the defect to have 

been introduced in the system. 

Note, it may differ from the 

artefact the defect was contained 

in , e.g. a design defect may have 

been injected due to a poor or 

missing requirements 

(artefact='Design model', 

Injection='Requirement')  

Specification  

 

[AI1] 

The defect was injected in the requirements phase; e.g. a 

missing, faulty, misrepresented, ambiguous requirement caused 

the defect  

Design 

 

[AI2] 

The defect was injected in the design phase even though the 

requirements were stated correctly; e.g. missing or faulty signal 

between modules, or problems with the modularization  

Implementation / 

In-house model  

 

[AI31] 

The defect was injected when constructing the simulation model 

in-house. Requirements and design were correctly specified, but 

mistake was made in an implementation model. 

Implementation / 

Supplier Auto-coding 

 

[AI32] 

The defect was injected when transforming an executable model 

into code by supplier. Specification and simulation model were 

correct, but mistake was made in code generation by the 

supplier. 

Implementation / 

Supplier 

implementation 

 

[AI33] 

The defect was injected in implementation at the supplier side 

(code not generated from simulation model by VCC); 

implementation based on correct specification and design from 

VCC 

Configuration 

 

[AI4] 

The defect was injected in the configuration of the function 

(specification, design and implementation is correct); i.e. a 

faulty value of a tuning parameter  
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Attribute Attribute Description Values Value Description 

Component /Asset 

[AC] 

Which design component 

contained the defect? 

This attribute shall identify the 

component (at code level) at the 

lowest level available. 

The purpose is the attribute is to 

identify which components are 

most likely to contain defects. 

Component name or 

ID 

 

[AC1] 

A unique ID of the component containing the defect. The higher 

the resolution the better 

 

Type 

[AT] 

What type of defect was it? 

The type attribute describes the 

character of the defect. The values 

of the type attribute may depend 

on which artefact/component it 

affects 

Data 

 

[AT1] 

Defect in data definition, initialization, mapping, access, or  use, 

as found in a model, specification, or implementation (IEEE, 

1993). 

E.g. initialization of a variable, incorrect assignment of a value, 

incorrect cardinality in data model, using wrong variable, 

assuming wrong variable type (e.g. assuming vehicle speed in 

km/h when it is stored as mph) 

Interface / Timing 

 

[AT2] 

Defect in specification or implementation of an interface 

between two design components, e.g. missing or wrong signals 

specified or errors in the timing of communication 

 Tooling 

 

[AT4] 

The defect is present in tools used in development; e.g. 

simulation environments that are used in development (e.g. 

simulating external components such as sensors etc.) 

Logic / Computation 

 

[AT3] 

A defect in the logic of execution; eg. an algorithmic defect 

either because of a faulty implementation of a correct 

specification or a faulty specification (or any combination 

thereof)  
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Attribute Attribute Description Values Value Description 

 Tuning  

 

[AT5] 

The defect relate to tuning parameters of the function. 

E.g. missing or misinterpreted tuning parameters (errors in 

design) or faulty values assigned to tuning parameters 

(implementation) 

Description 

 

[AT6] 

Defect in specification, e.g. missing or wrong description (such 

as a requirement) 

Standards 

 

[AT7] 

Non-conformity with a defined standard 
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Life-cycle phase 3 – Resolution 

Table 34 LiDeC Scheme -- Attributes in the Resolution Phase 

Attribute Attribute Description Values Value Description 

Timing/Removal 

[ET] 

When was the defect removed?  

Note, this does not necessarily 

mean that the defect was fixed (see 

attribute 'Resolution state' in life-

cycle phase 4) 

Date / Project phase 

[ET1] 

The date/project phase when the defect was considered removed 

from the system, i.e. when the defect report was closed. 

Defect not yet closed 

 

[ET2] 

The defect has not yet been closed.  

NOTE! This refers to the defect/problem report not the fault or 

failure; i.e. a defect report can be closed without having the 

underlying fault addressed. 

