

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IMPROVING DEFECT MANAGEMENT

IN AUTOMOTIVE SOFTWARE

DEVELOPMENT

LIDEC—A LIGHT-WEIGHT DEFECT CLASSIFICATION SCHEME

Niklas Mellegård

Department of Computer Science and Engineering

Division of Software Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY |

UNIVERSITY OF GOTHENBURG

Göteborg, Sweden 2013

Improving Defect Management in Automotive Software Development

LiDeC—A Light-weight Defect Classification Scheme

NIKLAS MELLEGÅRD

ISBN 978-91-7385-906-6

© NIKLAS MELLEGÅRD, 2013.

Doktorsavhandlingar vid Chalmers tekniska högskola

Ny serie Nr 3587

ISSN 0346-718X

Technical Report 97D

Department of Computer Science and Engineering

Division of Software Engineering

Chalmers University of Technology | University of Gothenburg

SE-412 96 Gothenburg

Sweden

Telephone + 46 (0)31-772 1000

Printed at Chalmers Reproservice

Göteborg, Sweden 2013

To my family:

Vivian,

Lo, Minoo,

Filip I,

And of course

Mom(s)

Dad(s)

Brothers

TABLE OF CONTENTS

PREAMBLE

Abstract .. i

Acknowledgements ... ii

Included Publications .. iv

Additional Publications ... v

Personal Contribution ... vi

Preface ... vii

PART I—INTRODUCTION

1 Introduction .. 1

2 Automotive Software Development and Defect Management 5
2.1 Automotive Active Safety Features ..7
2.2 Automotive Software Development process9
2.3 Defects ..13

2.3.1 Definitions .. 13
2.3.2 Preventing Defects ... 14
2.3.3 Defect Classification Schemes ... 15
2.3.4 Standards .. 16

2.4 Modelling ..20

3 Research Focus and Thesis Structure ... 23
3.1 Research Questions ...23

3.1.1 Characterizing Automotive Software Development 23
3.1.2 Adapting a Defect Classification Scheme 24
3.1.3 Evaluating a Defect Classification Scheme 24
3.1.4 Future Directions .. 24
3.1.5 Mapping of Research Questions to Chapter Contributions .. 25

3.2 Research Approach and Thesis Structure26

4 Methodology.. 29
4.1 Research methods ...29

4.1.1 Case study... 30
4.1.2 Controlled Experiment ... 31
4.1.3 Literature Study and Review .. 32

PART II—CONTEXT

5 Characterizing Model Usage in Embedded Software Engineering:

A Case Study .. 33
5.1 Introduction .. 33
5.2 Method ... 35
5.3 Related Work.. 36
5.4 Results .. 38

5.4.1 Development Domain Model .. 38
5.4.2 Effort Distribution and Importance...................................... 44

5.5 Discussion .. 48
5.6 Conclusion ... 51
5.7 Acknowledgements .. 51

PART III—LIDEC

6 A Light-weight Defect Classification Scheme for Embedded

Automotive Software ... 53
6.1 Introduction .. 53
6.2 Background .. 55

6.2.1 Terminology ... 56
6.2.2 Related Work ... 58
6.2.3 Study context – Automotive Software Development 65

6.3 Method ... 69
6.3.1 Validity Evaluation .. 71

6.4 Results .. 72
6.4.1 LiDeC .. 73
6.4.2 Comparison with IEEE Std. 1044 .. 79

6.5 Conclusion ... 84
6.6 Future Work ... 86
6.7 Acknowledgements .. 87

PART IV—EVALUATION

7 An initial Evaluation of the Practical Feasibility of LiDeC 89
7.1 Introduction .. 89
7.2 Method ... 92

7.2.1 Validity Evaluation .. 94
7.3 Results .. 95

7.3.1 The LiDeC Scheme ... 96
7.3.2 Evaluation—Efficiency and Effectiveness 101

7.4 Conclusion ... 103

7.5 Future Work ..104
7.6 Acknowledgements...104

8 A Comprehensive Evaluation of Defect Classification Schemes 105
8.1 Introduction ..105
8.2 Related Work ..107
8.3 Defect classification.. 110

8.3.1 ODC ... 110
8.3.2 LiDeC ... 112

8.4 Methodology ... 113
8.4.1 Part I: Experiment .. 113
8.4.2 Part II: Case study .. 123

8.5 Results ..124
8.5.1 Experiment Results ... 124
8.5.2 Case Study Results ... 138

8.6 Discussion ...142
8.6.1 Observations about Defect Classification........................... 142
8.6.2 Methodological Reflections.. 146

8.7 Conclusion ..147
8.8 Acknowledgements...148

PART V—FUTURE DIRECTION

9 Furthering the Usefulness of Defect Classification 149
9.1 Introduction ..149
9.2 Importance of Defect Classification ...151

9.2.1 Cause of Late Defects ... 152
9.3 Problem Description ...154
9.4 Roadmap ...156

9.4.1 State-of-practice ... 156
9.4.2 Design of DCS .. 157
9.4.3 Data analysis ... 157

9.5 Conclusion ..158
9.6 Acknowledgements...159

PART VI—IN CONCLUSION

10 Summary and Conclusion ... 161
10.1 Summary of Results ... 162

10.1.1 Characterizing Automotive Software Development 163
10.1.2 Adapting a Defect Classification Scheme 164
10.1.3 Evaluating a Defect Classification Scheme 166
10.1.4 Future Directions ... 169

10.2 Conclusion ... 170

References .. 172

APPENDICES

Appendix A. LiDeC Attribute Description .. 183

Appendix B. LiDeC Classification Guide .. 197

Appendix C. Example classification .. 211

Appendix D. IEEE Std. 1044 Compliance Matrix 219

Appendix E. Mapping between IEEE Std. 1044 and LiDeC 223

i

ABSTRACT

Classification of software defects is a means to provide defect reports with a

shared and well-defined structure. Quantitative analyses of the classification

data facilitated by the shared structure are useful to industry practitioners and

academic researchers. For practitioners, especially in large, complex or

dynamic organizations, analyses can provide valuable information that

characterize the development process, assist in identifying improvement

opportunities, and provide one basis for predictions (e.g. product quality and

resource needs). For researchers, classification data can facilitate evaluating

effects of improved practices (e.g. new methods and tools) by analysing

classified defect data before and after applying the hypothesized improved

practice.

Although recognized as a promising approach, there has to date been

limited research reported on defect classification schemes—specifically on

the efficiency of their application in industry, and on the reliability of the

classification data. Efficient classification is desirable as it minimizes the

time required to classify defects. Reliability of the classification data is

important as it directly affects the reliability of conclusions drawn from

analyses of the data.

In this thesis, a defect classification scheme based on and compliant to the

standard classification for software anomalies (IEEE Std. 1044) is described

and evaluated. The classification scheme, LiDeC (Light-weight Defect

Classification Scheme), was adapted to and applied in the development of

automotive safety software.

Through case studies and an experiment, LiDeC was evaluated with

respect to its industrial applicability, efficiency and reliability. The results

show that analyses of classification data can provide new and useful

information about the effectiveness of current development practices.

Applying a classification scheme adapted to the target organization results in

analyses that are more directly relevant to that organization. Academic

experimentation showed that classification schemes are easy to learn and to

apply—the experiment subjects were able to arrive at rational classifications,

even though lacking domain specific knowledge.

The main contributions of the thesis include: the description of an

adaptation of the standard classification scheme to a specific organization

while maintaining standard compliance; an initial industrial evaluation of the

applicability of the adapted classification scheme; a description of a

methodology for comprehensively evaluating defect classification schemes;

and finally, an investigation of current state-of-the-art with respect to defect

classification, and a proposed roadmap for future research.

ii

ACKNOWLEDGEMENTS

As there are far too many people who have contributed to the work behind

this thesis—whether it be concrete results, inspiration, comfort, or support—

to be enumerated, I should begin by apologizing to all those who are not

mentioned in these acknowledgements.

Firstly, I would like to express my deepest appreciation for my supervisor

Miroslaw Staron, and co-supervisor Fredrik Törner. As expected, there were

many ups and downs, but thanks to your dedication and relentless efforts I

have now finally reached the goal. I am also grateful to Thomas Arts, who

recommended me for this position and was a great support before leaving the

university to pursue other challenges. I would also like to express my

gratitude to the senior colleagues at the department, especially Lars Pareto,

Rogardt Heldal, Robert Feldt and Rikard Torkar.

During my PhD project, I have had the good fortune to have a close

collaboration with Volvo Cars (VCC). Besides being an exciting environment

to get insight into, I've met lots of brilliant people; many of whom have

kindly taken time from their daily duties to support my inquiries. I would

especially like to thank Hans Alminger and Jonas Ekmark. Hans was my first

guide to the VCC maze, and Jonas helped facilitate many of my studies in the

last half of the project. Both Hans and Jonas have spent many hours

reviewing, and thereby certainly improving, my manuscripts before

submission. Many thanks also to Jovan Gojkovic, Rune Solem and Daniel

Söderström, who made some of the studies possible. Finally, to Peter Gergely

who always seemed to have 5 minutes (usually turning into at least 30) for

many interesting and inspiring discussions.

Thanks also to the additional PhD students in the ASIS project, Mohsen

Nosratinia, Stina Carlsson and Henrik Lind, and to our two project managers

Jacob Hägglund and Linda Wahlström. We had lots of ideas and lots of

ambitions, some of which we were actually able to fulfil. As we had very

different academic backgrounds and research interest, it cannot have been the

easiest project to manage—“like herding cats” springs to mind (thanks to

Ulrik Eklund).

To my fellow PhD students at the division, especially Håkan Burden, Ulrik

Eklund, Kenneth Lind, Abdullah Al-Mamun (for introducing me to the

Bangladeshi cuisine) and Ali Shahrokni; you've made life as a PhD student

truly enjoyable. And, Håkan, sharing office with you has perhaps been the

best part of my PhD studies, especially after you started leaving your gym

shoes in the locker downstairs.

iii

Most dearly, to my family which has during the course of these PhD

studies grown from being just Vivian, Filip (the cat) and myself to also

include Lo and Minoo—in addition to being the lights of my life and the

reason I long back whenever I leave home, you have certainly forced me to

use my working hours more efficiently.

Finally and most importantly, to Vivian: thanks for putting up with me

during this very, very long journey. Hopefully I'll eventually find a way to

make up for it.

The research leading to this thesis was conducted as part of the

ASIS project (Algorithms and Software for Improved Safety),

sponsored by The Swedish Governmental Agency for Innovative

Systems (VINNOVA) under the intelligent Vehicle Systems (IVSS)

programme, in collaboration with and executed at Volvo Car

Corporation (VCC).

iv

INCLUDED PUBLICATIONS

The main contribution of this thesis is based on five publications, included as

chapters 5 to 9. The chapters have been kept as close as possible to the

original publications (listed below). Minor modifications regarding language

and layout have been made.

Chapters 1 to 4 and 10 have been added to provide the thesis with

introduction, context, and a summary of results.

Chapter 5

Mellegård, N., Staron, M.

Characterizing Model Usage in Embedded Software Engineering: A Case

Study

Published at 8th Nordic Workshop on Model Driven Software Engineering

(NW-MoDE), Copenhagen, Denmark 2010

Chapter 6

Mellegård, N., Staron, M., Törner, F.

A Light-Weight Defect Classification Scheme for Embedded Automotive

Software

Technical Report 2012:04, ISSN: 1654-4870, Chalmers University of

Technology, Göteborg 2012

Chapter 7

Mellegård, N., Staron, M., Törner, F.

A Light-weight Defect Classification Scheme for Embedded Automotive

Software and its Initial Evaluation

Published at 23rd IEEE International Symposium on Software Reliability

Engineering (ISSRE) Dallas, USA 2012

Chapter 8

Mellegård, N., Staron, M., Törner, F.

A Comprehensive Evaluation of Defect Classification Schemes

Submitted to Software Quality Journal 2013 (Ref. no: SQJO829)

Chapter 9

Mellegård, N., Staron, M., Törner, F.

Why Do We not Learn from Defects? Towards Defect-Driven Software

Process Improvement

Published at International Conference on Model-Driven Engineering and

Software Development (ModelsWard), Barcelona Spain 2013

v

ADDITIONAL PUBLICATIONS

The following additional publications have been written as part of the

research for this thesis.

Mellegård, N., Staron, M.

Methodology for Requirements Engineering in Model-Based Projects for Reactive

Automotive Software

Published at the Doctoral Symposium at the European Conference on Object-oriented

Programming (ECOOP) Paphos, Cyprus 2008

Mellegård, N., Staron, M.

A Domain Specific Modelling Language for Specifying and Visualizing Requirements

Published at the First International Workshop on Domain Engineering, DE@CAiSE

Amsterdam, The Netherlands2009

Mellegård, N., Staron, M

Use of Models in Automotive Software Development: A Case Study

Published at the First Workshop on Model Based Engineering for Embedded Systems

Design, Dresden, Germany 2010

Mellegård, N., Staron, M.

Distribution of Effort Among Software Development Artefacts: An Initial Case Study

Published at Exploring Modelling Methods for Systems Analysis and Design, Springer

Berlin / Heidelberg, Hammamet, Tunisia 2010

Mellegård, N., Staron, M.

Improving Efficiency of Change Impact Assessment Using Graphical Requirement

Specifications: An Experiment

Published at the 11th International Conference on Product-Focused Software Process

Improvement (PROFES), Limerick, Ireland 2010

Nosratinia, M., Lind, H., Carlsson, S. and Mellegård, N.

A holistic decision-making framework for integrated safety

Published at IEEE Intelligent Vehicles Symposium (IV), San Diego, USA 2010

Mellegård, N., Staron, M., Törner, F.

Identifying Improvement Issues and Best Practices in Introducing MDE: An Industrial

Case Study

The paper, an extension of chapter 5, is in preparation for a journal submission.

Rana, R., Staron, M., Mellegård, N., Berger, C., Hansson, J., Nilsson, M., Törner, F.

Evaluation of standard reliability growth models in the context of automotive software

systems

Published at the 14th International Conference on Product-Focused Software Process

Improvement (PROFES) Paphos, Cyprus 2013

Ferwerda, A., Lind, K., Heldal, R., Mellegard, N., Chaudron, M.

Effects of Introducing MD*/DSL in Software Maintenance - A Longitudinal Industrial

Case Study

Submitted to the 36th International Conference on Software Engineering (ICSE) 2014

vi

PERSONAL CONTRIBUTION

For all publications above, the first author is the main contributor. In all

publications appended in this thesis, I was the main contributor with regard to

inception, planning and execution of the research, and writing. The same

applies for the additional publications in which I am listed as first author.

For the three publications in which I am listed as co-author, the following

contributions were made by me:

 Nosratinia et al.

The publication summarizes the research goals of the joint research

project ASIS (Algorithms and Software for Improved Safety) in

which the present thesis was one of four parts. In the publication, I

contributed to the inception of the publication, and was the main

author of the introduction, and the sole author of section 2.

 Rana et al.

The publication evaluates a number of reliability growth models by

applying them to defect data from a real software development

project. My contribution was to assist in the inception of the study,

to provide the data, and to review an initial draft of the publication.

 Ferwerda et al.

The publication is based on the thesis for the degree of Master of

Science by Adry Ferwerda. Although based on the thesis, the

majority of the publication was rewritten; mainly to shorten and

make it clearer. I contributed to the inception, planning and writing

of the publication.

vii

PREFACE

On the final day of the 23rd IEEE Symposium on Software Reliability

Engineering in November 2012, there was a panel debate titled “What you

Always Wanted to Know about Software Reliability but Were Afraid to Ask”.

Instead of focusing on a particular topic, the panel encouraged an open

discussion on all things related to software reliability. At one point, the panel

came to discuss that one current and general problem in the software

development industry is a lack of overview; for instance, whether there are

issues common among organizations with respect to the reliability of their

software. While there may be many opinions on such matters, there is a

distinct lack of more objective evidence. The panel stated that, in part, the

reason is organizations’ reluctance to sharing defect data. Without access to

such data from a large selection of companies and products, it is difficult to

identify patters that might indicate common problems.

During the discussion there was an interesting—and, I think, highly

relevant—anecdote told by a professor emeritus from the Polytechnic

Institute of New York. I would like in this preface to relay my recollection of

that anecdote.

According to the professor, there had been a tremendous increase in mass

production in the US during and after World War I—from consumer products

to infrastructure projects, such as railroad and bridges. In the following

decades, there were a number of rare but catastrophic failures; e.g. collapsing

bridges and buildings. A commonality among these cases was that there was

not a single point of failure, but rather a series of faults that together caused

the failure. Each incident appeared unique but overall it seemed systematic—

rarely, but regularly, large structures collapsed with catastrophic

consequences. Furthermore, in these construction projects there were many

different companies collaborating, but the causes of the failures were too

complex for one company to analyse single-handedly. Still, the question how

to prevent such issues was high on the agenda.

In an attempt to address the problem, several of the concerned companies

formed a consortium with the aim to collect and share defect data in what—

according to the anecdote—came to be known as the “black book”. The black

book contained a variety of aspects of defects and their causes, from material

fatigue to construction and manufacturing issues. As the black book

contained a wealth of data from a large number of different products and

organizations, it provided researchers with a much wider perspective than

what would have been possible if a single organization had been studied. The

data contributed over several years to detect complex and systematic issues,

viii

and thereby improved both the quality of products and the efficiency of

development.

In a sense, the software development industry is currently in a similar

position as the construction and manufacturing industries were before the

black book; there has been a recent and substantial increase in use of

software, yet there does not seem to be a unifying ground to compare issues

between organizations or even between departments within an organization.

An initiative similar to the black book might be an approach to establish such

a common ground; for instance to evaluate the impact of a particular type of

process model or test method. In order to do so, however, there is a need to

investigate what type of data that should be collected to be useful, while also

satisfying individual organizations’ need for confidentiality. The question is:

(how) can that be done?

While it is not the intention in this thesis to provide a comprehensive

equivalence of the black book, it does propose and rigorously evaluate an

approach that can provide initial stepping-stones towards such equivalence.

This is elaborate on in Part V of this thesis.

PART I—INTRODUCTION

Good luck is science not yet classified;

just as the supernatural is the natural not yet understood

 ― Elbert Green Hubbard

1 INTRODUCTION

In Hubbard’s quote above, the concept of good luck is assigned factors that

contribute to a successful outcome, and that are not known or fully

understood. While good luck may certainly be a welcome addition to any

engineer’s work, it is inherently unreliable. Therefore, an engineer would

prefer not to rely on good luck, but to understand and be able to control the

factors influencing the outcome of a project. While it is the work of an

engineer to apply knowledge about these factors in order to successfully

enact a process, it is the work of a scientist to create knowledge by

uncovering and explaining such factors.

The act of measuring aspects of a software development process is one

way to facilitate the creation of such knowledge. It is through measurements

that, for instance, the quality of products or the efficiency of development

processes can be characterized, evaluated, predicted and improved (SEI,

2013). By characterizing, a deeper understanding—e.g. regarding processes,

products and resources—can be gained and communicated. Evaluation

enables, for instance, determining current project status with respect to plans,

and assessing effects of changes to the process, methods or tools used.

Predictions are important, for example to foresee future project needs, and

thereby facilitating more precise resource planning, but can also allow early

product quality assessment. Finally, characterizing, evaluating and predicting

contribute to the identification of development bottlenecks and roadblocks,

and thereby the identification of process improvement opportunities.

I

2 Part I—Introduction

Much software engineering research with the goal to improve development

efficiency and product quality consists of proposing new or modified

practices (e.g. process models, methods and tools)—prominent examples

include model-driven development (MDD) (Mellor et al., 2003), and agile

process models (Korhonen, 2013). While such research is, no doubt, valid

and valuable, it may often be difficult for practitioners to assess whether the

benefits provided by the improved practices address the actual challenges

faced by their specific organization. By establishing a system of metrics that

can be used by researchers to evaluate and characterize the typical impact of

new and improved practices, and that can be used by practitioners to

characterize the current development organization, it would provide the

practitioners with means to perform such assessments.

In practice, furthermore, the selection of improvement initiatives may

often be guided mainly by expert opinion. While important, such opinion is

naturally biased by the knowledge and prior experience of the experts, thus

calling as a complement for evidence that is more objective. In the research

project reported in this thesis, we initially (as reported in chapter 5) found

ourselves in a similarly biased position, in that we set out to investigate how

MDD could be used to improve the development of automotive safety

systems—essentially “equipped with a solution looking for its problem”.

During that investigation, we encountered opinions from practitioners

regarding which practices needed improvement, but also that they often

found it difficult to get their voices heard within the organization (see chapter

9.2). The perceived reason was precisely a lack of hard data to back those

opinions up. Consequently, the second half of the research project, and the

main contribution of this thesis, was dedicated to examining how to obtain

such data—thus effectively changing the research focus from “how can MDD

improve the development of automotive software?” to “how to identify

improvement opportunities in automotive software development?”.

As with other engineering disciplines, there are in software engineering

numerous sources of measurements. One such source is defects reported

during development and after deployment. Although expected during

development, defects can be regarded as a symptom of deficiencies in the

development practices—patterns may indicate systemic process problems.

For this reason, defect reports can contain interesting data; such as, how the

defects were detected, what type of defects they were and what action was

required to resolve it. When analysed quantitatively, patterns may be

discovered that can be used to characterize, evaluate and predict various

process activities; for example, information about the effectiveness of

specific test activities or facilitate prediction of product quality. Defect

 Introduction 3

reports, however, are often written in free text, making quantitative analyses

difficult. Defect classification schemes (DCSs) address this problem, by

providing the defect reports with a shared structure, and thus enabling more

efficient data collection.

Existing DCSs—such as ODC (Orthogonal Defect Classification) and

IEEE Std. 1044—are generic and typically geared towards defects with an

ultimate source-code manifestation. In addition, these DCSs typically target

organizations that are in control of the entire development chain, especially

the implementation phase. In the automotive software development domain,

however, source-code is often developed by, and proprietary to, suppliers

based on requirements and design specifications provided by the vehicle

manufacturer (OEM1). The OEM, furthermore, is responsible for integrating

the parts implemented by the suppliers, and thus the quality of the final

product. This makes applying a generic DCS challenging for the OEM.

Instead, it typically prompts the need to adapt a DCS to the specific

development context.

While DCS adaptations have previously been identified as necessary

(Freimut, 2001), they bring new challenges that are currently not sufficiently

addressed. One such challenge involves balancing generalizability and

specificity of the classification data. More concretely, in order to use defect

classification data to demonstrate effects of new or modified practices, and to

be able to generalize such findings to a context beyond the particular

organization studied, the classification data needs to be equally generalizable.

By adapting the DCS to a particular development context, it may risk

inhibiting such generalization. The IEEE Std. 1044 addresses this by

describing a standard structure for DCS, and by establishing mandatory

elements in order to be compliant. There is, however, a lack of published

experience reports with regard to IEEE Std. 1044. In addition, while there

have been reports on adaptations to DCSs, there is a lack of established

methods for evaluating the adapted schemes.

In this thesis, these challenges are addressed by first, in Part II,

demonstrating through an industrial case study the need for data to

supplement expert opinion. We then provide in Part III an in-depth

description of a DCS adapted from the IEEE Std. 1044 to the development of

automotive safety software. In Part IV, we report on the evaluation of the

adapted DCS by first describing the results of an industrial case study

assessing its practical viability. Additionally, we describe, in Part IV, a

comprehensive method for evaluating DCSs. In Part V of this thesis, we

1 Original Equipment Manufacturer

4 Part I—Introduction

elaborate of future research direction with respect to DCSs. In the final part,

we summarize and conclude this thesis.

The remainder of this introduction is structured as follows. Chapter 2

presents background material relevant to this thesis; chapter 3 summarizes

the research goal and, the specific research questions addressed and finally;

chapter 4 elaborates on the research methodology applied in the thesis.

 Automotive Software Development and Defect Management 5

2 AUTOMOTIVE SOFTWARE DEVELOPMENT AND

DEFECT MANAGEMENT

Effective defect management is especially important in large, complex and

dynamic organizations. In large organization there are usually many different

roles involved in product development, e.g. managers, analysts, architects,

designers, developers and testers. As an organization’s size increases so does

the number of communication paths within and between development teams

(Pareto et al., 2012), adding to the complexity of the development

organization (further discussed in chapter 9.3). In dynamic organizations,

developers may, once their particular development phase has concluded, be

reassigned new projects or different roles within the projects. Thus, the

knowledge and experience from prior projects and project phases is fleeting

unless made explicit. It can therefore be challenging to systematically

identify development issues, as the required knowledge may not be readily

available.

For this thesis, the development of software-intensive automotive active

safety features at Volvo Car Corporation (VCC) has been studied. The

organization developing the active safety features is large in that there are

several hundred engineers involved. The organization is dynamic in that

engineers are regularly reassigned between projects and project roles

according to project needs and their specific expertise. For instance, as the

development of a vehicle model may span several years, the engineers

involved in specification will have been reassigned new projects by the time

the software is implemented. The complexity of automotive software and its

development comes to a considerable extent from the distributed nature of

both the products (characterized in chapter 2.1) and the development process

(described in chapter 2.2). An additional source of product complexity is the

environment in which the active safety features are operating. Specifically,

the features are designed to operate on a wide variety of road conditions

around the world, and the consequences of malfunction can be severe—the

amount of potential test cases the features must be put through is enormous.

It is therefore important to be able to evaluate the efficiency of the various

test methods—for instance, to evaluate whether the tests methods detect the

intended types of defects (see chapter 8.5.2).

Effective defect management provide valuable insights that can be used to

address challenges met in large, complex and dynamic organizations. Figure

6 Part I—Introduction

1 shows a simplified view of the software development process at VCC

where defect management is an on-going activity throughout projects and

after release (chapter 2.2 provides a more detailed description of the figure).

Through the process, the defects are typically detected by a variety of

methods and roles, and documented in a format that is suitable for that

particular context—often with the sole purpose of facilitating its resolution.

In order to enable efficient quantitative analyses, for instance to detect

systematic development issues, structured defect documentation is needed (as

indicated in Figure 3 on page 10). For this thesis, defect classification as an

approach to provide structured defect documentation is examined and applied

to the development of automotive safety software.

The remainder of this chapter provides background and context for the

thesis by first describing an example active safety feature. The description

aims to illustrate the complexity of the products developed, and how that

complexity contributes to the need for efficient defect management (for a

more in-depth description of automotive software development, see e.g.

Eklund (2013, chap. 5) and Hristu, Varsakelis and Levin (2005, pp. 741–

765)). In section 2.2, the development process is described in more detail.

The section provides a specific focus on the defect discovery procedures and

further emphasises the need for structured defect documentation. In section

2.3, a more general discussion on defects, defect classification and its relation

to relevant standards is provided. Finally, as a model-driven development

Figure 1. A simplified overview of the software development process at VCC

 Automotive Software Development and Defect Management 7

(illustrated by the MDB block in Figure 1) is considered a promising

approach to improving efficiency and effectiveness of software development

at VCC, section 2.4 provides a more general description of software models

and model-driven development (chapter 5 provides a more specific

description of the use of software models at VCC).

2.1 AUTOMOTIVE ACTIVE SAFETY FEATURES

Automotive active safety features typically aim to assist the driver in

preventing, or mitigating the effects of, various types of accidents. One

example of such a safety feature is forward collision warning (FCW), which

monitors objects in front of the vehicle using sensors (e.g. a camera and a

radar/lidar). If there is a risk of collision, the feature issues the driver a

visual/audible warning. Active safety features, such as the FCW, executes on

a computer system deployed in the vehicle.

The computer system in a modern car is a distributed computer platform;

there may be 30 to over 100 different computers (Electronic Control Units, or

ECUs) in the car, connected with a number of communication busses. Figure

2 shows an example vehicle architecture, where ECUs are represented with

rectangles connected with communication busses (in the example, two CAN2-

busses, and one MOST3-bus). Running on each ECU are a number of

programs (referred to as Software Components, or SWCs), where each SWC

has a specific responsibility.

Often, a feature is realized by a number of cooperating SWCs. As a highly

simplified example4, the FCW feature may be realized by SWCs running on

three different ECUs:

 An SWC running on the ECU labelled FSM (Forward Sensing

Module), connected to a front-facing camera and a radar, that identifies

and tracks objects in front of the vehicle;

 An SWC running on the ECU labelled CEM (Central Electronic

Module) that assesses a threat level of the objects identified. The CEM

does this by periodically receiving information about the objects in

2 Controller Area Network (CAN) is a low-speed communication protocol specifically

designed for and extensively used in the automotive industry.
3 Media Oriented Systems Transport (MOST) is a high-speed communication protocol for

multimedia and infotainment networking, intended for the automotive industry

(http://www.mostcooperation.com).
4 Note that the example is intended as an illustration of a possible system deployment, rather

than an actual design. The ECU abbreviation spelled out in the text may therefore not

correspond to the actual Volvo XC90 network topology.

http://www.mostcooperation.com/

8 Part I—Introduction

front of the vehicle (from the SWC deployed on the FSM), and of the

current vehicle’s speed and driving direction (which it receives from

the Engine Control Module labelled ECM), and finally;

 An SWC running on ECU labelled DIM (Driver Information Module)

presents the driver with audible/visual warnings if there is a risk of

collision. The warning is triggered by a signal sent from the SWC

deployed on the CEM.

Typically, the SWCs that cooperate in realizing a feature are developed by

one team. There are, however, often cases where an SWC provides a service

to multiple features; for instance, the SWC deployed on the FSM, in the

example above, may also deliver information about objects in front of the

vehicle to the parking assistant feature, deployed on the ECU labelled PSM

(Parking Support Module). Also shown by the example above, the SWC

deployed on the CEM depends on functionality deployed on the ECU

labelled ECM—thus not part of the FCW feature. This example illustrates

that the design and development of automotive safety features are distributed,

which contributes to making defect management challenging; for instance,

emphasizing the importance of a defect management approach that facilitates

analyses of defects across the entire computer platform.

In the cases where an SWC provides a service for external features, a

communication interface is defined for the service as a set of signals. A signal

Figure 2. The figure illustrates an example vehicle architecture. ECUs are
represented as rectangles, and communication busses as lines connecting the

rectngles (the image, showing a modified illustration of the Volvo XC90 network
topology, is adapted from Eklund (Eklund 2013))

 Automotive Software Development and Defect Management 9

is assigned to be sent over a specific communication bus (in this example on

one of the high-speed CAN busses), has a data type and is sent at a specified

interval. The communication interfaces typically need to be specified early in

the project (discussed in chapter 5). Among the reasons is that the

communication interfaces have an impact on the number and the types of

communication busses that are needed. The choice of busses, in turn, has an

impact on the physical design of the vehicle, which requires such information

early—the physical design affects the vehicle’s structural integrity and crash

resilience, which is a costly process to ensure. The validation of the

communication interfaces, however, is typically done late in the project, as

the developed components become mature enough to be properly tested.

Although there are state-of-the-art approaches to achieve earlier validation

(e.g. models-in-the-loop and continuous integration (Giese et al., 2011)), such

approaches are typically expensive, or require substantial process changes.

Thus, deciding to apply such approaches typically need justification. A

system of proper measurements can support justifying such decisions, and

also evaluating the eventual effect of the improved practices.

2.2 AUTOMOTIVE SOFTWARE DEVELOPMENT PROCESS

The studies included in this thesis have been conducted within the active

safety department at Volvo Car Corporation (VCC). The description of the

development process at that department, which is provided below, is also

presented in chapters 5.4.1 and 6.2.3. In each of these chapters, the process is

presented from the perspective, and emphasizing the details, relevant to the

particular study presented in that chapter.

In Figure 1, an overview of the development process is presented. On a

highly abstract level, the in-house process of developing automotive software

systems can be divided into three main phases as shown in Figure 1:

 Function development: The objectives of the function development

phase include developing requirements specifications and high-level

designs for all functions in the vehicle model. Specifically, the high-

level design decomposes each function into a number of SWCs, and on

which ECU each is to be deployed. In addition, a requirements

specification for each SWC is developed. The design and requirements

specification is provided as input to the following phase;

 System development: The objective of the system development phase is

to develop each ECU. This includes the physical component itself, and

the various SWCs deployed on it. In this phase, a development team is

assigned a number of SWCs to develop. The input to each team is the

10 Part I—Introduction

set of requirements that apply to the SWCs. The output of the phase is

a set of ECUs with SWCs installed on them;

 Manufacturing line development: The objective of the final phase is to

develop the factory assembly line in which the cars are mass-

produced. This development phase is relevant to the software

development process, as certain components in the car are calibrated

as part of the manufacturing process. Such calibrations are often

realized by the software.

The main focus in this thesis is on the System development phase. In the

system development phase, each team develops a number of SWCs in

accordance with the requirements specification. Normally, each SWC is

implemented as an executable model in a tool such as Simulink. From these

models program code, such as C, can be generated. This is illustrated in

Figure 1 by the block labelled MBD (model-based development).

Although, the main focus in this thesis is on the system development

phase, defects discovered during this and the subsequent phase are of interest.

The reason is illustrated by the arrows labelled ‘Cause’ and ‘Effect’ in Figure

3. The arrows illustrate that defects introduced in system development may

be detected in later project phases—this also applies to defects introduced in

Figure 3. A simplified view of a defect management process

 Automotive Software Development and Defect Management 11

other artefacts, such as requirements and design. As indicated by the arrows,

defects may remain in the system until triggered by specific tests. Identifying

the effectiveness of the test activities, and which development artefacts are

error-prone, in a distributed development environment is a challenge.

Moreover, while expert knowledge can provide information about these

aspects, such knowledge is typically tacit. As development often span over

several years that knowledge may not be readily available when needed. This

provides further justification for a defect management approach (illustrated in

Figure 3) that makes the tacit knowledge explicit, and that facilitates efficient

analyses.

In addition, the distribution of development among in-house teams, the

system development process typically involves a number of external

suppliers in addition to engineers at the vehicle manufacturing company

(OEM). Whereas the engineers at the OEM develop an executable model for

each SWC, the suppliers are typically responsible for delivering the ECUs

(the physical component) with SWCs installed. Specifically, the supplier

generates C-code from the executable model, then optimizes the code and

compiles it for the particular type of ECU on which it is to be deployed. The

result is a binary SWC that is delivered to the OEM. While in most cases, the

suppliers are responsible for the binary SWCs along with developing the

ECUs themselves, in others cases, they are responsible only for the binary

SWCs. This distribution of responsibility, both between process phases at the

OEM, and between the OEM and the suppliers, makes root cause analyses a

challenge. Without proper measurements, it may be difficult to identify the

process interfaces—e.g. the artefacts delivered between project phases or

between the OEM and the suppliers—that are problematic.

Although the overarching process in the automotive domain is typically

described as a waterfall—often visualized by the standard V-model—the

systems development phase is in fact iterative. Throughout the phase, there

are a number of milestones, each intended to test the functions at an

increasing level of maturity. In early stages of the development phase, the

majority of tests are so called bench-tests, in which a sub-set of the vehicle’s

electrical system is simulated in a lab environment. In the bench-tests, ECUs

may be simulated with regular computers or various types of specialized

hardware (e.g. dSpace-modules). As the project progresses, the bench-test

setup will include pre-production versions of the final ECUs, and later

complete test vehicles are built to test the functions; running particular

scenarios on dedicated test tracks, and field tests (called expeditions), where

the vehicles are driven on regular roads.

12 Part I—Introduction

More specifically, for each milestone, the development teams prepare a

software delivery consisting of executable versions of the SWCs they have

been tasked to develop. In preparation for each delivery, the development

teams typically follow the testing procedure illustrated in Figure 4:

 The executable models are tested on unit level by the development

team at the OEM;

 The binary components, generated from the executable models and

optimized, are tested on unit level by the supplier. Any defects found

are reported back to the OEM;

 Initial integration tests are run on bench by the OEM. In these tests, a

number of SWCs are cooperating to realize functionality. The focus of

these tests is to ensure that communication and synchronization

between SWCs are working as intended. An often used test method

(re-sim) uses recorded data in place of sensors, for instance recorded

video instead of a real camera;

 In the final type of test (Functional test), the complete function is

tested. In this type of test, a full vehicle is built with all the SWCs

installed. In the first type of functional test, specific scenarios are run

on a dedicated test track; for instance, the frontal collision warning

Figure 4. An overview of the typical validation and verification procedures done
for each milestone in the system development phase

 Automotive Software Development and Defect Management 13

system may be tested by driving the vehicle into balloon cars

(inflatable objects). In later phases of development, vehicles are tested

on regular roads (expeditions). The purpose of this type of test is to

ensure that the functions behave as intended in their real environment;

for instance, that the collision warning system does not give false

warnings.

While the test procedure, as shown in Figure 4, is typically followed for each

milestone in the system development phase, the focus is gradually shifted

towards functional test; i.e. initially mainly component and system tests are

run, while in later project phases the focus is on specific scenarios on the test

track, and on expeditions.

Each of the types of tests shown in Figure 4 is associated with a cost—it is,

for instance, generally cheaper to detect a defect in a unit test than in a

functional test. It is of interest to the organization to evaluate that the test

types are effective in detecting the types of defects they were designed to

detect. Assessing the effectiveness, however, requires systematic data

collection and analysis.

2.3 DEFECTS

As the concepts of a defect and of defect classification are central to this

thesis, this section is dedicated to their definition and a discussion on their

relation to relevant standards.

2.3.1 Definitions

The definition of the term defect is in this thesis taken from IEEE Standard

for Classification of Software Anomalies (IEEE Std. 1044-1993 (IEEE,

1993)). The standard was originally issued in 1993 with a subsequent

revision issued in 2009 (IEEE, 2009). Interestingly, the two versions of the

standard use different definitions of the entity intended for classification

(both shown in Table 1). Whereas the 1993 version defines the classified

entity as anomaly, the 2009 version instead uses the term defect. The

definition of the term anomaly (shown in Table 1) is an expansion of the

more limiting definition given in ANSI/IEEE 610.12-1990 (IEEE, 1990), also

including “deviations from the user’s perceptions or experiences”. In the

2009 revision, the more specific term defect is used instead. The reason—as

stated in the introduction—was that the term anomaly was considered too

broad to lend itself to efficient communication.

14 Part I—Introduction

In this thesis the term defect is used, but with the broader definition of

anomaly from IEEE Std. 1044-1993. The justification for using that definition

is that experience from our case company has shown that there are

occasionally issues (as defined by (ISO/IEC/IEEE, 2010)) in which the

design or implementation of functionality comply with the specification, but

would not meet users’ expectations. As an illustrative example, in the initial

phases of a vehicle project (referred to as the Strategic phase in chapter 5.4

on page 38) high-level requirements on the expected behaviour of each

feature are specified. Such high-level requirements may often be vaguely

expressed; e.g. “feature shall be world leader in the premium car segment” or

“feature shall interact with the driver in an unobtrusive and natural manner”.

Even though subsequent refinements are considered to comply, it may be

found when the feature is finally implemented that it fails user

expectations—i.e. when the functionality is successfully verified but fails

validation. Such cases would not be included in the more restrictive

definition provided by the IEEE Std. 1044-2009.