Product Impact 

[EI] 

What is/would be the impact on the 

product of  a proper resolution? 

Note, this is an estimate of a proper 

resolution of the defect; i.e. an 

issue that would require major 

redesign to resolve, but that can be 

worked around with a small local 

fix shall be classified as a  “Re-

design' (the scope of the change 

made is captured by 'Resolution 

state' in life-cycle phase 4) 

 

None 

[EI1] 

There is no resolution (e.g. the reported defect was intended 

behaviour) or the resolution has no impact on the product  

Local modification 

 

[EI2] 

The resolution is limited to a fixing a local module; other 

modules are not affected 

E.g. modification of a tuning parameter or code modifications to 

a single module that does not affect other modules 

Multiple components 

 

[EI3] 

The resolution requires changes in multiple existing modules 

Functional Changes 

 

[EI4] 

The resolution require a redesign, e.g. adding, removing or 

redefining modules 

Required Verification 

Level 

[EV] 

What level of regression testing 

would a proper resolution require? 

 

None 

 

[EV5] 

No re-verification needed 
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Attribute Attribute Description Values Value Description 

Inspection 

 

[EV1] 

Review of documentation, report or code is sufficient means of 

verification/validation of the modified component/system 

Component test 

 

[EV2] 

Re-verification of the modified component using recorded data 

(Resim) is sufficient. 

E.g. running an executable model in Simulink with the recorded 

data 

System test 

 

[EV3] 

Re-verification at system level using recorded data (Resim) is 

sufficient 

E.g. a new software build of all components of the system is 

needed in order to validate the changes; it is sufficient to re-

verify the system on bench with recorded data (Resim) 

Expedition 

 

[EV4] 

The resolution would need re-validation with real data, e.g. in a 

full car-build on test-site or on an expedition 

(“Fälttest”, “Breddprovning”) 
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Life-cycle phase 4 – Post-mortem 

Table 35 LiDeC Scheme -- Attributes in the Post-mortem Phase 

Attribute Attribute Description Values Value Description 

Resolution state 

[PS] 

What was the state of the 

resolution when the defect was 

marked as closed? 

This attribute is meant to track 

how the defect was eventually 

handled 

 

Corrected 

 

[PS1] 

A proper resolution, addressing the root cause, was applied 

Workaround / Fix 

 

[PS21] 

The underlying fault remains, but workarounds were made to 

avoid failure. The workaround retains the intended capability of 

the original specification 

Workaround / 

Product de-scope  

 

[PS22] 

D.o. but the workaround forced de-scoping of the system, e.g. 

limiting the functionality or quality of service 

No Action / Deferred  

 

[PS31] 

The defect was left in the system, and resolution deferred to a 

later revision  

No Action / Referred 

 

[PS32] 

The source of the defect lies in another system. Defect was 

referred and closed in this system 

No Action / Not 

Found 

 

[PS33] 

The defect was not found again; e.g. the failure could not be 

reproduced or the defect was not observed in a later revision of 

the software 

No Action / No 

Action 

[PS34] 

No action taken, defect remains in system 
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Appendix B. LIDEC CLASSIFICATION 

GUIDE 

Figure 33 to Figure 45 show the classification guide used during the 

classification sessions, as described in section 6.3 Method. Initially, LiDeC 

was presented to the person responsible for defect classification by an 

overview of the classification scheme. The overview was described by using 

Figure 33, in which all available LiDeC attributes are represented and 

grouped into the phases of the defect life-cycle (further described in Defect 

classification schemes on page 62).  

During the classification sessions, each defect was classified according to 

the attributes in LiDeC. For each attribute, the developer was shown the 

corresponding image (shown below). In each image, the question that guides 

the reporter is shown at the top in an orange rectangle (e.g.  “What was done 

when the defect was detected?”). The values that can be assigned the attribute 

are shown in blue rectangles below the question. The white boxes, shown e.g. 

in the attribute  “Detection Activity”, represent categories of values and serve 

only to provide the values with a clearer structure. For instance, for the 

attribute “Detection activity” the categories serve to make an initial 

separation on types of activities, and then breaks down those into the sub-

activities that are to be chosen as the value for the attribute. 

Note, in this appendix the guides for trivial attributes (i.e. attributes with 

simple Yes/No values or dates) have been omitted. 
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198 

 

Attribute overview 

 

 

Figure 33 Overview of LiDeC attributes 
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Life-cycle phase 1: Recognition – Detection of the defect 

 

 

Figure 34 Classification guide for the attribute Preferred detection time 
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Figure 35 Classification guide for the attribute Affect Software 
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Figure 36 Classification guide for the attribute Detection activity 
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Figure 37 Classification guide for the attribute Urgency 
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Figure 38. Classification guide for the attribute Severity 
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Figure 39 Classification guide for the attribute Effect 
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Life-cycle phase 2: Analysis – Investigating the cause of the defect 

 

 

Figure 40 Classification guide for the attribute Artefact 
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Figure 41 Classification guide for the attribute Injection activity 
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Figure 42 Classification guide for the attribute Type 
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Life-cycle phase 3: Resolution – The action leading to defect removal 

 

 

Figure 43 Classification guide for the attribute Product impact 
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Figure 44 Classification guide for the attribute Required verification level 
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Life-cycle phase 4: Post-mortem – Final state of defect 

 

 

Figure 45 Classification guide for the attribute Resolution state 

 



 

Appendix C. EXAMPLE 

CLASSIFICATION 

In this section the classification of two example defects is described. Due to 

confidentiality reasons, the defects described below are construed examples. 

The example defects, however, are inspired by defect reports encountered 

during the case-study.  

Example 1 
The first defect caused a faulty diagnostic flag to be set indicating that part of 

software installed on an ECU failed. The defect was detected during testing of 

the vehicle at the factory manufacturing line late in the project. The problem 

occurred when updating the software and its configuration parameters on the 

ECU. In the process of deploying software and configuration parameters, the 

ECU was first set into a programmable mode in which a diagnostic routine is 

executed; it was in the diagnostic routine that the faulty error-mode was set.  

During the root cause analysis it was found that the flag indicating 

component’s (programmable) mode was stored to an incorrect output port 

which caused the programmable mode to be interpreted as a faulty error 

mode. Although the defect manifested itself during manufacturing (when 

software was first deployed to the ECU), it could occur during the software 

maintenance phase when software updates are deployed to the ECUs. It 

would, however, have had no effect on the normal operational mode of the 

component, the system or the complete vehicle (e.g. the driver would not have 

been affected by the defect). 

C 
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Recognition phase 

The date on which the defect report was submitted in the issue management 

system was used for the Timing/Detection attribute (2009-04-14). In addition, 

the development phase in which the detection was made was also noted 

(though this is redundant information, as the development phase can be 

derived from the date using the project plan, but it was convenient to have that 

information readily available). The detection time was considered 

(subjectively by the reporter) as significantly late in the project. The reporter 

considered it to be a software unit problem and that it should have been 

detected in an earlier test phase (either during unit testing at the supplier side, 

or during unit testing at the OEM side; the internal name of the preferred test 

phase was U2). The defect was, furthermore, considered to affect software, as 

(according to the reporter) it was probably an implementation error that led to 

the wrong diagnostic flag being set. 

The defect was discovered during the testing of the manufacturing line 

when the car was assembled in factory, thus the value Manufacturing was 

selected for the Detection Activity attribute. As the defect in this case made it 

difficult to assess whether deploying the software to the ECU was successful 

it was considered impossible to release the software into production in its 

current state, and its resolution to be very urgent; the value Immediately was 

chosen for the Urgency attribute (as the defect was discovered late, a fix was 

promptly needed) and the value Show-stopper for the Severity attribute (as the 

software could not be released while containing the defect). 