2.3.2 Preventing Defects

Proper defect management is important in any software development domain.

In the automotive domain, the importance is further emphasized by the safety

aspects. For instance, a trend in recent years has been towards features which

are able to make increasingly autonomous interventions, such as braking or

Table 1 The definitions of the classified entity in the two revisions of the
IEEE Standard Classification for Software Anomalies (IEEE Std. 1044)

Source Definition

IEEE 1044-1993 Term: Anomaly

Any condition that deviates from expectations based on

requirements specifications, design documents, user

documents, standards, etc. or from someone’s

perceptions or experiences. Anomalies may be found

during, but not limited to, the review, test, analysis,

compilation, or use of software products or applicable

documentation.

IEEE 1044-2009 Term: Defect

An imperfection or deficiency in a work product where

that work product does not meet its requirements or

specifications and needs to be either repaired or

replaced.

 Automotive Software Development and Defect Management 15

steering. Malfunctioning software may therefore cause severe injuries to the

vehicle occupants, and to individuals in the vehicle’s surroundings.

Standards, such as ISO/IEC 26262 (further discussed in section 2.3.4) aims to

assist in analysing and thereby assuring safety of such features.

Still, there are examples of malfunctioning automotive software. For

instance, in 2010 there were reports concerning the new Toyota Prius model,

where brake performance was decreased under specific circumstances5.

While the specific fault(s) underlying the failure was quickly identified by

Toyota and addressed in a software update, a more interesting question to the

company would be how the fault was allowed to slip through the verification

process. By identifying how this could happen it would also allow preventing

similar incidents from happening in the future. Root-cause analysis (RCA) is

one approach to providing such in-depth investigations. Equipped with

knowledge of the root-cause, a plan of action to avoid similar future incidents

can be set up. RCA, however, has been shown to require substantial effort

(Chillarege and Inc, 2006) and may be feasible to apply only in exceptional

cases. RCA is typically reactive in that it is applied after the fact.

An additional approach to learning from experience is post-mortem

reviews (Dingsøyr, 2005), which is indented as a continuous activity for

process improvement. At the conclusion of a project, an appointed team is

tasked to critically review the project and provide lessons learnt—positive as

well as negative experiences. While RCA can be considered a point-effort to

be applied in specific cases, post-mortem reviews are continuous in that they

are intended as an integral part of the project life-cycle.

Post-mortem reviews are, as with RCA, reactive in that they are performed

after the fact. To enable pro-active defect management—i.e. to prevent

defects—continuous in-process activities are required that provide

information about likely sources of defects; techniques that, for instance,

based on change patterns in source code can indicate increased risk of

specific types of defects, thereby indicate which types of tests need to be

performed. One of the required components in such a technique is structured

defect documentation, and defect classification schemes are one promising

approach.

2.3.3 Defect Classification Schemes

In practice, the purpose of a defect report is often limited to facilitating the

resolution of the defect. In particular, defect reports are often free text

5 The investigation report (action number PE10006) by NHTSA is available from:

http://www-odi.nhtsa.dot.gov/owners/SearchNHTSAID

http://www-odi.nhtsa.dot.gov/owners/SearchNHTSAID

16 Part I—Introduction

(Wagner, 2008)—the reports do therefore not easily lend themselves to

efficient quantitative analyses. To address this problem, various defect

classification schemes have been proposed. Such classification schemes

contribute to comparability of defect metrics between projects, and between

companies (Chillarege et al., 1992).

A useful classification scheme comprises a set of attributes, where each

attribute captures a specific aspect of the defect—e.g. how the defect was

detected, its severity and type. Moreover, for each attribute, the schemes

typically provide a set of values that can be chosen from; this contributes to

the efficiency as well as to the reliability of the classification.

The most commonly referred (Freimut, 2001) classification schemes in

literature are ODC (Orthogonal Defect Classification) (Chillarege et al.,

1992), the HP scheme (Grady, 1992) and the IEEE Std. 1044 (IEEE, 2009,

1993). Common among these established classification schemes is that they

have focus on source code, and on low level attributes related to the

implementation. In addition to requiring access and detailed knowledge of

the implementation, it also risks missing important aspects of defects in

artefacts that does not have direct manifestations in the source code; e.g.,

quality of specifications and missing or inadequate test cases.

In order to be useful, defects should be classified in-process, i.e. aspects of

the defects should be documented according to the classification scheme as

soon as the relevant information is revealed. One way is to incorporate the

DCS into the organization’s issue-tracking system. The DCS will in such case

serve as a defect report template, prescribing what aspects of the defect must

be documented as part of the defect life-cycle (e.g. detection, analysis, and

resolution). Performing the classification in-process—when the details of the

defect are still in fresh memory—increases the likelihood of correct

classification, and will likely minimize the time required (indications of

which are reported in chapters 8.5.1 on page 132 and 8.6.1 on page 144).

In this thesis a DCS based on and compliant with IEEE Std. 1044, and

adapted to the development of automotive active safety software is described.

The resulting DCS is named Light-weight Defect Classification scheme

(LiDeC).

2.3.4 Standards

Applying a DCS for characterizing and documenting defects is important to

organizations that want to comply with standards. Complying with standards

contribute to repeatable defect management and to the consistency of the

defect data over time. The standards, in addition to IEEE Std. 1044 as

 Automotive Software Development and Defect Management 17

discussed in the previous section, that are relevant to the DCS described in

this thesis relate primarily to various aspects of product and process quality.

ISO/IEC 9126 (ISO/IEC, 2001) defines a quality model that is relevant to

the Effect attribute in LiDeC (see Appendix A, page 187). The ISO/IEC 9126

is a standard for evaluating software quality. Specifically, it describes a

quality model as a set of characteristics (i.e. quality attributes as defined by

(ISO/IEC/IEEE, 2010)). The characteristics are Functionality, Reliability,

Usability, Efficiency, Maintainability, and Portability. Each characteristic is

further divided into more fine-grained sub-characteristics. Such sub-

characteristics are useful to be able to classify the Effect attribute with a

higher granularity—thus, provide an extensibility mechanism for the

attributes in the DCS. ISO/IEC 9126, furthermore, defines three types of

metrics: internal metrics, external metrics and quality in use metrics. In this

thesis, mainly external and quality in use metrics are relevant, as the main

test activities at the case company involve code execution. There are a

number of additional standards related to software quality assurance (SQA).

While these standards specify aspects of various best software development

practices, the specifics regarding their implementation are left for the

individual development organization to select. Therefore, DCS are relevant as

a concrete technique to implement concepts specified by these standards.

The relevant SQA standards can be classified as quality management and

project process standards (Galin, 2004, p. 473). The quality management

standards focus on the SQA infrastructure while leaving the choice of

particular methods and tools to the organization—i.e. they focus on what to

achieve by the SQA process, rather than on how that is to be achieved.

Prominent quality management standards include ISO 9000-3 (ISO, 2005, pt.

3), CMMI (CMMI Product Team, 2010a, 2010b) and ISO/IEC 15504 (also

known as SPICE, and with its more specialized version Automotive-SPICE)

(ISO/IEC, 2004; The SPICE User Group, 2011). Project process standards on

the other hand focus on how a project is to be implemented. The standards

define which steps are to be taken, and what work products are to be

developed. Prominent project process standards include ISO/IEC 12207 and

IEEE Std 1012-1998.

Quality management standards generally serve at least two purposes.

Firstly, to enable assessing the maturity of an organization’s SQA

infrastructure; this typically involves certification by an external accredited

body. Such certification allows for instance OEMs to assess a supplier’s SQA

process, and thereby provides an indication of an organizations ability to

deliver high quality products. Secondly, the quality management standards

can be used to guide an organization in improving their SQA system.

18 Part I—Introduction

A prominent example of a quality management standard is ISO 9000-3,

which define a set of requirements pertaining to all aspects of an

organization’s software development process. In order for an organization to

be certified, it must demonstrate its compliance to each of the requirements.

Typically the certification process is conducted in collaboration with an

authorized certification body.

The capability maturity model integration (CMMI) is, similarly to ISO

9000-3, a model used for assessing the capability of a software development

organization. Whereas according to ISO 9000-3 an organization is either

certified or not, CMMI defines five levels of process area maturity. As with

ISO 9000-3, the five levels of maturity defined by CMMI allow both external

assessment of an organizations capability, and internal guidance on how to

reach the next level of capability. The particular focus of CMMI is on

management methods based on quantitative approaches. This is reflected, for

instance in that at the higher levels maturity, an organization is required to

utilize product and process metrics to control performance and identify

improvement needs and opportunities (Galin, 2004, p. 504). The goals and

structure of the ISO/IEC 15504 standard is similar to CMMI in that it defines

a number of maturity levels for a set of key process areas. The similarity

between CMMI and ISO/IEC 15504 has been showed through mappings

between the two standards (e.g. (Peldzius and Ragaisis, 2011; Rout and

Tuffley, 2007)). Such mappings are justified by the desire of organizations

that have been certified according to one of the two standards, to also become

certified according to the other—indicating that the two standards are

overlapping.

The quality management standards typically focus on what a development

organization shall be capable of without specifying how to achieve that

capability. This is an intentional approach as the specific methods and tools

most appropriate to achieve the capabilities may be different between

organizations (for instance, depending on product domain). The methods and

tools chosen, however, need to contribute to the capabilities defined by the

standards. As such, defect classification schemes are a method contributing to

the achievement of level 4 in CMMI and ISO/IEC 15504 (specifically

Measurement).

Project process standards specify, in contrast to quality management

standards, how to perform a process. IEEE/EIA 12207 and IEEE 1012 are

two such standards. Even though these standards describe which steps are to

be taken and what work products are to be developed as part of the process,

they still leave the concrete techniques (e.g. methods and tools) open to the

 Automotive Software Development and Defect Management 19

organizations. The concept of a DCS is, in this context, relevant as one

technique to meet specific requirements posed by the standards.

The main purpose of the project process standards is to define a common

framework of best practices. These best practices are in the form of activities

and sub-activities that should be performed as part of a project. While

IEEE/EIA 12207 covers the entire project life-cycle, and IEEE 1012 focuses

specifically on verification and validation activities (V&V), the two standards

are closely related —Annex A in IEEE 1012 provide a mapping to IEEE/EIA

12207 tasks.

IEEE/EIA 12207 defines, using a hierarchal structure, processes (e.g.

acquisition, supply, and development) and for each process a set of activities

that shall be performed; for the supply process, activities may include

initiation, preparation of response, planning, execution and control (Galin,

2004, pp. 530–531). For each activity, furthermore, the standard defines a set

of tasks in the form of requirements; the execution and control activity may,

for example, include the task (Galin, 2004, p. 531):

Supplier shall monitor and control the progress of development

and quality of software products, including problem

identification, analysis and resolution

While the project process standards aim to define processes more

concretely than the quality management standards, they still leave it open to

organizations how to implement their processes. More specifically, the

standards define requirements that need to be met in order to be compliant—

i.e. it is up to the organization to choose the particular methods and tools

suitable for each activity. Defect classification schemes may therefore serve

as a technique fulfilling certain task requirements. For instance, in the task

requirement above, the supplier is to monitor the quality of software

products, but the implementation of that monitoring activity is not specified.

Defect classification can contribute with data regarding one aspect of the

quality of the software.

The ISO/IEC 26262 (ISO/DIS, 2011) standard is intended to support the

development of safety-critical automotive features. Specifically, the standard

defines a set of best practices in specifying, designing, implementing and

verifying safety relevant aspects of automotive features. While the standard

defines best practices for software testing at various levels (clauses 9-11 in

ISO/IEC 26262-6 (ISO/DIS, 2011, pt. 6)), it does not specify details on how

to document defects. DCS is one technique for documenting discovered

defects that comply with the standard, while capturing data on additional

aspects of the defects.

20 Part I—Introduction

In essence, defect classification schemes are a technique for extracting

measurements from defects. As such, the standard ISO/IEC 15939, Systems

and software engineering—Measurement process (ISO/IEC 15939, 2007) is

of relevance to this thesis. ISO/IEC 15939 defines activities and tasks

necessary for defining and applying a measurement process in a software

development organization. Of specific interest for this thesis is the

measurements information model in Annex A (ISO/IEC 15939, 2007). The

information model defines key concepts related to measurements, and their

relationships. In this thesis, chapter 5 describes a case study which came to

reveal information needs (as defined by the standard) that were not satisfied.

The act of classifying defects corresponds to measurement method in the

standard, and the classification data to base measures. Furthermore, the

design of LiDeC (as reported in chapter 6.3) followed the process defined by

the standard. While the additional concepts shown in the standard’s

information model are important to form a practical measurement product, it

is outside the scope of this thesis—although, chapter 9 outlines a research

roadmap that aims to incorporate the remaining concepts of the information

model.

2.4 MODELLING

Improving development efficiency and product quality are typically on-going

efforts in software development organizations. However, identifying

improvement opportunities and evaluating the effects of undertaken

improvement initiatives in a complex development organization is

challenging. While defect classification data is one means of facilitating

identification and evaluation of improvement initiatives, chapter 5 describes a

case study exploring an alternative way.

In the case study, it was presumed that adopting a model-driven

development approach (MDD) would improve development efficiency and

product quality. In the study, the centrality of software models in a non-

model-driven development organization was examined. More specifically, the

study contrasted modelled and non-modelled development artefacts from the

perspective of their respective perceived cost and benefit. The intended

outcome was to be able to better identify which development activities would

benefit most from applying an MDD approach. To provide chapter 5 with

context, a more general definition of software models and model-driven

development is given here.

Representing development artefacts as models is common practice in many

software development organizations. In the development of active safety

 Automotive Software Development and Defect Management 21

software at VCC, one of the most common type of model is implementation

model (e.g. Simulink models (Mathworks, 2010)). Representing a

development artefact as a model (such as Simulink model in place of source

code) has the purpose of providing an abstraction for a particular purpose.

Mellor et al. (Mellor et al., 2003, p. 15) provide the following definition of a

model:

A model is a coherent set of formal elements describing

something (for example a system, bank, phone, or train) built

for some purpose that is amendable to a particular form of

analysis […]

The principle of MDD (Kent, 2002; Mellor et al., 2003) is that models

should be the primary development artefact, i.e. work should be done on the

models, and other artefacts (such as document or code) should be (semi-

)automatically generated from the models. Ideally, the development should

comprise a chain of model transformations, from requirements to source

code. In each development step, analyses are conducted; information is

refined and added to the models, allowing it to be transformed to the next and

more concrete model eventually resulting in an executable artefact.

Frequently cited reasons for improved development efficiency with MDD

include: a) as each type of model is designed for a particular kind of analysis,

that analysis should be more efficient, and b) as multiple types of artefacts

can be generated from the models is should reduce the amount of manual

development work.

Improved product quality is typically attributed model transformations,

which requires less manual work than code-centric development. For

instance, as source code can be generated from the models, it significantly

reduces the amount of manually written code, which is often error-prone.

This means that verification and validation can be done on model level,

enabling more direct validation of domain specific concepts, rather than

obscured by specific programming language constructs.

While MDD can improve aspects of software development, it also requires

changes to the development organization. For instance, it has been shown that

the focus of the organization needs to be shifted from writing source code, to

developing meta-models and model transformations. Making such a

transition in a large or complex development organization is challenging and

risky. In order to mitigate such risks, a more targeted adoption may be

effective (Selic, 2003)—i.e. to introduce modelling in the parts of the

development process that present the best opportunity for improvement. In

addition to methods for identifying such process parts, methods evaluating

22 Part I—Introduction

the impact of improvement initiatives are required. In particular, a broad

perspective needs to be considered in order to assess whether the initiatives

accomplished the intended improvements, and not merely local optimizations

while causing issues in other parts of the development process. By analysing

classified defect data, such effects can be evaluated.

 Research Focus and Thesis Structure 23

3 RESEARCH FOCUS AND THESIS STRUCTURE

The main research question in this thesis is summarized as:

How to improve defect management in automotive software

development using structured defect documentation?

The majority of this thesis is a continuation of our previous research

(Mellegård, 2010). In that research, the goal was to examine how model-

driven development methods could improve automotive software

development practices. Among the results of that research were the

realisation that, while project staff often have strong opinions of what

development practices need improvement, a significant challenge is to

provide evidence that those improvements actually targets the relevant

development issues. Consequently, the main contribution of this thesis is the

proposal and evaluation of a defect classification scheme that can be used as

a source of such evidence—thus, the aim of the main research question is to

improve defect management by extending the usefulness of defect

documentation beyond merely facilitating the resolution of the defects.

3.1 RESEARCH QUESTIONS

The main research question was broken down into four separate research

questions; each question is addressed in a separate part of this thesis.

3.1.1 Characterizing Automotive Software Development

The first research question, addressed mainly by our previous research

(Mellegård, 2010), aim at characterizing the development of automotive

software from a modelling perspective. The research question was:

RQ 1 How important and effort intensive are software models in

automotive software development, and what are the

opportunities for improving the utilization of models?

This research question is addressed in Chapter 5 in Part II by providing an

overview of the current way of working with a focus on the use of software

models. The aim of the chapter was to investigate how the use of software

models could be made more efficient by characterizing the current way of

working. More specifically, the chapter describes a study contrasting the

24 Part I—Introduction

perceived cost and importance of the various model and non-model related

development artefacts.

3.1.2 Adapting a Defect Classification Scheme

In addressing research question 1, we found that although there were many

expert opinions regarding which development practices were in need of

improvement, there was a lack of verifiable evidence. Consequently, the

research focus shifted towards investigating how to obtain such evidence. In

Chapter 6 of Part III, the following research question is addressed:

RQ 2 How to improve efficiency of applying IEEE Std. 1044 in

model-based automotive software development?

The aim of research question 2 was to examine how to adapt the standard for

classification scheme (IEEE 1044) to automotive software development,

while maintaining compliance with the standard. As a result, LiDeC (Light-

weight Defect Classification scheme) was developed, as is reported in-depth

in Part III.

3.1.3 Evaluating a Defect Classification Scheme

The third research question, addressed in Part IV, aims at providing an

evaluation of LiDeC. Part IV addresses the two research questions:

RQ 3.1 How feasible is LiDeC for model-based automotive software

development?

RQ 3.2 How to evaluate a defect classification scheme?

The aims of the research question addressed in Part IV were two-fold; firstly,

to evaluate the practical viability of LiDeC, as reported in chapter 7.

Secondly, to examine, describe and reflect on a comprehensive method for

evaluating defect classification schemes, as reported in chapter 8.

3.1.4 Future Directions

The final research question aimed at examining how the concept of DCS can

be further developed. Specifically, chapter 9 of Part V addresses the research

question:

RQ 4 What are the future research directions for improving defect

classification?

 Research Focus and Thesis Structure 25

By examining the published research up to this point, three main areas in

need of further research are outlined. Addressing these research areas would

further the applicability of defect classification schemes as an industrial as

well as academic tool for data collection.

3.1.5 Mapping of Research Questions to Chapter Contributions

Research question 1 is addressed in Chapter 5 by investigating the following

more specific questions (prefixed with M for Modelling):

M1.1 Which models are used?

M1.2 Which modelling notations are used?

M1.3 What information is conveyed by the models?

M1.4 How much automation is used in the development of models?

M1.5 Which documents are created from the information contained

in the models?

M2.1 What is the relative importance of the model-related artefacts

in the software development process?

M2.2 What is the relative cost (in terms of effort) for developing

model-related artefacts in the software development process?

Research question 2 is addressed in chapter 6 by investigating the following

more specific questions (prefixed with L for LiDeC):

L1 In an automotive safety feature development context where

source-code is often not available, how can a standard defect

classification scheme be suitably adapted?

L2 As defect classification may often be considered an

administrative task, how can the adaptation of a standard

defect classification scheme be done to minimize required

learning and classification time?

Research question 3.1 is addressed in chapter 7. While the more specific

questions L1 and L2 in chapter 6 focused on developing an adapted defect

classification scheme, chapter 7 addresses two similar questions but with the

focus on evaluating the classification scheme in an industrial context. The

more specific research questions investigated in chapter 7 are (prefixed with

E for evaluation):

26 Part I—Introduction

E1 How can the IEEE Std. 1044 be adapted to a software

development context with limited access to source-code?

E2 How can the IEEE Std. 1044 be adapted to minimize its

process foot-print in terms of required learning and

classification time?

Research questions 3.2 and 4 are addressed in chapters 8 and 9 respectively.

The chapters do not pose more specific research questions.

3.2 RESEARCH APPROACH AND THESIS STRUCTURE

The overarching research approach employed in the work in this thesis

followed the technology transfer model, as depicted in Figure 5 (adapted

from Ivarsson (2010), originally published in Gorschek et al. (2006)). The

purpose of the model is to facilitate smooth transfer of technology from

academic research to industrial practice. More specifically (from Gorschek et

al. (2006)):

“Technology transfer, and thus industry-relevant research,

involves more than merely producing research results and

delivering them in publications and technical reports. It

demands close cooperation and collaboration between industry

and academia throughout the entire research process”

To this end, the model defines a number of steps that each, when conducted

properly, contributes with both knowledge building and industrial

dissemination of that knowledge. Specifically, the approach begins, as can be

seen in the figure, with identifying a problem. The problem is mainly situated

in an industrial context but is also of academic interest. The second step is to

formulate the problem in part by studying state-of-the-art. In the third step, a

candidate solution is proposed, while steps 4–6 aim at evaluating the

candidate solution. Specifically, in step 4, validations in academia are

conducted. Static validation, shown as step 5 in Figure 5, represent a limited

scale industrial evaluation, mainly feasibility studies—for instance, to

evaluate whether the solution addresses the problem, or is applicable in the

specific context. Step 6, dynamic validation, is generally larger scale

industrial studies, such as a pilot study, in which the solution is applied in a

real industrial context. Finally, when the validations are considered

successful, the technology can be released (i.e. utilized in a full industrial

scale).

 Research Focus and Thesis Structure 27

The main contributions of this thesis, presented in chapters 5 to 9, add to

each of the six first steps. For the first step, three separate but related

problems identified and addressed in this thesis—one industrial and two

academic problems.

The industrial problem is described in chapter 5. The chapter describes an

industrial case study in which a more objective source of evidence regarding

process improvement opportunities was found lacking. Although the main

contribution of chapter 6 is towards proposing a candidate solution (step 3), it

also reports on an investigation of current state-of-the-art; an investigation

that led to the examination of defect classification schemes as a promising

approach for collecting such objective evidence. Chapter 6, furthermore,

reports on a static validation by presenting a three-stage case study in which

LiDeC was developed. Chapter 8 reports on a validation of LiDeC in

academia using a controlled experiment, and a dynamic validation is

presented in chapters 7 and 8. The dynamic validation was conducted as an

industrial pilot study in which LiDeC was applied to a set of defects from a

real project.

In addressing the industrial problem identified in chapter 5, two related

academic problems were identified. The first problem, described in chapter 8,

Figure 5. An overview of the research approach (adapted from (Ivarsson 2010))
in this thesis, and how the chapters of the thesis relate to the approach

28 Part I—Introduction

concerns that it is not clear how to validate efficiency, accuracy and

reliability of adapted DCSs, even though it is recognized that a DCS need

adaptation in order to be feasible. The chapter additionally presents a study of

state-of-the-art, and a candidate solution, in the form of an in-depth

description of a comprehensive method for evaluating a DCS.

The second academically relevant problem is identified in chapter 9 by

demonstrating that there is a general need to establish defect measurement

methods, and that current state-of-the-art is lacking in several respects—

contributing to steps 1 and 2 in Figure 5. The chapter presents a candidate

solution by proposing three main research areas that need addressing in order

for DCS to become more widely adopted.

 Methodology 29

4 METHODOLOGY

Although the work presented in this thesis is academic research, it has a

strong empirical focus. This is illustrated by step 1 in Figure 5, in that the

main problem the thesis addresses is situated in an industrial context.

Specifically, the main research goal in this thesis was to develop a feasible

method for identifying improvement opportunities in automotive software

development. As a consequence, two related problems mainly of academic

interest were identified.

Due to this approach, a number of different research methods have been

applied. The main methods and a brief validity evaluation are presented in the

following two subsections.

4.1 RESEARCH METHODS

The work presented in this thesis is the result of five separate studies,

presented in chapter 5 to 9. Each of the five studies had a number of specific

goals, and each utilized the specific research method that was best suited for

the purpose. As can be seen in Figure 6, a variety of methods has been

applied—ranging from qualitative to quantitative and from empirical to

analytical (Glass, 1994). Although quantitative methods collect data from a

large number of cases, that data is typically shallow. More specifically, while

interesting patterns can be detected in quantitative data using statistical

methods, such analyses does not explain why specific patterns exist. In

contrast, quantitative methods make deeper investigations into a small

amount of cases, and aims precisely to gain understanding of underlying

reasons or motivations.

Moreover, the separation between theoretical and empirical methods

attempts to illustrate the method’s proximity to the practice it intends to

examine. In this thesis, the focus is, as can be seen in Figure 6, on empirical

methods. This focus was chosen, as the goal of the work was to conduct

research that was readily applicable. The analytical methods applied were

literature study and review.

As each chapter discusses in more detail the methods used, the following

subsection provides a more general methodological discussion.

30 Part I—Introduction

4.1.1 Case study

The main method in this thesis, because of the strong focus on empiricism,

has been the case study method. Yin (Yin, 2009, p. 18) defines the case study

method as:

“[…]an empirical inquiry that: investigates a contemporary

phenomenon within its real-life context, especially when the

boundaries between phenomenon and context are not clearly

evident [...] and in which multiple sources of evidence is used”

As the case-study methodology puts emphasis on the empirical study of the

phenomenon in its real-life context, it was considered appropriate for

addressing aspects of the first three research questions. Additionally, what

was considered phenomenon and context—i.e. what parts of the development

process that were relevant—was not clear, which further suggested the case-

study as an appropriate method to apply.

In chapter 5, case study was applied in order to build an understanding of

the current development process—partly from how that process is prescribed,

but mainly how it is enacted. For that purpose, it was important to elicit

qualitative evidence, in the form of document inspection and interviews, from

the real-life context.

Figure 6. Thesis methodology overview

 Methodology 31

In chapters 6 and 7, the case study method was applied in order to develop

LiDeC. The case study method was considered appropriate because the

industrial applicability of LiDeC was central. Thus, by conducting the study

in the real-life context assisted in continuously evaluating the feasibility of

LiDeC (shown in Figure 5 as static validation).

While the case study method has the ability of providing nuanced results,

its main weakness related to the universality of the results. Precisely because

the case study method is conducted within a real-file context, it can be

questioned how representative that context is to a general population—i.e.

whether the results can be generalized (external validity) (Yin, 2009, p. 38).

Yin (Yin, 2009, p. 116), proposes triangulation in order to minimize the threat

to external validity. In this thesis, data and method triangulation has been

used. Data triangulation was implemented by incorporating subjects from

different projects, and in different roles. More specifically, in the case study

reported in chapter 5, subjects from a number of different subprojects were

interviewed, and subjects in a project management role along with developers

and testers. This widens the perspective of the data collected, and reduces the

risk of acquiring only one specific view. Method triangulation was done

mainly by literature study, in order to confirm or refute the findings from the

case study.

4.1.2 Controlled Experiment

Whereas the case study method acknowledges that—for the validity of the

results—complexity and context matters, a controlled experiment aims at

isolating and examining specific aspects of the object under study. In chapter

8, the aim was to examine whether LiDeC, as a classification scheme adapted

to a specific context, provided additional benefits as compared to a generic

classification scheme. In order to draw conclusions from such a comparison,

it is necessary to eliminate all perceivable confounding factors.

While the strength of a controlled experiment is precisely that any effects

seen in the results can be attributed to the treatment used, the validity of those

results in a real-world context may be disputed—the confounding factors that

are eliminated as part of the experiment design can be significant in a

realistic setting. In addition, controlled experiments are often used to perform

academic evaluations (shown as step 4 in Figure 5), thus using university

students as subjects. Such academic evaluations are generally chosen because

they offer low-cost and low-risk alternatives to industrial evaluations

(Gorschek et al., 2006). The drawback, on the other hand is that the

representativeness of the results can be questioned.

32 Part I—Introduction

The results of the experiment, reported in chapter 8, were triangulated with

the results from the industrial evaluation (using a case study method)

reported in the same chapter. The results from these two evaluations offered

some overlap, which provided opportunity for discussion. This triangulation

strengthens both results.

4.1.3 Literature Study and Review

In addition to the two empirical methods, two related analytical methods

were used; literature study and literature review. Literature study is used in

chapters 5 to 8 (although the literature study in chapter 7 is included and

expanded in chapter 6) to provide context and motivation prior to planning

the studies. The method is qualitative and analytical. It is analytical in that it

summarizes existing knowledge without attempting to provide an explicit

application. Literature study is qualitative, in that a selection of publications

are examined, interpreted and described in a particular context. A weakness

of this method is that the selection of publications is dependent on the

researcher’s discretion. This weakness is to some extent mitigated by the

peer-review procedure—serious inadequacies in the selection, interpretation

or description of publication would likely be called into question as part of

the review.

Literature review, in contrast to literature study, aims at providing

quantitative data. The purpose of a literature review is to give a broader

overview of a research field, by conducting targeted searches in available

publication databases. A review protocol established prior to the study is used

as a selection mechanism, and the resulting matches are analysed and

categorized. These categories are used to draw conclusions about the current

state of research within the chosen research field.

In this thesis, a small-scale literature review is reported in chapter 9. The

review was conducted in order to conceptualize the use of defect

classification schemes in industry and academia. The main weakness of this

small-scale review is that the search for publications was limited to only one

source (the IEEE Xplore6 database) which may not be representative to the

research field under study. For this reason, the conclusions drawn from the

study were considered indicative rather than conclusive.

6 http://ieeexplore.ieee.org

PART II—CONTEXT

In theory, there is no difference between theory and practice.

In practice there is.

― Yogi Berra

5 CHARACTERIZING MODEL USAGE IN EMBEDDED

SOFTWARE ENGINEERING: A CASE STUDY

This chapter presents a case study in which the use of models in automotive

software development was characterized. The study was conducted in order

to gain a deeper understanding of the importance and cost of applying various

modelling notations. The chapter was previously published as

Mellegård, N., Staron, M.

“Characterizing Model Usage in Embedded Software

Engineering: A Case Study”

Published at 8
th
 Nordic Workshop on Model Driven Software

Engineering (NW-MoDE), Copenhagen, Denmark 2010

5.1 INTRODUCTION

Model-driven engineering (MDE) (Atkinson and Kuhne, 2003; Brown,

2004a, 2004b) has the goal of increasing development productivity and

quality of software-based products by raising the level of abstraction at which

the development takes place. Several studies have provided evidence

showing that the application of MDE in large industrial projects has indeed

improved productivity and quality of the products (e.g. (Baker et al., 2005;

Heijstek and Chaudron, 2009; Staron, 2008; Weigert et al., 2007)), while

II

34 Part II—Context

other studies have shown mixed results or indicate a lack of objective

empirical evidence (Mohagheghi and Dehlen, 2008).

Industrial software development, however, rarely provides the possibility

to go from code-centric to model-driven software development in a single

step and to the full extent. One example of software development domains

where this is not possible is automotive software development. The domain is

characterized by the existence of a significant amount of legacy software and

high interdependence between car manufacturers and suppliers of car

components. This high interdependence requires precise specifications that

have to provide possibilities for interoperating of software development

practices at the manufacturer’s side and the supplier’s side. This, in

consequence, means that a number of practices for using models are used in

parallel—e.g. UML and Simulink. Since modelling notations differ in the

degree of formality and quite often can be used interchangeably, it is

important to optimize the cost of using these notations. The cost has to be

balanced with the benefits that these models bring and perhaps not used in

those parts of software development where code-centric approach is already

very efficient.

In this chapter we describe the development process and explore the costs

and efforts of using different modelling notations and different abstraction

levels for specifying requirements and designing the software in the

automotive domain. The case study was conducted at Volvo Car Corporation,

within the department responsible for electronic and software systems in

Volvo automobiles. The research question in the case study was:

 What is the relative importance of models-related artefacts in

a model-based software development process?

 What is the relative cost (in terms of effort) for developing

models-related artefacts in a model-based software

development process?

These two questions are important from a pragmatic perspective—when

introducing model-based development, are we focusing on the right

improvements?

Addressing this research question provided the possibility to assess the

costs of using different kinds of modelling notations in software

development. The data was collected via document analysis and a sequence

of interviews with architects and project managers. The main perspective of

the results is the project managers’. The results show that there are a few

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 35

artefacts which require significantly more effort than other artefacts and that

the perception of what is important is different from where the effort is spent.

The rest of the chapter is structured as follows: Section 5.2 summarizes the

method used, Section 5.3 outlines related work, Section 5.4 presents the

results of the case study and Section 5.5 discusses the results. Section 5.6

concludes the chapter.

5.2 METHOD

The goal of this study was to characterize the process of developing

automotive software systems, with use of models as the storage of design

information. The research approach consisted of two separate stages: we first

conducted a series of interviews and document analyses in order to build a

map of the artefacts created in the actual process—a development domain

model (Mellegård and Staron, 2010a). We then used the domain model in the

second stage intended to assess which artefacts were considered most

important and which received the most effort.

The first stage (Mellegård and Staron, 2010a) was conducted at VCC

(Volvo Car Corporation) over the course of 18 months and consisted of semi-

structured interviews with function, system and component designers and

document inspections. The stage specifically aimed at addressing the

following research questions:

M1.1 Which models are used?

M1.2 Which modelling notations are used?

M1.3 What information is conveyed by the models?

M1.4 How much automation is used in the development of models?

M1.5 Which documents are created from the information contained

in models?

The second stage (Mellegård and Staron, 2010b) consisted of interviews

and followed the case-study design proposed by Yin (Yin, 2002). The

subjects in that stage consisted of 6 function designers and function

managers, in which we asked the subjects to distribute $100 among the

artefacts corresponding to the amount of effort that was put into each. The

main unit of analysis was the relative importance and amount of effort

invested in the development artefacts, specifically requirements, different

types of models and documents. We first presented and described the domain

model showing the key artefacts we had identified in the development phase.

36 Part II—Context

The purpose with this presentation was to provide the respondent with the

context of the study and also to provide the opportunity to ask about and

comment on the content and structure of the domain model—e.g. add

concepts or change relationships among the shown concepts. We conducted

this part as a focused interview (Yin, 2002). In order to ensure construct

validity, we noted the comments and incorporated them in the following parts

of the interview (in accordance with Yin (Yin, 2002)).

5.3 RELATED WORK

This paper contributes to our previous research published in (Mellegård

and Staron, 2010a) and (Mellegård and Staron, 2010b). In (Mellegård and

Staron, 2010a) we reported on a domain model showing the main artefacts

developed throughout the entire development process, whereas we in this

paper focus on one of the four identified phases—the function development

phase. Furthermore, in (Mellegård and Staron, 2010b) the focus was on

describing the case-study in which effort and importance of the artefacts in

the function development phase were investigated. In (Mellegård and Staron,

2010b) the preliminary results of 3 interviews were included, whereas this

paper includes the result from 6 interviews.

Mohagheghi and Dehlen (Mohagheghi and Dehlen, 2008) conducted a

review of documented modelling experiences and concluded that there are

few reported results of how the MDE scales to large system development.

Furthermore, the paper concluded that there was often a lack of company

baselines which resulted in subjective evaluations. Our case study intended to

contribute to such a company baseline intended to be used to compare the

development process with other companies.

In (Staron, 2008) we contrasted how effort was distributed between the

different development phases in model-driven and code-centric projects

within a company in the telecommunication domain. The results showed that

the overall efficiency of the development process improved by adopting an

MDE approach. The evidence for the analysis and design phase, however,

was not conclusive. In this case study we examined the analysis and design

phase, specifically with respect to the development artefacts created.

Furthermore, in (Staron, 2008) we found that the implementation phase had

the most improvement potential; however, in the automotive domain the

majority of implementation is done by third-party suppliers. This raises the

question of how an MDE approach can be used to improve the efficiency of

the analysis and design phase. In this case study we have taken the initial step

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 37

by examining the distribution of effort among and the perceived importance

of the artefact developed in the phase.

Bollain and Garbajosa proposed in (2009) an extension to the ISO/IEC

24744 (ISO/IEC, 2007) meta-methodology standard. Their purpose was to

extend the standard in order to better fit a document-centric (referred to as

code-centric in this paper) development process. Our research has similar

goals, but instead focuses on the use of models within an officially non-MDE

development process. The case study reported in this paper provides evidence

of which artefacts were considered the central ones, which in turn indicated

where the focus of a modelling meta-model may be.

Broy (2006) outlined the challenges in automotive software engineering,

and specifically outlined a structural view on the development process which

he called a comprehensive architecture. Our case study focused on one

particular part of this architecture, namely what Broy refer to as the Design

level (which we refer to as the function development phase). Moreover, Broy

concluded that although models were used throughout the automotive

software development process, their use was fragmented. This meant that the

benefit of having a coherent model chain—such as automatic artefact

generation and traceability—was lost. Our case study contributes with

empirical evidence that characterizes the development process—with regard

to effort and importance of the constituent artefacts—which we hope will

contribute with further evidence of how such an integrated modelling chain

can be created in an optimal way.

Heijstek and Chaudron (2009) reported on an empirical study regarding

model size, complexity and effort in a large model driven process, but

whereas their study included the investigation of effort distribution among

categories of development activities for the whole development process, our

study focused on how effort was distributed among the artefacts produced in

one of the development activities, and specifically on the effort distribution

among types of models and requirements. Moreover, Heijstek and Chaudron

reported on the importance and centrality of models in a pure MDE project,

whereas our case study is conducted at a company which does not use an

MDE approach. We elaborate on this in section 5.5.

Niggemann and Stroop (Niggemann and Stroop, 2008) described different

kinds of models commonly used in the development of automotive software

and their purposes. In particular, they identified two fundamentally different

types of models used for the purpose of function development (algorithmic

solution) and system development respectively. In our case study, our

intention was to contribute with empirical evidence of the perceived

38 Part II—Context

importance and the estimated amount of effort spent on the models and other

artefacts in the development of automotive software.

5.4 RESULTS

5.4.1 Development Domain Model

The prescribed development process at VCC was a document-centric

milestone driven process complying with the standard V-model. The process

consisted of three main phases of development: the strategic phase, function

development phase and the implementation phase in which the system and

the physical components were specified. The prescribed process, however,

stipulated what shall be delivered at each step of the development process,

but not precisely how those deliverables shall be developed. In our domain

model, shown in Figure 7, the top half represents the prescribed process and

the bottom half shows the artefacts we found to be developed in the de-facto

process. The domain model is described in the following sub-sections.

The Strategic Phase

The activities in the strategic phase (top half of Figure 7 as Product

Planning), were focused around product planning and market positioning.

The intended result of the phase was a feature list describing the planned

vehicle model, including its feasibility in terms of required resources. Based

on the outcome of this phase the decision was made whether the vehicle kind

(e.g. a Volvo V50, V70) will continue into development or not.