The Effect attribute was set to Maintenance as the main effect of the defect 

related to problems when software and configuration parameters were to be 

updated. The defect would, furthermore, have affected any future maintenance 

updates to both software and configuration parameters. Finally, the defect was 

considered to have no impact on any ASIL-classified requirements (if the 

software update had truly failed, it would have successfully triggered other 

diagnostic functions indicating that the component was not operating 

properly), it was thus considered not to have any impact on functional safety 

(as defined by ISO 26262).  

Table 36 summarizes the classification for the Recognition phase. 
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Analysis phase 

During the root cause analysis of the failure it was found that the defect was 

contained in the binary code deployed on the ECU. It was, furthermore, found 

that the requirements clearly stated to which port the diagnostic flag should be 

written, and the executable model which served as base for the binary code 

was correctly implemented according to the requirements. Consequently, the 

fault was introduced during transformation from executable model to source-

code; an activity done by a supplier. Therefore, the attribute Artefact was 

assigned the value Implementation / Code, and the attribute Injection Activity 

was assigned the value Implementation / Supplier auto-coding. The 

Component/Asset attribute was assigned the company’s internal code 

identifying the software module as well as the software version.  

Finally, the Type attribute was assigned the value Data, because the 

underlying cause of the defect related to data being written to the wrong 

location. Note that the Type attribute in IEEE Std. 1044 has a higher 

resolution which allows for more precision in defect analysis. In our case, 

however, such resolution is not possible, as the source-code (which carries the 

necessary information to allow for more detailed classification) is owned by 

the supplier. In effect, LiDeC’s Type attribute captures a black-box alternative 

to the Type attribute in IEEE Std. 1044. 

Table 37 summarizes the classification for the Analysis phase. 

Table 36. Example classification; Example 1, Recognition phase 

Attribute Value 

Timing / Detection 2009-04-14 (Manufacturing test) 

Timing / Preferred U2 (unit testing) 

Affect SW Yes 

Detection activity Manufacturing 

Urgency Immediate 

Severity Show-Stopper 

Effect Maintenance 

Functional Safety Impact No 
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Resolution 

The urgency of the defect (due to its late discovery) resulted in the resolution 

being applied in the same development phase in which it was discovered; the 

date (and development phase) of successful verification of the resolution was 

noted as the Removal time. 

The necessary resolution was determined to be confined to a single 

software module, as no other components would need any modifications; thus 

the Product Impact attribute was set to Local modification. Finally, a test 

report from the supplier showing successful test of the binary component was 

considered sufficient means of verification; thus Inspection was set as value 

for the attribute Required Verification Level. 

Table 38 summarizes the classification for the Resolution phase. 

 

Post-mortem 

In the final defect life-cycle phase, the single attribute Disposition records 

what finally was done to resolve the defect. In this example, a proper 

resolution was applied; thus the value Corrected was assigned to the 

Disposition attribute. 

Table 39 summarizes the classification for the Post-mortem phase. 

Table 37. Example classification; Example 1, Analysis phase 

Attribute Value 

Artefact Implementation / Code 

Injection Activity Implementation / Supplier auto-coding 

Component / Asset XYZ-1256 

Type Data 

 

Table 38. Example classification; Example 1, Resolution phase 

Attribute Value 

Timing / Removal 2009-05-09 (Manufacturing test) 

Product Impact Local modification 

Required Verification Level Inspection 
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Example 2 
The defect was found in a feature that issues an audible warning if the driver 

is unintentionally drifting off-lane. The function monitors the vehicle’s 

position by tracking the lane markers in the road and gives a warning signal 

when a lane is about to be crossed and the driver does not use the turn signals. 

During the first field test (also called expedition) – where a mature build of 

the full vehicle is tested on a large variety of road types – it was found that the 

sensitivity of the warning was too high, resulting in frequent false alarms. The 

problem was detected on specific road types were the lanes were narrower 

than what had been anticipated. 

Recognition phase 

The date on which the defect report was submitted in the issue management 

system was used for the Timing/Detection attribute (2008-10-04) and noted 

along with the development phase in which it was detected. The detection 

time was considered (subjectively) by the reported as appropriate. The defect 

was, furthermore, considered to affect software, as (according to the reporter) 

it was the behaviour of the software that caused the problem. 

The defect was discovered during the functional testing of the vehicle on an 

expedition, thus the value Functional Test / Expedition was selected for the 

Detection Activity attribute. As the defect in this case caused considerable 

nuisance to the driver on specific road types, it was considered to impossible 

to release the software into production with the defect remaining (the value 

was thus set to Show-stopper). As the resolution of the defect was considered 

to need further testing (on the problematic road type, as well as other types to 

ensure no regressions had been introduced) and that additional development 

releases had already been planned for testing, the Urgency attribute was set to 

Next Major Release. 

The Effect attribute was set to Capability / Undesired Activation as its main 

effect related to false warnings. Initially, there was some confusion whether 

the defect should be classified as having effect on the Usability. However, as 

Table 39. Example classification; Example 1, Post-Mortem phase 

Attribute Value 

Disposition Corrected 
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the problem was not related to the way the user was warned (i.e. through an 

audible cue), the problem did not have impact on usability. 

Finally, the defect was considered to have no impact on any ASIL-

classified requirements, it was thus not considered to have any impact on the 

functional safety (as defined by ISO 26262). If, on the other hand, the feature 

had been able to autonomously intervene in steering or braking, it would 

indeed have had impact on functional safety.  

Table 40 summarizes the classification for the Recognition phase. 

 

Analysis phase 

The problem occurred in running code (i.e. in the binary code of on one of the 

software components realizing the feature). However, as the feature was 

designed to be configurable (using tuning parameters) with respect to the 

width of the lanes, the Artefact attribute was set to Implementation / 

Configuration Parameters. It was, furthermore, found that the requirements 

specification for the feature did not take the particular road type into 

consideration. Additionally, the design as well as the executable model and 

the binary code were found to have been correctly derived and implemented 

from the requirements specification. Consequently, the attribute Injection 

Activity was assigned the value Specification. The Component/Asset attribute 

was assigned the company’s internal code identifying the software module as 

well as the software version.  

Finally, the Type attribute was assigned the value Description because the 

requirements did not take the particular road type into consideration. 

Table 41 summarizes the classification for the Analysis phase. 

Table 40. Example classification; Example 2, Recognition phase 

Attribute Value 

Timing / Detection 2008-10-04 (First full vehicle functional 

test) 

Timing / Preferred - 

Affect SW Yes 

Detection activity Expedition 

Urgency Next major release 

Severity Show-Stopper 

Effect Capability / Undesired activation 

Functional Safety Impact No 
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Resolution 

The resolution was applied in next major release of the software; the date (and 

development phase) of successful verification of the resolution was noted as 

the Removal time. 

The necessary resolution was determined to be confined to one component 

(specifically, the configuration parameters of a software module). However, as 

the particular module also provided other features in the vehicle with data, 

and thus might be affected by the modification, the Product Impact attribute 

was set to Multiple Components. Finally, it was considered necessary to verify 

the resolution in a full vehicle build, where all features dependent on the 

modified software model were tested; thus Expedition was set as value for the 

attribute Required Verification Level. 

Table 42 summarizes the classification for the Resolution phase. 

 

Post-mortem 

The resolution of the defect was finally done in two parts: first, the 

configuration parameters of the software module were modified, and; second, 

the requirement specification was updated with a description of the road type 

that caused the problem. Thus, the value Corrected was assigned to the 

Table 41. Example classification; Example 2 Analysis phase 

Attribute Value 

Artefact Implementation / Configuration Parameters 

Injection Activity Specification 

Component / Asset ABC-5431 

Type Description 

 

Table 42. Example classification; Example 2, Resolution phase 

Attribute Value 

Timing / Removal 2009-02-09 (Second full vehicle functional 

test) 

Product Impact Multiple modules 

Required Verification Level Expedition 
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Disposition attribute. If, on the other hand, the requirements specification had 

not been updated, it should have been set to Work-around / Fix as the problem 

would have been mitigated, but the root cause not properly removed. 