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 39

In this phase the main stakeholders were product managers who work at

the vehicle level. They consider such aspects as available technical solutions,

competitor’s products, available resources in terms of time and cost. Initially,

only high-level properties were of interest to the product managers, for

example “the model shall be among the top 5 in the premium vehicle segment

with respect to infotainment systems”.

During this phase the high-level properties were analysed and broken

down into the features the vehicle model should have in order to fulfil the

properties.

The example above shows that the descriptions here is high-level and that

there was a need for a lot of intermediate steps in order to identify new

functionality and which parts of that functionality would be realized in the

software part of the car.

Figure 7. Project structure; process stages and their main deliverables. Please note
the simplicity of dependencies in the prescribed process (upper half) and the

complexity of dependencies within the projects (lower half).

40 Part II—Context

The Function Development Phase

The activities in the function development phase were focused on

designing and specifying the behaviour of each separate function that

together make up the feature, e.g. the climate control feature contained

functions such as front seat heating and air ventilation or air condition

(depending on the configuration of the vehicle model). The challenges

addressed in the phase revolved around developing control algorithms that

satisfy the desired behaviour.

The main input to the function development phase was a feature

description (shown in Figure 7 as Feature List). Feature was a high-level

description written from the end-user perspective. It described such

properties as what functionality shall be offered, performance requirements

and technology if it was of importance to the end-user. Additional input could

be documentation such as function and system descriptions from similar

previous systems. Such additional input was not present in all projects, only

those where the documentation from similar features or previous versions

existed.

During the function development phase, the high-level Feature was broken

down into a number of separate Functions. Characteristics such as

complexity of the feature, and dependencies on other features determined

how the feature was decomposed into functions. Each function was specified

in a Function Description document, shown in the top half of Figure 7.

The function description document began with one use-case that described

the function from an end-user perspective. The use-case was intended to give

an overview of the function, which formed a natural introduction to the

document. However, this high level description was also important for

validating the function against the feature description in the strategic phase.

The use-case was refined into detailed functional requirements, which was

commonly done using models such as state machine diagrams with detailed

requirements written for the states and the transition between states. These

models and requirements are shown as the artefact Requirement in the bottom

half of Figure 7 and as Specification model and Requirement in Figure 8.

The procedure of refining the initial use case into class diagrams, state

machines and detailed requirements generally involved creating a simulation

model (shown as the artefact Simulink in Figure 7). Simulation models were

created for certain functions (mainly more complex ones) and based on the

intended functional behaviour specified by the use case (shown in Figure 7 as

the «realize»-relationship between Use-Case and Simulink). The purposes of

the simulation model were found mainly (i) to assist the function developers

in learning to understand the requirements, and (ii) to validate the behaviour

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 41

of the function with customer representatives at an early stage. The purposes

for creating the simulation models were found to range from merely

illustrating intended functionality to formal models from which production

code could be generated. Consequently, many different tools were found to

be used, from formal ones such as Simulink to informal ones such as MS

PowerPoint and video sequences.

Close to the end of this phase the function designers together with system

architects created an initial logical design for the function in form of a UML

class diagram, in which functional responsibilities are assigned to logical

components and their dependencies are shown. The logical design was

further refined in the subsequent implementation phase. The function

development phase is shown in more detail in Figure 8.

The Implementation Phase

The activities in the implementation phase were concerned with designing

and specifying a system solution that satisfied the required behaviour of a set

of functions (or parts of functions) on a particular physical platform—shown

in the top half of Figure 7 as the many-to-many relationship between the

documents Function Description and System Description.

The main input to the implementation phase according to the prescribed

process was a set of function descriptions (shown in the top half of Figure 7

as Function Description). Furthermore, we found that simulation models (if

available) and architecture specifications as well as documentation from

previous version of the system provided additional input to the phase.

The implementation phase was divided in (i) system design and (ii)

component design. The system design activity focused on designing and

specifying a system that fulfilled the requirements from a number of

functions on a specific vehicle platform, whereas the component design

activity focused on deploying the system requirements on a set of physical

nodes (as determined by the vehicle platform architecture). As shown in the

top half of Figure 7, the realization of a function could be distributed among

a number of systems, and a system could be deployed on a number of

physical nodes. Normally, however, a feature (i.e. all the functions within the

feature) was realized by one system, and that system is in turn deployed on a

set of nodes. It was, however, common that a node contained functionality

from more than one system, e.g. a sensor may provide data to multiple

functions in multiple systems.

Given the above relationship between functions and systems we could see

that the System Description document contains all requirements from

functions that were realized by the system which is being described. The

42 Part II—Context

system description document begins with listing all incoming requirements

realized by the system—functional as well as non-functional. The document

then presents the system from a logical, electrical, mechanical, and

deployment view.

An important artefact in this phase was the Logical Design—a class

diagram showing the logical view of the system, shown in the bottom half of

Figure 7. The design could initially be identical to the logical design in the

preceding function development phase. The system design, however, refined

the logical design by adapting it according to the specific platform on which

the function would be. The Logical Design was composed of a number of

logical software components. These logical components were considered

atomic units of functionality with a well-defined interface in the form of

input and output data. These data would later be translated into signals sent

on the communication busses on the physical platform. The model was used

when mapping a logical view of the function to the platform on which the

function will be realized. The system description document contained

detailed requirements for each of the components, as well as for the

communication between the components.

Logical software components were then mapped to Software Components

(as defined by AUTOSAR (AUTOSAR, 2011)), which were deployed on a

physical node, available on the target vehicle platform.

All requirements affecting the software units deployed on the physical

node were collected in the Component Description document. The

Component Description document was used as the specification when

commissioning the node from a supplier (as shown to the right in the top half

of Figure 7). Furthermore, simulation models could also be included in the

Component Description document. In many cases, however, only parts of the

models were shared with the suppliers due to confidentiality reasons. As the

supplier was only provided with a partial view of the function, it added to the

need for the requirements documents to be complete and correct.

Summary of results

M1.1 – What models are used?

We found that two types of models were mainly used (i) models-as-

specification (which could be categorised as prescriptive models according to

(Ludewig, 2003)) and (ii) models-as-implementation (which could be

categorized as descriptive models according to (Ludewig, 2003)).

Specification models—such as use-cases, logical designs, and state

machines—were used mainly to provide structure to requirements and to

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 43

serve as a communication medium for requirements, functional as well as

non-functional.

Simulation models were used to create functional solutions that fulfilled

the behavioural specification of a function. We found functions in which the

simulation models were used throughout the whole development process. We

also found evidence of code generated from the models which served as the

implementation integrated into the supplier provided nodes. However, we

also found systems in which simulation models were only used within the

development process to explore possible solutions, and as a support for the

engineers to learn to understand the requirements of the function.

M1.2 – What modelling notations are used?

Specification models were represented using a subset of UML: use-cases,

classes and state machines. Formal simulation models (models-as-

implementation) were mainly created with modelling tools with proprietary

notation, such as Simulink, Statemate and Stateflow. We have however, also

found cases where non-formal notations have been used (e.g. Microsoft

PowerPoint and video sequences).

M1.3 – What information is conveyed by the models?

Specification models at the function definition level (e.g. use-cases and

state machines) prescribed the required behaviour of the function. The

specification models in the implementation prescribed mainly how

responsibilities were partitioned between logical design elements, and then

deployed on physical nodes. The simulation models used in both the function

development and implementation phases, described a proposed solution that

corresponds to the prescribed behaviour. We found simulation models that

were only used internally in order to elaborate the requirements and

specification models, but also found simulation models that were used as

basis for generating production code.

M1.4 – How much automation is used in development of models?

We found two main cases where automation was used (i) to generate the

required bandwidth on the platform communication busses from the

deployment view based on UML class diagrams, and (ii) to generate

production code from simulation models. The latter, however, was only done

for some functions.

M1.5 – Which documents are created from the information contained

in models?

44 Part II—Context

We found that use-cases were included in all document except the

component description. Logical Design was an important part of the System

Description, but initial versions of the design have also been found in the

Function Description document.

Although central to the development, simulation models were usually

found not to be included in the official documentation. Rather, they existed as

separate artefacts alongside the function documentation. Furthermore, in the

cases where simulation models were provided to the supplier, it was found to

be common to only provide the supplier with the parts of the model—due to

confidentiality reasons.

5.4.2 Effort Distribution and Importance

In the case-study described in the previous section we found that there was

differences between the prescribed process and the way products are actually

developed. Whereas the prescribed process is document-centric and

organized around milestones, the actual development process makes

extensive use of models that are evolving throughout the process as

advocated by MDE. This raises the question whether the distribution of effort

and importance of models and other artefacts in our case is different from an

MDE project.

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 45

In this case study, we collected evidence intended to address the following

research questions:

M2.1 What is the relative importance of the model-related artefacts

in the software development process?

M2.2 What is the relative cost (in terms of effort) for developing

model-related artefacts in the software development process?

In this case study we focused on the activities within the function

development phase (as described in The Function Development Phase on

page 40), as the main software development takes place in that phase. In the

interviews, we used the diagram in Figure 8 to depict the main artefacts and

their relationships.

Proposition 1 – Importance of Artefacts

We had initially anticipated that models would be the most important

artefacts, as they are generally more expressive than text. However, we found

that it was rather the level of detail and the need to express requirements

Figure 8. Artefacts, documents, and software products in the function
development phase

46 Part II—Context

unambiguously that was considered most important from the project

manager’s perspective. We found that the models were—from the project

manager’s perspective—mainly seen as support for the requirements;

specification models were used to provide structure to the requirements or to

provide them with a context. In particular, the simulation models were used

to explore possible algorithmic solutions in order to learn to understand what

the detailed requirements were.

Three of the subjects stated that use-cases were among the most important

artefacts with the justification that they provided a high-level and easy to

understand description of the function—i.e. as high-level requirements.

However:

 One of the subjects stressed the fact that it is the contents that is

important, not the modelling notation itself

 One subject explicitly stated that the use-case notation alone cannot be

used as requirements provided to the third-party suppliers, as they

leave too much room for interpretation

These observations were also supported by statements from most subjects,

that detailed requirements regarding the environment of the function were the

most important information—for example requirements on interfaces with

sensors, actuators and other auxiliary components that the function depended

on. The justification provided by the subjects was that “without having these

requirements for interfaces clearly and correctly stated, one would risk

developing the function based on the wrong assumptions”.

Interestingly, the simulation models—which can be considered as the

implementation of the function and hence the main product to be developed

in the phase—were not considered to be among the most important artefacts.

One subject stated that “the most important thing is to agree on requirements

regarding the environment of the function; the simulation model itself can

easily be reworked, thus it is not that important”. However, it was also stated

that traceability of these interface requirements between the specification and

the simulation models was important. For instance in order to identify how

the simulation model would be affected by changes in the interface

specifications, as well as to be able to evaluate whether the simulation model

complied to the interface requirements.

Proposition 2 – Effort Distribution

From the normalized result of the $100 technique, shown in Table 2 and

summarized in Figure 9, we found that more than twice the effort was

invested in models as compared to requirements. This finding supported our

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 47

anticipated result that the artefacts considered most important were not the

same ones the most effort was spent on. However, we had not anticipated that

the difference would be as big as it was in reality. Furthermore, it

demonstrated that although the overarching development process was

document-centric, on a project level models were considered to be more

central.

In particular, we have found that the majority of effort was spent on one of

the artefacts as shown in Figure 10—simulation models. The reason for that

was found to be

(i) They were used to explore the requirements of the function and

assist in making them more precise, and

(ii) The simulation models were commonly used to generate the

production code—the models could be considered as being the

implementation, i.e. being the product to be developed.

Figure 9. Distribution of effort among types of artefacts

Figure 10. Distribution of effort among types of models

48 Part II—Context

Table 2 also shows that only between 24% and 55% of the effort was spent

on developing the simulation models, which means that there was 45% to

76% overhead in the process of developing the production code. This large

difference was not expected.

Interestingly, all subjects believed that the distribution of effort they had

given would not be representative to other projects at the department; one

subject stated “you should probably take my numbers with a grain of salt, as I

don’t think my experiences are very similar to others”. However, as Table 2

shows, the distribution of effort between models and requirements, as well as

between simulation and specification models was very similar.

When discussing the results with the interviewees and their managers after

the study, their reaction was that this was against their conceptual model—i.e.

they expected more effort to be spent on the requirements than it is now. This

called for a subsequent (planned for future) study about detailed optimization

techniques how to improve the throughput of the process. Possible targets for

optimization is the multitude of different modelling techniques and notations

used that are compatible to a limited degree.

Similar observations and how such challenges were overcome when

Motorola successfully introduced MDE in their process are reported in

(Weigert et al., 2007).

5.5 DISCUSSION

Model Driven Engineering advocate a systematic use of models and

automated model transformations in software development projects. In our

case study we have found that the studied organization applies the principles

of MDE, but their process is still document-driven. We have found that the

use of models is fragmented and there is no controlled sequence of models

and transformations in the processes at the organization. This finding is

similar to Broy (Broy, 2006) who found that even if models play a central

role in organizations, their use is sometimes fragmented and notations are

used inconsistently. That situation seems to be similar to the situation in the

aerospace industry several years ago (Plant and Tsoumpas, 1995) and was not

uncommon in the software industry more recently (Grossman et al., 2005).

However, contrary to the early adopters of MDE which we studied in our

previous work (Staron, 2006), the goals for adopting modelling at VCC are

different than others. In the previous study the main reason to introduce

models was as a tool for communication, whereas the use of automation was

not prioritized. In the case study at VCC we found that automation was the

main goal for adopting models and therefore the modelling notations and

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 49

tools used in the implementation phases have the ability to generate source

code from models. This finding indicates that the goal of adopting MDE at

VCC is the same as the goals of MDE itself—to raise the abstraction level

and increase productivity.

Furthermore, the ability to create executable models were considered

important as such models were commonly created during the function

development phase as the functional specification—this fining was also

contrary to our previous study in which models in the initial phases were

used mainly for communication and documentation. We also found that UML

models were used together with other modelling approaches. We have seen

that it was common to use different approaches for different purposes—

whether of legacy reasons, choice of most appropriate tool for the task or

because widespread use in the supplier chain. This finding was in line with

Farkas et.al (Farkas et al., 2009) in which they proposed to incorporate a

variety of artefact types with one modelling approach.

With a document-driven process—the studied development process

corresponds to the code visualization level according to Browns modelling

spectrum (Brown, 2004b)—one would expect documents to be the most

important artefacts, the most effort intensive or both. Figure 9, however,

indicate that the documents themselves were not the most effort intensive,

nor did any of the subjects consider the documents very important.

Nevertheless, it seems that the code visualization level will be applied in the

nearest future due to the fact that documents are widely accepted by the

suppliers as specifications, whereas models are not.

Works such as (Bollain and Garbajosa, 2009; Das Beauftragte der

Bundesregierung für Informationstechnik, 2009) aim at improving the

efficiency of document-driven processes by focusing on how documents and

their consistent parts are managed within the process. From our findings,

however, documents do not seem to be considered very important or effort-

intensive. This would suggest that efforts to improve the process efficiency

by focusing on the management of the documents themselves may not yield

as significant results as focusing on artefacts within the documents and how

they relate to each other. Furthermore, the distribution of effort between

models and other types artefacts in our study was similar to the distribution

found in studies of pure model-driven projects (Heijstek and Chaudron,

2009), which suggests that pure model-driven projects and other types of

projects where models are used extensively may share similar properties. In

model-driven projects, however, the models are used to generate other

artefacts and to establish automatic traceability between artefacts. In our

study, we found limited use of model transformations and automatic

50 Part II—Context

traceability. This indicates that even though there was a similar pattern in

how effort was invested with respect to models and other artefacts, the non-

model-driven project did not use their models to their full potential.

As can be seen in Figure 10, simulation models were considered the most

effort-intensive type of artefact. This was expected, as this type of model

would often eventually be used as the implementation; the code deployed on

the nodes was to a large extent generated from the simulation models.

However, between 45% and 76% (see Table 2) of the effort was spent on

artefacts other than the simulation models, which further indicates that there

was a large potential for cost savings.

In (Niggemann and Stroop, 2008) Niggemann and Stroop note that the

mapping between simulation and specification models (which they refer to as

function and system models respectively) is very important. This was

confirmed by the interviews, as most respondents stated that agreeing on a

Table 2. Effort distribution in percent per artefact as estimated by the project
managers

 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6

Function 9.1

Models (56.4) (50.0) (73.4) (52.4) (54.5) (81.8)

Simulation

models
39.7 30.0 26.7 23.8 36.4 54.6

Use-cases 7.9 20.0 20.0 4.8 0 3.6

State machines /

other

specification

models except

UCs

4.0 26.7 5.5

Logical Design 4.8 23.8 18.2 18.2

Requirements (23.8) (30.0) (26.7) (23.8) (27.3) (9.1)

Requirements

(all types)
23.8 30.0 26.7 23.8 27.3 9.1

Documents (19.8) (20.0) (23.8) (9.1) (9.1)

Design

Description
11.9 9.1

Requirements

Specification
7.9 23.8 9.1

 Characterizing Model Usage in Embedded Software Engineering: A Case Study 51

modular design and the communication between modules early in the

development cycle was important.

5.6 CONCLUSION

The objective of this study was to investigate how effort and the perceived

importance were distributed among artefacts identified in the function

development phase of software-based vehicle functions. In this paper we

have reported on a case study in which we interviewed project managers

responsible for a software based safety and security related functions.

The most interesting finding in this case study was that requirements were

considered undoubtedly the most important artefact. However, it was on the

behaviour models that the majority of effort was spent. It was also these

models that were used to understand and refine the requirements. In

particular, requirements concerning communication interfaces and properties

of auxiliary components are considered very important. However, simulation

models—which commonly were used by the third-party component suppliers

to generate the production code—were not considered as important. In

addition, we found that although the simulation models constitute the single

artefact that receives the most effort, they only received between 24% and

55% of the total effort spent. Considering these models as the

implementation—i.e. the actual product under development—this means that

45% to 76% of the effort is spent on overhead activities.

Moreover, we have in this initial study of a non-MDE project found that

the amount of the total development effort invested in models is similar to the

pure MDE project reported in (Heijstek and Chaudron, 2009)—61%

(average) in our case and 59% in the MDE case. In the case of a pure MDE

project, model transformation is used to a large extent, whereas we only

found limited use in our study. This indicates that although the distribution of

effort between models and other artefacts are similar to an MDE project, the

models are not used to their full potential. This in turn suggests that there are

improvement opportunities by examining how existing models can be used

more efficiently.

5.7 ACKNOWLEDGEMENTS

This research is partially sponsored by The Swedish Governmental Agency

for Innovative Systems (VINNOVA) under the Intelligent Vehicle Safety

Systems (IVSS) programme.

PART III—LIDEC

It is easier to confess a defect than to claim a quality

― Max Beerbohm

6 A LIGHT-WEIGHT DEFECT CLASSIFICATION

SCHEME FOR EMBEDDED AUTOMOTIVE

SOFTWARE

This chapter provides an in-depth description of a classification scheme

adapted from IEEE Std. 1044 for the development of automotive safety

software. The chapter was previously published as:

Mellegård, N., Staron, M., Törner, F.

“A Light-Weight Defect Classification Scheme for Embedded

Automotive Software”

Technical Report 2012:04, ISSN: 1654-4870, Chalmers

University of Technology, Göteborg

6.1 INTRODUCTION

Software reliability is of central importance in modern cars as software

controlled systems are becoming increasingly pro-active—recent safety

functions are, for instance, able to automatically apply brakes to avoid

crashes or mitigate their effects. Car manufacturers (OEMs) need, in order to

achieve reliability, effective ways to manage defects during development (in-

process) and during run-time (e.g. fault tolerance mechanisms). For the in-

process defects it is important to identify, analyse and remove defects which

III

54 Part III—LiDeC

could compromise the reliability of the cars. Furthermore, identifying

patterns in the in-process defects enables effective detection and removal of

defects, for instance by indicating which test activities to focus on. In order to

identify such patterns, however, systematic and structured defect

documentation is required.

Defect documentation and analysis is common practice in most software

development organizations. Its benefits are further emphasised through the

inclusion in process maturity models—such as CMMI (CMMI Product Team,

2010a) and SPICE (The SPICE User Group, 2011)—as they require

systematic defect documentation, analysis and follow-up. Neither CMMI nor

SPICE, however, specifies how such defect documentation and analysis is to

be done. Companies thus have their own interpretations resulting in varying

quality of defect documentation; for instance, ambiguous interpretation of

data or subjective opinions of the reporter. Hence, there is a need for a

structured approach to defect documentation.

There have been several approaches proposed on how to perform

structured collection and analysis of defect information; e.g. defect

taxonomies (Beizer, 1990), root cause analysis (RCA) (Leszak et al., 2000) as

well as various defect classification schemes such as Orthogonal Defect

Classification (ODC) (Chillarege et al., 1992), the HP scheme (Grady, 1992)

and IEEE Std. 1044 (IEEE, 2009). Although shown to be useful these

approaches were designed for specific contexts (Freimut et al., 2005) causing

the need for adaptations (Wagner, 2008); such adaptations have been

identified as one of the major challenges in applying a defect classification

scheme (Freimut et al., 2005; Wagner, 2008). Specifically, defect

classification approaches often assume full knowledge of the defects, i.e.

have a source-code focus and assume ownership of the software components

(Freimut et al., 2005). Consequently, such defect classifications schemes need

adaptations to be applicable to organizations where software is developed by

suppliers—a situation common in the automotive software domain: even

though software components (e.g. ABS or collision warning system) are often

developed by suppliers, the quality of the complete product—the car—is the

responsibility of the OEM. The need to systematically analyse and follow-up

on the quality of the supplied software components is, nevertheless,

important.

Furthermore, defect documentation—however important—may be seen as

a mainly administrative task that does not directly contribute to the end-

product. Thus, the defect documentation approach taken should require a

minimum of analysis effort in addition to what is needed to identify and

remove the defect, while still providing the additional benefit of

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 55

characterizing the quality of the product and development process (Freimut,

2001).

In this paper we address the challenges of efficient defect classification by

pursuing the following research question: “How to efficiently support defect

identification and resolution time by classifying in-process defects?” The

research question is addressed by investigating how a defect classification

scheme can be adapted to the automotive software development context by

studying the development of active safety features. The aims of our adapted

classification scheme—the Light-weight Defect Classification scheme

(LiDeC)—include:

(i) as existing classification schemes have a strong source-code focus,

how can such a scheme be adapted to a development setting with

limited insight into the source-code;

(ii) as adding additional workload on development teams may reduce

the likelihood of adoption, how can a classification scheme be

adapted to minimize its process foot-print in terms of required

learning and classification time.

LiDeC was developed as part of a case-study at Volvo Car Corporation

(VCC7) and initially evaluated with a sample of problem reports from a

project finished a year prior to the study. As a result we present a defect

classification scheme, compliant with the IEEE Std. 1044 (IEEE, 1996,

1993), specifically adapted for the development of automotive safety-critical

software. Furthermore, an initial evaluation showed that developers quickly

learnt to apply the classification scheme, and that the required time to classify

a defect was substantially lower than with other approaches to defect

documentation.

The rest of the chapter is structured as follows: section 6.2 provides the

study with background, section 6.3 describes the method used, section 6.4

summarizes the results and the final sections conclude the chapter and outline

future work.

6.2 BACKGROUND

This section provides the research presented in this paper with background:

first a summary of the terminology used is outlined, then related work is

presented, and finally aspects of developing software at the case company is

presented.

7 http://www.volvocars.com

56 Part III—LiDeC

6.2.1 Terminology

In this report the terminology defined in the IEEE Std. 1044-2009 (IEEE,

2009) is used. Specifically the following terms are used in the report:

 Defect– An imperfection or deficiency in a work product where that

work product does not meet its requirements or specifications and

needs to be either repaired or replaced (IEEE, 2009).

 Failure– (A) Termination of the ability of a product to perform a

required function or its inability to perform within previously specified

limits. (B) An event in which a system or system component does not

perform a required function within specified limits.

 Fault– A manifestation of an error in software.

Figure 11 shows how these terms relate and what is within the scope of the

IEEE Std. 1044.

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 57

As shown in Figure 11, problems are sufficient but not necessary conditions

for the recognition that the software is failing to behave in a desirable

manner. The failure may be caused by faults in the software, which in turn

can be corrected by a software change request. These relationships are

described in Table 3.

Figure 11. IEEE Std. 1044 concepts and their relationships (figure from IEEE
Std. 1044-2009 (IEEE 2009))

58 Part III—LiDeC

6.2.2 Related Work

This report is an extension of our previous work (Mellegård et al., 2012a).

Whereas our previous work focused on the evaluation of LiDeC this report

instead focus on the description of LiDeC; more specifically:

(i) The Background section has been extended with a terminology

subsection

(ii) The Background section has been extended with more related work

(iii) The results has been extended with a new subsection with a

comparison between LiDeC and IEEE Std. 1044

(iv) The description of the attributes in the results section has been

extended with more details

(v) A full description of LiDeC has been added as Appendix A

(vi) A classification guide has been added as Appendix B

(vii) Two example classifications using LiDeC has been added as

Appendix C

(viii) An IEEE Std. 1044 compliance matrix has been added as Appendix

D

Table 3. Relationships between IEEE Std. 1044 Concepts (from IEEE Std. 1044-
2009 (IEEE 2009))

Class/Entity

pair
Relationships

Problem - Failure A problem may be caused by one or more failures.

A failure may cause one or more problems.

Failure - Fault A failure may be caused by (and thus indicate the presence of) a fault.

A fault may cause one or more failures.

Fault – Defect A fault is a subtype of the supertype defect.

Every fault is a defect, but not every defect is a fault.

A defect is a fault if it is encountered during software execution (thus

causing a failure).

A defect is not a fault if it is detected by inspection or static analysis

and removed prior to executing the software.

Defect – Change

Request

A defect may be removed via completion of a corrective change

request.

A corrective change request is intended to remove a defect.

(A change request may also be initiated to perform adaptive or

perfective maintenance)

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 59

(ix) A mapping between attributes of IEEE Std. 1044 and LiDeC has

been added as Appendix E

Defect reports are a valuable source of information about issues that arise in

development: defect reports can reveal information about systematic

problems with the development process such as the activities most prone to

generating defects, or the efficiency of testing activities with respect to the

number and type of defects they detect. Defect reports, however, are often

used as a means to track and resolve the identified defect. But in order to

systematically collect and analyse defect data there is a need to formalize the

information collected about each defect. There are several proposed

approaches which Wagner (Wagner, 2008) identifies as belonging to three

main categories:

 Defect taxonomies which are categorizations of faults mainly related to

the implementation. Wagner mentions examples categories such as

wrong variable declarations and wrong variable scope;

 Root cause analysis (RCA) which is a more detailed approach. RCA

not only analyses the fault itself, but also why the fault was introduced.

The goal of RCA is to identify the root causes and eliminating them,

thereby preventing similar faults from being introduced in future

projects;

 Defect classification is an approach in which data is collected about

the defect in a similar manner to both defect taxonomies and root

cause analysis, but does so in a more coarse-grained manner.

Defect taxonomies are focused on the implementation and do not provide

support for analysing what measures to take to prevent or mitigate any

systematic issues it may reveal. RCA, in contrast, is focused on identifying

why the identified defect was introduced into the system. RCA, however, is

considered to be effort intensive and its cost/benefit is unclear (Wagner,

2008). Defect classification, on the other hand, aims at reducing the effort

required to analyse a defect while still retaining the power of analysis—such

as what types of defects are most common, which artefacts are most prone to

defects. The approach taken is to gather a wider but more coarse-grained

range of data. In this paper we have chosen to adapt a defect classification

scheme given our goal of small process foot-print. Defect classification

schemes are discussed in more detail in the following subsection.

In their paper Li et al. (Li et al., 2012) present experience from adapting

existing issue tracking systems at two companies. The adaptations resembles

our work as the pre-existing issue tracking system were mainly intended for

in-process progress tracking of defect resolutions and resource management.

60 Part III—LiDeC

Their justification for adapting the issue tracking systems included

inadequately designed attributes and attribute values which made the

collected issue data poorly equipped for use as software quality assessment

and software process improvement—data was entered inconsistently or

omitted, resulting in the assembled data “behaving largely as an information

graveyard” (Li et al., 2012). By redesigning the issue tracking systems—

incorporating parts of ODC (Chillarege et al., 1992) and the IEEE Std.

1044—Li et al. were able collect higher quality data and use that data to point

out improvement targets in both companies studied. Furthermore, follow-up

analyses conducted after the process changes were able to detect

improvement in terms of lower number of defects.

The work presented in this paper complements the scheme presented by Li

et al. in that our classification scheme targets a development context in which

code to a large extent is written by sub-contractors and where the sub-

contractors own the source-code; thus, limiting the possibilities to analyse the

exact nature of the defects. Furthermore contrary to the work presented by Li

et al., where the classification scheme had to comply with legacy issue

tracking systems—attributes were added to or modified in already existing

defect databases—we had the opportunity to work alongside the team setting

up a new issue management system. As a result, LiDeC is compliant with the

IEEE Std. 1044. In addition, Li et al. identifies a number of lessons learnt that

are of great interest in our work, as we currently are in the process of

incorporating LiDeC in a new issue tracking system at our industrial partner.

Dubey (Dubey, 2012) reports on a case-study applying ODC scheme to a

project developing embedded systems in which a substantial amount of

software was developed by suppliers. They concluded that the classification

scheme’s focus on source-code required it to be adapted. Specifically, the

attribute defect type needed adaptation. In their case there were many defects

classified as “Functional” defects leading them to propose additional

attribute values related to the design phase (as ODC originally only contained

one value: “Functional defect”).

In (Leszak et al., 2002, 2000) Leszak et al. report that conducting RCA on

up to a year old defect reports in a distributed, component-based development

process required on average 19 minutes per defect. Leszak et al. also

concluded that analyses conducted in-process when detailed knowledge about

the defects can easily be recalled would further reduce the required effort.

Cavalcanti et al. (Cavalcanti et al., 2011) investigated the problem of

identifying duplicate defect reports in a number of private and open source

projects. Specifically, they examined the amount of time required to analyse a

defect to determine whether it was a duplicate or not. The time required

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 61

varied in the projects they examined from 5-10 minutes per defect to 20-30

minutes, with an average of 12.5 minutes. Furthermore, based on the size of

staff and amount of defects reported, Cavalcanti et al. calculated that on

average 48 man-hours per day was spent in search of duplicate defects in the

examined projects.

Software reliability growth models (SRGM) (Kan, 1995) estimate software

reliability by statistically correlating the cumulative number of defects

discovered to a known function (Wood, 1996). SRGMs can be used to predict

the number of residual defects in a product. SRGMs, however, do not provide

any data about the type of defects, or in which part of the product they are

likely to occur. Consequently, SRGM provides limited guidance as to which

testing activities should be focused on to detect the yet unknown defects.

Defect classifications, on the other hand, provide more detailed

information—e.g. about detection and injection phase, and type of defect—

and can be more precise than traditional SRGM (Ploski et al., 2007).

There have been many methods on fault prediction proposed. Liparas et al.

(Liparas et al., 2011) examine a statistical method for analysing what factors

in a multivariate data set that are best suited for predicting the number of

defects contained in a software module. In their paper, Liparas et al. use a set

of complexity metrics—such as McCabe’s cyclomatic complexity, lines of

code and branch count—to predict the fault-proneness of the modules. The

method described predicted whether a module is within a normal cluster or

not—where a module not in the normal cluster would contain more than the

standard amount of defects. Such information is valuable when assigning

resources; more resources can be assigned to the modules that are most likely

to contain defects. While the number of defects may be used to indicate the

modules in most need to testing, it does not, however, provide the testers with

any indications of what to test for, nor which modules contain the most sever

defects. In fact, in the comprehensive systematic literature review where Hall

et al. (Hall et al., 2011) examined 36 studies (from a selection of 2,073) on

fault prediction models published between January 2000 and December 2010,

they found that few studies differentiate between the faults predicted; for

instance, only one (Shatnawi and Li, 2008) of the 36 studies used fault

severity in their prediction model. In order to differentiate between defects,

more nuanced data about the defects are needed; our work aims at

contributing to a model for assembling such defect data, thus enabling

prediction of additional defect attributes.

62 Part III—LiDeC

Defect classification schemes

Defect classification schemes define a set of attributes, where each attribute

captures a specific aspect of the defect—e.g. how the defect was detected, its

severity and type. Moreover, for each attribute the schemes typically provide

a set of values that can be chosen from; this contributes to the efficiency as

well as to the reliability of the classification. The most commonly referred

(Freimut, 2001) classification schemes in literature are ODC from IBM

(Chillarege et al., 1992), the HP approach (Grady, 1992) named Defect

Origins, Types and Modes (Wagner, 2008) (here referred to as the HP

scheme) and the IEEE Std. 1044 (IEEE, 2009).

Regardless of which classification scheme is applied, the main challenge is

to select the attributes and attribute values which are relevant to the specific

development context (Freimut et al., 2005). In (Freimut, 2001), Freimut

provides a framework for developing and using classification schemes; this

framework has been followed in the work presented in this paper.

Furthermore, in (Freimut, 2001) Freimut provides a comparison between the

ODC, HP and IEEE Std. 1044 classification schemes and a mapping between

the attributes of the different classification schemes.

The HP Scheme

The approach taken by the HP scheme is to define only three attributes:

Origin, Type and Mode. The Type attribute is dependent on the value chosen

for the Origin attribute. This first requires analysis of when the defect was

injected into the system before its type can be established. Furthermore, the

HP scheme does not explicitly capture data about how a defect was detected

(its trigger (Chillarege and Ram Prasad, 2002; Chillarege et al., 1992)); there

is thus no attribute available to identify which testing activities are effective

in detecting particular defect types. Moreover, applying the HP scheme

makes it difficult to identify effective testing techniques and investigate how

late and severe defects can be identified earlier as the scheme does not

include attributes such as:

 Severity of the defect from an end-user perspective

 The method by which the defect was detected

 Timing of defect detection

 The cause of the defect

Such issues considered important for VCC, thus a wider range of attributes

than provided by the HP scheme needed to be collected.

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 63

IEEE Std. 1044

The IEEE Std. 1044 and ODC, in contrast, define a set of failure and defect

life-cycle phases each containing a number of attributes (independent of each

other) that are to be recorded; the life-cycle defined by IEEE Std. 1044 is

shown in Table 4. The phases represent the states the defect can be in:

initially a failure is recognized, then investigated, which might lead to

discovering the cause of the failure (fault), an action to resolve the defect is

then planned and the possible impacts of the chosen action/resolution are

analysed, and finally what was actually done to close the defect. The

attributes that are to be recorded in each of the phases represent information

about the defect that is relevant for that particular phase; the information

would be required to understand/resolve defects regardless of whether a

defect classification is applied or not. This matched our requirements for

LiDeC in that we—in order to minimize the process foot-print—intended to

capture what was currently tacit knowledge in the defect analysis process.

64 Part III—LiDeC

Table 4. IEEE Std. 1044 attributes (adapted from (Freimut 2001))

Life-cycle

Phase

Attribute Name Attribute Meaning

Recognition Project activity What were you doing when the defect occurred?

Project Phase In which life-cycle phase is the product?

Suspected Cause What do you think might be the cause?

Repeatability Could you make the defect appear more than once?

Symptom How did the defect manifest itself?

Product Status What is the usability of the product with no

changes?

Investigation Actual Cause What caused the anomaly to occur?

Source Where (part of the system and its documentation)

was the origin of the defect?

Type What type of defect/enhancement at the code level?

Action Resolution What to do to prevent the defect from happening

again?

Corrective action What action to take to resolve the defect?

Impact

Identification

Severity How bad was the defect in more objective

engineering terms?

Priority Rank the importance of resolving the defect?

Customer value How important is a fix to the customer?

Mission safety How bad was the defect wrt. project objectives or

human well-being?

Project schedule Relative effect on the project schedule to fix?

Project cost Relative effect on the project budget to fix?

Project risk Risk associated with implementing a fix?

Project

Quality/Reliability

Impact to the product quality or reliability to make a

fix?

Societal Impact of society of implementing the fix

Disposition Disposition What actually happened to close the anomaly?

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 65

6.2.3 Study context – Automotive Software Development

The case-study presented in this paper was conducted at the department

developing active safety features—such as collision warning, lane departure

warning and driver alert control—at Volvo Car Corporation (VCC). In the

following subsection we describe the development of software for such

features at VCC.

Development process

The development process of active safety features at VCC (Mellegård and

Staron, 2010a; Mellegård, 2010) can at a high level of abstraction be

visualized by the V-model (Pfleeger, 2001). As shown by the left leg in

Figure 12: product requirements are specified on vehicle-level and then

refined through the development process into (sub-)system requirements and

design. The system specifications are further refined into requirements and

design of the individual hardware and software components that will realize

them.

The bottom of Figure 12 shows the implementation of the components

which is often done by suppliers; VCC commissions a component from a

supplier based on requirement and design specifications. As VCC may have

limited insight or control over the implementation phase—the in-house

development activities are to an extent limited to design, specification and

integration testing—applying defect classification schemes that have code

focus consequently presents a challenge.

Furthermore, the test phases are shown by the right leg in Figure 12:

components delivered by the suppliers are tested on unit level, subsystems

are integrated and tested and finally the whole car is tested; it is in this phase

that defects are reported.

66 Part III—LiDeC

Even though the overarching development process can be visualized by the

V-model, in practice the process is better described as a federated

development process (Bennet and Wennberg, 2005). As shown in Figure 13

development is iterative in three stages. In the first stage, corresponding to

“System Design” in Figure 12, a system—e.g. collision detection or driver

alert control—is designed and specified. The main focus of this stage is to

develop algorithms that fulfil the high-level requirements. In addition to

system requirements and design, the results from this stage may include

executable models (e.g. Simulink models) that can be validated in simulated

environments, e.g. using a test rig, or cars equipped with simulated hardware

(e.g. dSPACE8).

8 http://www.dspace.com

Figure 12. The V-model

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 67

The second stage of development is shown in Figure 13 as “Software,

Component” and corresponds to “Software / Component Design” in Figure

12. The focus of this stage is to decompose a system into individual software

and hardware components that realize the system. The result of this stage is a

set of component specifications that are used as base when commissioning

components from suppliers.

In the final loop in Figure 13—corresponding to the right leg of Figure

12—software testing is done. As shown in Figure 13, the component design

and test stages are intertwined. In practice, this means that the suppliers are

involved from an early stage delivering a number of revisions of the

components; each revision is tested by VCC, defects are discovered and

corrected, and a new iteration is started. More specifically, the testing

procedure done by VCC in each iteration of the third loop can be separated in

three categories (illustrated in Figure 4 on page 12):

 Component/Unit tests. The algorithms—often in the form of

executable models (Mellegård and Staron, 2010c)—are tested on unit

level before being provided to the supplier. The supplier provides VCC

with an implementation in the form of a component (e.g. optimized

binary software component, or a hardware component with the

software installed). VCC verifies that the component complies with the

requirements;

 System tests. System tests are done on simulations of the system on a

test rig using recorded data. The focus of this phase is on initial

integration testing;

Figure 13.Federated development process
(adapted from (Bennet and Wennberg 2005))

68 Part III—LiDeC

 Functional tests. Finally, function tests are done on builds of the

system in a real car. Initial functional tests are run on test tracks, while

in later project phases expeditions on roads are done. The focus of this

test phase is on the whole vehicle, i.e. that high-level requirements are

met (e.g. that features behave as intended from an end-user

perspective)

In addition to the test activities done by VCC, suppliers conduct units test

which may not be reported to the OEM.