Table 43 summarizes the classification for the Post-mortem phase. 

 

 

Table 43. Example classification; Example 2, Post-Mortem phase 

Attribute Value 

Disposition Corrected 

 



 

Appendix D. IEEE STD. 1044 

COMPLIANCE MATRIX 

Table 44 shows the IEEE Std. 1044 compliance matrix (see table 3 in (IEEE, 

1996)). Attributes from IEEE Std. 1044 that are not available or that are 

implicit in LiDeC other attributes are shown in shaded cells. Attributes that 

have been redefined in LiDec are marked with an asterisk(
*
). For more 

detailed information about the mapping, refer to Appendix E.  

Table 44 IEEE Std 1044 compliance matrix 

IEEE Std  

1044-1993  

attribute 

LiDeC 

equivalent 

attribute 

Mandatory 

in IEEE Std. 

1044-1993 

Comment 

Actual cause Injection 

activity* 
√ 

Whereas IEEE records actual 

cause as the artefact that caused 

the defect, LiDeC records in 

which activity it was injected 

Corrective action Not available 
 

 

Customer value Implicit 
 

Implicit in LiDeC.Severity 

Disposition Resolution 

state 
√ 

 

Mission/safety Implicit 
 

Implicit in LiDeC.Severity 

D 
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IEEE Std  

1044-1993  

attribute 

LiDeC 

equivalent 

attribute 

Mandatory 

in IEEE Std. 

1044-1993 

Comment 

Priority Implicit 
 

Implicit in LiDeC.Urgency  

Product status Severity 
 

 

Project activity Detection 

activity 
√ 

 

Project cost Product 

impact* 
√ 

The level of impact on the 

product – in terms of required 

change – is considered a better 

estimate of “cost” than money 

Project phase Timing / 

Detection 
√ 

 

Project quality / 

reliability 

Not available 
 

 

Project risk Not available 
 

 

Project schedule Re-verification 

level* 

√ 

Whereas IEEE.ProjectSchedule 

is described as “an appraisal of 

the amount of effort required to 

address the defect”, LiDeC 

instead expresses it in terms of 

the amount of re-verification 

required. This is because 

verification is a costly activity, 

and it is a more convenient way 

for individual teams to estimate 

impact on schedule 

Repeatability Not available 
 

 

Resolution Urgency* 

√ 

Whereas the LiDeC.Urgency 

records how quickly the defect 

needs to be removed, the 

attribute IEEE.Resolution also 

records the type of resolution 

applied 
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IEEE Std  

1044-1993  

attribute 

LiDeC 

equivalent 

attribute 

Mandatory 

in IEEE Std. 

1044-1993 

Comment 

Severity Severity* 

√ 

The IEEE attribute also 

includes whether a solution 

exist in the severity attribute. 

LiDeC, however, assesses 

“Severity“ on the observed 

failure, and does thus not take 

the availability of a fix into 

consideration  

Societal Functional 

Safety Impact 

 

The attribute Functional safety 

impact captures whether the 

defect may risk causing harm to 

persons (as defined by the ISO 

26262 (ISO/DIS, 2011)). This 

maps to the IEEE Std. 1044 

attribute Societal in that it 

captures data about the impact 

of the defect on the 

environment (e.g. driver, 

passenger or other persons in 

the vehicle’s surroundings).  

Source Artefact 
√ 

 

Suspected cause Not available 
 

 

Symptom Effect 
√ 

 

Type Type 
√ 

 

 





 

Appendix E. MAPPING BETWEEN 

IEEE STD. 1044 AND LIDEC 

This appendix provides a detailed mapping between the attributes in LiDeC 

and in IEEE Std. 1044.  

 

 

E 



 

 

Table 45 Mapping between IEEE Std. 1044 and LiDeC 

Life-Cycle 

Phase 

IEEE  

Std. 1044 
Description LiDeC Description Mapping comment 

Recognition Project 

Activity 

What were you doing when 

the anomaly occurred? 
Detection 

activity 

How was the defect 

detected? 

 

 Project Phase In which life cycle phase is 

the product? 
Timing / 

detection 

When was the defect 

detected? 

 

 Suspected 

cause 

What do you think might 

be the cause? 

n/a 

Speculation of the cause would 

mainly be of interest when analysing 

the fault. This is done as part of the 

defect management process at the 

company, but is not of interest for our 

analysis 

 Repeatability Could you make the 

anomaly happen more than 

once? 

n/a 

This attribute is captured by 

Disposition 

 Symptom How did the anomaly 

manifest itself? 
Effect What requirements 

category does the defect 

affect? 

The IEEE Std. 1044 has a very 

detailed symptom classification. In 

our approach we analyse instead the 

type of impact the symptom would 

have on the product; e.g. Capability, 

maintainability etc 

 Product 

Status 

What is the usability of the 

product with no changes? 
Severity How severely does the 

defect affect the 

product? 

 

2
2

4 

 



 

 

Life-Cycle 

Phase 

IEEE  

Std. 1044 
Description LiDeC Description Mapping comment 

 

n/a 

Timing / 

Preferred 

When should the defect 

have been detected? 

The attribute records the developers 

(subjective) opinion on whether this 

defect's discovery was timely or if 

there was an earlier project phase in 

which it reasonably should have been 

detected. No such attribute exist in 

IEEE 1044 

 

n/a 

Affects 

Software 

Does the defect affect 

software? 

As the development of automotive 

software is a hybrid of hardware and 

software development, and that our 

main interest lies in studying aspects 

related to software development, we 

use this attribute to make an initial 

coarse filtering of the defects 

Investigation Actual cause What caused the anomaly to 

occur? 
Injection 

Activity 

When was the defect 

introduced in the 

product? 

Closely related to IEEE.Source and 

LiDeC.Component.  

Whereas the IEEE maps this on 

product parts LiDeC captures the 

activity in which the defect was 

injected; i.e. a defect discovered in 

code may have been introduced due 

to ambiguous requirements.  

 Source Where was the origin of the 

anomaly? 
Artefact Which software work 

product contained the 

defect? 
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Life-Cycle 

Phase 

IEEE  

Std. 1044 
Description LiDeC Description Mapping comment 

 Type What type of 

anomaly/enhancement at 

the code level? 

Type What type of defect was 

it? 

Directly mappable, though LiDeC 

use a much higher abstraction level of 

the selection of types. There were still 

cases where the distinction between 

types was not straight-forward – 

mainly because the types were not 

easily understandable (rather than 

lack of understanding of the defect 

itself) 

 

Action supporting data item 

Component/

Asset 

Which design 

component contained 

the defect? 

The attribute captures which part of 

the product contained the defect. This 

relates to IEEE.ActualCause and is 

also part of the supporting data items 

in the Action life-cycle phase, 

although that data item captures 

which part of the product will need 

changing (which may not be the same 

as the one containing the defect!) 

2
2
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Life-Cycle 

Phase 

IEEE  

Std. 1044 
Description LiDeC Description Mapping comment 

Action Resolution What action to take to 

resolve the anomaly? 
Urgency How urgent is it to 

resolve the defect? 

LiDeC.Urgency also maps to the 

IEEE.Priority attribute. However, 

investigating the defect to arrive at 

the priority requires resources; we 

have in LiDeC chosen to record the 

Urgency attribute on failure-level 

instead of on fault level. 