In this case-study the focus was on defects discovered during the last two

stages in Figure 13 (indicated in the figure by “Defect Discovery”). The

reasons for this delimitation include the challenges associated with supplier

implemented software—it is in this stage that the suppliers get involved in

the development. Furthermore, initial analysis of the defect inflow—shown

in Figure 14 as the defect backlog9 (number of open defects over time)—

revealed that there was a considerable spike in defects during the component

development and integration testing phase (the start of which is shown in the

figure as “Software Phase”). The increasing inflow of defects is expected as

testing of supplier developed hardware and software—specifically integration

testing—is conducted during this phase.

9 The total number of defects has been scaled to 100 and the time scale has been removed due

to confidentiality reasons. In addition, the time scale has been cropped (indicated by the

ellipsis in the star and end of the curve) and does therefore not include the last phase leading

up to start of production.

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 69

However, the increase in open defects (i.e. unresolved defects) during the

software phase, and especially the peak close to software release (a major in-

development milestone), raised the interest of our case company. Therefore,

in the evaluation of LiDeC we analysed a sample of defects from the last

peak shown in Figure 14.

6.3 METHOD

The research presented in this paper followed the case-study method

described by Yin (Yin, 2002). The case-study method was considered

appropriate as the applicability of the adapted classification scheme was of

importance; adapting a classification scheme in the same context as it will be

deployed would increase the chances of it being useful in that context.

Specifically, we have used a single-case design by applying the classification

scheme to defect reports from one project at our case company. The rationale

of this was that the defect inflow profile from the project (shown in Figure

14) was considered representative by the developers—similar inflow profiles

had been observed in other projects. Using the defect reports from the

project, we developed an adapted defect classification scheme; in particular,

we addressed the following main research question:

Figure 14. Defect backlog from the studied project

70 Part III—LiDeC

RQ How to efficiently support defect identification and resolution

time by classifying in-process defects?

As the development context under study have specific properties (described

in section 6.2.3), the main research question was broken down into:

L1 In an automotive safety feature development context where

source-code is often not available, how can a standard defect

classification scheme be suitably adapted?

L2 As defect classification may often be considered an

administrative task, how can the adaptation of a standard

defect classification scheme be done to minimize required

learning and classification time?

As a practical guideline to adapting a defect classification scheme we

followed (Freimut, 2001). The study was conducted in the following three

stages:

Stage 1: Establish terminology. The aim of the first stage of the study was to

establish a set of classification attributes using terminology aligned with the

case company.

As a base for developing the classification scheme we used the IEEE Std.

1044 (IEEE, 2009) and its guide (IEEE, 1996). In this stage we began by

choosing attributes and the set of values available for each attribute from the

IEEE Std. 1044 that we—based on our previous research (Mellegård and

Staron, 2010a, 2010b, 2010c)—found relevant for the specific development

context at the company; for instance attributes related to customer value was

not considered relevant for the development phase under study.

During two one hour-long interviews, we explained the initial

classification attributes to the interviewee (project leader), and asked the

interviewee to relate these attributes to the case company. We took notes

during these interviews and refined the classification scheme according to

these notes.

Stage 2: Tune feasibility. The second stage of the case-study aimed at

streamlining the set of values each attribute could be assigned.

The stage consisted of a two hour long interview with a developer in which

a number of defects were classified. The set of values available for each

attribute was evaluated during the classification session, where for each

attribute:

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 71

(i) If an attribute value was never used and the interviewee could not

think of an example when the value would be used, the value was

considered for removal;

(ii) If the interviewee did not consider any of the available values

described the defect sufficiently, a new value was considered for

addition.

As a result the final classification scheme was defined and depicted in the

form of flowcharts with short questions providing a guide to arrive at the

correct attribute value. Each attribute value was provided with a short

illustrative example.

Stage 3: Evaluate scheme. The final stage of the study aimed at evaluating

the efficiency and effectiveness of the classification scheme.

In this stage defect reports were classified according to the scheme. Four

subjects involved in the project participated in six separate two hour long

classification sessions (two subjects participated in two consecutive

classification sessions). Three of the subjects were not involved in the

previous two stages of the project.

The project used as case had finished one year prior to the study and

contained over 100 problem reports10. All subjects involved in the study had

been part of the project with the following roles: two developers, one tester

and one project leader.

During the third stage of the study we were able to classify 22 defects. Of

the 22 defects 12 were randomly selected from the last peak (as shown in

Figure 14) and the remaining 10 from the rest of the project. This selection

was done because of an expressed interest by members of the project to gain

more insights in the defect peak. The results of the evaluation are reported in

(Mellegård et al., 2012a).

6.3.1 Validity Evaluation

We have identified and grouped the threats to validity in our study according

to recommendations of Yin (Yin, 2002):

 Construct validity– By basing our defect classification scheme on the

IEEE Std. 1044 and by keeping careful notes on how to map concepts

specific to our case to the standard, we consider that the threat to

construct validity to have been minimized. Furthermore, as both the

adaptation of the classification schemes and the evaluation was done

using real defect data from an industrial project with the assistance of

10 Exact number cannot be disclosed due to confidentiality reasons

72 Part III—LiDeC

the developers involved in the project, we consider the threat to

construct validity to have been further reduced.

 Internal validity– As any interview study we anticipated some

personal bias in the answers from the interviewees. In order to

minimize this threat we triangulated the results by including multiple

subjects in our interviews. In addition, a set of defects were classified

by multiple subjects thereby allowing evaluation of the repeatability of

the classification scheme; section 6.4.2 reports the results from this

evaluation.

 External validity– There is a risk that the results are too specific to

Volvo Car Corporation. However, as we documented and justified the

modifications done to the IEEE Std. 1044 as well as described the

particular development context of our case, we believe that our results

can be generalized to similar contexts outside our specific case.

Moreover, we consider the mapping between attributes of the

classification schemes provided by Freimut (Freimut, 2001) to

contribute to the generalizability of our classification scheme; e.g. the

mapping between classification schemes enables analysis methods

utilized with other schemes to be applicable to LiDeC as well, and

therefore we believe that results are also comparable.

 Reliability– As part of the case study design, we have created a case

study protocol which ensured that we conducted the study and

collected the data in a consistent manner. By using this protocol, we

believe that the study can be reliably reproduced.

6.4 RESULTS

The main challenge of adapting the IEEE Std. 1044 included tailoring the

attributes relating to the fault and its resolution; specifically attributes in the

phases Investigation, Action and, Impact Identification as the attributes in

these phases have a strong focus on source-code aspects.

The results are reported below in two parts; first, the classification scheme

is presented, and second, a comparison with the IEEE Std. 1044 is presented;

for results from the initial industry evaluation of LiDeC, see (Mellegård et

al., 2012a).

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 73

6.4.1 LiDeC

LiDeC captures – as shown by the scheme overview in Figure 15 – attributes

from four phases of the defect life-cycle (IEEE, 1996, chap. 8.1) (described

in more detail below as well as in Appendix A and Appendix B): the first

phase captures information about the recognition of the defect, i.e. observing

a deviation (failure) from intended or specified requirement (ISO, 2005); the

second phase captures information about the underlying cause of the defect

(referred to as Investigation in (IEEE, 1996)); in phase three information

about the defect resolution is captured (referred to as Action in (IEEE,

1996)); and the last phase captures information about what was actually done

about the defect (referred to as Disposition in (IEEE, 1996). Table 5 shows a

comparison between the life-cycle phases of IEEE Std. 1044, ODC and

LiDeC.

Figure 15. Overview of the LiDeC Scheme

74 Part III—LiDeC

As can be seen by the number of attributes in each phase (described in Table

6 to Table 9 in the subsections below), the main focus of LiDeC is on

recognition and analysis of a defect. The justification is that the later a defect

is discovered the more costly its resolution tend to be (Boehm, 1981). In

addition, as implementation is done mainly by suppliers, the most promising

areas of process improvement lies in more efficient verification and

validation. Consequently, the main focus of the classification scheme is on

how defects are discovered, how the product is affected by them, and what

types of defects they are. Analysing this information will contribute to

understanding which phases of the development process contain the most

improvement potential.

The phases of the classification scheme are aligned with the defect

management process at the case company and directly correspond to the

states a defect can be assigned: recognized, analysed, resolution proposed and

post-mortem. The following sections describe the attributes of each phase.

Appendix A provides an exhaustive list of attributes and their description and

Appendix B provides a classification guide that was used in the case study.

The classification guide in Appendix B contains a more detailed description

of each attribute value along with typical examples expressed in the

terminology of the company; the purpose is to maintaining consistency of the

classification over time and between reporters. In addition, Appendix C

contains classification examples.

Table 5 Mapping of life-cycle phases

Defect

life-cycle

phase

IEEE 1044 ODC LiDeC

1 Recognition

Open

Recognition

2 Investigation Analysis

3 Action

Close
Resolution

4
Impact

Identification

5 Disposition Post-mortem

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 75

Recognition

The attributes in the first phase of the defect life-cycle (shown in Table 6)

relate to data about the discovery of a failure and its effects on the system in

question, i.e. the manifestation of the defect. The attributes capture project

related information:

 Timestamp of detection

 Resolution urgency

 End-user perceived severity of the defect, and

 How the defect affects the product, including whether ASIL

requirements are affected (ISO/IEC 26262 (ISO/DIS, 2011)).

This information will be used in analysis, for example, to assess how timely

the most serious defects are detected, or which activities are more effective in

detecting defects.

76 Part III—LiDeC

Table 6 Summary of attributes in the Recognition phase

Attribute Question Values

Timing /

Detection

When was the defect detected? Date and project phase

Timing /

Preferred

When should the defect have

been detected (subjective)?

Project phase if different from

Timing / Detection

Affects S/W Does the defect affect software? Yes / No

Detection

Activity

What was done to detect the

defect?

Inspection/Requirements,

Inspection/Design,

Unit test/In-house,

Unit test/Supplier,

System test/bench,

Functional test/Test track,

Functional test/Expedition

Production/Manufacturing

Production/Customer report

Urgency How urgently does the defect

need to be addressed?

Immediately,

Next development release,

Before start of production,

Deferrable

Severity How severe is the defect with

respect to product quality?

None,

Nuisance,

Limited Functionality,

Show-stopper

Effect How does the defect primarily

affect the product?

Capability/Undesired activation,

Capability/Inactive on true positive,

Capability/Other,

Function Safety,

Maintainability,

Usability,

Testability,

Configurability

Functional

Safety Impact

Does the defect have impact on

a software component with

ASIL-classified requirements?

Yes,

No

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 77

Analysis

The attributes in the second phase of the defect life-cycle (shown in Table 7)

aim at capturing data about the cause of the failure; e.g. in what work product

and product component contained the defect, what type of defect it was, and

which process step caused the problem.

Resolution

The attributes in the third phase of the defect life-cycle (shown in Table 8)

aim at capturing data about the proposed resolution. As implementation

specific details of the resolution may not be available, the attributes in this

phase focus on capturing the cost of resolving the defect in terms of

development effort. More specifically, to capture what impact a resolution

would have on the product and on the process; the impact on the product is

captured in terms of how much of the product would be affected by the

Table 7 Summary of attributes in the Analysis phase

Attribute Question Values

Artefact Which software work

product contained the

defect?

Req./Internal,

Req./Cross-function,

Req./External,

Design model,

Impl./Executable model,

Impl./Code,

Impl./Configuration params,

Tool

Injection activity When was the defect

injected?

Specification,

Design,

Impl./In-house modelling,

Impl./Suppl. mdl. transform.,

Impl./Supplier coding,

Configuration

Component /

Asset

Which design component

contained the defect?

Internal (product) module name

also identifying its version

Type What type of defect was it? Description,

Data,

Interface / Timing,

Logic / Algorithm,

Tooling,

Tuning

78 Part III—LiDeC

modification, and impact on the process in terms of amount of regression

testing needed.

Furthermore, the attributes of the Resolution phase capture data about a

proper resolution of the defect. In practice, a defect could be resolved by

means of workarounds (this data is captured in the final phase of LiDeC).

Post-mortem

In the last phase of the defect life-cycle the single attribute (shown in Table

9) records what was finally done to close the defect; to what extent the defect

was resolved.

Table 8 Summary of attributes in the Resolution phase

Attribute Question Values

Removal time When was the defect

report closed?

Date and project phase

Product impact What would the impact of

a proper resolution be on

the product?

None,

Local (unit) modification,

Multiple components,

Funct. changes (re-design)

Required

Verification

Level

What level of regression

testing would a proper

resolution require?

None,

Inspection,

Unit test,

System test,

Expedition

Table 9 Summary of attributes in the Post-mortem phase

Attribute Question Values

Resolution state What was the final

state of the defect

when the problem

report was closed?

Corrected (proper resolution applied),

Workaround/Fix,

Workaround/Product de-scoped,

No Action/Deferred,

No Action/Referred,

No Action/Not found,

No Action/No action

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 79

6.4.2 Comparison with IEEE Std. 1044

In the process of adapting IEEE Std. 1044, compliance with the standard was

considered an important requirement (Appendix D shows the compliance

matrix as proposed in (IEEE, 1996)). Retaining compliance with the standard

contributes to the generalizability of the results—e.g. data collected with

LiDeC and analyses conducted on that data should be comparable with IEEE

Std. 1044 compliant data from other companies.

The main differences between the IEEE Std. 1044 and LiDeC are

described below. The full mapping of attributes between the IEEE Std. 1044

and LiDeC is presented in Appendix E.

General Modifications

The main adaptation made to LiDeC consists of raising the abstraction level

of the attributes, i.e. choosing attribute values that are less fine-grained than

their IEEE Std. 1044 counterpart. Furthermore, the set of values available for

each attribute expressed in the terminology of the company and provided

with examples; for example the attribute “Type” has been shown to be

problematic (e.g. “to me everything is a logic problem” (Freimut et al.,

2005)); in LiDeC typical examples for each available value (see for instance

Figure 42 in Appendix B) are provided.

Furthermore, attribute values that in IEEE Std. 1044 consisted of “Low,

Medium and High” (e.g. Project Risk and Priority) has been replaced by

more descriptive values (see, for instance, the LiDeC attributes Urgency and

Severity in Appendix A and figures Figure 37 and Figure 38 Appendix B).

This contributes further to making values less ambiguous by limiting the

amount of interpretation needed by the reporter.

Moreover, supporting data items from the standard, e.g. cost and time

estimations, defect reporter, developer assigned to the defect) has been

omitted from LiDeC unless they have a specific purpose related to the

analysis of the defect data (e.g. the LiDeC attribute Component/Asset is

originally a supporting data item in the IEEE Std. 1044 Action phase). Such

supporting data items, however, are assumed to be part of the company’s

normal issue tracking process as needed.

Added Attributes

The attributes described in the following subsections were added in LiDeC.

Timing/Preferred

The attribute was added to the Recognition phase in order to capture—at the

time of detection—the reporter’s subjective opinion of whether there was a

80 Part III—LiDeC

previous test phase in which this type of failure should have been uncovered.

The intention of the attribute is to be able to gauge the fault-slip-through rates

of the test activities.

Affects Software

The attribute was added to the Recognition phase in order to capture whether

the defect has an impact on software. As the products developed are software

intensive mechatronic systems, there may be defects that are not related to

software; the purpose of the attribute is thus to be able to filter defects based

on whether they affect the software. The definition of whether a defect affects

software, however, is broad; see the example given in the classification guide

in Figure 35 in Appendix B.

Component/Asset

The attribute was added to the Analysis phase in order to be able to evaluate

the distribution of faults among components in the system. The attribute is

originally part of the supporting data items of the IEEE Std. 1044 Action

phase – thus whereas the IEEE Std. 1044 records the component(s) in need of

modification, LiDeC records the component(s) containing the fault. This

redefinition was made as the main focus of LiDeC is on capturing data about

the defects rather than their solution; as the majority of implementation is

done by suppliers, it is of more interest to the company to identify which

components contain the defects rather than which components need

modification (e.g. a workaround may require modifications to other

components than the one containing the defect).

Removal Time

The attribute Removal Time was to the Resolution phase added in order to

allow evaluation of defect longevity. The attribute is originally part of the

supporting data items in the IEEE Std. 1044 Action phase.

Omitted Attributes

In this section the attributes available in the IEEE Std. 1044 that were omitted

in LiDeC are listed. All omitted attributes are listed as optional in IEEE Std.

1044.

Suspected cause

While the Suspected cause attribute may provide valuable input during the

process of analysis a failure, it was not considered important from LiDeC’s

point of view. LiDeC aims at capturing attributes of the defect itself, rather

than speculations done as part of the defect analysis process.

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 81

Repeatability

The Repeatability attribute was omitted (as a separate attribute) in the LiDeC

for the same reasons as the Suspected cause attribute (above). In LiDeC, the

attribute is instead partly represented as an attribute value in the Disposition

attribute of the Post-mortem phase; non-repeatable defects would be reported

as No action / Not found.

Corrective action

The IEEE Std. 1044 attribute Corrective action records detailed data about

what action was taken in order to resolve the issue. The attribute values

proposed by the standard—such as revising the developing process or

implementing a training program—would not generally be applicable to the

context of VCC based on a single observed defect; rather such actions would

instead be taken based on analysing defect data from a number of projects.

Furthermore, the exact action taken may not easily be identified as a

substantial amount of defects relates to code, and code is generally produced

by suppliers. Instead, LiDeC captures data about the estimated repercussions

of the corrective action(s) by the attributes Resolution Impact and Required

Verification Level.

Customer value, Mission/safety and Project risk

As the roles responsible for reporting defects may not have the necessary

insight in, for instance, product planning the (explicit) attributes Customer

value and Mission/Safety were omitted. Instead the data are in LiDeC implicit

in the attribute Severity—i.e. how severely the defect affects the product from

a customer perspective.

The attribute Project risk was omitted in LiDeC as a defect reporter may

not have necessary knowledge of project planning (defects may be reported

by suppliers, as well as various in-house testers) to be able to assess project

risk. The risk can, however, be assessed by analysing the LiDeC attributes

Resolution impact and Required verification level together with Severity and

Time of detection; late sever defects that have a large impact on the product

and/or require the more costly verification types would constitute a higher

risk.

Project quality/reliability

The intention of the IEEE Std. 1044 attribute Project quality/reliability is to

appraise the impact on the project quality if a defect is addressed. The

attribute was omitted in LiDeC as the data was not considered relevant to

study context—the subjects in the case-study had difficulty relating the

attribute to the defects analysed, indicating that the roles responsible for

82 Part III—LiDeC

defect reporting may not have the necessary insight in project planning to be

able to reliably assess the attribute.

The LiDeC field Required Verification Level, however, captures data with

similar intentions: when addressing the defect how much additional re-

verification effort would be required (also see Project schedule below).

Redefined Attributes

A number of IEEE Std. 1044 attributes have in LiDeC been redefined. The

redefinitions have been done with care to retain the intention of the original

attribute, but adapted to the context of VCC; e.g. by changing the available

attribute values (for instance the Symptom attribute) or by using a different

measurement unit than the IEEE attribute originally specified (for instance

the Project cost attribute).

The following subsections describe the attributes that have been redefined.

Symptom

The IEEE Std. 1044 attribute Symptom has been redefined in LiDeC in that,

whereas the original attribute captured more detailed data about the

behaviour of the system, the LiDeC attribute Effect captures less fine-grained

data about what quality aspect of the product—i.e. the product’s “-ablities”—

is affected.

Furthermore, the attribute values chosen for the Effect attribute has been

tailored specifically for the context of active safety systems. For instance, the

Capability attribute values (which would correspond to the values available

in the Symptom attribute) has been subdivided into the two categories that are

most relevant (the function triggering on a false positive and the function

being inactive despite a true positive) as well as a catch-all third capability

related value, see Figure 39 in Appendix B.

Product Status and Severity

Both the IEEE Std. 1044 attributes Product status and Severity are included

in the LiDeC attribute Severity. Whereas the IEEE attribute Severity captures

the severity of the fault, the LiDeC attribute Severity captures the severity of

the failure (i.e. the manifestation of the fault)—as does the IEEE Product

Status attribute. LiDeC’s focus on the failure aspect of a defect rather than the

fault causing it is due to the limited in-house implementation done, and the

specific interest in the ability to evaluate test activities.

Furthermore, the attribute values available in the LiDeC attribute Severity

have been defined to describe the impact of the failure in more objective

terms than the original values proposed by the IEEE Std. 1044 (which are

“Urgent, High, Medium, Low and None”), see Figure 38 in Appendix B.

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 83

Societal

The attribute Societal is in LiDeC covered by the attribute Functional Safety

Impact. Whereas the IEEE Std. 1044 does not define the Societal attribute

clearly, in the attribute Functional Safety Impact is specific with respect to

defects that may cause harm. In particular, LiDeC attribute captures whether

the defect have impact on a software component that has ASIL-classified

requirements (as defined by ISO/IEC 26262 (ISO/DIS, 2011)).

Actual cause

Whereas the IEEE Std. 1044 captures data about the artefact that caused the

defect, LiDeC captures data about in which project phase the fault was

injected. This redefinition was made as it was, in the case-study, found that

the attributes Actual cause and Artefact was treated identically. By referring

to the activity causing the defect it was clearer to the subject how to use the

attribute (see Example 2 Appendix C).

Type

The IEEE Std. 1044 attribute Type has a strong focus on source code, and

provides a detailed set of attribute values. In the LiDeC case-study the

attribute was found difficult to assign of two main reasons: i) as the access to

source-code may be limited, identifying detailed data about type of defect is

often not possible; ii) the detailed set of values proposed by the IEEE Std.

1044 were shown to make distinction between values difficult (this is also

corroborated in (Freimut et al., 2005) by the quote “to me everything is a

logic problem”).

The approach taken in LiDeC is to substantially reduce the resolution in

the available attribute values, and to provide each attribute value with a

typical example in the terminology of the company (see Appendix A for a

description of the LiDeC attribute and Figure 42 in Appendix B for examples

of each attribute value).

Resolution and Priority

The IEEE Std. 1044 attribute Resolution captures data about both the urgency

of the resolution and what type of resolution that will be applied (IEEE,

1996). In LiDeC, the urgency of resolving a defect is captured by the

Urgency attribute while data about the type of resolution is not explicitly

captured by LiDeC (instead, it is partly covered by the Disposition attribute).

Furthermore, whereas the IEEE Std. 1044 Resolution attribute relates to

the urgency of applying a specific resolution, the LiDeC attribute Urgency

relates to the urgency of removing a failure from the system; thus, the focus

is on detecting and prioritizing the removal of the manifestation of defects

84 Part III—LiDeC

rather than on details of the actual resolution (as the resolution may be

developed and applied by the supplier, the OEM may not have the necessary

insight).

Project schedule

The IEEE Std. 1044 attribute Project schedule aims at capturing data about

the direct impact of the resolution on the project schedule. In LiDeC this is

instead captured in terms of amount of re-testing needed after applying a

resolution; as verification activities constitutes a substantial amount of the

development efforts, the attribute captured data with the same intention as the

Project schedule attribute. Furthermore, the amount re-testing needed for a

resolution is more straight-forward to assess for an engineer reporting the

defect than objectively estimating the impact on project schedule.

Project cost

Whereas IEEE Std. 1044 attribute Project cost captures data about the cost of

a resolution in terms of real money, LiDeC instead makes the estimate in

terms of how much of the product will be affected by the resolution in the

attribute Product Impact—the assumption is that the more of the product that

is affected the more expensive the resolution will be. This redefinition was

made as the engineer reporting a defect may not have sufficient insight into

the budget or may have limited ability to make a reliable estimation of the

cost of applying a resolution. Thus, LiDeC captures data with the same

intention as the Project cost attribute but in more objective engineering terms.

6.5 CONCLUSION

In this report we have described the adaptation of IEEE Std. 1044, the IEEE

standard for defect classification, to the automotive safety feature

development context. The specific properties of the development context that

influenced the adaptation include a strong reliance on supplier side

implementation, which may limit the access and insight into the source-code.

Furthermore, as defect classification does not directly contribute to the

development of the end-product, it was considered important to adapt the

classification scheme to minimize the time required to use the scheme while

still providing the additional benefits of characterizing the defects. More

specifically, we have addressed the research questions:

L1 In an automotive safety feature development context where

source-code is often not available, how can a standard defect

classification scheme be suitably adapted?

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 85

L2 As defect classification may often be considered an

administrative task, how can the adaptation of a standard

defect classification scheme be done to minimize required

learning and classification time?

We addressed L1 by:

 Shifting the focus of the classification scheme from detailed aspects of

the fault and its resolution to aspects of the discovery of the defect. As

the implementation is mainly done by suppliers, most in-house process

improvement potential lies in more efficient defect discovery

activities. LiDeC reflects this by providing more detailed attributes in

the Recognition phase (e.g. Detection activity, Urgency, Severity and

Effect), while granularity of the attributes in subsequent phases have

been reduced; e.g. the Type attribute is less granular than in IEEE Std.

1044 and detailed aspects of the resolution (captured by the IEEE

attribute Resolution) has been omitted;

 Adapting attributes for safety specific purposes. In LiDeC the attribute

Functional Safety Impact (which maps to the IEEE attribute Societal)

records whether a defect impacts ASIL-classified requirements

(ISO/DIS, 2011). In addition, the values of the Effect attribute (which

maps to the IEEE Symptom attribute) was adapted specifically to

provide a high-level characterization of safety feature problems (e.g.

unintentional activation of a feature).

We addressed L2 by:

 Raising the level of abstraction of attributes. For instance, by

providing only higher-level categories as values for the Type attribute

 Providing more descriptive attribute values, e.g. instead of Low,

Medium, High, more descriptive values expressed in the terminology

of the organization were used

 Providing attribute descriptions and values phrased using the

terminology of the company

 Providing a classification guide with a flow-chart structure, and

including typical examples for each attribute value

 Streamlined the attributes by removed or redefining attributes that

required insights that the typical reported may not have (project

schedule and risk). Attributes were redefined with care to retain the

intentions of the original attribute but measured in more specific

engineering terms; for instance, whereas the IEEE Std. 1044 attribute

Project schedule aimed at appraising the direct impact on the project

86 Part III—LiDeC

plan, LiDeC instead appraises the estimated amount of re-verification

(an activity that may have a large impact on the project schedule).

In conclusion, by putting focus on capturing data about the discovery of

defects, streamlining the available attributes with respect to the expertise of

the engineers reporting defects, and conforming to the terminology of the

company, we have developed an IEEE Std. 1044 compliant classification

scheme well suited to the development of automotive safety features at VCC.

As a result, we are now in the process of incorporating LiDeC into the issue

tracking system of the company.

6.6 FUTURE WORK

The next step in our research concerns analysis recipes—guidelines on how

to analyse the collected data. We envision two distinct types of analysis

recipes: post-mortem and in-process—post-mortem recipes will mainly be

support for organizational learning, whereas in-process would serve as a tool

for project control.

Post-mortem recipes would concentrate on analysing the collected data in

order to learn about a finished project; e.g. evaluating whether changes in the

way of working in the project yielded any noticeable effects, or analysing

weak spots in the way of working as promising candidates for future

improvements.

In contrast, in-process recipes would be guidelines on how to use collected

defect data from previous project phases in order to predict future phases

within the project. As part of this we will need to identify relevant predictors.

The challenges include the absence of source-code predictors; instead there is

a need to identify predictors based on specification and design artefacts, e.g.

requirements and design model complexity.

By establishing a defect profile baseline per development phase, we aim at

developing a way to predict future defect inflow. Such a prediction model

would, for instance, assist in resource planning in a similar way as presented

by Bijsma et al. (Bijlsma et al., 2011) where mainly source-code related

predictors were used to estimate the time it would take to resolve a defect—a

metric that can be used to assist in prioritizing defects.

 A Light-weight Defect Classification Scheme for Embedded Automotive Software 87

6.7 ACKNOWLEDGEMENTS

This research is partially sponsored by The Swedish Governmental Agency

for Innovative Systems (VINNOVA) under the Intelligent Vehicle Safety

Systems (IVSS) programme. In addition, the authors would like to thank all

the people at VCC who participated in the study, and people who generously

took the time to review this manuscript.

PART IV—EVALUATION

The only man who behaves sensibly is my tailor; he takes my

measurements anew every time he sees me, while all the rest

go on with their old measurements

and expect me to fit them

― George Bernhard Shaw

7 AN INITIAL EVALUATION OF THE PRACTICAL

FEASIBILITY OF LIDEC

The chapter presents an initial industrial evaluation of LiDeC. The chapter

provides initial validation of the practical viability of the adapted

classification scheme. The chapter11 was previously published as:

Mellegård, N., Staron, M., Törner, F.

A Light-weight Defect Classification Scheme for Embedded

Automotive Software and its Initial Evaluation

Published at 23rd IEEE International Symposium on Software

Reliability Engineering (ISSRE) 2012

7.1 INTRODUCTION

Software reliability is of central importance in modern cars as software

controlled systems are becoming increasingly pro-active—recent safety

11 In this chapter, the background section has been removed as it was also published as part of

the study reported in chapter 6.

IV

90 Part IV—Evaluation

systems are, for instance, able to automatically apply brakes to avoid or

mitigate the effects of a crash. The car manufacturers (Original Equipment

Manufacturer, OEMs) need, in order to achieve reliability, effective ways to

manage defects during development (in-process) and during run-time (e.g.

fault tolerance mechanisms). For the in-process defects it is important to

identify, analyse and remove defects which could compromise the reliability

of the cars. Furthermore, identifying patterns in the in-process defects enables

effective detection and removal of defects, for instance by indicating which

test activities to focus on, or supporting fault injection strategies. Such

patterns may also serve as a maturity assessment metric for the software

under development and as a prediction model of defect inflows in future

project phases. In order to identify such patterns, however, systematic and

structured defect documentation is required.

Defect documentation and analysis is common practice in most software

development organizations. Its benefits are further emphasised through the

inclusion in process maturity models—such as CMMI (CMMI Product Team,

2010a) and SPICE (The SPICE User Group, 2011)—as they require

systematic defect documentation, analysis and follow-up. Neither CMMI nor

SPICE, however, specifies how such defect documentation and analysis is to

be done. Companies thus have their own interpretations resulting in varying

quality of defect documentation; for instance, ambiguous interpretation of

data or subjective opinions of the reporter. In addition, the automotive

industry is implementing the ISO 26262 standard (ISO/DIS, 2011) for

assuring functional safety, where functional safety assessment is one

important confirmation measure of achieved safety. Defect reports are part of

the overall safety documentation and are as such included in the base for the

safety assessment. Hence, there is a need for a structured approach to defect

documentation.

There have been several approaches proposed on how to perform

structured collection and analysis of defect information; e.g. defect

taxonomies (Beizer, 1990), root cause analysis (RCA) (Leszak et al., 2000) as

well as various defect classification schemes such as Orthogonal Defect

Classification (ODC) (Chillarege et al., 1992), the HP scheme (Grady, 1992)

and IEEE Std. 1044 (IEEE, 2009). Although shown to be useful these

approaches were designed for specific contexts (Freimut et al., 2005) or may

be too generic to be directly applicable, causing the need for adaptations

(Wagner, 2008); such adaptations have been identified as one of the major

challenges in applying a defect classification scheme (Freimut et al., 2005;

Wagner, 2008). Specifically, defect classification approaches often assume

full knowledge of the defects, i.e. have a source-code focus and presuppose

 An initial Evaluation of the Practical Feasibility of LiDeC 91

ownership of the software components (Freimut et al., 2005). This poses

challenges for organizations where software is developed by suppliers—a

situation common for the development of software systems in the automotive

domain: even though software components (e.g. ABS or collision warning

system) are often developed by suppliers, the quality of the complete

product—the car—is the responsibility of the OEM. This entails the need to

systematically analyse and follow-up on the quality of the supplied software

components.

Furthermore, defect documentation—however important—may be seen as

a mainly administrative task that does not directly contribute to the end-

product. Thus, the defect documentation approach taken should require a

minimum of analysis effort in addition to what is needed to identify and

remove the defect, while still providing the additional benefit of

characterizing the quality of the product and development process (Freimut,

2001).

In this paper we address these challenges by investigating how a defect

classification scheme can be adapted to the automotive software development

context by studying the development of active safety features. More

specifically, the aims of our adapted classification scheme—the Light-weight

Defect Classification scheme (LiDeC)—include:

 To be useful in a development context with limited insight into source-

code

 To minimize the learning and classification time required

The LiDeC scheme was developed as part of a case study at Volvo Car

Corporation (VCC12) and initially evaluated with a sample of problem reports

from a project finished a year prior to the study. The results from the initial

evaluation showed that developers quickly learnt to apply the classification

scheme, and that the required time to classify a defect was substantially lower

than with other approaches to defect documentation. Moreover, we were,

from initial analyses of the defect data, able to discover patterns in the defects

that were contrary to what was anticipated by the development teams. These

findings may contribute to future improvements to the development practice.

The rest of the chapter is structured as follows: section 7.2 describes the

method used, section 7.3 summarizes the results and the final sections

conclude the chapter and outlines future work. For background and context,

see section 6.2.

12 http://www.volvocars.com

92 Part IV—Evaluation

7.2 METHOD

The research presented in this paper followed the case study method

described by Yin (Yin, 2009). The case study method was considered

appropriate as the applicability of the adapted classification scheme was of

importance; adapting the IEEE Std. 1044 in the same context as it will be

deployed would increase the chances of it being useful in that context.

Specifically, we have used a single-case design by applying the classification

scheme to defect reports from one project at our case company. The rationale

for this was that the defect inflow profile from the project (shown in Figure

14) was considered representative by the developers—similar inflow profiles

had been observed in other projects. Using the defect reports from the

project, we developed an adapted defect classification scheme; in particular,

we addressed the following research questions:

E1 How can the IEEE Std. 1044 be adapted to a software

development context with limited access to the source-code?

E2 How can the IEEE Std. 1044 be adapted to minimize its

process foot-print in terms of required learning and

classification time?

As a practical guideline to adapting a defect classification scheme we

followed Freimut (Freimut, 2001). The study was conducted in the following

three stages:

Stage 1: Establish terminology. The aim of the first stage of the study was to

establish a set of classification attributes using terminology aligned with the

case company.

As a base for developing the classification scheme we used the IEEE Std.

1044 (IEEE, 2009) and its guide (IEEE, 1996). In this stage we began by

choosing attributes from the IEEE Std. 1044 that we—based on our previous

research (Mellegård and Staron, 2010a, 2010b, 2010c)—found relevant for

the specific development context at the company; for instance attributes

related to customer value or societal impact was not considered relevant for

the development phase under study.

During two one hour-long interviews, we explained the initial

classification attributes to the interviewee (project leader), and asked the

interviewee to relate these attributes to the case company. We took notes

during these interviews and refined the classification scheme according to

these notes.

 An initial Evaluation of the Practical Feasibility of LiDeC 93

Stage 2: Tune feasibility. The second stage of the case study aimed at

streamlining the set of values each attribute could be assigned.

The stage consisted of a two hour long interview with a developer in which

a number of defects were classified. The set of values for each attribute were

evaluated during the classification session: (a) if an attribute value was never

assigned and the interviewee could not give an example of when the attribute

value would be given, it was considered for removal, and; (b) if a defect was

to be classified according to an attribute and the interviewee did not consider

any of the available attribute values sufficiently described the defect, a new

value was considered for addition.

From the results of the second stage the final classification scheme was

compiled and depicted in the form of flowcharts with short questions

providing a guide to arrive at the correct attribute value. Each attribute value

was, furthermore, provided with a short illustrative example.

Stage 3: Scheme evaluation. The final stage of the study aimed at evaluating

the efficiency and effectiveness of the classification scheme.

In this stage defect reports were classified according to the scheme. Four

subjects involved in the project participated in six separate two hour long

classification sessions (two subjects participated in two consecutive

classification sessions). Three of the subjects were not involved in the

previous two stages of the project.

The project used as case had finished one year prior to the study and

contained over 100 problem reports13. All subjects involved in the study had

been part of the project with the following roles: two developers, one tester

and one project leader.

In the third stage of the study we were able to classify 22 defects selected

randomly using blocking; the defect reports were divided into two blocks,

where the peak close to software release (shown in Figure 14 on page 69)

was assigned as one block and the remainder of the project as the second

block.

The results included measuring:

 Learning time– we measured the time taken to classify each defect.

Since we explained the classification scheme while doing the actual

classification, we could measure the improvement in time per defect

and use this as a metric to estimate required time to learn the

classification scheme;

13 Exact number cannot be disclosed due to confidentiality reasons

94 Part IV—Evaluation

 Efficiency – Efficiency was considered the time required per defect

once the scheme was known by the subject. Because the project had

been finished a year prior—and that the defect reports spanned a

number of years—we consider this to be a worst-case scenario; if the

defect classification is done in-process instead of post-factum, we

believe that the time required to classify a defect should be equal or

less than in this study;

 Repeatability– Four randomly selected defects were classified by all

four subjects. The results were compared in order to evaluate the

repeatability of the scheme;

 Effectiveness– In order for the classification scheme to be effective we

must be able to analyse the collected data and use it learn about the

process. As we lowered the level of detail of the data captured by the

classification—compared to e.g. ODC or IEEE Std. 1044—there was a

risk that too much details were removed for the data to lend itself to

meaningful analysis. In order to evaluate the effectiveness of the

scheme we stratified the space of defects and chose a random sample

from one stratum: the spike in defect inflow after one late test phase of

the project (see Figure 14). Although the developers did anticipate

reasons for the spike in defect inflow, getting more formal evidence

about these defects was considered interesting by the case company.

7.2.1 Validity Evaluation

We have identified and grouped the threats to validity in our study according

to recommendations of Yin (Yin, 2009):

 Construct validity – By basing our defect classification scheme on the

IEEE Std. 1044 and by keeping careful notes on how to map concepts

specific to our case to the standard, we consider that the threat to

construct validity to have been minimized. Furthermore, as both the

adaptation of the classification schemes and the evaluation was done

using real defect data from an industrial project with the assistance of

the developers involved in the project, we consider the threat to

construct validity to have been further reduced.

 Internal validity – As any interview study we anticipated some

personal bias in the answers from the interviewees. In order to

minimize this threat we triangulated the results by including multiple

subjects in our interviews. In addition, a set of defects were classified

by multiple subjects thereby allowing evaluation of the repeatability of

 An initial Evaluation of the Practical Feasibility of LiDeC 95

the classification scheme; section 7.3.2 reports the results from this

evaluation.

 External validity – There is a risk that the results are too specific to

Volvo Car Corporation. However, as we documented and justified the

modifications done to the IEEE Std. 1044 as well as described the

particular development context of our case, we believe that our results

can be generalized to similar contexts outside our specific case.