Consequently, 'Urgency' relates to 

how urgent it is to remove the 

manifestation of the fault rather than 

the fault itself (which the 

IEEE.Priority attribute specifies) 

 Corrective 

action 

What to do to prevent the 

anomaly from happening 

again n/a 

Whereas IEEE records the exact 

resolution we have chosen instead to 

record the extent of impact the 

resolution would have on the product 

(see IEEE.ProjectCost). 

 

Action supporting data item 

Removal 

Time 

When was the defect 

closed? 

LiDeC captures the time of closing 

the problem report (regardless of the 

state of the resolution) in order to be 

able to measure the longevity of 

defects and the project workload. 

This information is interesting as it 

serves as a measurement of the 

pressure on the project – assuming 

mistakes are more likely to be made 

under pressure one would like to keep 

the number of open defects to a 

minimum 
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Life-Cycle 

Phase 

IEEE  

Std. 1044 
Description LiDeC Description Mapping comment 

Impact 

Identification 

Severity How bad was the anomaly 

in more objective 

engineering terms? 

Severity What would the impact 

on the product be if 

defect remain in system 

on release? 

Also see IEEE.ProductStatus 

 Priority Rank the importance of 

resolving the anomaly 

(subjective) 

(Urgency) How urgent is it to 

resolve the defect? 

See the IEEE.Resolution attribute 

 Customer 

value 

How important a fix is to 

customers? n/a 

This is implicit in the LiDeC.Severity 

attribute 

 Mission / 

Safety 

How bad was the anomaly 

with respect to project 

objectives or human well-

being? 

n/a 

This is implicit in the LiDeC.Severity 

attribute 

 Project 

schedule 

Relative effect on the 

product schedule to fix 
Required 

Verification 

Level 

What level of regression 

testing would a proper 

resolution require? 

Required effort to apply a resolution 

is not only captured by the amount of 

necessary modification to the 

product. As automotive software have 

very high reliability requirements, 

V&V activities require substantial 

amount of resources. This attribute 

records the estimated level of 

regression testing that a proper 

resolution would require (as order of 

magnitude) 

2
2

8
 

 



 

 

Life-Cycle 

Phase 

IEEE  

Std. 1044 
Description LiDeC Description Mapping comment 

 Project cost Relative effect on the 

project budget to fix 
Product 

Impact 

What would the impact 

on the product be if a 

proper resolution was 

applied? Value is 

intended as order of 

magnitude – from no 

impact, local 

modification to a 

system re-design 

Whereas IEEE.ProjectCost specifies 

to record an appraisal of the cost of a 

resolution in dollars, LiDeC instead 

records an estimation of the impact a 

resolution would have on the product 

(in terms of the amount of 

modification needed). We stipulate 

that the impact of a resolution on the 

product will correlate with the cost of 

applying it; the impact, however, is 

easier to estimate by the person 

reporting the defect 

 Project risk Risk associated with 

implementing a fix n/a 
 

 Project 

quality / 

reliability 

Impact to the product 

quality or reliability to 

make the fix 
n/a 
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Life-Cycle 

Phase 

IEEE  

Std. 1044 
Description LiDeC Description Mapping comment 

 Societal Impact to society of 

implementing the fix 
Functional 

Safety 

Impact 

Does the defect have an 

impact on a software 

component with ASIL-

classified requirements 

(ISO 26262)? 

The attribute Functional safety 

impact captures whether the defect 

may risk causing harm to persons (as 

defined by the ISO 26262 (ISO/DIS, 

2011)). This maps to the IEEE Std. 

1044 attribute Societal in that it 

captures data about the impact of the 

defect on environment (e.g. driver, 

passenger or other persons in the 

vehicle’s surroundings). 

Note, the Functional Safety Impact 

attribute is captured in the 

recognition phase 

Disposition Disposition What actually happened to 

close the anomaly 
Resolution 

State 

What was the final state 

of the resolution when 

defect was closed? 

Directly mappable (values modified) 
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