Moreover, we consider the mapping between attributes of the

classification schemes provided by Freimut (Freimut, 2001) to

contribute to the generalizability of our classification scheme; e.g. the

mapping between classification schemes enables analysis methods

utilized with other schemes to be applicable to LiDeC as well, and

therefore we believe that results are also comparable.

 Reliability – As part of the case study design, we have created a case

study protocol which ensured that we conducted the study and

collected the data in a consistent manner. By using this protocol, we

believe that the study can be reliably reproduced.

7.3 RESULTS

As described in section 7.2 we aimed at designing a classification scheme,

based on the IEEE Std. 1044, adapted to the development of automotive

safety features, while being light-weight with respect to learning and

classification time. The main challenge of adapting the IEEE Std. 1044

included tailoring the attributes relating to the fault and its resolution;

specifically attributes in the phases Investigation, Action and, Impact

Identification. Furthermore, the classification scheme was validated with

respect to its required process foot-print and the usefulness of the resulting

data.

The results are reported below in two parts; first, the classification scheme

is presented, and then its initial evaluation is presented.

96 Part IV—Evaluation

7.3.1 The LiDeC Scheme

The LiDeC scheme captures—as shown in Figure 16—attributes from four

phases of the defect life-cycle (IEEE, 1996, chap. 8.1) (described in more

detail below): the first phase captures information about the recognition of

the defect, i.e. observing a deviation (failure); the second phase captures

information about the underlying cause of the defect (referred to as

Investigation in IEEE Std. 1044.1 (IEEE, 1996)); in phase three information

about the defect resolution is captured (referred to as Action in IEEE Std.

1044.1 (IEEE, 1996)); and the last phase captures information about what

was actually done about the defect (referred to as Disposition in IEEE Std.

1044.1 (IEEE, 1996). Table 10 shows a comparison between the life-cycle

phases of IEEE Std. 1044, ODC and LiDeC schemes.

Figure 16. Overview of the LiDeC Scheme

 An initial Evaluation of the Practical Feasibility of LiDeC 97

As can be seen by the number of attributes in each phase (described in detail

in the subsections below), the main focus of the LiDeC scheme is on

recognition and analysis of the defect. The justification is that the later a

defect is discovered the more costly its resolution tend to be (Boehm, 1981).

Consequently, the main focus of the classification scheme is on how defects

are discovered, how the product is affected by them, and what types of

defects they are. Analysing this information will contribute to understanding

which phases of the development process contain the most improvement

potential.

The phases of the classification scheme are aligned with the defect

management process at the case company and directly correspond to the

states a defect can be assigned: recognized, analysed, resolution proposed and

post-mortem. The following sections describe the attributes of each phase.

Recognition

The attributes in the first phase of the defect life-cycle (shown in Table 11)

relate to data about the discovery of a failure and its effects on the system in

question, i.e. the manifestation of the defect. The attributes capture project

related information—timing of detection and how urgently the defect needs

to be removed—and product related information—end-user perceived

severity of the defect and how the defect affect the product.

Table 10 Mapping of defect life-cycle phases

Defect

life-cycle

phase

IEEE 1044 ODC LiDeC

1 Recognition
Open

Recognition

2 Investigation Analysis

3 Action

Close
Resolution

4
Impact

Identification

5 Disposition Post-mortem

98 Part IV—Evaluation

This information will be used in analysis, for example, to assess whether

the most serious defects are detected timely, investigate which activities are

more effective in detecting the most severe defects.

Analysis

The attributes in the second phase of the defect life-cycle (shown in Table 12)

aim at capturing data about the underlying fault causing the failure; e.g. in

Table 11 Classification attributes for the Recognition phase

Attribute Question Values

Timing /

Detection

When was the

defect detected?

Date and project phase

Timing /

Preferred

When should the

defect have been

detected

(subjective)?

Project phase if different from
Timing / Detection

Affects

S/W

Does the defect

affect software?

Yes / No

Detection

Activity

What was done to

detect the defect?

Inspection/Requirements,
Inspection/Design,

Unit test/In-house,

Unit test/Supplier,
System test/bench,

Functional test/Test track,

Functional test/Expedition
Production/Manufacturing

Production/Customer report

Urgency How urgently does

the defect need to

be addressed?

Immediately,
Next development release,

Before start of production,

Deferrable

Severity How severe is the

defect with respect

to product quality?

None,
Nuisance,

Limited Functionality,

Show-stopper

Effect How does the

defect primarily

affect the product?

Capability/Undesired activation,

Capability/Inactive on true positive,

Capability/Other,
Function Safety,

Maintainability,

Usability,
Testability,

Configurability

 An initial Evaluation of the Practical Feasibility of LiDeC 99

what work product and product component the problem originated, when in

the process the problem was injected and the type of defect.

Resolution

The attributes in the third phase of the defect life-cycle phase (shown in Table

13) aim at capturing data about the proposed resolution. As implementation

specific details of the resolution may not be available, the attributes in this

phase focus on capturing the cost of resolving the defect in terms of

development effort. Specifically, to capture what impact a resolution would

have on the product and on the process; the impact on the product is captured

in terms of how much of the product would be affected by the modification,

and impact on the process in terms of amount of regression testing needed.

Table 12 Classification attributes for the Analysis phase

Attribute Question Values

Artefact Which software

work product

contained the

defect?

Req./Internal,

Req./Cross-function,
Req./External,

Design model,

Impl./Executable model,
Impl./Code,

Impl./Configuration params,

Tool

Injection

activity

When was the

defect injected?

Specification,
Design,

Impl./In-house modelling,

Impl./Suppl. mdl. transform.,
Impl./Supplier coding,

Configuration

Component

/ Asset

Which design

component

contained the

defect?

Internal (product) module
name also identifying its

version

Type What type of

defect was it?

Description,

Data,
Interface / Timing,

Logic / Algorithm,

Tooling,
Tuning

100 Part IV—Evaluation

Furthermore, the attributes of the Resolution phase are intended to capture

data about a proper resolution of the defect; in practice, one could choose to

resolve defects by means of workarounds (this data is captured in the final

phase of the classification scheme).

Post-mortem

In the last phase of the defect life-cycle the single attribute (shown in Table

14) record what was finally done to close the defect; to what extent the defect

was resolved.

Table 13 Classification attributes for the Resolution phase

Attribute Question Values

Removal time When was the

defect report

closed?

Date and project phase

Product impact What would the

impact of a proper

resolution be on

the product?

None,

Local (unit) modification,

Multiple components,

Funct. changes (re-design)

Required

Verification

Level

What level of

regression testing

would a proper

resolution

require?

None,

Inspection,

Unit test,

System test,

Expedition

Table 14 Classification attributes for the Post-mortem phase

Attribute Question Values

Resolution

state

What was the

final state of the

defect when the

problem report

was closed?

Corrected (proper resolution

applied),

Workaround/Fix,

Workaround/Product de-scoped,

No Action/Deferred,

No Action/Referred,

No Action/Not found,

No Action/No action

 An initial Evaluation of the Practical Feasibility of LiDeC 101

7.3.2 Evaluation—Efficiency and Effectiveness

This section reports on the initial evaluation of the classification scheme. The

evaluation was made based on efficiency and effectiveness. Efficiency was

measured in terms of the time required to learn the classification scheme, and

the time required to classify a defect. Effectiveness, on the other hand, was

measured in terms of classification repeatability and what conclusions can be

drawn from analysing the classification data.

Efficiency—Learning time and Classification Rate

In the third stage of the study, the time required to classify each defect was

measured in order to evaluate learning time and classification rate; Figure 17

shows the time series for the two subjects that participated in the two

consecutive classification sessions. As can be seen in the chart, the first 2 – 4

defects in the first session took substantially longer to classify, but after that

the time remained stable. Furthermore, the learning time required in the

second session was substantially lower (there was approximately one week

between sessions for both subjects). We consider this as an indication that the

scheme is understandable and quick to learn.

In addition, once the classification scheme was understood by the subject,

the time required to classify a defect remained stable around 5 – 10 minutes.

Considering that the project had been finished one year prior to the study, and

that some of the defect reports included were several years old, we believe

that this may be considered a worst-case scenario with respect to

classification time.

When asked, all subjects said that the information captured by the

classification scheme would be known at the time of reporting the defect.

Consequently, if applied in-process, classifying according to the LiDeC

scheme would require no additional analysis effort; the scheme would thus

capture tacit knowledge and could therefore be considered cheap in terms of

project resources.

Effectiveness—Repeatability

To provide initial data to evaluate the repeatability of the classification

scheme four randomly selected defects were classified by all subjects in the

final stage of the study. Differences were found in 6 of the 15 attributes,

specifically: Detection activity, Severity, Effect, Type, Required Verification

Level and Resolution State. These differences can in part be attributed to the

fact that the classification was done based on sparsely documented defect

reports.

102 Part IV—Evaluation

However, we found that illustrative examples for each attribute value

would contribute to the repeatability. For instance, in one case for the

attribute Resolution State, where the defect report indicated that a defect had

already been resolved in an earlier release of the software, one subject

classified the defect as Corrected (as the defect had been properly resolved)

while another subject chose No Action (as nothing had been done in response

to that particular defect report).

Effectiveness—Data Analysis

In order to evaluate the trade-off between classification effort required and

the analysis power of the data, an initial data analysis was done. The project

from which the defect reports were used had an inflow spike in a late project

stage (as shown in Figure 14 on page 69)—similar spikes had been observed

in both previous and subsequent projects. The hypothesis posed by the

development teams was that the defects were related to integration issues—

the spike in defects correlated with the first test vehicle built entirely with

components intended for production. In the final stage of the case study 8%

of the defects from the inflow spike were classified with the intention to

evaluate the hypothesis.

The results showed that—contrary to the hypothesis of the teams, and also

contrary to the results of our previous studies (Mellegård and Staron, 2010a,

2010b, 2010c)—the predominant defect type reported was related to

Figure 17. Classification time per defect

 An initial Evaluation of the Practical Feasibility of LiDeC 103

algorithms and code logic. Furthermore, the results indicated that these late

issues—in the opinion of the subjects—should have been detected on unit or

system testing level.

The predominance of algorithm and code logic defects in the classified

data was explained by the domain expert and was logical for the studied

organization and development process. Improvements based on this

explanation were also identified by the expert, which indicates that the defect

classification scheme forms a useful contribution to the efficiency of software

development at the company.

7.4 CONCLUSION

In this chapter we have examined how efficiency of defect classification can

be improved in a development context where code is developed by suppliers

and the full knowledge about the source code is linked with intellectual

property rights. Specifically, we have adapted the IEEE Std. 1044 to

minimize its process foot-print in terms of required learning and

classification time. We also evaluated the adapted classification scheme—the

LiDeC scheme—at Volvo Car Corporation. The adaptation consisted mainly

of raising the abstraction level of the attributes related to source-code and to

the resolution of the defect. Focus was instead shifted to the recognition

phase to enable evaluation of the efficiency of detection activities.

Lowering the granularity of the attributes may, however, risk

compromising the usefulness of the results of the classification; a risk that

was assessed by conducting an initial evaluation of the collected data. This

initial evaluation showed that even though the granularity of the attributes

were lower, analyses of the data collected were still able to contribute with

new information about the development process; for instance, whereas the

typical type of late defects were anticipated to be integration issues, such as

timing, the classification indicated the it was instead algorithms and code

logic defects.

Furthermore, the attributes selected in the LiDeC scheme were considered

by the subjects of the study to be knowledge already possessed by the

developers when reporting the defect; thus capturing tacit knowledge.

As a result of this initial study, we are currently in the process of

incorporating the classification scheme in the company’s defect reporting

system.

104 Part IV—Evaluation

7.5 FUTURE WORK

The next step in our research concerns analysis recipes—guidelines on how

to analyse the collected data. We envision two distinct types of analysis

recipes: post-mortem and in-process. Post-mortem recipes will mainly be

support for organizational learning, whereas in-process would serve as a tool

for project control.

Post-mortem recipes would concentrate on analysing the collected data in

order to learn about a finished project; e.g. evaluating whether changes in the

way of working in the project yielded any noticeable effects, or analysing

weak spots in the way of working as promising candidates for future

improvements.

In contrast, in-process recipes would be guidelines on how to use collected

defect data from previous project phases in order to predict future phases

within the project. As part of this we will need to identify relevant predictors.

The challenges include the absence of source-code predictors; instead there is

a need to identify predictors based on specification and design artefacts, e.g.

requirements and design model complexity.

By establishing a defect profile baseline per development phase, we aim at

developing a way to predict future defect inflow. Such a prediction model

would, for instance, assist in resource planning in a similar way as presented

by Bijsma et al. (Bijlsma et al., 2011) where mainly source-code related

predictors were used to estimate the time it would take to resolve a defect—a

metric that can be used to assist in prioritizing defects.

7.6 ACKNOWLEDGEMENTS

This research is partially sponsored by The Swedish Governmental Agency

for Innovative Systems (VINNOVA) under the Intelligent Vehicle Safety

Systems (IVSS) programme. In addition, the authors would like to thank all

the people at VCC who participated in the study.

 A Comprehensive Evaluation of Defect Classification Schemes 105

8 A COMPREHENSIVE EVALUATION OF DEFECT

CLASSIFICATION SCHEMES

The chapter presents a comprehensive evaluation of LiDeC, consisting of a

controlled experiment and an industrial case study. In addition to evaluating

LiDeC, the chapter provides a detailed description and reflection of the

evaluation methodology. In doing so, the chapter is intended to propose an

established process to assess efficiency and effectiveness of defect

classification schemes. The chapter has been submitted for publication as:

Mellegård, N., Staron, M., Törner, F.

Evaluation of Defect Classification Schemes — An Experiment

Submitted to Software Quality Journal in 2013 (Ref. no:

SQJO829)

8.1 INTRODUCTION

Reliable and relevant measurements are essential in order to manage a

complex software development process. It is through measurements that, for

instance, the quality of products or the efficiency of development processes

can be characterized, evaluated, predicted and improved (SEI, 2013). One

source of measurements is defects reported during development and after

deployment. Defect reports can contain much interesting data; such as, how

the defects were detected, what type they were and what action was required

to resolve them. When analysed quantitatively, patterns in the defect reports

may be discovered that, for example, could provide information about the

effectiveness of various test activities or facilitate prediction of product

quality. Defect reports, however, are often written in free text, making

quantitative analyses difficult. Defect classification schemes address this

problem, by providing defect reports with a shared structure, and thus

enabling more efficient data collection.

Even though the concept of DCS has, since the introduction of ODC

(Orthogonal Defect Classification) (Chillarege et al., 1992) and IEEE Std.

1044 (IEEE, 1993, 2009), been around for more than two decades, it has to

our best knowledge (Mellegård et al., 2013) received little research attention.

In particular, while it has been recognized that a major challenge in applying

106 Part IV—Evaluation

a DCS in an organization is to adapt it to suit the particular development

context (Freimut, 2001), it is not clear how to evaluate the adapted scheme

with respect to its efficiency (time required to learn and apply the DCS) and

effectiveness (quality and usefulness of the classification data).

In this paper, we report on a two-part evaluation of LiDeC (Light-weight

Defect Classification scheme) (Mellegård et al., 2012a, 2012b), a DCS

adapted to the development of automotive active safety features. The two

parts of the evaluation aim at examining aspects of the two main phases of

the defect classification approach, illustrated in Figure 18. Denoted by A in

Figure 18, initially defect reports, often written in free text, are classified

according to a classification scheme. The classification data can then be

analysed (denoted by B in the figure) to discover patterns, which may reveal

information about quality of the products or efficiency of the development

process.

The first part of the evaluation—aimed at examining aspects of LiDeC as a

data collection tool (as denoted by A in Figure 18)—was conducted as a

controlled experiment using university students as subjects. In the

experiment, the quality of classifications done using LiDeC was compared to

classification done using ODC. The results were analysed in terms of

classification time, accuracy and consistency. In the second part of the

evaluation, the focus was on the analysing the classification data collected

using LiDeC (denoted by B in Figure 18). The evaluation was conducted as

an industrial case study at Volvo Car Corporation (VCC) in which a sample

of defects from a finished project was classified. The main objective of the

case study was to evaluate how the data collected using LiDeC can provide

useful information in an industrial context.

This paper is intended for both practitioners and researchers. For

practitioners, specifically with an interest in software quality management,

the paper provides an evaluation of DCS as a data collection tool. In the

evaluation is included the cost of using a DCS in terms of classification time,

and the reliability of the data collected. In addition, the potential benefit of

the data is examined through an industrial case study with the aim to

characterize what insights analyses of the data can bring. For researchers, the

paper describes a rigorous and comprehensive method for evaluating DCSs.

Although evaluations of specific aspects of a DCS have been reported

previously, this paper contributes with a more comprehensive methodology

for evaluating both efficiency and effectiveness. Such evaluations are

important, as DCS data, for instance, is often used to demonstrate effects of

applying new techniques in software development—we elaborate on this in

 A Comprehensive Evaluation of Defect Classification Schemes 107

the following section. In order to use DCS data as means of such validation,

it must be shown to be reliable.

The remainder of the chapter is structured as follows. Section 8.2 presents

a selection of work related to the present article. Section 8.3 outlines defect

classification schemes in general, and ODC and LiDeC in particular. Section

8.4 gives a detailed methodological description, and section 8.5 presents the

results. Section 8.6 highlights and discusses the main findings and section 8.7

concludes the chapter.

8.2 RELATED WORK

The importance of establishing a reliable system of process and product

metrics is demonstrated by its inclusion in process maturity models, such as

CMMI (CMMI Product Team, 2010b) and Automotive Spice (The SPICE

User Group, 2011). In these models, a prerequisite for advancing in levels of

maturity is that aspects of the products and their development process are

measured, and defects detected during development and after deployment is

one source of such measurements.

There are numerous approaches to acquire data from defects. While

approaches such as post-mortem reviews (Dingsøyr, 2005) and root-cause

Figure 18. Defect classification, and the focus of the current study. The focus of
the current study is on the two processes A and B, where A denotes the process of
applying a classification scheme to defect reports, and B denotes analyses of the

classification data

108 Part IV—Evaluation

analysis can provide valuable information about process issues and their

underlying cause, they are qualitative, rather than quantitative as would be

required in higher levels of process maturity in the models. To obtain

quantitative data from defects, fault taxonomies (e.g. (Beizer, 1990)) aim at

classifying the type of defect. The type of fault, however, is merely one

aspect of a defect. Defect classification schemes aim at capturing data from

multiple aspects, where defect type is one such aspect. There have been a

number of DCSs proposed; for instance, ODC (Chillarege et al., 1992), HP

(Grady, 1992), LiDeC (Mellegård et al., 2012b), and an adaptation of

ISO/IEC 9126 (Vetro’ et al., 2012). While IEEE Std. 1044 aims at

standardizing the structure of a DCS, there have been few reports on its

applicability (Freimut, 2001). Instead, ODC seems to be the most widely

used (Vetro’ et al., 2012) and reported on in literature. In his paper, Freimut

(2001) provides an overview of defect classification schemes in general, and

ODC, HP and IEEE Std. 1044 specifically.

Freimut, furthermore, identifies that a major challenge in applying a DCS

in an organization is to adapt it to the specific development context of that

organization. Research on such adaptation has, for instance, been reported by

Li et al. (2010b) in which ODC was adapted specifically to black-box testing.

In our previous work, we have reported on the adaptation of IEEE Std. 1044

to the development of automotive active safety software (Mellegård et al.,

2013, 2012a). Other approaches to improving DCS include automating the

classification, fully (Thung et al., 2012) or partially (Huang et al., 2011;

Wang He et al., 2009). In their paper, Vetro et al. (2012) examined one

attribute from ODC specifically (the Impact attribute) and redefined it

according to the ISO/IEC 9126 standard for software product quality

(ISO/IEC, 2001). The adaptation results, according to the authors, in a more

comprehensive definition of the attribute. Additionally, the adapted attribute

is hierarchical, with a main characteristic (e.g. maintainability), and a number

of sub-characteristics (e.g. analysability, stability, testability).

Evaluations of a DCS—the focus of the present study—have been

conducted, both in academy and in industry. In their paper, El-Emam and

Wieczorek (1998) conducted a controlled experiment that aimed at

examining the repeatability of classification. In their experiment, El-Emam

and Wieczorek examined agreement between two subjects (practitioners)

classifying the Type attribute as defined by ODC, for 605 defects. The results

of the experiment were analysed using Cohen’s kappa (Landis and Koch,

1977; Sim and Wright, 2005) and showed a high degree of agreement (a

replication by Freimut (2005) showed similar results). Henningsson and

Wohlin (2004) conducted a similar experiment in which eight student

 A Comprehensive Evaluation of Defect Classification Schemes 109

subjects classified the Type attribute for 30 defects. In contrast to El-Emam

and Wieczorek, the results, also analysed using Cohen’s kappa, showed low

classification agreement among the subjects. A third study on the

repeatability of classification was conducted by Vetro et al. (2012) on their

proposed adaptation of the ODC Impact attribute. In their experiment, six

subjects classified the adapted attribute for 78 defects. Three of the subjects

were students and three were researchers (non-practitioners). While the

results, analysed using Cohen’s kappa, showed fair agreement among the

subjects (according to the scale presented by Lanis and Koch (1977)) for the

main attribute characteristic, on the more detailed sub-characteristic level the

agreement was considerably lower. While these evaluations, conducted in an

artificial setting, provide evidence on the efficiency of certain aspects of

DCSs, there are, to our best knowledge, no comprehensive studies on

applying classification schemes—as is the aim of the present study.

Evaluations on the industrial applicability of DCSs have been reported, for

instance by Butcher et al. (2002), Chillarege and Prasad (2002), Freimut

(2005), and Li et al. (2012). Butcher et al. conducted case studies where ODC

was applied at three software development organizations. In all three cases,

the classification was found to contribute to improving the practice; for

instance, the pre-release test effectiveness was improved by identifying the

typical triggers for defects that escaped into the field. All three companies,

furthermore, decided to continue the defect classification practice. Li et al.,

conducted two-round case studies at two companies. In the first round, they

analysed defect classification data from projects to identify process

improvement opportunities. In the second round, conducted 6 and 12 months

later, classification data was analysed to evaluate whether effects of the

improvement initiatives could be found. At both companies, expected effects

were indeed found. These studies show that defect classification data can

contribute to characterize a process, to identify improvement opportunities,

and to evaluate the effects of changes to that process.

The academic value of defect classification data has been demonstrated,

for instance by Nagappan et al. (2004), Zheng et al. (2006) and, Jin and Jiang

(2009). In the papers by Nagappan et al. and Zheng et al., the effects of

applying automated software inspection techniques analyses were examined

by using defect classification data. Specifically, the distribution of defect

types was compared between projects that used inspection techniques and

projects that did not. In both paper, the authors were able to demonstrate

specific and statistically significant differences in the distribution of the

defect types, thus providing evidence of the effect of using automated

inspection techniques. In their paper, Jin and Jiang used ODC data to develop

110 Part IV—Evaluation

a fault injection scheme for embedded systems. Specifically, they examined

the mapping of faults in a high-level language (C code) to their mutation in

machine code. The purpose was to evaluate fault-injection on machine code

level, to be used when source code is not available. These studies show that

defect classification data can be used to demonstrate effects of applying

various techniques—a common theme in much software engineering

research. This, however, presumes that the data produced by a classification

scheme is reliable; something that has not been shown conclusively in the

current body of knowledge.

8.3 DEFECT CLASSIFICATION

In any larger software organization, many factors add complexity to the

development process. To manage a complex software development process,

effective measurement practices are needed; defects detected during

development and after deployment is one source of such measurements.

Defects, although expected during development, can be seen as a symptom of

weaknesses in the process—especially if defects, for instance, tend to slip

through the test activities that are meant to detect them.

One method of collecting data about defects is DCSs. A DCS intends to

provide defect reports with a shared and formal structure by defining a set of

attributes, and for each attribute a set of values that can be assigned. Each

attribute captures data about one aspect of the defect – for instance, in which

type of test the defect was discovered. Typically, the aspects of a defect can

be divided into the major life-cycle phases: Detection and Resolution. The

detection phase consists of identifying a problem (e.g. a failure) and

analysing what caused it (i.e. the underlying fault), while the resolution phase

consist of identifying a suitable action to remove either the fault or its

manifestation.

In the first part of our study, the efficiency and effectiveness of two

classification schemes are examined; ODC and LiDeC. In the following two

subsections each of these two schemes are described in more detail.

8.3.1 ODC

In ODC the attributes are organized into the two life-cycle phases Open and

Close. As can be seen in Table 15, showing an overview of ODC, the

attributes in the Open phase focus on the detection of the defect, whereas in

the Close phase the attributes focus on aspects of the fault and its resolution.

 A Comprehensive Evaluation of Defect Classification Schemes 111

In the Open phase, the Activity and Trigger attributes relate to the test

procedures that were used to detect the defect. The values available for the

Trigger attribute are dependent on the value chosen for the Activity attribute;

for instance if the value Unit test is chosen as the detection activity, then only

the Trigger values relevant for unit tests are available (i.e Simple path and

Complex path). The third and final attribute of the Open phase, Impact,

captures how the customer would have perceived the defect if it had

remained in the system—e.g. reliability, usability, capability etc.). The

attributes in the Open phase capture data about the black-box properties of

the defect. In the following phase, focus is shifted to aspects of the

underlying fault and its resolution.

In the Close phase, the attributes Target, Source and Age relate to aspects

of the work product that was modified in order to resolve the defect. These

attributes provide data about which artefact contained the fault (e.g.

requirements, design, code, etc.), who was responsible for developing it (e.g.

in-house, outsourced, etc.) and whether it was the creation or a modification

of the artefact that caused the defect. The attributes Type and Qualifier are

related to the aspects of the fault. Type aims at capturing data about the

(mainly source code related) nature of the fault (e.g. assignment or checking),

and whether something was missing, incorrect or extraneous (e.g. a missing

variable assignment).

Table 15 Overview of ODC (adapted from (Freimut 2001))

Phase Attribute Meaning

Open Activity When did you detect the defect?

Trigger How did you detect the defect?

Impact What would the customer have noticed if the

defect had escaped into the field?

Close Target What high-level entity was fixed?

Source Who developed the target?

Age What is the history of the target?

Type What had to be fixed?

Qualifier Was the defect caused by something missing,

incorrect or extraneous?

112 Part IV—Evaluation

8.3.2 LiDeC

In LiDeC the attributes are divided into four separate phases (illustrated in

Figure 19):

 The Recognition phase in which an issue is identified;

 The Analysis phase in which the underlying cause of the issue is

identified;

 The Resolution phase in which the various possible modifications to

rectify the issue are developed, and finally;

 The Post-mortem phase in which the actual action taken is analysed.

In the recognition phase, shown in the top right of Figure 19, a failure is

identified and attributes related to its manifestation are captured: what was

done to detect the failure (Detection activity, corresponding to Activity in

ODC), the estimated urgency of finding a solution (Urgency) and the

estimated impact on the product (Severity, Effect and Functional Safety

Impact).

In the following phase, shown in the top left of Figure 19, the cause of the

failure (i.e. fault) is identified and attributes related to the fault are captured.

These attributes include: which software work product contained the defect

(Artefact, corresponding to the ODC attribute Target), e.g. requirement,

design component or code; what activity caused the fault to occur in the

artefact (Injection activity); and finally what the type of defect was (Type).

The third life-cycle phase, shown in the bottom left of Figure 19, capture

data about the proposed resolution of the defect in terms of its impact on the

product (Resolution Impact)—specifically, to what extent the product needs

to change—and on the process in terms of the type of testing needed to verify

the resolution (Required Verification Level).

In the final life-cycle phase, shown in the bottom right of Figure 19, the

single attribute (Resolution State) capture what was actually done to close.

Although there may be an action proposed on how to resolve the defect

properly, in practice workarounds can be an alternative to applying a proper

resolution (i.e. removing the manifestation of the fault, rather than the fault

itself).

 A Comprehensive Evaluation of Defect Classification Schemes 113

8.4 METHODOLOGY

The evaluation aimed at examining LiDeC from two perspectives, as shown

in Figure 18: applying the classification scheme (denoted by A in the figure),

and analysing the classification data (denoted by B in the figure). The first

part of the evaluation was conducted as a controlled experiment, while the

second as an industrial case study. The methodologies of the two studies are

described in the subsections below.

8.4.1 Part I: Experiment

The aim of the experiment was to examine whether applying a classification

scheme adapted to a specific context (LiDeC) have significant advantages or

disadvantages compared to a generic classification scheme (ODC). For this

purpose, a single factor, two-treatment experiment design was applied. The

factor in the experiment was the defect classification scheme (LiDeC and

ODC used as the treatments). In the experiment, two groups of subjects

classified five shared defects according to one of the two classification

schemes. The comparison between the two schemes was done by examining

three main aspects of conducting a classification: time, accuracy and

consistency.

Figure 19 LiDeC overview

114 Part IV—Evaluation

The time aspect was evaluated from two perspectives, learning time and

classification time. Classification time refers to the time required to classify a

defect. This time should ideally be kept low, as classification of a defect may

be seen as an additional activity that is not strictly necessary for resolving the

defect. Furthermore, as defects may be reported by a variety of project

stakeholders, it is important that a classification scheme can be learnt quickly.

As each defect report was designed to be comparable in scope, a decrease in

classification time for each defect will be taken as evidence of the learning

time.

The classification accuracy aspect was also assessed from two

perspectives. Firstly, the amount of correctly classified attributes was

compared between the two schemes. The comparison was made in order to

evaluate whether a DCS adapted to the target domain facilitated a more

accurate classification than generic DCS. Secondly, the accuracy of each

experimentation group was compared to randomly generated classifications.

This comparison was done to assess how reliable the classification data was.

Finally, the consistency of classification within each experiment group was

examined. Consistency is important as a large variation in how subjects

classify the defects would indicate that the classification is dependent on who

performs the classification rather than on properties of the defects.

In the following subsections, we report on the experiment sample and

population, and instrumentation. The instrumentation includes the experiment

material, dependent and independent variables, and, hypotheses and analysis

methods. Finally, we elaborate on the validity of study.

Subjects and Population

The subjects in this experiment were students (convenience sampling). The

experiment was conducted in two sessions, in which 50 subjects participated.

In the first session, 19 first year master students (i.e. in their 4th year of

university studies) attending Software Engineering and Management

programme participated. In the second session 31 first year bachelor students

from the same programme participated.

The population of this experiment is software engineers working with

implementation and quality assurance of automotive safety software. As the

subjects generally lack the industrial experience and domain knowledge

which can be expected for the population, we consider—based on our

previous work (Staron, 2007)—the subjects as a worst-case sample.

 A Comprehensive Evaluation of Defect Classification Schemes 115

Instrumentation

The same instrumentation—the experiment material and procedures—was

used in both experiment sessions (Table 16 summarizes the experimentation

material used14). The procedure followed was:

1. A shared 20 minute long lecture providing a general introduction to

defect classification and to automotive software and their development

was given to the subjects;

2. Each experimentation group received a document with a detailed

description of the classification scheme. This document differed

between the experimentation groups only in the classification scheme

it described. The subjects were asked to read the whole document

before beginning the tasks;

3. A shared set of five defect reports were classified by the subjects. For

each defect, a pre-printed answer sheet was to be filled in. The answer

sheet contained a field for the time started, fields for each attribute of

the classification scheme, a classification confidence assessment (five-

point Likert), and a field for noting the finish time;

4. After all five tasks were finished the subjects were asked to fill in a

background assessment form, and an experiment evaluation form

The experiment was designed to take approximately 2 hours.

14 The full set of experimentation material can be downloaded from:

http://www.cse.chalmers.se/~nikmel/DCS/instruments.zip

116 Part IV—Evaluation

Table 16. Summary of experiment objects

In
tr

o
d

u
ct

io
n

Lecture An introductory lecture was given to both experiment groups. The

lecture described the principles of defect classification, and an

overview of automotive active safety features and the development

process

Detailed

introduction

A detailed written description of the specific classification scheme

(ODC or LiDeC) was provided to the experiment groups. The

description included an overview of the classification scheme, an

example defect report and its classification, a detailed description

of the classification scheme, a detailed description of the attributes

and values of the scheme, and a selection of slides from the

introductory lecture

E
x

p
er

im
en

t

Experiment

tasks

The experiment tasks consisted of five defect reports that were to

be classified by the subjects. The defect reports were based on real

defect reports selected from the same project as the case study was

conducted on. The defect reports were abbreviated considerably

and edited to maintain confidentiality

Answer

sheet

For each experiment task, a pre-printed answer sheet was filled in.

The sheet contained a field for the time started, a field for each

attribute of the classification scheme, a field for assessing the

confidence with the classification (a five-point Likert scale), and

finally a field for the finish time of the classification

B
a

ck
g

ro
u

n
d

 a
n

d

E
x

p
er

im
en

t
E

v
a

lu
a

ti
o

n
 Background

assessment

After the experiment, the subjects were to fill in a background

assessment form, and an experiment evaluation form. The

background assessment consisted of four questions assessing, on a

five-point Likert scale the subject’s experience with industrial

software engineering, programming, defects and software quality,

and automotive software

Experiment

evaluation

The experiment evaluation assessed whether the tasks were

understood, how difficult the tasks were perceived (Likert). In

addition, for each attribute in the classification scheme, the subject

was to assess their classification confidence

 A Comprehensive Evaluation of Defect Classification Schemes 117

Table 17. Summary of dependent variables measured in the experiment. The column
Measure Type denotes whether the variable was measured directly in the experiment or

calculated (derived) from directly measured variables

Aspect Variable Measure

Type

Unit / Values Description

T
im

e

Td Derived Minutes Td denotes the time required per subject to

classify defect d. The variable was calculated

from the start and end time noted by the
subjects for each defect

Ttot Derived Minutes Ttot denotes the total time for classifying all
five defects per subject. The variable was

calculated as the sum T1 to T5 for each subject

Classi-

fication

Clad Direct Clad denotes the classification of attribute a for

defect d

A
cc

u
ra

cy

Coad Derived Booelan Coad denotes whether the classification Clad

was correct. This variable was derived by
comparing each Clad with a classification key

we had created as part of the experiment

design

Cod Derived ODC: {0-8}

LiDeC: {0-10}

Cod denotes the total number of correctly

classified attributes for defect d

Cotot Derived ODC: {0-40}

LiDeC: {0-50}

Cotot denotes the total number of correctly

classified attributes for all five defects

Confi-

dence

Cfd Direct Likert {1-5} Cfd denotes the self-assessed confidence in

classifying defect d

B
a

ck
g

ro
u

n
d

BSW Direct Likert {1-5} Self-assessed amount of previous industrial

experience in software engineering

BP Direct Likert {1-5} Self-assessed amount of previous experience in
programming

BSQ Direct Likert {1-5} Self-assessed amount of previous experience
with defect management and software quality

BASW Direct Likert {1-5} Self-assessed amount of previous experience

with automotive software development

E
x

p
er

im
en

t

ev
a

lu
a

ti
o
n

BD Direct Likert {1-5} Perceived difficulty of the experiment as a

whole

BU Direct Tasks {1-5} Self-assessed list of tasks that the subject did

not understand

Cfa Direct Likert {1-5} Self-assessed confidence with classifying

attribute a. This assessment reflects the

subject’s confidence for each attribute of the
classification scheme, over all five defects

118 Part IV—Evaluation

A summary of the variables used in the analyses of the experiment results

is presented in Table 17. Time per defect was directly measured by the

subject noting the start and end time of each defect classification (a clock

with current time was projected throughout the experiment sessions). The two

time variables shown in Table 17 were derived from these measures. The

subjects were asked to classify each defect in order, and to note start time

before reading the defect text.

The classification of each attribute consisted of noting the value code (as

shown in appendix A in (Mellegård et al., 2012b) for LiDeC, and in (IBM,

2012) for version 5.11 of ODC). The accuracy variable Coad, showing

whether attribute a for defect d was classified correctly, was derived by

comparing the classification code to the classification key developed by us in

conjunction with the defect reports. The variables Cod and Cotot were

derived by counting the number of correctly classified attributes per defect,

and over all five defects respectively. In addition, for each defect, the subjects

were to assess their overall classification confidence on a five-point Likert

scale.

The background of each subject was, as can be seen in Table 17, assessed

by four questions, each recorded on a five-point Likert scale. The questions

aimed at assessing generic software engineering knowledge (industrial

software engineering and programming experience), and knowledge specific

for the experiment (defect management and software quality, and automotive

software development).

Finally, the experiment evaluation consisted of a self-assessment of

whether each of the five tasks (BU in Table 17) were understood, how

difficult the experiment as a whole was perceived (BD in Table 17), and for

each attribute of the classification scheme, how confident the subject was in

classifying it (Cfa in Table 17).

Hypotheses and Analysis Methods

The hypotheses evaluated by the experiment are summarized in Table 18 and

Table 19. The hypotheses in Table 18 aim at comparing the two data sets

(MSc and BSc students) to evaluate whether differences in experience and

skill affect classification performance. The hypotheses in Table 19 aim at

comparing the two experiment groups (ODC and LiDeC) to evaluate whether

the type of DCS affects the classification performance.

As the variables could not be shown to fit a normal distribution, the non-

parametric method Mann-Whitney’s U-test was used to evaluate differences

between the two data sets and between the two experimentation groups. All

inferential statistics, except for hypothesis DCS_a, were generated using

 A Comprehensive Evaluation of Defect Classification Schemes 119

IBM SPSS Statistics for Windows, Version 21.0 (SPSS, 2013). All

descriptive statistics were generated using SPSS, except the bar chart for

hypothesis DCS_Cod which was created using LibreOffice Calc, and the

bubble diagram for hypothesis DCS_a which was generated using R (R

Core Team, 2012)15. For hypothesis DCS_CoRnd, 50 random classifications

for each classification scheme was generated using R (R Core Team, 2012)16.

For hypothesis DCS_a, Krippendorff’s was calculated using bootstrapping

with 1000 iterations. Krippendorff’s alpha was calculated in R (R Core Team,

2012) with the package irr (Gamer et al., 2012), and the bootstrapping

provided by kripp.boot (Gruszczynski, 2013).

15 The R script for generating the bubble diagrams can be found here:

http://www.cse.chalmers.se/~nikmel/DCS/generateBubbleDiagram.zip
16 The R script for generating the random classification can be downloaded from:

http://www.cse.chalmers.se/~nikmel/DCS/GenerateRandomClassifications.R

120 Part IV—Evaluation

Table 18. Summary of hypotheses for examining the two data sets (BSc vs MSc students).
These hypotheses are indented to provide information on the effect of experience on the

classification performance

 Hypothesis Var. Description Analysis

method

B
a

ck
g

ro
u

n
d

 EXP_Bx BSW,

BP,

BSQ,

BASW,

BD

H0: There is no difference in each of the background

variable between the two data sets.

H0 was tested for each of the background variables

and used to characterize the differences in experience

between the subjects in the two data sets

Mann-Whitney’s

U-test

p < 0.05 is

required to reject

H0

C
o

n
fi

d
en

ce

EXP_Cfa Cfa H0: There is no difference in the perceived confidence

between the two data sets for each attribute

H0 was tested for each variable of each classification

scheme. The result is used to characterize whether

experience has any impact on the understandability of

each attribute in the two classification schemes

Mann-Whitney’s

U-test

p < 0.05 is

required to reject

H0

EXP_Cfd Cfd H0: There is no difference in the perceived

classification confidence between the data sets for

each defect

H0 was tested for each defect regardless of which

classification scheme that was used. The result is

used to characterize whether experience has any
impact on the understandability of each defect

Mann-Whitney’s

U-test

p < 0.05 is
required to reject

H0

T
im

e

EXP_Ttot Ttot H0: There is no difference between the two data set in
the total amount of time needed for the

experimentation tasks

H0 was tested to evaluate if experience had effect on
the time required to classify the defects

Mann-Whitney’s
U-test

p < 0.05 is

required to reject
H0

A
cc

u
ra

cy

EXP_Cotot Cotot H0: There is no difference in accuracy between the

two data set in the total number of correctly classified

attributes

H0 was tested for each classification scheme

separately, and used to evaluate if experience can be

shown to have an effect on the precision of
classification

Box plots are used

to provide

descriptive
statistics

 A Comprehensive Evaluation of Defect Classification Schemes 121

Table 19. Summary of hypotheses for examining the two treatments (ODC vs LiDeC).
These hypotheses are indented to provide information on the effect of the

classification scheme on the classification performance

 Hypo-

thesis
Var. Description Analysis method

B
a

ck
g

ro
u

n
d

DCS_Bx BSW,

BP,

BSQ,

BASW,

BD

H0: There is no difference in each of the background variable

between the two experiment groups

H0 was tested for each of the background variables and used to

evaluate whether the two experiment groups backgrounds were

comparable. Any differences may affect the experiment validity

Mann-Whitney’s U-

test

p < 0.05 is required to

reject H0

C
o

n
fi

d
en

ce
 DCS_Cfd Cfd H0: There is no difference between experiment groups in the

perceived classification confidence per defect

The result is used to characterize whether the DCS used has any

impact on how certain each subject was about the classification.

Any differences may be explained by properties of the defect

Mann-Whitney’s U-

test

p < 0.05 is required to

reject H0

T
im

e

DCS_Ttot Ttot H0: There is no difference between the experiment groups in the

total amount of time needed for the experimentation tasks.

H0 was tested to evaluate if the DCS had an effect on the time

required to perform the classification

Mann-Whitney’s U-

test

p < 0.05 is required to

reject H0

DCS_Td Td By plotting the classification time per defect and experiment

group the time to learn each classification scheme can be

assessed

A decreasing slope is

taken as evidence of a

learning curve

A
cc

u
ra

cy

DCS_Cod Cod H0: There is no difference in accuracy between the experiment

groups in the amount of correctly classified attributes per defect

As the two classification schemes have different number of

attributes, the percentage of correctly classified attributes per

subject and defect was calculated. H0 was tested to evaluate

whether the DCS had an effect on the precision of classification

Mann-Whitney’s U-

test

p < 0.05 is required to

reject H0

A bar chart is used to

provide descriptive

statistics

DCS_CoRnd Cotot H0: There is no difference in accuracy between each of the

experiment groups and a random classification using the same

DCS

The hypothesis was tested in order to evaluate whether the

classification accuracy was due to factors relating to properties

of the defect reports. If the hypothesis cannot be rejected –

meaning that a human classifier is no more accurate than chance

– it would suggest that the classification data is not reliable. H0

was tested for each classification scheme separately

Mann-Whitney’s U-

test

p < 0.05 is required to

reject H0

Box plots are used to

provide descriptive

statistics

C
o

n
si

st
en

cy
 DCS_a Clad H0: There is no good agreement among the subjects in their

classification of each attribute

The inter-rater agreement was calculated in order to assess the

classification consistency. Consistency is desirable to minimize

the dependency on who is performing the classification.

In addition, bubble diagrams were generated for two attributes of

LiDeC to illustrate the distribution of values. The choice if

attributes was done based on experiences from the case study

Krippendorff’s alpha

statistic for inter-rater

agreement

 > 0.667 is required

to reject H0

Bubble diagram for

descriptive statistics

122 Part IV—Evaluation

Validity Evaluation

The main threats to the validity fall into the categories internal, external,

construct and conclusion validity (Wohlin et al., 2000). We now briefly

discuss the main threats to each of these categories of validity.

Internal validity – Internal validity concerns unforeseen influences on the

independent variables. Such influences may pose a threat to the validity of

conclusions about the causal relationship between treatment and outcome.

The main threat to internal validity, in this experiment, would be

inappropriately designed instrumentation. For example, it was considered

important (for external validity) to use defect reports that resembled real

reports as closely as possible. This, however, might risk making them too

domain specific to be understandable to non-domain experts. In order to

minimize the threat to internal validity a pilot experiment with seven PhD

students was conducted. The pilot experiment included eight defect reports.

The instrumentation was evaluated after the experiment, which resulted in a

number of modifications to the material—e.g. in the data collection forms—

and selecting the five defect reports that were considered most readily

understandable;

External validity – External validity relates to whether the results and

conclusions can be generalized to a context outside of the experiment, which

in our case is industrial automotive software design. The main threats in our

case relate to selection and setting (Wohlin et al., 2000), i.e. the selection of

subjects and the experimentation material used. The use of student subjects

poses a threat to the generalizability of the results, as the subjects might not

be representative to the population. However, based on previous research

student subject can be seen as a worst-case sample. In an industrial setting, it

can be assumed that the population has considerably more domain knowledge

(which we found indications on being a factor in both accuracy and

consistency). The experimentation material (the defect reports, ODC and

LiDeC) were selected and adapted from actual industrial cases, making the

experimentation material representative for the target context;

Construct validity – Construct validity refers to whether the experiment

instrumentation is appropriate for the theory it was designed to measure. In

our case, the main threats to construct validity concerns mono-method bias

and confounding constructs and level of constructs (Wohlin et al., 2000).

 Mono-method bias – In the experiment we measured several aspects

of classification performance (time, accuracy and consistency).

Furthermore, results from the experiment and case study can be

 A Comprehensive Evaluation of Defect Classification Schemes 123

crosschecked to validate the results. A possible source of mono-

method bias is the classification key that was developed by the

researchers and used to determine whether a classification was correct.

As the classification key was developed by the researchers in

conjunction with the defect reports, it is assumed to match

appropriately. The key, however, was not validated with practitioners,

thus there might be a risk of introducing researchers bias in the

accuracy variables;

 Confounding constructs and levels of constructs – There is a risk that

the extent of the subjects’ prior knowledge (e.g. programming skills)

may influence their performance. To investigate this, the experiment

was conducted in two sessions with groups of students; one group with

more experience subjects. The results of these two groups were

compared, and differences elaborated on.

Conclusion validity – Conclusion validity concerns threats to the ability to

draw the correct conclusions about the relationship between treatment and

outcome. As the measured variables were not normally distributed, the less

powerful non-parametric tests were used. This may increase that risk of

making type-II errors. We minimize this threat to validity by being careful to

draw conclusions based on inability to reject the null hypothesis. An

additional threat to conclusion validity is random heterogeneity of subjects.

However, as all subjects were university undergraduate students, they can be

assumed to have similar knowledge and background. In order to validate this

assumption a background questionnaire was submitted by each subject.

8.4.2 Part II: Case study

The industrial evaluation of LiDeC was originally the final part of a three-

stage case study (Mellegård et al., 2012a). Whereas the two initial stages

aimed at adapting IEEE Std. 1044 to the development context of the case

company (resulting in LiDeC), the final stage aimed at validating the adapted

DCS. The validation consisted of classifying a sample of defects from a

finished project.

The case study method was considered appropriate as the applicability of

the adapted classification scheme was of importance. The methodology of the

study is based on Yin (2009), specifically, a single-case design by applying

the classification scheme to defect reports from one project at our case

company.

In the case study, four subjects involved in the project participated in six

separate two-hour long sessions (two subjects participated in two consecutive

124 Part IV—Evaluation

classification sessions) in which 22 defects were classified. All defects had

been reported in the project, which had finished one year prior to the study

and contained several hundred defect reports17. All subjects involved in the

study had been part of the project with the following roles: two developers,

one tester and one project leader.

The 22 defects were selected randomly using blocking. The defect reports

were divided into two blocks, where the peak close to software release (as

shown in Figure 28) was assigned as one block and the remainder as the

second block. In the analyses reported in this paper, only defects from the

peak were used. This decision was made because of an expressed interest by

the company to examine those defects more closely. The sample constituted

approximately 10% of the defects from the peak.

The results from the case study included classification data from the

selected sample of defects. The collected data was analysed and the results

presented at a company workshop for validation. Additionally, the time

required to classify each defect was recorded. The classification time was

plotted in order to provide an initial estimate on learning and classification

time requirements. This chart is, in this paper, compared to the results from

the experiment—any similarities will be used to argue in favour for the

external validity of the experiment results.

8.5 RESULTS

The results from the experiment and the case study are presented in the

following two subsections.

8.5.1 Experiment Results

In this section, we present an analysis of the data from two perspectives.

Firstly, the experiment was conducted in two sessions—forming two data

sets—one with master students (MSc) as subjects and one with bachelor

students (BSc). This presents the opportunity to examine whether the amount

of acquired knowledge and skill affect classification performance (the related

hypotheses are presented in Table 18). In addition, if significant differences

were found, it might not be appropriate to conduct analyses on the merge of

the two sets. Secondly, aspects pertaining to the type of classification scheme

used were analysed. Specifically, classification learning time, accuracy and

consistency of classification were examined for the two schemes (the related

17 Exact number cannot be disclosed due to confidentiality reasons

 A Comprehensive Evaluation of Defect Classification Schemes 125

hypotheses are presented in Table 19). Each of these two perspectives are

presented in the two subsequent sections.

From analysing the BU variable, one subject (in the BSc/LiDeC group)

stated that they did not understand any of the tasks. The subject, furthermore,

classified only one defect and did not submit the evaluation form. Therefore,

the subject was removed from the data.

Missing data was excluded pair-wise in the hypothesis analyses.

Impact of Experience

Statistically significant differences between the two data sets were found. As

can be seen in Table 20, showing the comparison of the background

assessments from the two data sets, there was a significant difference

between the data sets in terms the subjects’ self-assessed prior experience.

The differences, which were limited to generic software engineering

knowledge, were anticipated as the MSc students, in addition to being further

advanced in their studies, have to a larger extent industrial experience. This

difference may have effect on the subjects’ ability to understand the

experiment material. There was, however, no significant difference in the

subjects’ experience with automotive software systems, which might have

had greater effect on the understanding of the experiment material. There was

also no significant difference in the perceived difficulty of the experiment

material. Thus indicating that the differences in generic software engineering

experience may have had limited impact on how difficult the material was to

assimilate.

Table 20. Results of testing hypothesis EXP_Bx, i.e. the differences in background
assessment and perceived difficulty between the two data sets (MSc vs BSc

students). Statistically significant results on the 0.05 level have been highlighted

Mann-

Whitney U

Asymp. Sig.

(2-tailed)
Reject H0

Industrial Exp (BSW) 213.500 0.050 Yes

Programming Exp (BP) 83.000 0.000 Yes

Defects and SQ Exp (BSQ) 135.500 0.000 Yes

Automotive SW Exp. (BASW) 278.000 0.558 No

Difficulty (BD) 258.500 0.423 No

126 Part IV—Evaluation

A comparison of the subjects’ perceived confidence per attribute is shown

in Table 21 and Table 22 (for ODC and LiDeC respectively). As can be seen

in the tables, there were no differences in perceived confidence for the

attributes in LiDeC, while there were two attributes in ODC that showed

significant difference.

Table 21. Results of hypothesis EXP_Cfa (for the ODC group), comparing
perceived confidence per attribute between the MSc and BSc student groups

(statistically significant results on the 0.05 level have been highlighted)

ODC Mann-Whitney U

Exact Sig.

 [2*(1-tailed

Sig.)]b

Activity 56.500 0.220

Trigger 54.500 0.182

Impact 51.000 0.135

Target 52.000 0.150

Source 41.000 0.041

Age 58.000 0.262

Type 37.000 0.023

Qualifier 45.500 0.068

b Not corrected for ties

 A Comprehensive Evaluation of Defect Classification Schemes 127

A comparison between the MSc and BSc students in terms of their

perceived classification confidence per defect is shown in Table 23. As can be

seen, the MSc students were significantly more confident than the BSc

students in their classification of defect 2.

Table 22. Results of hypothesis EXP_Cfa (for the LiDeC group), comparing

perceived confidence per attribute between the MSc and BSc student groups

LiDeC Mann-Whitney U
Exact Sig.

 [2*(1-tailed Sig.)]
b

Detection 42.500 0.201

Urgency 51.500 0.477

Severity 40.500 0.159

Effect 62.500 0.975

Artefact 44.500 0.250

Injection 49.000 0.403

Type 58.500 0.781

Product Impact 52.500 0.516

Verification level 39.500 0.141

Resolution State 37.500 0.109

b Not corrected for ties

128 Part IV—Evaluation

In terms of the time required to classify defects, there was no significant

difference. Table 24 shows the comparison of the total time required to

classify all five defects.

Table 23. Results for hypothesis EXP_Cfd, comparing perceived
classification confidence per defect, MSc vs BSc students

(statistically significant results on 0.05 level have been highlighted)

Data set N

Mean

Rank

Mann-

Whitney U

Asymp. Sig.

(2-tailed)

Defect1

MSc 19 29.03

BSc 31 23.34

Total 50 227.500 0.156

Defect2

MSc 19 30.71

BSc 31 22.31

Total 50 195.500 0.035

Defect3

MSc 19 26.74

BSc 30 23.90

Total 49 252.000 0.477

Defect4

MSc 19 28.74

BSc 31 23.52

Total 50 233.000 0.197

Defect5

MSc 19 27.74

BSc 31 24.13

Total 50 252.000 0.376

Table 24. Results for hypothesis EXP_Ttot, analysis of total time required
for classifying all 5 defects, MSc vs BSc students

 TotalTime

Mann-Whitney U 288.500

Asymp. Sig. (2-tailed) 0.904

 A Comprehensive Evaluation of Defect Classification Schemes 129

A comparison of the classification accuracy between the BSc and MSc

students is shown in Figure 20 and Figure 21 for ODC and LiDeC

respectively. In both figures, the vertical axis denote the total number of

correctly classified attributes over all five defects18. As can be seen in the

figures, the mean value seem to be slightly lower for the BSc students for

18 Please note that, as the number of attributes in ODC and LiDeC differs, the absolute number

(as shown in the vertical axis in each figure) is not comparable between the schemes

Figure 20. Results for hypothesis EXP_Cotot, comparing
accuracy between the MSc and BSc datasets (for ODC)

Figure 21. Results for hypothesis EXP_Cotot, comparing
accuracy between the MSc and BSc datasets (for LiDeC)

130 Part IV—Evaluation

both schemes. The variance within the samples, however, is large (with the

exception of MSc students using LiDeC, shown to the left in Figure 21), thus

the apparent difference in means is not statistically significant.

The notably lower variance within the MSc students classifying according

to the LiDeC scheme might indicate that more experienced subjects in

combination with a classification scheme adapted to the specific domain of

the defect reports contribute to a more uniform classification performance.

Extrapolating this to an industrial context, it would suggest that an adapted

classification scheme increases the consistency of the classification and

therefore also the reliability of the classification data.

In summary, as the differences found between the datasets were in the

students own assessments (background and confidence) while no differences

could be shown for the main dependent variables (time and accuracy) the two

datasets were merged. All subsequent analyses were done on the merged

dataset.

Impact of Classification Scheme

In order to evaluate the threat to internal and conclusion validity, the

background survey for each experimentation group was analysed. If

significant differences between the groups were found it would confound any

effects found in the experiment, as they may not necessarily be attributable to

the treatments provided to the experimentation groups.

As can be seen in Table 25, no statistically significant differences in the

subjects’ background survey could be shown. However, the difference

between the groups in their perceived difficulty of the experiment (shown in

Table 25. Results of testing hypothesis DCS_Bx, i.e. the differences in background
assessment and perceived difficulty between the experiment groups (ODC vs

LiDeC)

Mann-Whitney

U

Asymp. Sig. (2-

tailed)

Industrial Exp (BSW) 269.000 0.312

Programming Exp (BP) 284.000 0.558

Defects and SQ Exp (BSQ) 274.000 0.393

Automotive SW Exp (BASW) 292.000 0.491

Difficulty (BD) 233.000 0.088

 A Comprehensive Evaluation of Defect Classification Schemes 131

Table 25 as Difficulty) was close to being significant at the 0.05 level, where

the ODC group considered the experiment more difficult than the LiDeC

group. This difference can be attributed the fact that LiDeC is adapted to the

same technical domain as the defect reports, and might therefore be perceived

less difficult to apply than the more generic ODC.

As can be seen in Table 26—showing the subjects’ self-assessed

confidence per classified defect—the LiDeC group was significantly more

confident in their classification of defect 4.

In summary, no significant differences in the subjects’ self-assessed

background experiences were found that would pose a threat to the internal

validity of the experiment. Therefore, it will be assumed that the effects seen

Table 26. Results for hypothesis DCS_Cfd, comparing perceived
classification confidence per defect, ODC vs LiDeC

(statistically significant results on 0.05 level have been highlighted)

Group N

Mean

Rank

Sum of

Ranks

Mann-

Whitney U

Asymp.

Sig. (2-

tailed)

Defect1

ODC 26 24.40 634.50

LiDeC 24 26.69 640.50

 Total 50

283.500 0.558

Defect2

ODC 26 22.27 579.00

LiDeC 24 29.00 696.00

 Total 50

228.000 0.082

Defect3

ODC 25 24.88 622.00

LiDeC 24 25.13 603.00

 Total 49

297.000 0.950

Defect4

ODC 26 21.17 550.50

LiDeC 24 30.19 724.50

 Total 50

199.500 0.022

Defect5

ODC 26 23.42 609.00

LiDeC 24 27.75 666.00

 Total 50

258.000 0.274

132 Part IV—Evaluation

in the subsequent analyses can be attributed to the differences in the

classification schemes used (the treatment).

Classification time

As can be seen in Table 27, there was no significant difference between the

groups in the total amount of time required to classify all five defects

(p>0.05). Presumably, the time required to read and understand each defect

report outweighs any differences that may have been contributed by the

classification schemes themselves.

As can be seen in Figure 22—showing classification time per defect—both

the average time required per defect and the variance within each group is

similar. This corroborates the conclusion that there is no significant

difference between the groups. What can be seen in Figure 22, however, is a

clear indication of a learning curve, where the initial defects require

considerably longer time than the subsequent ones.

The classification time, as seen in Figure 22, seems to converge at

approximately 4 to 5 minutes per defect. In the experiment, this includes the

time required for the subjects to read the defect report, suggesting that the

actual classification time may be only a fraction of that. In an industrial

setting, a defect would be classified at the time of reporting when the reporter

would already have detailed knowledge about the defect. Thus, the additional

time required to classify a defect will most likely be small.

Table 27. Results for hypothesis DCS_Ttot, analysis of total time required
for classifying all 5 defects, ODC vs LiDeC

 TotalTime

Mann-Whitney U 258.000

Asymp. Sig. (2-tailed) 0.294

 A Comprehensive Evaluation of Defect Classification Schemes 133

Accuracy

The accuracy of the classification was examined in two ways. Firstly, the

amount of correctly classified attributes was compared between the schemes.

Secondly, the accuracy of each scheme was compared to random

classifications.

Figure 23 shows the classification accuracy (as percentage of correctly

classified attributes) for each defect, and Table 28 shows the statistical

analysis of the difference between the groups (using Mann-Whitney’s U-test).

As can be seen in Figure 23, the classification accuracy (varying between

31% and 53%) appears similar for both schemes. One interesting observation

is that the accuracy of the LiDeC groups appears higher for defect 4, which is

corroborated by the analyses shown in Table 28—only defect 4 showed a

statistically significant difference. Defect 4 also had (as can be seen in Table

26) a significantly higher perceived classification confidence; thus suggesting

that the higher perceived confidence is justified.

Figure 22. Results for hypothesis DCS_Td, showing classification time per defect
for each of the two classification schemes. A decrease in classificaion time indicate

learning time

134 Part IV—Evaluation

Figure 24 and Figure 25 show the accuracy of a human classifier compared

to classifications done at random. As can be seen in the figures, human

classifiers performed significantly better than a random classification (p<0.01

using Mann-Whitney U).

Figure 23. Bar chart for hypothesis DCS_Cod, representing the amount of
correctly classified attributes per defect (ODC vs LiDeC)

Table 28. Results for hypothesis DCS_Cod, comparing the accuracy as the
percentage of correctly classified attributes per defect (ODC vs LiDeC)

Group N
Mean

Rank

Sum of

Ranks

Mann-

Whitney U

Asymp.

Sig.

(2-tailed)

Defect1

ODC 26 26.04 677.00

LiDeC 24 24.92 598.00

Total 50

298.000 0.782

Defect2

ODC 26 28.90 751.50

LiDeC 24 21.81 523.50

Total 50

223.500 0.083

Defect3

ODC 26 26.60 691.50

LiDeC 24 24.31 583.50

Total 50

283.500 0.577

Defect4

ODC 26 20.44 531.50

LiDeC 24 30.98 743.50

Total 50

180.500 0.010

Defect5

ODC 26 27.65 719.00

LiDeC 24 23.17 556.00

Total 50

256.000 0.275

Total

ODC 26 25.87 672.50

LiDeC 24 25.10 602.50

Total 50

302.500 0.853

 A Comprehensive Evaluation of Defect Classification Schemes 135

Consistency

The classification consistency was examined using the Krippendorff’s alpha

statistic. As can be seen in Table 29 and Table 30, showing the alpha statistic

for each attribute in ODC and LiDeC respectively, the calculated inter-rater

agreement is low. Krippendorff (2004, p. 241) recommends alpha values to

Figure 24. Results for hypothesis DCS_CoRnd (ODC), comparing the accuracy
of a human classification to that of a randomly generated one (ODC).

The difference is statistically significant (p<0.01)

Figure 25. Results for hypothesis DCS_CoRnd (LiDeC), comparing the accuracy of
a human classification to that of a randomly generated one.

The difference is statistically significant (p<0.01)

136 Part IV—Evaluation

exceed 0.667 in order to be considered as acceptable, and to exceed 0.8 to be

considered a (near) perfect match. This low agreement statistic is in line with

one previous study (Henningsson and Wohlin, 2004), but also in contrary to

the findings of others (El Emam and Wieczorek, 1998; Freimut et al., 2005).

We elaborate further on this in section 8.6.2.

As can be seen in Table 30, the detection attribute has the highest alpha,

while the injection attribute has the lowest. Figure 26 and Figure 27 illustrate

the distribution of answers for these two attributes respectively. In the figures,

the horizontal axis represent each of the five defects in the experiment, the

vertical axis represent the available values for the attribute, and the area of

each bubble is proportionate to the number of subjects that assigned the value

to the defect.

In Figure 26, it can be seen that for each defect (with the exception of

defect 4) one bubble is considerably larger than the others are, while in

Figure 27 the bubbles are more similar. This indicates indeed a higher degree

of agreement among the subjects for the Detection than the Injection

attribute. This is, futhermore, in line with a finding from the industrial case

study, were the Injection attribute was removed. The reason was that the

subjects considered it too difficult to deduce the necessary information from

the defect reports to reliably assign the Injection attribute.

Table 29. Results for hypothesis
DCS_a, showing the Krippendorff's
alpha statistic for the ODC attributes

with 5 defects and 26 subjects

Attribute Alpha

Activity 0.241

Trigger 0.103

Impact 0.008

Target 0.128

Source 0.042

Age 0.028

Type 0.201

Qualifier 0.124

Table 30. Results for hypothesis
DCS_a, showing the Krippendorff's

 alpha statistic for the LiDeC attributes
with 5 defects and 24 subjects

Attribute Alpha

Detection 0.268

Urgency 0.191

Severity 0.087

Effect 0.108

Artefact 0.070

Injection 0.019

Type 0.209

Product 0.051

Verification 0.083

Resolution 0.082

 A Comprehensive Evaluation of Defect Classification Schemes 137

Figure 26. Bubble diagram for hypothesis DCS_a, illustrating the distribution of
assigned values per defect for the Detection activity attribute in LiDeC. The size
of each bubble is proportional to the number of subjects that assigned that value

for each defect.

Figure 27. Bubble diagram for hypothesis DCS_a, illustrating the distribution of
assigned values per defect for the Injection activity attribute in LiDeC. The size of
each bubble is proportional to the number of subjects that assigned that value for

each defect.

138 Part IV—Evaluation

8.5.2 Case Study Results

In this section, we report on the results from the industrial case study. The

aim of the study was to characterize defects found late in projects.

Specifically to provide evidence of whether the defects were caused by

integration issues, as was anticipated by expert opinion. Additionally, we

examined the time required to perform the classification in order to evaluate

classification efficiency.

Cause of Late Defects

To complement the broad experiment, we conducted an in-depth case study

(Mellegård et al., 2012a) of in-process defects from one system developed at

the department. We found, in the initial analyses of the defect data, that there

was a substantial inflow of defects in late project phases. Figure 28 shows the

number of unresolved defects through the project (the defect backlog).

According to established software reliability growth models (for instance, s-

shaped models such as the Rayleigh model (Kan, 1995)), a defect backlog

should typically resemble a bell shaped curve. Initially, when focus is on

feature development, the number of reported defects is low. In the middle of

the project, focus is shifted towards shoring up the system and testing

therefore intensifies, typically resulting in a substantially increased defect

inflow. As testing continues and defects are resolved, there should ideally be

fewer defects in the system to find, and therefore the inflow of defects should

decrease.

 A Comprehensive Evaluation of Defect Classification Schemes 139

As can be seen in Figure 28, the shape of the backlog curve resembles the

typical bell curve with one striking exception: the sharp spike in unresolved

defects very late in the project. Similar spikes were found in one previous

project and one that was currently on going, suggesting a systemic cause.

Furthermore, the timing of the late spike, close to software release (a major

in-development milestone), seemed to confirm the hypothesis of integration

issues. To evaluate the hypothesis, LiDeC was applied to a sample of defects

from the defect inflow spike shown in Figure 28, and the resulting

classification data was analysed.

Figure 28 Defect backlog, showing the number of open defects throughout the
project. Note that the total number of defects (y-axis) has been scaled to 100 and

the time scale (x-axis) has been removed due to confidentiality reasons. In
addition, the time scale has been cropped (indicated by the ellipsis in the start and
end of the curve) and does therefore not include the last phase leading up to start

of production

140 Part IV—Evaluation

Figure 29 shows a sample of the analysis using four LiDeC attributes (see

(Mellegård et al., 2012b)), providing information from three perspectives:

detection of the failure, the type of the underlying fault, and finally product

and project impact of applying the resolution. Using these three perspectives,

the defects were examined to evaluate whether they were integration issues

as anticipated.

As can be seen in the top two charts in Figure 29, while the majority of

defects were indeed detected during integration testing—system or

functional—the defect types were not typical for integration issues. Whereas

the anticipated type would be Interface, Data or Tuning, the majority of

defects were of the type Logic—i.e. computational or algorithmic faults.

Such defects would normally be present already in the simulation models.

This was corroborated by the Resolution impact attribute, shown in the

Figure 29 Preliminary analysis results, showing the distribution of classification values
for the attributes Detection activity, Defect type, Resolution impact and

Re-verification level

 A Comprehensive Evaluation of Defect Classification Schemes 141

bottom left of Figure 29, indicating that most defects required changes to a

single unit – integration issues would typically have an impact on multiple

units, or require changes to the specification (denoted as Functional

changes).

However, the Re-verification Level attribute—showing the activity

required to test a resolution—indicates that it is not a clear-cut case. On the

one hand, a significant amount of defects required only inspection or

component test, indicating unit problems. On the other hand, most defects

would require new system or functional tests, indeed indicating integration

impact—finding the root cause of these defects could bring significant

benefits.

Our (careful) conclusions from this study is that the majority of late

defects—although to a large extent requiring new integration tests—are not

of the type typically associated with integration problems. Thus, the

classification of defects provided the development teams with new

information that may contribute to better test planning—e.g. put effort into

improving testability of requirements on unit level.

Finally, we would like to emphasize that the analysis presented here was

conducted on a sample of defects from a project that had finished a year prior

to the study. The results should therefore be treated as proof-of-concept rather

than as a basis for recommended change of practice. We can however

conclude that the classification contributed with new information that in part

contradicted expert opinion. This raised interest and inspired discussions

regarding possible causes; the case study provides evidence that conducting

defect classification and analysis contributes to constructive review of the

state-of-practice.

Classification time

In addition to the classification data, the classification time per defect was

measured. In the study, two subjects participated in two classification

sessions conducted more than a week apart. Figure 30, shows the

classification time per defect for both subjects and session, provides an

interesting comparison to the results from the experiment (see Figure 22). As

can be seen in Figure 30, the initial defects in the first session by the two

subjects (denoted S1.1 and S2.1 in the figure) took considerably longer than

the subsequent defects; on average twice as long as in the experiment. This

can be explained by the difference in size of the defects in the case study and

the ones used in the experiment. As can also be seen in Figure 30, the time

required to classify defects in the second session (denoted S1.2 and S2.2) was

142 Part IV—Evaluation

considerably less than in the initial session, suggesting that the learning that

took place in the first session was retained by the subjects.

Interestingly, in both the experiment and the case study the classification

time seemed to stabilize around 5 minutes per defect. It should be noted that

reading the defect description is included in that time.

8.6 DISCUSSION

In this section, we discuss general observations on the impact of experience

and the choice of DCS on defect classification performance. We also provide

methodology reflections.

8.6.1 Observations about Defect Classification

DCSs are quickly learnt, and knowledge is retained. Although the results

showed no statistically significant difference in classification time between

the two DCSs, the results did show a clear indication of learning time (see

Figure 22). The same pattern could also be found in the industrial case study

(see Figure 30), where the classification time per defect was similar, although

slightly longer. A likely reason for this is that the defect reports classified in

Figure 30. Classification time per defect in the industrial case study. Sx.y denote
session y for subject x. Note especially the learning time for session 1 (dashed
lines), and that the knowledge seems to have been retained by both subjects for

session 2 (solid lines)

 A Comprehensive Evaluation of Defect Classification Schemes 143

the case study were significantly longer than the edited ones used in the

experiment. Nevertheless, results from the two studies indicate that the

classification time stabilizes already after 3 – 5 defects, suggesting that the

subjects are quickly able to learn the DCS. In addition, the knowledge

acquired after practicing is retained. As shown by the solid lines in Figure 30,

the two subjects that participated in a second classification session classified

the initial defect considerably more quickly than in the first session (shown

with dashes lines in Figure 30), even though there was more than a week

between session.

DCS applied accurately, even without domain knowledge. In terms of

accuracy, human classifications were significantly more accurate than

random classifications for both DCSs (see Figure 24 and Figure 25). This

shows that, even though lacking domain-specific knowledge, the subjects

could still analyse the defect description and arrive at a rational classification.

However, by examining the lower whisker of the right-most boxplots in

Figure 24 and Figure 25, there exist subjects in both groups that do not

perform better than random. This suggests, although rather trivially, that in

order to ensure reliable defect classification data, experience (and perhaps

training) is necessary.

Experience and domain-specific DCS contributes to classification

performance. Interestingly, the variance in classification accuracy differed

considerably with experience for LiDeC but not for ODC (as can be seen in

Figure 20 and Figure 21). This means that the more experienced subjects

using domain specific DCS perform a more consistent classification. This

indicates that both the experience of the staff and the design of the DCS are

factors influencing the reliability of the data.

Classification should be done in-process, and contain regular reviews. Still,

the accuracy in the experiment can be considered low—approximately 40 –

50% of the attributes in both schemes were classified correctly. However, in

the industrial case study, which had a similar setup (in that defect reports

from a finished project were analysed post-factum), a number of attributes

were considered difficult to classify because the defect descriptions were

lacking the necessary information; for instance, the Injection Activity

attribute. In these cases, the practitioners stated that the necessary

information would have been known to the staff at the time of reporting.

Moreover, as the classifications were analysed on a nominal scale, there is no

notion of degree of correctness, even though such can be identified in

practice. For instance, for the Injection Activity attribute in LiDeC, there may

144 Part IV—Evaluation

be multiple valid classifications depending on what is considered the actual

root cause. In addition to contributing with an apparent lower accuracy in the

experiment, it highlights a need to establish and maintain organizational

classification praxis—for example, by regularly reviewing sample

classifications.

Domain-specific DCS provides more relevant guidance. As can be seen in

Table 20, the MSc students had more software engineering experience than

the BSc students did, while no difference in their experience with automotive

software (i.e. domain knowledge) were found. Even so, there was no

significant difference in perceived difficulty of the experiment, suggesting

that general software engineering experience may not be a significant factor

in understanding the material. Instead, it may be domain specific knowledge

that is needed. As can be seen in Table 21 and Table 22, the less experienced

subjects were significantly less confident in classifying two ODC attributes

(Type and Source). The Type attribute has a quite technical (source code

related) description, which might require more software engineering

experience to understand. The Source attribute, captures data on whether the

defect was found in an artefact developed in-house of outsourced. One

explanation to the significant difference in confidence is that the defect

descriptions use the word “supplier” to indicate that an artefact was

outsourced. This may have caused the BSc students to feel less confident than

the MSc students. In LiDeC, however, no such difference could be shown.

This suggest that LiDeC, designed for the target development context,

provides more relevant guidance; thus, indicating a benefit of adapting the

DCS to the development context.

A domain-specific DCS provides more data with no extra effort. There was

no significant difference in the time required to classify the defects (see Table

27), even though the LiDeC group classified two additional attributes,

producing 20% more data compared to the ODC group. This indicates that

the time it takes to perform the classification is small in comparison to

reading the defect report (which in an industrial setting would correspond to

documenting the defect). Thus, as the defect data proved useful in the case

study, classifying defects can be considered a cost-effective approach to

structured defect data collection.

A domain-specific DCS may increase likelihood of adoption. While no

statistically significant difference in accuracy could be shown, the LiDeC

group perceived the experiment as less difficult (see Table 25, where the BD

variable was close to being significant), and classified the defects that were

 A Comprehensive Evaluation of Defect Classification Schemes 145

more domain specific with higher confidence (see defect 2 and 4 in Table

26). Thus, by adapting a classification scheme to the target domain, its

perceived difficulty is reduced and the confidence of the classification is

increased—at least for the defects that are more domain-specific. This, in

turn, may contribute to making practitioners more inclined in adopting defect

classification in the process, and retaining that practice—which is needed in

order to establish and maintain company baselines.

Risk with a too specific DCS. The results described above show that there is

value in adapting a DCS to the specific development context in which it is to

be deployed. A concern, however, is that a too specific classification scheme

risk making the collected data equally specific, and therefore risk impeding

comparisons between organizations or even departments within an

organization. One solution, may be to design the attribute values in a

hierarchical manner, as the adapted Impact attribute presented by Vetro et al.

(2012) and the Detection activity attribute in LiDeC (Mellegård et al.,

2012b). In LiDeC, the top-level values in the Detection activity attribute are

chosen such that they should be applicable to most organizations (the values

include Inspection, Unit, System, Function, and Customer report). Each top-

level value is then broken down into the specific types of detection activities

that apply to the domain; the domain-specific values are used in the

classification, while the top-level values are intended to provide a way to

generalize the data.

Low classification consistency might indicate methodological problems. The

classification consistency was found to be low for both schemes (see Table

29 and Table 30), where the highest alpha-values where between 0.201 and

0.268, far below the 0.667 threshold that Krippendorff recommends for good

agreement. This apparently poor classification agreement among the subjects

would suggest the classification data to be unreliable—i.e. that the

classification outcome may be too dependent on who performs the

classification, rather than on properties of the defects. However, the bubble

diagrams generated for the LiDeC attributes with highest and lowest alpha

(see Figure 26 and Figure 27) do indicate a considerable difference; whereas

in Figure 27 the bubbles have similar sizes, showing no consensus in

classification, in Figure 26 a clear pattern can be seen. Even though the

visualization does not provide conclusive evidence, it suggests that there

might be problems with the statistical method used to assess the agreement

(further elaborated on in section 8.6.2).

146 Part IV—Evaluation

8.6.2 Methodological Reflections

In part, we have in this paper aimed to describe a rigorous method for

evaluating the efficiency and effectiveness of DCSs. In the method, the

efficiency of the scheme is evaluated through a controlled experiment, while

the effectiveness is evaluated using an industrial case study.

The aspects related to efficiency of a DCS were classification and learning

time, accuracy and consistency—providing evidence regarding the cost of

classifying defects, and the reliability of that data. While the method to

analyse the first two aspects are straightforward (as described in section 8.4),

the consistency aspect warrants further elaboration. Whereas previous studies

evaluating the consistency of classification have used Cohen’s kappa statistic,

in our experiment Krippendorff’s alpha was used instead; reasons include

that Krippendorff’s alpha can be applied for more than two subjects19, and is

more flexible in handling data with missing values (Hallgren, 2012; Hayes

and Krippendorff, 2007).

Previous studies on classification consistency have delivered contradictory

results, whereas the studies by El-Emam and Wieczorek (1998) and Freimut

et al. (Freimut et al., 2005) showed fair to good agreement for the type

attribute in ODC, the study by Henningsson and Wohlin (2004) could not

show such agreement for the same attribute. It should be noted, however, that

in the latter study, university students were used as subjects, whereas in the

former two practitioners were used. Nevertheless, the criticism of Cohen’s

kappa as a coefficient for measuring inter-rater agreement has been

extensively documented (see e.g. (Feinstein and Cicchetti, 1990; Feng, 2012;

Lombard, 2004)). The main criticism relates to its sensitivity to prevalence

and bias in the data, which also affects Krippendorff’s alpha (Feng, 2012).

While Cohen’s kappa was used in by Vetro et al. (2012), they also included

analyses to evaluate the degree of prevalence and bias, and were thereby able

to evaluate the reliability of the kappa coefficient. According to Gwet (2008)

and Feng (2012), a more reliable statistic for evaluating inter-rater agreement

might be Gwet’s AC1 although it too has been shown to be affected by

prevalence (Feng, 2012). Feng, furthermore, describes a method to evaluate

the degree of prevalence and its implications on the choice of analysis

method (Feng, 2012). Taken together, this shows that existing methods to

evaluate consistency are not sufficiently reliable, and conclusions based on

these methods should be taken with care. Still, as consistency is an important

19 Note that, while this refers to the individual that performs the rating, in the statistics

literature ‘subject’ refers to the objects being rated and the ‘rater’ to the individual who is

performing the rating

 A Comprehensive Evaluation of Defect Classification Schemes 147

aspect of assessing reliability of classification data, one interesting way of

characterizing the inter-rater agreement is by using bubble diagrams as

shown in Figure 26 and Figure 27.

Finally, while the use of university students as subjects is disputed in terms

of external validity, it provides a convenient sample to acquire quantitative

data. In our experiment, we applied blocking on amount of experience and

acquired skill to evaluate its impact on classification performance.

Extrapolating the differences provided means to reason about the

generalizability of the results to an industrial setting.

8.7 CONCLUSION

In this paper, we have reported on a two-part study aimed at providing a

comprehensive evaluation of defect classification schemes. In the first part of

the study, two classification schemes—on generic scheme (ODC) and one

adapted to the specific context under study (LiDeC)—were compared using a

controlled experiment with university students as subjects. The experiment

examined the two DCSs from three perspectives: learning and classification

time, accuracy and consistency. Additionally, as comprehensive evaluations

of DCSs have received little previous research attention, we have provided an

in-depth description of and reflection on methodology.

In the second part of the study, we reported on an industrial case study in

which LiDeC was applied to defects from a project. The aim of the study was

to evaluate how the classification data could be shown useful in an industrial

context. The results showed that the analysis of classification data could

provide new information. In our study, that information raised interest at our

case company and inspired discussions and critical evaluation of the

development process.

Put together, the results from these two studies have provided evidence of

defect classification as an efficient and effective approach to collecting data,

which in turn can provide important insights into process and product quality.

148 Part IV—Evaluation

8.8 ACKNOWLEDGEMENTS

The research presented in this paper is partially sponsored by VINNOVA

under the V-ICT program in the ASIS (Algorithms and Software for

Improved Safety) project. We would like to thank the people at Volvo Car

Corporation who kindly took time out of their daily duties to participate in

the case study. We would also like to thank all the students at Software

Engineering and Management programme who participated in the

experiment. Finally, we are very grateful for all the tips and ideas regarding

the data analysis provided by Richard Torkar, Vera Lisovskaja, and Robert

Feldt.

PART V—FUTURE DIRECTION

Plans are of little importance, but planning is essential

― Winston Churchill

9 FURTHERING THE USEFULNESS OF DEFECT

CLASSIFICATION

The chapter examines current state-of-the-art defect classification and

proposes a three-part research roadmap that is argued would advance the

applicability of defect classification—both as a practical tool and as a

research instrument. The chapter has previously been published as:

Mellegård, N., Staron, M., Törner, F.

Why Do We not Learn from Defects?

Towards Defect-Driven Software Process Improvement

Published at International Conference on Model-Driven

Engineering and Software Development (ModelsWard),

Barcelona Spain 2013

9.1 INTRODUCTION

Software defect classification schemes—such as ODC, HP and IEEE 1044—

have the purpose of providing defect reports with a common structure. Such a

structure allows for efficient quantitative analyses, which can provide

evidence of the efficiency and effectiveness of various process activities.

Following ODC, defect classification schemes (DCS) have been around for

more than two decades—during which, software development has evolved

V

150 Part V—Future Direction

from being code- and document centric to be model-driven. Based on the

number of publication in the area, however, we conjecture that DCS have had

limited industrial impact—this limited impact is taken as a symptom of that

the approach has failed to meet its target.

Despite limited adoption, publications—our own case study included—

show that defect reports can provide valuable information for improving

modelling when aggregated and analysed; to be an efficient tool to draw

attention of various stakeholders to the most common, important or

dangerous problems with software products.

We approach this apparent contradiction by addressing the question: “As

academic evidence show that DCS can be successful, why has it not had a

more industrial impact and what can be done?” We first address this

question by concretely showing the value of DCS, using the synthesis of two

industrial case studies from our previous work. We then provide evidence in

support of the conjectured limited industrial adoption of DCS, and present

reasons why. Finally, we provide a roadmap that would fill the gaps in current

state-of-research that we envision would allow for a more successful

approach to DCS.

In particular, we envision that the roadmap will contribute to making the

results of defect analyses more useful to project stakeholders in control of

resources, in particular in the system modelling phase. This is in contrast to

the current state-of-the-art where analyses of classification data primary are

intended for developers. By refocusing the DCS approach we envision that it

will better serve as a tool for fact-based decisions during modelling—based

on descriptive and predictive measures and indicators. The improvement

would contribute to more accurate targeting of process improvement

initiatives, to serve as the basis for defect-driven software improvement

initiatives.

In practice, the purpose of a defect report is often limited to facilitating the

resolution of the defect. For instance, defect reports are often free text

(Wagner, 2008) which makes quantitative analyses effort intensive. In

response, various DCS have been proposed. DCS also contribute to

comparability of defect metrics between projects and between companies

(Chillarege et al., 1992).

Classification schemes typically define a set of attributes, where each

attribute captures a specific aspect of the defect—e.g. how the defect was

detected, its severity and type. Each attribute typically contain a set of values

that can be chosen from; this contributes to the efficiency and reliability of

the classification. In literature, the most commonly referred (Freimut, 2001)

 Furthering the Usefulness of Defect Classification 151

DCS are ODC (Orthogonal Defect Classification) (Chillarege et al., 1992),

the HP approach (Grady, 1992) and the IEEE Std. 1044 (IEEE, 2009, 1993).

The attributes of ODC and IEEE Std. 1044 are organized into the defect’s

life-cycle phases; ODC, for instance, defines the phases open and close

(shown in Table 31). The attributes in the opener section of ODC focus on

aspects of the failure, whereas the closer section focuses on aspects of the

fault.

DCS typically focus on technical aspects of the defects and their source

code manifestations; IEEE Std. 1044, for instance, lists 80 different values

for its Type attribute.

9.2 IMPORTANCE OF DEFECT CLASSIFICATION

In our earlier work (Mellegård and Staron, 2010c; Mellegård, 2010) we

investigated the importance of various artefact types in the automotive

software development—such as requirements, types of software models, and

documents. Specifically, we investigated the perceived importance of the

artefacts and the relative effort required to create them. The particular focus

of the case study was to characterize the use of software models in relation to

other types of development artefacts.

Among the conclusions of the case study were that most effort was spent

on simulation models (e.g. Simulink models), while the most important

artefacts were the requirements and design artefacts. This result was in itself

Table 31 Overview of ODC (adapted from (Freimut 2001))

Process Attribute Meaning

Open Activity When did you detect the defect?

Trigger How did you detect the defect?

Impact What would the customer have

noticed if the defect had escaped

into the field?

Close Target What high level entity was fixed?

Source Who developed the target?

Age What is the history of the target?

Type What had to be fixed?

Qualifier Was the defect caused by

something missing, incorrect or

extraneous?

152 Part V—Future Direction

not surprising as the simulation models serve as a base for the

implementation, and as development is highly distributed—both among in-

house teams and external suppliers—the quality of specifications is crucial to

preventing eventual integration problems. In fact, during the case study we

repeatedly encountered statements from our interviewees—expert opinions—

that integration was a considerable challenge, in particular during the late

project phases. Additionally, we frequently encountered concerns about lack

of more objective evidence to support these expert opinions.

These findings directed our interest towards in-process defects, specifically

to defects detected during late project phases; did integration issues cause

these, and could we find evidence that the cause was as had been anticipated?

9.2.1 Cause of Late Defects

In a second study (chapter 7), we set out to make an in-depth examination of

in-process defects from one system developed at the department. We found,

in the initial analyses of the existing defect data, that there was indeed a

substantial inflow of defects in late project phases; shown in Figure 31 as the

defect backlog.

The timing of the late spike in defects close to software release (a major in-

development milestone) seemed to confirm the hypothesis of integration

issues. Merely examining the quantity of defects, however, would not reveal

the nature of the defects and as the defect reports were in free text, they were

not suitable for quantitative analysis. We therefore used IEEE Std. 1044 as

Figure 31 Defect backlog

 Furthering the Usefulness of Defect Classification 153

base to develop a DCS adapted to the context of our case company. The result

was the Light-Weight Defect Classification scheme (LiDeC) (chapter 6).

As part of the case study, LiDeC was applied to a sample of defects from

the late defect inflow spike as shown in Figure 31 and reported in (Mellegård

et al., 2012a), and the analysis results were presented and discussed at a

workshop at the company.

Figure 32 shows a sample of the analysis using four attributes from LiDeC

(see Appendix A. LiDeC Attribute Description), from three perspectives:

detection of the failure, type of fault and finally product and project impact of

the resolution. Using these three perspectives, the defects can be examined to

evaluate whether they were integration issues as anticipated.

While the majority of defects was, as can be seen in Figure 32, indeed

detected during integration testing—system or functional—the defect types

were not typical for integration issues. Whereas the anticipated type would be

Interface, Data or Tuning, the majority of defects were of the type Logic—

i.e. computational or algorithmic faults. Such defects would normally be

present already in the simulation models. This was corroborated by the

Resolution impact attribute, shown in the bottom left of Figure 32, indicating

that most defects required changes to a single unit—integration issues would

typically have an impact on multiple units, or require changes to the

specification (denoted Functional changes).

However, the Re-verification Level attribute—showing the activity

required to test a resolution—indicates that it is not a clear-cut case. On the

one hand, a significant amount of defects requires only inspection or

Figure 32 Preliminary analysis results

154 Part V—Future Direction

component test, indicating unit problems. On the other hand, most defects

would require new system or functional tests, indeed indicating integration

impact—finding the root cause of these defects could bring significant

benefits.

Our (careful) conclusions from this study is that the majority of late

defects—although to a large extent requiring new integration tests—are not

of the type typically associated with integration problems. Thus, the

classification of defects provided the development teams with new

information that may contribute to better test planning—e.g. put effort into

improving testability of requirements on unit level.

Finally, we would like to emphasize that the analysis presented here was

conducted on a sample of defects from a project that had finished a year prior

to the study. The results should therefore be treated as proof-of-concept rather

than as a basis for recommended change of practice. We can however

conclude that the classification contributed with new information that in part

contradicted expert opinion. This raised interest and inspired discussions

regarding possible causes; the case study provides evidence that conducting

defect classification and analysis contributes to constructive review of the

state-of-practice.

9.3 PROBLEM DESCRIPTION

As we illustrated above, the use of DCS can be an effective approach to

extracting data from problem reports, and can provide new information about

the development process. In addition, there have been studies reporting

similar results, e.g. Butcher et al. (Butcher et al., 2002), or Li et al. (Li et al.,

2012).

However, we conjecture—partially based on our observations—that DCS

has had limited industry adoption; we take this as a symptom that state-of-

the-art DCS as a means of extracting process metrics has missed its target. To

find evidence in support of this conjecture we searched IEEE Xplore

(http://ieeexplore.ieee.org) using the search term: (‘defect classification’

AND ‘software’). The search, performed Oct. 25 2012, yielded 70

publications between 1986 and 2012. By reading titles and abstracts, we

found that the publications fell into the following categories:

 Proposing new DCS, e.g. (Chillarege et al., 1992; IEEE, 2009; Paul et

al., 2002)

 Improving existing DCS, e.g. by assisting a user in conducting the

classification (Huang et al., 2011; Wang He et al., 2009), or adapting

the scheme to a specific context (Li et al., 2010a)

http://ieeexplore.ieee.org/

 Furthering the Usefulness of Defect Classification 155

 Academic evaluation of a DCS, e.g. (Henningsson and Wohlin, 2004;

Vetro’ et al., 2012)

 Industrial evaluation of a DCS, e.g. (Butcher et al., 2002; Chillarege

and Ram Prasad, 2002; Freimut et al., 2005; Li et al., 2012)

 Analysis techniques for classification data (Li et al., 2010b)

 Using classification data for other purposes, e.g. to evaluate efficiency

of inspections (Nagappan et al., 2004), to evaluate static analysis for

fault detection (Zheng et al., 2006), to propose reliability estimation

models (Paul et al., 2000), or to evaluate fault injection techniques (Jin

and Jiang, 2009)

Notably, we found no publications evaluating industrial adoption of DCS, nor

investigating what companies would require from such an approach;

specifically in terms of the information that analyses of the data need to

provide.

Further support for our conjecture can be found in the systematic literature

review by Hall et al. (Hall et al., 2011). In their paper, Hall et al. examined 36

fault prediction models and noted that the vast majority of the models were

limited to predicting the quantity of faults per module. In fact, Hall et al.

could only find one model that incorporated fault severity as a predicted

variable. In their paper, Hall et al. argue that one reason may lay in the

difficulty of defining severity. An additional reason, however, may simply be

a lack of available data; companies tend to collect only the defect data

necessary to facilitate the resolution of the defect. This brings our thesis to a

point: although defect classification has been shown to be an effective

approach to acquiring process metrics, why has it not had a wider industrial

adoption?

We can consider this point in the context of communication paths (Pareto

et al., 2012). In their paper, Pareto et al. argue that a source of problems in

projects is miscommunication because the needs and concerns of developers

are not expressed in terms that managers and architects need in order to make

informed decisions—rather developers express their needs in highly detailed

and specific technical terms. In order to make an impact on the stakeholders

in power, developers need to create abstractions suitable for that specific

stakeholder; to provide evidence that level of abstraction.

In this context, we contend that established DCS are too focused on the

developers’ context—illustrated, for instance, by the high granularity of the

Type attribute in both ODC and the IEEE 1044. In particular, established

DCS fail at providing sufficient guidance to translate the results into the

156 Part V—Future Direction

language needed to make an impact on the stakeholders that are in control of

the resources.

Furthermore, unnecessarily high level of detail in classification brings a

risk that may have a double impact: on the one hand, it adds to the effort

needed to make a classification (and thus reduces the available resources to

resolve the problem). On the other hand, it adds to the required analysis effort

needed to adapt results to the stakeholders in control. Consequently, effort

risks being put into collecting data that remains unused (Li et al., 2012).

9.4 ROADMAP

The roadmap is divided into three parts: investigation of current DCS state-

of-practice; investigation of how the design of DCS could meet the needs

better; and finally, investigation of how to analyse the data to meet the

organizational information needs.

9.4.1 State-of-practice

As we found a notable lack of research into current DCS state-of-practice in

general and in modelling specifically, we envision surveying:

 To what extent do companies use DCS—in particular in the context of

how DCS provides input to decision formulation and execution

processes;

 What alternative approaches are used to facilitate analyses of defect

reports on an aggregate level (e.g. none, defect taxonomies, root-cause

analysis etc).

Furthermore, the results of the surveys should be correlated with aspects such

as the size of the company and development teams, types of products

developed and types of development processes used. Such an in-depth

understanding of current practice would contribute to improving state-of-the-

art DCS.

Additionally, there is a need to investigate the information needs of

relevant project stakeholders—mainly product and project managers, and

architects. In their paper Buse and Zimmerman (Buse and Zimmermann,

2011) examine general information needs among the stakeholders at a large

software organization, exemplified by Microsoft. We, however, call for a

more targeted investigation into which stakeholders are relevant, and what

their information needs are, with the specific focus on defect data. We

envision the needs falling into two main categories: descriptive and

predictive.

 Furthering the Usefulness of Defect Classification 157

Descriptive information would characterize project phases in terms of their

defect profile (patterns). Descriptive information could be used in-process for

benchmarking against a company base-line (Chillarege et al., 1992), for

instance to provide evidence for evaluating process improvements.

Predictive information needs relate to the challenges of resource planning.

For instance, in assigning resources of test phases in a project, there may be a

need to predict the anticipated amount and type of defects—fault prediction

models, such as reviewed in Hall et al. (Hall et al., 2011) aim at that.

However, more granular defect data may enable more precise prediction

models, thus enable defect-driven proactive decision support.

9.4.2 Design of DCS

The state-of-practice investigations should be complemented with

establishing a library of best practices and lessons learnt in both the design

and application of DCS. Li et al. (Li et al., 2012) made a recent contribution

in part by reporting a number of lessons learnt when applying DCS in two

organizations, however more studies are necessary.

Even though the design of DCS is already well represented in state-of-the-

art, there are aspects that are not sufficiently developed. For instance, DCS

should be refocused from aspects of the implementation (source code) to

covering all project phases – in particular modelling. There is, additionally, a

need to build abstraction mechanisms into the DCS in order to reduce the

required analysis effort, and to improve the comparability of data between

projects and organizations.

LiDeC (Mellegård et al., 2012a, 2012b) contributes to this for the

automotive domain, but studies in other domains are needed. For instance,

the attribute values in LiDeC are structured hierarchically, which is an

inherent abstraction mechanism. This allows attributes to be extended with

values at more detailed levels while retaining comparability at higher levels

of abstraction.

In addition, the design of DCS should maintain reference to the ISO/IEC

15939 standard (ISO/IEC 15939, 2007) in order to facilitate integration with

other measures (e.g. for the purpose of predictions).

9.4.3 Data analysis

The arguably most challenging aspect of DCS is in analysing of the data. The

thesis put forward in this paper is that state-of-the-art DCS have failed partly

due to insufficient analysis methods. We propose therefore the need for

research into analysis and visualization methods that satisfy typical

158 Part V—Future Direction

information needs and attract attention to the most important defect patterns

(as proposed in section 9.4.1). For instance, identifying product and project

characteristics, such as change patterns in source code or software models (by

inspecting versioning systems), that correlate with defect inflow profiles

would enable defect inflow prediction models based on data mined from

software repositories.

We envision an analysis reference manual that maps a stakeholder’s

information need with a set of best practices—for instance as a

recommendation on which attributes to include in the analysis and how to

visualize the data.

Moreover, we assert that reporting on industrial case studies where specific

organizational problems have been addressed by analysis of defect

classification data would be of valuable—the work by Li et al. (Li et al.,

2012) contributes to this end.

9.5 CONCLUSION

In this paper, we have examined defect classification schemes as a tool for

collecting process metrics in model based automotive software development

projects. Specifically, we have critically examined the quality of state-of-the-

art defect classification by investigating its industrial adoption. Our thesis

was that defect classification has had limited industrial adoption which we

have argued to be a symptom of knowledge gaps in state-of-the-art DCS.

One main reason for limited industrial adoption is—in our view—that

state-of-the-art DCS are inadequate for their purpose. In particular, there is a

too strong of a focus on low-level aspects of the implementation; i.e., a tool

primarily intended for developers. DCS thus fail to address that project

stakeholders in control of resources need information on a different level of

abstraction to make informed decisions. This means that state-of-the-art

classification approaches are poorly designed to produce the results that are

needed in order to make an impact in an organization; thus the effort invested

in collecting data risks being in vain, as a large potential of the data remain

unused.

We have proposed a roadmap for an improved defect classification

approach that would contribute towards developing new proactive evidence-

based software process improvement strategies—defect-driven software

process improvement. The roadmap includes: making a deeper investigation

of the current adoption rate in industry; investigation of the typical

information needs of the project stakeholders that have control over

resources; investigation of how to design DCS to support multiple levels of

 Furthering the Usefulness of Defect Classification 159

abstraction, and finally; to investigate methods of data analyses to

accommodate the information needs of the various project stakeholders.

These actions will contribute to making DCS more appropriately adapted

to organizations’ needs. This in turn, we conjecture, will result in wider

industrial adoption.

9.6 ACKNOWLEDGEMENTS

This research is partially sponsored by The Swedish Governmental Agency

for Innovative Systems (VINNOVA) under the Intelligent Vehicle Safety

Systems (IVSS) programme.

PART VI—IN CONCLUSION

Finally, in conclusion, let me just say this.

― Peter Sellers

10 SUMMARY AND CONCLUSION

This thesis reports on an investigation of defect classification as a continuous

in-process tool for extracting well-structured data about defects. Analysing

such data can reveal interesting information regarding the development

practices. For instance, patterns in the data may indicate systemic issues with

the development process or its enactment.

The main contributions of the thesis, presented in chapters 5 – 9, are based

on five academic publications. Three of these publications have been peer-

reviewed (chapters 5, 7 and 9), one is a technical report (chapter 6) and one is

submitted for publication (chapter 8):

 Chapter 5 describes an industrial case study in which the use of

software models was investigated. The aim of the case study was to

characterize model-related development artefacts compared to non-

model ones. The characterization was done based on practitioners’

perception of the cost and benefit of developing the various artefacts.

The case study provided interesting insights into the complexity of

automotive software development, and the need for objective data in

order to identify improvement opportunities

 Chapter 6 provides an in-depth description of a defect classification

scheme based on IEEE Std. 1044 and adapted to the development of

automotive safety software. The resulting classification scheme,

named LiDeC (Lightweight Defect Classification scheme), maintains

compliance with the standard. Although the chapter is based on a

VI

162 Part VI—In Conclusion

technical report, the main contributions of the report have previously

been published and peer-reviewed (Mellegård et al., 2013, 2012a). The

additional contributions (described in more detail in section 6.2.2 on

page 58) of the technical report include:

 a significantly more detailed background description and research

motivation

 a description of the method used for adapting the IEEE Std. 1044

 a significantly more detailed description of LiDeC, including a

comparison with and a mapping to IEEE Std. 1044

 Chapter 7 provides a description of an initial industrial evaluation of

LiDeC, in which a sample of defects were classified and analysed

 Chapter 8 provides a description of a comprehensive evaluation of

defect classification schemes. In addition, the chapter reports the results

of applying that evaluation by comparing LiDeC to ODC

 Chapter 9 provides an investigation of the current state-of-the-art defect

classification and identifies research areas that need to be addressed. As

a result, the chapter describes a research roadmap that would further the

usefulness of defect classification schemes in industry, as well as

academia.

10.1 SUMMARY OF RESULTS

The main research question in this thesis was:

How to improve defect management in automotive software

development using structured defect documentation?

This research question was broken down into four separate research

questions, for which the main findings are summarized in the subsections

below.

 Summary and Conclusion 163

10.1.1 Characterizing Automotive Software Development

Chapter 5 in Part II of this thesis reported on an industrial case study in

which the development of automotive software was characterized from a

model-driven development perspective. The main research question

addressed in Part II was:

RQ 1 How important and effort intensive are software models in

automotive software development, and what are the

opportunities for improving the utilization of models?

The objective of chapter 5 was to characterize the development of automotive

safety features with respect to the use of software models. Specifically, the

characterization was done by investigating how perceived development effort

and importance were distributed between various model and non-model

related artefacts in the development of software-based vehicle features. The

investigation was conducted as an industrial case study in which project

managers responsible for a software based safety and security related

functions were interviewed.

The results of the study include that, while requirements were considered

the most important type of artefact, executable models were the most effort

intensive. Executable models are commonly used as in-house simulation

models during development and by suppliers to generate production code.

Even though these models were not considered as important, they constituted

the single artefact that received the most effort—an appraised 24% to 55% of

the total effort spent. Considering these models as the implementation (i.e.

the actual product under development), it means that 45% to 76% of the

effort is spent on overhead activities. This in turn suggests that there is room

for improvement; the question is “what to improve?”

Although not surprising in itself, the finding that the most effort-intensive

artefacts were not considered the most important, it highlights an important

challenge. Requirements—in particular concerning communication interfaces

and auxiliary components—are a prerequisite for early modularization. Such

modularization allows individual development teams in a distributed

development organization the peace of mind to focus on their specific part of

the implementation. What is interesting, such requirements are typically

specified early in the development cycle, but can often only be validated in

late stages when the various components are mature enough to allow more

extensive testing. This gap between specification and validation was

perceived by the interviewees as one of the main development challenges,

and that would typically manifest as late integration problems. Although

164 Part VI—In Conclusion

perceived as a major source of late issues, it was not clear precisely which

types of requirements that caused the most sever issues, or what improvement

initiatives to undertake to avoid such issues.

An additional finding was that the use of software models was fragmented.

For instance, various modelling notations were used in parallel and

interchangeably, and no controlled sequence of models or transformations

was used. Such a sequence of transformations is a tenet of MDD’s claim to

improve efficiency, for instance in order to reduce the required manual labour

for generating artefacts (such as code) or to automatically maintain

traceability. This limited use of model transformation and automatic

traceability, suggest that while models receive a substantial amount of effort,

they are not used to their full potential (similar indications have been found

in other organizations (Burden et al., 2014)). However, suggesting the

introduction of model transformations as a development silver bullet would

fail to recognize the complexity of automotive software development. More

specifically, transitioning to a MDD paradigm has been shown to change

substantially the way-of-working (Staron, 2008). Such substantial changes

are not feasible in the automotive domain, as the development of a car

involves the parallel development of a large number of interdependent

heterogeneous components—mechanical, electrical and software-intensive

parts. Instead, one approach to improve the efficiency of software

development may be in line with how Selic (Selic, 2003) proposes adopting

of a model-driven process; to introduce locally in projects tools that are most

appropriate for the tasks at hand, and that addresses current development

challenges. To identify objectively the tasks and challenges in need for

improved practices in a complex development context, however, is not

straightforward.

10.1.2 Adapting a Defect Classification Scheme

The concept of defect classification schemes was in this thesis investigated as

means to identify tasks and challenges in need for improved practices.

Although the IEEE Std. 1044 defines a standard structure for defect

classification, it requires adaptation to be efficient in a specific development

organization. Chapter 6 in Part III, presents an adaptation of the standard to

the development of automotive software. The research question addressed in

chapter 6 was:

RQ 2 How to improve efficiency of applying IEEE Std. 1044 in

model-based automotive software development?

 Summary and Conclusion 165

In chapter 6, the research question was addressed by investigating how IEEE

Std. 1044 can be adapted to automotive software development. The specific

properties of the automotive domain that motivates the adaptation include the

strong reliance on supplier side implementation. This limits the usefulness of

generic classification schemes, such as IEEE Std. 1044, as they tend to have a

substantial focus on source code manifestations of defects. In addition, as

defect classification does not directly contribute to the development of the

end-product, it was considered important to adapt the classification scheme to

minimize classification effort while still providing the additional benefits of

characterizing the defects. More specifically, the research questions

addressed in the chapter were:

L1 In the context of automotive safety-feature development, where

source-code is often not available, how can a standard defect

classification scheme be suitably adapted?

L2 As defect classification may be considered an administrative

task, how can the adaptation of a standard defect

classification scheme be done to minimize required learning

and classification time?

As reported in chapter 6, L1 was addressed by:

 Shifting the focus of the classification scheme from detailed aspects of

the fault and its resolution to aspects of the discovery of the defect. As

the implementation is mainly done by suppliers, most in-house process

improvement potential lies in more efficient defect discovery

activities. LiDeC reflects this by providing more detailed attributes in

the Recognition phase (e.g. Detection activity, Urgency, Severity and

Effect), while granularity of the attributes in subsequent phases have

been reduced; e.g. the Type attribute is less granular than in IEEE Std.

1044 and detailed aspects of the resolution (captured by the IEEE

attribute Resolution) has been omitted;

 Adapting attributes for safety specific purposes. In LiDeC the attribute

Functional Safety Impact (which maps to the IEEE attribute Societal)

records whether a defect impacts ASIL-classified requirements

(ISO/DIS, 2011). In addition, the values of the Effect attribute (which

maps to the IEEE Symptom attribute) was adapted specifically to

provide a high-level characterization of safety feature problems (e.g.

unintentional activation of a feature).

166 Part VI—In Conclusion

L2 was addressed by:

 Raising the level of abstraction of attributes. For instance, by

providing only higher-level categories as values for the Type attribute

 Providing more descriptive attribute values. For instance, for the

Severity attribute, instead of values such as Low, Medium and High

more descriptive values aligned with the company’s vocabulary were

chosen values

 Providing attribute descriptions and values phrased using the

terminology of the company

 Providing a classification guide with a flow-chart structure, and

including typical examples for each attribute value

 Streamlined the attributes by removed or redefining attributes that

required insights that the typical reported might not have (project

schedule and risk). Attributes were redefined with care to retain the

intentions of the original attribute but measured in more specific

engineering terms; for instance, whereas the IEEE Std. 1044 attribute

Project schedule aimed at appraising the direct impact on the project

plan, LiDeC instead appraises the estimated amount of re-verification

(an activity that may have a large impact on the project schedule).

An additional contribution of chapter 6 is that the description of the

adapted classification scheme, together with the mapping to the standard is

intended to add to the generalizability of the data collected—i.e. to allow

comparisons between organizations. This description aims to contribute to a

baseline on how to adapt and document a classification scheme, in order for

data collected from various organizations to be compared. Such comparisons

may in turn contribute to a deeper understanding on issues common among

organizations, and the effects of initiatives to resolve them.

10.1.3 Evaluating a Defect Classification Scheme

While the need to adapt generic defect classification schemes has previously

been recognized, it has not been established how to evaluate the resulting

classification scheme. In Part IV, two research questions relating to the

evaluation of DCS were addressed:

RQ 3.1 How feasible is LiDeC for model-based automotive software

development?

In chapter 7, a pilot study evaluating the applicability and usefulness of

LiDeC was presented. The evaluation was conducted as an industrial case

 Summary and Conclusion 167

study in which practitioners classified a sample of defects from a finished

project.

This evaluation is of interest for two main reasons. Firstly, despite being

published already in 1993, there are to date few experience reports evaluating

the applicability of IEEE Std. 1044. Secondly, as LiDeC was adapted from

the standard, it is of interest to evaluate what impact the adaptation has. More

specifically, as the adaptation mainly consisted of raising the level of

abstraction of the attributes, there is a risk that the lower granularity of the

data impedes its usefulness.

The case study showed that even though the granularity of the attributes

were lower, analyses of the data still contributed with new information about

the development process. For instance, whereas the typical type of late

defects was anticipated to be integration issues—such as timing of signals

between software modules or mismatches in communication interfaces—the

analysis indicated that it was instead algorithms and code logic defects. As

these types of defect would typically be present already in the executable

models, it suggested that more improved unit level tests or more advanced

simulation environments would contribute to detecting a substantial quantity

of late defects earlier in the process. While these results did not provide a

specific course of action, they did provide the experts with evidence that can

be considered more objective. Such evidence inspired discussions and critical

evaluations of the development process.

Moreover, observations from the case study showed that the practitioners

quickly understood the attributes in LiDeC and were able to efficiently

perform classification—classification time stabilized around 5 – 10 minutes

per defects already after classifying 3 – 4 defects (see Figure 30 on page

142). The understanding of LiDeC was, furthermore retained by the

practitioners, as can be seen by the significantly shorter classification time for

the initial defects in the second classification session (also shown in Figure

30). As the classification time included the time required to read and analyse

the defect report, it can safely be assumed that when performed in-process—

when the details about the defect are in fresh memory—the additional time

required to perform the classification is small.

Thus, as the time required for learning and performing defect

classifications according to LiDeC is short and analysing the classification

data provide valuable information, the adaptation of IEEE Std. 1044 can be

considered a feasible approach for extracting well-structured defect data.

168 Part VI—In Conclusion

RQ 3.2 How to evaluate an adapted defect classification scheme?

Chapter 8 adds to the initial evaluation, presented in chapter 7, by providing a

detailed description of a comprehensive evaluation method for defect

classification schemes. In addition to evaluating the effectiveness of a

classification scheme (i.e. its usefulness, as presented in chapter 7), the

method evaluates its efficiency. As reported in chapter 8, the evaluation,

conducted as a controlled experiment, compares LiDeC with a baseline

classification scheme (ODC was chosen for this experiment). In the

experiment, university students participated as subjects—i.e. convenience

sampling.

The efficiency aspect is in the proposed method evaluated from three

perspectives: time, accuracy and, consistency. The time perspective includes

the time required to learn the classification scheme, and the time required to

perform a classification. The accuracy perspective represents the extent to

which the subjects are able to assign the correct attribute values to a given

defect report. Finally, the consistency perspective represents the classification

agreement among the subjects for a given defect report. While the time

perspective is important in assessing the resources required to classify

defects, accuracy and consistency facilitate assessing the reliability of the

data.

The results of the evaluation showed that DCSs are quick to learn, and the

classification requires little time—the required classification time appeared to

stabilize already after classifying 3 – 5 defects, approximately 5 – 10

minutes in the case study and under 5 minutes in the experiment. It should be

noted that in the classification time is included the time required to read the

defect report. In an industrial setting, this time would correspond to the time

required to document the defect, an activity that is done regardless of whether

classification is performed. The evaluation of the reliability of the

classification data indicated that subjects, even when lacking domain-specific

knowledge, are able to analyse the defect reports and arrive at rational

classifications that were significantly better than random classifications.

Furthermore, as shown in chapter 8, more experienced subjects, using the

domain-specific classification scheme (LiDeC) performed classification that

is more consistent. These results extrapolated to an industrial setting, where

the classification is performed by experts, suggest that classification data

would be reliable.

However, in light of experiences from the industrial case study, there are

cases where classification requires subjective interpretation of the defect

reports. Such interpretations may result in inconsistencies in the data—i.e.

 Summary and Conclusion 169

that the classification may be dependent on who is performing the

classification rather than on properties of the defect in question. One specific

example was the LiDeC attribute Injection Activity that intends to capture the

underlying reason why the defect was introduced into the system (similar to

root cause analysis). In the case study, the information necessary to assign a

value to this attribute was often found lacking in the reports. Although this

information would, according to the case study subjects, be known at the time

of reporting, it would still need expert judgement. This highlights the need

for process support; for instance, regular reviews of sample classifications in

order to establish and maintain organizational classification praxis.

10.1.4 Future Directions

In final part of this thesis, chapter 9 investigates areas in need of research

with respect to defect classification schemes. The specific research question

addressed in Part V is:

RQ 4 What are the future research directions for improving defect

classification?

In chapter 9, the current state-of-the-art defect classification was investigated,

and as a result of that investigation three research areas was described that

would benefit from further investigation. Specifically, a literature review was

conducted in order to—based on published scientific work—assessed the

industrial adoption and the academic recognition of DCS.

The result of the literature review shows that there are few published

studies reporting on the use of DCS. Specifically lacking are industrial

studies on how classification data are used in organizations. In chapter 9, this

lack of academic publications is taken as an indicator of limited industrial

adoption. One main reason for limited industrial adoption is—in our view—

that state-of-the-art DCS are inadequate for their purpose. In particular, there

is a too strong of a focus on low-level aspects of the implementation; i.e., a

tool primarily intended for developers. DCS thus fail to address that the

project stakeholders in control of resources need information on a different

level of abstraction in order to make informed decisions. This means that

state-of-the-art classification approaches are poorly designed to produce the

results that are needed in order to make an impact in an organization—thus

the effort invested in collecting data risks being in vain, as a large potential of

the data remain unused.

In addition, the academic recognition of DCS is demonstrated by its use as

a tool for validation. In the literature review, cases were found where

170 Part VI—In Conclusion

researchers used DCS data to show effects of various improved practices. For

instance, in their paper Nagappan et al. (2004) demonstrated which types of

faults their proposed automated software inspection technique was able to

identify. In this case, Nagappan et al. used defect classification as a means to

generalize their results—an organization could compare the typical defect

type distribution to examine whether that organization could benefit from

using the proposed technique. In light of this example, defect classification

data has interesting academic applications. Still, from the results of the

literature review, it seems to have had limited adoption.

As an attempt to address this limited adoption, a research roadmap is

proposed in chapter 9. The roadmap includes: making a deeper investigation

of the current adoption rate in industry; investigation of the typical

information needs of the project stakeholders that have control over

resources; investigation of how to design DCS to support multiple levels of

abstraction, and finally; to investigate methods of data analyses to

accommodate the information needs of the various project stakeholders. In

addition to contributing to making DCS more appropriately adapted to

organizations’ needs, it may also contribute to establishing a wider baseline

with respect to defects. Such a baseline can be used by researchers to

demonstrate effects of various improved practices, and by practitioners to

evaluate whether such practices would address the challenges in their

particular organization. This in turn, we conjecture, will result in a wider

industrial adoption.

10.2 CONCLUSION

In this thesis, we have investigated defect classification schemes as a means

for collecting structured defect data. More specifically, we have provided an

experience report characterizing challenges in identifying improvement

opportunities in automotive software development. These challenges

exemplify information needs present in a complex software development

organization, and furthermore highlights the need for a light-weight

technique to extract data from defect reports—defects considered as

symptoms of process issues, which in turn may constitute improvement

opportunities.

In addition, we have reported on a novel classification scheme, adapted

from a generic one to the development of automotive active safety software.

The classification scheme, LiDeC, was described in detail and evaluated in

an industrial context. We have also described a comprehensive method for the

 Summary and Conclusion 171

evaluation of adapted classification schemes, with a focus on effectiveness

and efficiency.

Finally, a research roadmap has been proposed in which identified current

knowledge gaps with respect to defect classification will be closed. This, we

envision, will lead to using defect classification data as a means to propose

and evaluate various process improvement initiatives.

172 Part VI—In Conclusion

REFERENCES

Atkinson, C., Kuhne, T., 2003. Model-driven development: a metamodeling

foundation. IEEE Software 20, 36–41.

AUTOSAR, 2011. AUTOSAR Technical Overview (R3.2 Rev 1) (Technical

report No. 067).

Baker, P., Loh, S., Weil, F., 2005. Model-Driven Engineering in a Large

Industrial Context — Motorola Case Study. In: Model Driven

Engineering Languages and Systems, Lecture Notes in Computer

Science. pp. 476–491.

Beizer, B., 1990. Software Testing Techniques, 2nd Edition, 2 Sub. ed. Intl

Thomson Computer Pr (T).

Bennet, T.L., Wennberg, P.W., 2005. Eliminating embedded software defects

prior to integration test. CrossTalk 18, 13–18.

Bijlsma, D., Ferreira, M.A., Luijten, B., Visser, J., 2011. Faster issue

resolution with higher technical quality of software. Software Quality

Journal 20.

Boehm, B.W., 1981. Software Engineering Economics, 1st ed. Prentice Hall.

Bollain, M., Garbajosa, J., 2009. A Metamodel for Defining Development

Methodologies. In: Software and Data Technologies. pp. 414–425.

Brown, A.W., 2004a. An introduction to Model Driven Architecture - Part I:

MDA and today’s systems [WWW Document]. The Rational Edge.

URL http://www.ibm.com/developerworks/rational/library/3100.html

(accessed 2009-12-14).

Brown, A.W., 2004b. Model driven architecture: Principles and practice.

Software and Systems Modeling 3, 314–327.

Broy, M., 2006. Challenges in automotive software engineering. In:

Proceedings of the 28th International Conference on Software

Engineering. ACM, Shanghai, China, pp. 33–42.

Burden, H., Heldal, R., Whittle, J., 2014. Comparing and Contrasting Mode-

Driven Engineering at Three Large Companies. Submitted for

publication (2013-10-23) in Workshop on Software Engineering in

Practice (SEIP) at 36th International Conference on Software

Engineering (ICSE) 2014, Hyderabad.

 References 173

Buse, R.P.L., Zimmermann, T., 2011. Information Needs for Software

Development Analytics (Technical report No. MSR-TR-2011-8),

Microsoft technical report.

Butcher, M., Munro, H., Kratschmer, T., 2002. Improving software testing via

ODC: Three case studies. IBM Systems Journal 41, 31 –44.

Cavalcanti, Y.C., Mota Silveira Neto, P.A., Lucrédio, D., Vale, T., Almeida,

E.S., Lemos Meira, S.R., 2011. The bug report duplication problem: an

exploratory study. Software Quality Journal.

Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray,

B.K., Wong, M.-Y., 1992. Orthogonal defect classification-a concept

for in-process measurements. IEEE Transactions on Software

Engineering 18, 943–956.

Chillarege, R., Inc, C., 2006. ODC- a 10x for Root Cause Analysis [WWW

Document]. URL http://www.chillarege.com/articles/odc-10x

(accessed 9.22.13).

Chillarege, R., Ram Prasad, K., 2002. Test and development process

retrospective - a case study using ODC triggers. Presented at the

International Conference on Dependable Systems and Networks, 2002.

DSN 2002, pp. 669–678.

CMMI Product Team, 2010a. CMMI for Acquisition (Technical Report No.

CMU/SEI-2010-TR-032). Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, Pennsylvania.

CMMI Product Team, 2010b. CMMI for Development (Technical Report No.

CMU/SEI-2010-TR-033). Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, Pennsylvania.

Das Beauftragte der Bundesregierung für Informationstechnik, 2009. Das V-

Modell XT [WWW Document]. Das V-Modell XT. URL http://www.v-

modell-xt.de/ (accessed 11.23.09).

Dingsøyr, T., 2005. Postmortem reviews: purpose and approaches in software

engineering. Information and Software Technology 47, 293–303.

Dubey, A., 2012. Towards adopting ODC in automation application

development projects. In: Proceedings of the 5th India Software

Engineering Conference, ISEC ’12. ACM, New York, NY, USA, pp.

153–156.

Eklund, U., 2013. Engineering software for mass-produced embedded

systems - Ways-of-working, architecture and ecosystems for

innovation (Doctoral thesis). Chalmers University of Technology.

174 Part VI—In Conclusion

El Emam, K., Wieczorek, I., 1998. The repeatability of code defect

classifications. Presented at the The Ninth International Symposium on

Software Reliability Engineering, 1998. Proceedings, pp. 322–333.

Farkas, T., Neumann, C., Hinnerichs, A., 2009. An Integrative Approach for

Embedded Software Design with UML and Simulink. In: 33rd Annual

IEEE International Computer Software and Applications Conference,

2009. COMPSAC ’09. pp. 516–521.

Feinstein, A.R., Cicchetti, D.V., 1990. High agreement but low Kappa: I. the

problems of two paradoxes. Journal of Clinical Epidemiology 43, 543–

549.

Feng, G.C., 2012. Factors affecting intercoder reliability: a Monte Carlo

experiment. Qual Quant 2012, 1–24.

Freimut, B., 2001. Developing and using defect classification schemes (No.

IESE- Report No. 072.01/E). Fraunhofer IESE.

Freimut, B., Denger, C., Ketterer, M., 2005. An industrial case study of

implementing and validating defect classification for process

improvement and quality management. Presented at the 11th IEEE

International Symposium on Software Metrics, 2005, p. 10 pp.–19.

Galin, D., 2004. Software quality assurance. Pearson Education Limited,

Harlow, England; New York.

Gamer, M., Lemon, J., Singh, I.F.P., 2012. irr: Various Coefficients of

Interrater Reliability and Agreement. Computer program, available

from: http://cran.r-project.org/web/packages/irr/

Giese, H., Neumann, S., Niggemann, O., Schätz, B., 2011. Model-Based

Integration. In: Model-Based Engineering of Embedded Real-Time

Systems, Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, pp. 17–54.

Glass, R.L., 1994. The software-research crisis. IEEE Software 11, 42–47.

Gorschek, T., Wohlin, C., Carre, P., Larsson, S., 2006. A Model for

Technology Transfer in Practice. IEEE Software 23, 88–95.

Grady, R.B., 1992. Practical Software Metrics for Project Management and

Process Improvement. Prentice Hall.

Grossman, M., Aronson, J.E., McCarthy, R.V., 2005. Does UML make the

grade? Insights from the software development community.

Information and Software Technology 47, 383–397.

Gruszczynski, M., 2013. kripp.boot [WWW Document]. GitHub. URL

https://github.com/MikeGruz/kripp.boot (accessed 5.29.13).

 References 175

Gwet, K.L., 2008. Computing inter-rater reliability and its variance in the

presence of high agreement. British Journal of Mathematical and

Statistical Psychology 61, 29–48.

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2011. A Systematic

Review of Fault Prediction Performance in Software Engineering.

IEEE Transactions on Software Engineering PP, 1276 – 1304.

Hallgren, K.A., 2012. Computing Inter-Rater Reliability for Observational

Data: An Overview and Tutorial. Tutor Quant Methods Psychol 8, 23–

34.

Hayes, A.F., Krippendorff, K., 2007. Answering the Call for a Standard

Reliability Measure for Coding Data. Communication Methods and

Measures 1, 77–89.

Heijstek, W., Chaudron, M.R.V., 2009. Empirical Investigations of Model

Size, Complexity and Effort in a Large Scale, Distributed Model

Driven Development Process. Presented at the 35th Euromicro

Conference on Software Engineering and Advanced Applications,

2009. SEAA ’09, pp. 113–120.

Henningsson, K., Wohlin, C., 2004. Assuring fault classification agreement -

an empirical evaluation. Presented at the 2004 International

Symposium on Empirical Software Engineering, 2004. ISESE ’04, pp.

95 – 104.

Hristu-Varsakelis, D., Levine, W.S., 2005. Handbook of networked and

embedded control systems. Birkhäuser, Boston.

Huang, L., Ng, V., Persing, I., Geng, R., Bai, X., Tian, J., 2011. AutoODC:

Automated generation of Orthogonal Defect Classifications. Presented

at the 26th IEEE/ACM International Conference on Automated

Software Engineering (ASE) 2011, IEEE.

IBM, 2012. ODC | Overview [WWW Document]. Overview of ODC ver

5.11. URL

http://www.research.ibm.com/softeng/ODC/DETODC.HTM#overview

(accessed 9.22.12).

IEEE, 1990. IEEE Standard Glossary of Software Engineering Terminology.

IEEE Std 610.12-1990 1–84.

IEEE, 1993. IEEE Std. 1044-1993 Standard Classification for Software

Anomalies.

IEEE, 1996. IEEE Std. 1044.1-1995 -- Guide to Classification for Software

Anomalies.

176 Part VI—In Conclusion

IEEE, 2009. IEEE Std. 1044-2009. Standard Classification for Software

Anomalies.

ISO, 2005. ISO 9000:2005 — Quality management systems - Fundamentals

and vocabulary. International Organization for Standardization /

Technical Committee 176 (ISO/TC 176), Geneva, Switzerland.

ISO/DIS, 2011. ISO/DIS 26262 - Road vehicles — Functional safety.

International Organization for Standardization / Technical Committee

22 (ISO/TC 22), Geneva, Switzerland.

ISO/IEC, 2001. ISO/IEC 9126-1, Software Engineering - Product Quality.

ISO/IEC, 2004. ISO/IEC 15504 -- Information technology — Process

assessment.

ISO/IEC, 2007. ISO/IEC 24744:2007, software Engineering -- Metamodel

for Development Methodologies (Text).

ISO/IEC 15939, 2007. ISO/IEC 15939 - Systems and Software Engineering –

Measurement Process.

ISO/IEC/IEEE, 2010. ISO/IEC/IEEE Systems and software engineering -

Vocabulary (ISO/IEC 24765).

Ivarsson, M., 2010. Experience driven software process assessment and

improvement (Doctoral thesis). Chalmers University of Technology.

Jin, A., Jiang, J., 2009. Fault Injection Scheme for Embedded Systems at

Machine Code Level and Verification. Presented at the 15th IEEE

Pacific Rim International Symposium on Dependable Computing,

2009. PRDC ’09, pp. 55 –62.

Kan, S.H., 1995. Metrics and Models in Software Quality Engineering, 1st

ed. Addison-Wesley Professional.

Kent, S., 2002. Model Driven Engineering. In: Integrated Formal Methods.

pp. 286–298.

Korhonen, K., 2013. Evaluating the impact of an agile transformation: a

longitudinal case study in a distributed context. Software Quality

Journal 21, 599–624.

Krippendorff, K., 2004. Content Analysis: An Introduction to Its

Methodology. SAGE.

Landis, J.R., Koch, G.G., 1977. The Measurement of Observer Agreement for

Categorical Data. Biometrics 33, 159–174.

 References 177

Leszak, M., Perry, D.E., Stoll, D., 2000. A case study in root cause defect

analysis. Presented at the 22nd International Conference on Software

Engineering (ICSE), 2000, pp. 428–437.

Leszak, M., Perry, D.E., Stoll, D., 2002. Classification and evaluation of

defects in a project retrospective. Journal of Systems and Software 61,

173–187.

Li, J., Stalhane, T., Conradi, R., Kristiansen, J.M.W., 2012. Enhancing Defect

Tracking Systems to Facilitate Software Quality Improvement. IEEE

Software 29, 59 –66.

Li, N., Li, Z., Sun, X., 2010a. Classification of Software Defect Detected by

Black-Box Testing: An Empirical Study. Presented at the Second

World Congress on Software Engineering (WCSE) 2010, pp. 234–240.

Li, N., Li, Z., Zhang, L., 2010b. Mining Frequent Patterns from Software

Defect Repositories for Black-Box Testing. Presented at the 2nd

International Workshop on Intelligent Systems and Applications (ISA),

2010, IEEE, pp. 1–4.

Liparas, D., Angelis, L., Feldt, R., 2011. Applying the Mahalanobis-Taguchi

strategy for software defect diagnosis. Automated Software

Engineering 19, 141–165.

Lombard, M., 2004. A Call for Standardization in Content Analysis

Reliability. Human Communication Research 30, 434–437.

Ludewig, J., 2003. Models in software engineering – an introduction.

Software and Systems Modeling 2, 5–14.

Mathworks, 2010. Simulink - Simulation and Model-Based Design [WWW

Document]. http://www.mathworks.com/products/simulink/. URL

http://www.mathworks.com/products/simulink/ (accessed 8.27.10).

Mellegård, N., 2010. Method and Tool Support for Automotive Software

Engineering (Licentiate Thesis, No 74L). Chalmers University of

Technology.

Mellegård, N., Staron, M., 2010a. Use of Models in Automotive Software

Development: A Case Study. Presented at the The First Workshop on

Model Based Engineering for Embedded Systems Design, Dresden,

Germany.

Mellegård, N., Staron, M., 2010b. Distribution of Effort Among Software

Development Artefacts: An Initial Case Study. Presented at the

Exploring Modelling Methods for Systems Analysis and Design,

Springer Berlin / Heidelberg, Hammamet, Tunisia.

178 Part VI—In Conclusion

Mellegård, N., Staron, M., 2010c. Characterizing Model Usage in Embedded

Software Engineering: A Case Study. In: 8th Nordic Workshop on

Model Driven Software Engineering (NW-MoDE). Copenhagen,

Denmark.

Mellegård, N., Staron, M., Törner, F., 2012a. A Light-weight Defect

Classification Scheme for Embedded Automotive Software and its

Initial Evaluation. Presented at the IEEE International Symposium on

Software Reliability Engineering (ISSRE 2012), Dallas, Tx USA.

Mellegård, N., Staron, M., Törner, F., 2012b. A Light-Weight Defect

Classification Scheme for Embedded Automotive Software (Technical

Report No. 2012:04, ISSN: 1654-4870), Research Reports in Software

Engineering and Management. Chalmers University of Technology,

Göteborg.

Mellegård, N., Staron, M., Törner, F., 2013. Why Do We not Learn from

Defects? Towards Defect-Driven Software Process Improvement.

Presented at the MODELSWARD 2013, 1st International Conference

on Model-Driven Engineering and Software Development, Barcelona,

Spain, p. 6.

Mellor, S.J., Clark, A.N., Futagami, T., 2003. Model-driven development -

Guest editor’s introduction. Software, IEEE 20, 14–18.

Mohagheghi, P., Dehlen, V., 2008. Where Is the Proof? - A Review of

Experiences from Applying MDE in Industry. In: Proceedings of the

4th European Conference on Model Driven Architecture: Foundations

and Applications, ECMDA-FA ’08. Springer-Verlag, Berlin,

Heidelberg, pp. 432–443.

Nagappan, N., Williams, L., Hudepohl, J., Snipes, W., Vouk, M., 2004.

Preliminary results on using static analysis tools for software

inspection. Presented at the 15th International Symposium on Software

Reliability Engineering (ISSRE), 2004, pp. 429 – 439.

Niggemann, O., Stroop, J., 2008. Models for model’s sake. Presented at the

30th International Conference on Software Engineering (ICSE), 2008,

pp. 561–570.

Pareto, L., Sandberg, A.B., Eriksson, P., Ehnebom, S., 2012. Collaborative

prioritization of architectural concerns. Journal of Systems and

Software 85, 1971–1994.

 References 179

Paul, R.A., Bastani, F., I-Ling Yen, Challagulla, V.U.., 2000. Defect-based

reliability analysis for mission-critical software. Presented at the The

24th Annual International Computer Software and Applications

Conference (COMPSAC), 2000, IEEE, pp. 439–444.

Paul, R.A., Bastani, F.B., Challagulla, V.U.B., Yen, I.-L., 2002. Software

measurement data analysis using memory-based reasoning. Presented

at the 14th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI), 2002., pp. 261 – 267.

Peldzius, S., Ragaisis, S., 2011. Comparison of maturity levels in CMMI-

DEV and ISO/IEC 15504. In: Applications of Mathematics and

Computer Engineering - American Conference on Applied

Mathematics, AMERICAN-MATH’11,. Presented at the 5th WSEAS

International Conference on Computer Engineering and Applications,

CEA’11, pp. 117–122.

Pfleeger, S.L., 2001. Software Engineering: Theory and Practice, 2nd ed.

Prentice Hall.

Plant, R.T., Tsoumpas, P., 1995. A survey of current practice in aerospace

software development. Information and Software Technology 37, 623–

636.

Ploski, J., Rohr, M., Schwenkenberg, P., Hasselbring, W., 2007. Research

issues in software fault categorization. SIGSOFT Softw. Eng. Notes

32.

R Core Team, 2012. R: A Language and Environment for Statistical

Computing. Vienna, Austria. Computer program, available from:

http://www.R-project.org/

Rout, T.P., Tuffley, A., 2007. Harmonizing ISO/IEC 15504 and CMMI.

Software Process: Improvement and Practice 12, 361–371.

SEI, 2013. Measurement & Analysis | Overview [WWW Document].

Measurement & Analysis | Overview. URL

http://www.sei.cmu.edu/measurement/ (accessed 6.19.13).

Selic, B., 2003. The pragmatics of model-driven development. Software,

IEEE 20, 19–25.

Shatnawi, R., Li, W., 2008. The effectiveness of software metrics in

identifying error-prone classes in post-release software evolution

process. J. Syst. Softw. 81, 1868–1882.

180 Part VI—In Conclusion

Sim, J., Wright, C.C., 2005. The Kappa Statistic in Reliability Studies: Use,

Interpretation, and Sample Size Requirements. PHYS THER 85, 257–

268.

SPSS, 2013. SPSS Homepage [WWW Document]. URL

http://www.spss.com/ (accessed 1.9.09).

Staron, M., 2006. Adopting MDD in Industry A Case Study at Two

Companies. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (Eds.),

ACM/IEEE 9th International Conference on Model Driven

Engineering Languages and Systems, LNCS. SpringerVerlag, Genova,

Italy, p. 57–72.

Staron, M., 2007. Using Experiments in Software Engineering as an

Auxiliary Tool for Teaching – A Qualitative Evaluation from the

Perspective of Students’ Learning Process. In: 27th International

Conference on Software Engineering (ICSE). IEEE, Minneapolis, p.

(accepted for publication).

Staron, M., 2008. Transitioning from code-centric to model-driven industrial

projects – empirical studies in industry and academia. In: Model

Driven Software Development: Integrating Quality Assurance.

Information Science Reference, pp. 236–262.

The SPICE User Group, 2011. Automotive SPICE [WWW Document].

Automotive SPICE. URL http://www.automotivespice.com/ (accessed

6.20.11).

Thung, F., Lo, D., Jiang, L., 2012. Automatic defect categorization. In:

Proceedings - Working Conference on Reverse Engineering, WCRE.

pp. 205–214.

Wagner, S., 2008. Defect classification and defect types revisited. In:

Proceedings of the 2008 Workshop on Defects in Large Software

Systems, DEFECTS ’08. ACM, New York, NY, USA, pp. 39–40.

Wang He, Wang Hao, Lin Zhiqing, 2009. Improving Classification Efficiency

of Orthogonal Defect Classification via a Bayesian Network Approach.

Presented at the International Conference on Computational

Intelligence and Software Engineering (CiSE), 2009, pp. 1–4.

Weigert, T., Weil, F., Marth, K., Baker, P., Jervis, C., Dietz, P., Gui, Y., van

den Berg, A., Fleer, K., Nelson, D., Wells, M., Mastenbrook, B., 2007.

Experiences in Deploying Model-Driven Engineering. In: SDL 2007:

Design for Dependable Systems.

 References 181

Vetro’, A., Zazworka, N., Seaman, C., Shull, F., 2012. Using the ISO/IEC

9126 product quality model to classify defects: A controlled

experiment. In: 16th International Conference on Evaluation

Assessment in Software Engineering (EASE 2012). Presented at the

16th International Conference on Evaluation Assessment in Software

Engineering (EASE 2012), pp. 187 –196.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslèn, A.,

2000. Experimentation in Software Engineering: An Introduction.

Kluwer Academic Publisher, Boston MA.

Wood, A., 1996. Software reliability growth models (Technical Report No.

96.1). Tandem Computers Inc.,.

Yin, R.K., 2002. Case Study Research: Design and Methods. SAGE

Publications.

Yin, R.K., 2009. Case Study Research: Design and Methods, 4. ed. ed,

Applied social research methods series. SAGE, London.

Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk,

M.A., 2006. On the value of static analysis for fault detection in

software. IEEE Transactions on Software Engineering 32, 240 – 253.

Appendix A. LIDEC ATTRIBUTE

DESCRIPTION

This appendix provides a detailed description of the attributes and each

attribute value in LiDeC.

A

Life-cycle phase 1 – Recognition

Table 32 LiDeC Scheme – Attributes in the Recognition phase

Attribute Attribute Description Values Value Description

Timing/Detection

[RTD]

When was the defect discovered? Date

[RTD1]

Date/project phase of detection

Timing/Preferred

[RTP]

Was the defect discovered in the proper

test phase according to the goals of the

phase?

Yes

[RTP1]

The discovery was timely; there was no previous test phase in

which the specified goal included detection of this type of defect

No

[RTP2]

This value is only provided if it is apparent that the defect

should have been caught in an earlier test phase.

Also specify which test phase, e.g. E1-Ex, M, VP, TT

Affect SW

[RAS]

Does the defect affect software?

 “Affect” is used here to denote either

defects that are caused by anomalies in

the software or whose resolution have an

impact on software – an example of the

latter may be that dirt causes a sensor to

degrade, but if the system fails to detect

this (through diagnostic software) and

notify the driver of degraded

performance, it still affects software.

This attribute will be used as a way to

filter the defect reports as we are mainly

interested in defects that are either

caused by software or where the

resolution may affect the software

Yes

[RAS1]

The defect affects software

No

[RAS2]

The defect has no relationship with software at all, e.g. testing of

vibration resilience of the physical component failed

1
8

4

Attribute Attribute Description Values Value Description

Detection activity

[RDA]

What was done when the defect was

discovered?

Detection activity captures the type test

action that was conducted to detect the

defect.

Inspection /

Requirements

[RDA11]

The defect was detected during inspection of requirements

specification

Inspection /

Design

[RDA12]

The defect was detected during inspection of design

specification, e.g FMEA

 Component test /

VCC

[RDA21]

The defect was detected while running a unit test in-house, e.g.

unit testing of an isolated component using a SimuLink model.

 Component test /

Supplier

[RDA22]

D.o but the defect was detected by the supplier

System test /

System-bench

[RDA31]

The defect was detected while running an integration test

(multiple cooperating components realizing functionality) on a

simulation of the target platform done in-house. As “simulation”

of the target platform are considered “box-car” (early E-series)

as well as “mules” (M-series)

System test /

Whole car-bench

[RDA32]

This refers to system testing done on system simulation on rigs

with the whole electrical system present; though not necessarily

with the final hardware present

E.g bench tests with the whole electrical system

Functional test /

Test track

[RDA41]

Functional testing of system using a car-build – a mule of a test

build of the final hardware. Test-track refers to testing isolated

scenarios on a test-track i.e. with real sensor input, but a

simulated test-setup (e.g. with balloon cars or dummies)

A
p

p
en

d
ix

 A
—

L
iD

eC
 A

ttrib
u

te D
escrip

tio
n

1

8
5

Attribute Attribute Description Values Value Description

Functional test /

Expedition

[RDA42]

Functional testing of the whole car using a test-build – mule or

the final hardware build.

The defect was detected on an expedition with real data

Production

platform /

Manufacturing

[RDA51]

Defect was detected during manufacturing, e.g. calibration or

configuration of a function, such as calibration of sensors in the

production line

Production

platform /

Customer reported

[RDA52]

The defect was detected by customer post-release, e.g. car owner

or maintenance staff

Urgency

[RU]

How urgently does the defect need to be

addressed?

Denotes how urgent the defect needs to

be removed from the product – thus

urgency is related to the project.

In late stages of the project defect will

naturally be more urgent than in earlier

stages. However, defects in early project

phases that are blockers (i.e. blocking

other functionality from being testable),

should be considered urgent

Immediate

[RU1]

The defect should be removed in the current development cycle;

i.e. before the next development release (e.g. detected in E3.1

and should be removed in E3.2).

E.g. defects that are blocking vital functionality should be

classified as “immediate” (as they are inhibiting testing of that

functionality)

Next major

release

[RU2]

The defect should be removed before the next major

development release.

E.g. detected in E3.x and should be removed by E4.

 Before SoP

[RU3]

The defect should be removed before the software is released,

i.e. SoP (Start of Production).

E.g. minor flaws or functionality that can be adjusted using

tuneable parameters, or documentation issues

1
8

6

Attribute Attribute Description Values Value Description

 Deferrable

[RU4]

Defects that are not considered to have much of an impact on

product, and can be deferred until later versions or revisions of

the product

Severity

[RS]

How severely does the defect affect the

product?

Severity denotes the end-user perceived

impact on the product if the defect is left

in the released product – thus severity is

related to the product (i.e. vehicle) not

the project.

Note, this attribute shall not consider the

timing of the defect detection, i.e.

regardless of when a defect is detected

during the project it shall receive the

same severity (whereas its Urgency may

vary).

Also note that end-user refer to the

intended target of the feature, e.g. vehicle

occupants as well as manufacturing and

maintenance personnel.

None

[RS1]

The defect would not be noticed by the end-user

Nuisance

[RS2]

The defect would be limited to a nuisance for the end-user –

though the product would still realize the full functional

specification.

E.g. a warning system would still be able to function in all

scenarios originally specified, but may give an increase amount

of false warnings

 Limited

functionality

[RS3]

The defect would limit the functionality of the product – e.g. the

product would still function but not to the extent originally

specified.

Show-stopper

[RS4]

A “show-stopping defect” is one that would prevent the product

from being released; e.g. defect that would result in increased

risk of injury, or that block other functions from performing

according to specifications.

Effect

[RE]

How does the defect primarily affect the

product?

Note that these may be overlapping to

some extent but classification should be

done on the effect, not the cause (as life-

Capability /

Undesired

activation

[RE11]

The defect causes the function to trigger on a false positive

A
p

p
en

d
ix

 A
—

L
iD

eC
 A

ttrib
u

te D
escrip

tio
n

1

8
7

Attribute Attribute Description Values Value Description

cycle phase 1 is focussed on the detection

of defects) – e.g. low performance of the

software in a sensor may affect the

functionality of the system, thus defect

should be classified as 'Functionality'

Capability /

Inactive despite

True Positive

[RE12]

The defect inhibits activation of functionality despite presence

of a true positive

 Capability /

Other capability

related defect

[RE13]

The defect affects the capability of the product; i.e. the product

does not behave as intended or to the extent intended

Maintainability

[RE4]

The defect would affect the maintainability of the system; e.g.

documentation issues, too complex design, cryptic internal error

codes, wrong or missing diagnostic codes.

Usability

[RE5]

The defect affects the systems ease of use; e.g. complex user

interface, missing or wrong visual cues to driver

 Configurability

[RE6]

The defect affects configuration or calibration of the function;

e.g. configuration of vehicle model variations or calibration of

components during manufacturing

Testability

[RE7]

The defect affects the testability of the product; e.g. radar

software the fails to detect a balloon car at the test site

Functional Safety

Impact

[RFS]

Does the defect have an impact on a

software component with ASIL-classified

requirements (ISO 26262)?

Yes

[RFS1]

The defect have an impact on ASIL-classified requirements

according to the ISO 26262 standard (ISO/DIS, 2011).

 No

[RFS2]

The defect does not affect ASIL-classified requirements.

1
8

8

Life-cycle phase 2 – Analysis

Table 33 LiDeC Scheme – Attributes in the Analysis Phase

Attribute Attribute Description Values Value Description

Artefact

 [AA]

Which software work product

contained the defect?

This attribute relates to the work

product in which the fault causing

the failure was contained. Note

that the underlying reason for

introducing the fault may lie in

another work product (see

Injection activity)

Requirement /

Internal

[AA11]

Defect was contained in a requirement for the module itself

Requirements /

Internal cross-function

[AA12]

The defect was contained in a requirement the module posed on

an external module. E.g wrong required resolution posed on a

sensor which is not part of the module itself.

 Requirements /

External

[AA13]

The defect was contained in a requirement posed on the module

by another module. E.g an external module required wrong

resolution of a sensor which is part of the module itself.

Design model

[AA2]

The defect was contained in a design model, e.g logical design

(class diagram)

 Implementation /

Executable model

[AA31]

The defect was contained in a simulation model, e.g. Simulink

Implementation /

Code

[AA32]

The defect was contained in code, either written in-house or by

supplier, or code generated from models.

Note, if code was correctly generated from a defective model,

the defect should be classified as [AA31]

 Configuration

Parameters

[AA33]

The defect was contained in the tuning parameters for the

function

A
p

p
en

d
ix

 A
—

L
iD

eC
 A

ttrib
u

te D
escrip

tio
n

1

8
9

Attribute Attribute Description Values Value Description

 Tool

[AA4]

Defect was contained in tools used during development; e.g.

simulation environments for sensors

Injection activity

[AI]

In which project activity was the

defect injected?

This attribute shall capture the

reason why the defect was

contained in the work product (as

specified in the Artefact attribute);

i.e. what caused the defect to have

been introduced in the system.

Note, it may differ from the

artefact the defect was contained

in , e.g. a design defect may have

been injected due to a poor or

missing requirements

(artefact='Design model',

Injection='Requirement')

Specification

[AI1]

The defect was injected in the requirements phase; e.g. a

missing, faulty, misrepresented, ambiguous requirement caused

the defect

Design

[AI2]

The defect was injected in the design phase even though the

requirements were stated correctly; e.g. missing or faulty signal

between modules, or problems with the modularization

Implementation /

In-house model

[AI31]

The defect was injected when constructing the simulation model

in-house. Requirements and design were correctly specified, but

mistake was made in an implementation model.

Implementation /

Supplier Auto-coding

[AI32]

The defect was injected when transforming an executable model

into code by supplier. Specification and simulation model were

correct, but mistake was made in code generation by the

supplier.

Implementation /

Supplier

implementation

[AI33]

The defect was injected in implementation at the supplier side

(code not generated from simulation model by VCC);

implementation based on correct specification and design from

VCC

Configuration

[AI4]

The defect was injected in the configuration of the function

(specification, design and implementation is correct); i.e. a

faulty value of a tuning parameter

1
9

0

Attribute Attribute Description Values Value Description

Component /Asset

[AC]

Which design component

contained the defect?

This attribute shall identify the

component (at code level) at the

lowest level available.

The purpose is the attribute is to

identify which components are

most likely to contain defects.

Component name or

ID

[AC1]

A unique ID of the component containing the defect. The higher

the resolution the better

Type

[AT]

What type of defect was it?

The type attribute describes the

character of the defect. The values

of the type attribute may depend

on which artefact/component it

affects

Data

[AT1]

Defect in data definition, initialization, mapping, access, or use,

as found in a model, specification, or implementation (IEEE,

1993).

E.g. initialization of a variable, incorrect assignment of a value,

incorrect cardinality in data model, using wrong variable,

assuming wrong variable type (e.g. assuming vehicle speed in

km/h when it is stored as mph)

Interface / Timing

[AT2]

Defect in specification or implementation of an interface

between two design components, e.g. missing or wrong signals

specified or errors in the timing of communication

 Tooling

[AT4]

The defect is present in tools used in development; e.g.

simulation environments that are used in development (e.g.

simulating external components such as sensors etc.)

Logic / Computation

[AT3]

A defect in the logic of execution; eg. an algorithmic defect

either because of a faulty implementation of a correct

specification or a faulty specification (or any combination

thereof)

A
p

p
en

d
ix

 A
—

L
iD

eC
 A

ttrib
u

te D
escrip

tio
n

1

9
1

Attribute Attribute Description Values Value Description

 Tuning

[AT5]

The defect relate to tuning parameters of the function.

E.g. missing or misinterpreted tuning parameters (errors in

design) or faulty values assigned to tuning parameters

(implementation)

Description

[AT6]

Defect in specification, e.g. missing or wrong description (such

as a requirement)

Standards

[AT7]

Non-conformity with a defined standard

1
9

2

Life-cycle phase 3 – Resolution

Table 34 LiDeC Scheme -- Attributes in the Resolution Phase

Attribute Attribute Description Values Value Description

Timing/Removal

[ET]

When was the defect removed?

Note, this does not necessarily

mean that the defect was fixed (see

attribute 'Resolution state' in life-

cycle phase 4)

Date / Project phase

[ET1]

The date/project phase when the defect was considered removed

from the system, i.e. when the defect report was closed.

Defect not yet closed

[ET2]

The defect has not yet been closed.

NOTE! This refers to the defect/problem report not the fault or

failure; i.e. a defect report can be closed without having the

underlying fault addressed.

Product Impact

[EI]

What is/would be the impact on the

product of a proper resolution?

Note, this is an estimate of a proper

resolution of the defect; i.e. an

issue that would require major

redesign to resolve, but that can be

worked around with a small local

fix shall be classified as a “Re-

design' (the scope of the change

made is captured by 'Resolution

state' in life-cycle phase 4)

None

[EI1]

There is no resolution (e.g. the reported defect was intended

behaviour) or the resolution has no impact on the product

Local modification

[EI2]

The resolution is limited to a fixing a local module; other

modules are not affected

E.g. modification of a tuning parameter or code modifications to

a single module that does not affect other modules

Multiple components

[EI3]

The resolution requires changes in multiple existing modules

Functional Changes

[EI4]

The resolution require a redesign, e.g. adding, removing or

redefining modules

Required Verification

Level

[EV]

What level of regression testing

would a proper resolution require?

None

[EV5]

No re-verification needed

A
p

p
en

d
ix

 A
—

L
iD

eC
 A

ttrib
u

te D
escrip

tio
n

1

9
3

Attribute Attribute Description Values Value Description

Inspection

[EV1]

Review of documentation, report or code is sufficient means of

verification/validation of the modified component/system

Component test

[EV2]

Re-verification of the modified component using recorded data

(Resim) is sufficient.

E.g. running an executable model in Simulink with the recorded

data

System test

[EV3]

Re-verification at system level using recorded data (Resim) is

sufficient

E.g. a new software build of all components of the system is

needed in order to validate the changes; it is sufficient to re-

verify the system on bench with recorded data (Resim)

Expedition

[EV4]

The resolution would need re-validation with real data, e.g. in a

full car-build on test-site or on an expedition

(“Fälttest”, “Breddprovning”)

1
9

4

Life-cycle phase 4 – Post-mortem

Table 35 LiDeC Scheme -- Attributes in the Post-mortem Phase

Attribute Attribute Description Values Value Description

Resolution state

[PS]

What was the state of the

resolution when the defect was

marked as closed?

This attribute is meant to track

how the defect was eventually

handled

Corrected

[PS1]

A proper resolution, addressing the root cause, was applied

Workaround / Fix

[PS21]

The underlying fault remains, but workarounds were made to

avoid failure. The workaround retains the intended capability of

the original specification

Workaround /

Product de-scope

[PS22]

D.o. but the workaround forced de-scoping of the system, e.g.

limiting the functionality or quality of service

No Action / Deferred

[PS31]

The defect was left in the system, and resolution deferred to a

later revision

No Action / Referred

[PS32]

The source of the defect lies in another system. Defect was

referred and closed in this system

No Action / Not

Found

[PS33]

The defect was not found again; e.g. the failure could not be

reproduced or the defect was not observed in a later revision of

the software

No Action / No

Action

[PS34]

No action taken, defect remains in system

A
p

p
en

d
ix

 A
—

L
iD

eC
 A

ttrib
u

te D
escrip

tio
n

1

9
5

Appendix B. LIDEC CLASSIFICATION

GUIDE

Figure 33 to Figure 45 show the classification guide used during the

classification sessions, as described in section 6.3 Method. Initially, LiDeC

was presented to the person responsible for defect classification by an

overview of the classification scheme. The overview was described by using

Figure 33, in which all available LiDeC attributes are represented and

grouped into the phases of the defect life-cycle (further described in Defect

classification schemes on page 62).

During the classification sessions, each defect was classified according to

the attributes in LiDeC. For each attribute, the developer was shown the

corresponding image (shown below). In each image, the question that guides

the reporter is shown at the top in an orange rectangle (e.g. “What was done

when the defect was detected?”). The values that can be assigned the attribute

are shown in blue rectangles below the question. The white boxes, shown e.g.

in the attribute “Detection Activity”, represent categories of values and serve

only to provide the values with a clearer structure. For instance, for the

attribute “Detection activity” the categories serve to make an initial

separation on types of activities, and then breaks down those into the sub-

activities that are to be chosen as the value for the attribute.

Note, in this appendix the guides for trivial attributes (i.e. attributes with

simple Yes/No values or dates) have been omitted.

B

198

Attribute overview

Figure 33 Overview of LiDeC attributes

 Appendix B—LiDeC Classification Guide 199

Life-cycle phase 1: Recognition – Detection of the defect

Figure 34 Classification guide for the attribute Preferred detection time

200

Figure 35 Classification guide for the attribute Affect Software

 Appendix B—LiDeC Classification Guide 201

Figure 36 Classification guide for the attribute Detection activity

202

Figure 37 Classification guide for the attribute Urgency

 Appendix B—LiDeC Classification Guide 203

Figure 38. Classification guide for the attribute Severity

204

Figure 39 Classification guide for the attribute Effect

 Appendix B—LiDeC Classification Guide 205

Life-cycle phase 2: Analysis – Investigating the cause of the defect

Figure 40 Classification guide for the attribute Artefact

206

Figure 41 Classification guide for the attribute Injection activity

 Appendix B—LiDeC Classification Guide 207

Figure 42 Classification guide for the attribute Type

208

Life-cycle phase 3: Resolution – The action leading to defect removal

Figure 43 Classification guide for the attribute Product impact

 Appendix B—LiDeC Classification Guide 209

Figure 44 Classification guide for the attribute Required verification level

210

Life-cycle phase 4: Post-mortem – Final state of defect

Figure 45 Classification guide for the attribute Resolution state

Appendix C. EXAMPLE

CLASSIFICATION

In this section the classification of two example defects is described. Due to

confidentiality reasons, the defects described below are construed examples.

The example defects, however, are inspired by defect reports encountered

during the case-study.

Example 1
The first defect caused a faulty diagnostic flag to be set indicating that part of

software installed on an ECU failed. The defect was detected during testing of

the vehicle at the factory manufacturing line late in the project. The problem

occurred when updating the software and its configuration parameters on the

ECU. In the process of deploying software and configuration parameters, the

ECU was first set into a programmable mode in which a diagnostic routine is

executed; it was in the diagnostic routine that the faulty error-mode was set.

During the root cause analysis it was found that the flag indicating

component’s (programmable) mode was stored to an incorrect output port

which caused the programmable mode to be interpreted as a faulty error

mode. Although the defect manifested itself during manufacturing (when

software was first deployed to the ECU), it could occur during the software

maintenance phase when software updates are deployed to the ECUs. It

would, however, have had no effect on the normal operational mode of the

component, the system or the complete vehicle (e.g. the driver would not have

been affected by the defect).

C

212

Recognition phase

The date on which the defect report was submitted in the issue management

system was used for the Timing/Detection attribute (2009-04-14). In addition,

the development phase in which the detection was made was also noted

(though this is redundant information, as the development phase can be

derived from the date using the project plan, but it was convenient to have that

information readily available). The detection time was considered

(subjectively by the reporter) as significantly late in the project. The reporter

considered it to be a software unit problem and that it should have been

detected in an earlier test phase (either during unit testing at the supplier side,

or during unit testing at the OEM side; the internal name of the preferred test

phase was U2). The defect was, furthermore, considered to affect software, as

(according to the reporter) it was probably an implementation error that led to

the wrong diagnostic flag being set.

The defect was discovered during the testing of the manufacturing line

when the car was assembled in factory, thus the value Manufacturing was

selected for the Detection Activity attribute. As the defect in this case made it

difficult to assess whether deploying the software to the ECU was successful

it was considered impossible to release the software into production in its

current state, and its resolution to be very urgent; the value Immediately was

chosen for the Urgency attribute (as the defect was discovered late, a fix was

promptly needed) and the value Show-stopper for the Severity attribute (as the

software could not be released while containing the defect).

The Effect attribute was set to Maintenance as the main effect of the defect

related to problems when software and configuration parameters were to be

updated. The defect would, furthermore, have affected any future maintenance

updates to both software and configuration parameters. Finally, the defect was

considered to have no impact on any ASIL-classified requirements (if the

software update had truly failed, it would have successfully triggered other

diagnostic functions indicating that the component was not operating

properly), it was thus considered not to have any impact on functional safety

(as defined by ISO 26262).

Table 36 summarizes the classification for the Recognition phase.

 Appendix C—Example classification 213

Analysis phase

During the root cause analysis of the failure it was found that the defect was

contained in the binary code deployed on the ECU. It was, furthermore, found

that the requirements clearly stated to which port the diagnostic flag should be

written, and the executable model which served as base for the binary code

was correctly implemented according to the requirements. Consequently, the

fault was introduced during transformation from executable model to source-

code; an activity done by a supplier. Therefore, the attribute Artefact was

assigned the value Implementation / Code, and the attribute Injection Activity

was assigned the value Implementation / Supplier auto-coding. The

Component/Asset attribute was assigned the company’s internal code

identifying the software module as well as the software version.

Finally, the Type attribute was assigned the value Data, because the

underlying cause of the defect related to data being written to the wrong

location. Note that the Type attribute in IEEE Std. 1044 has a higher

resolution which allows for more precision in defect analysis. In our case,

however, such resolution is not possible, as the source-code (which carries the

necessary information to allow for more detailed classification) is owned by

the supplier. In effect, LiDeC’s Type attribute captures a black-box alternative

to the Type attribute in IEEE Std. 1044.

Table 37 summarizes the classification for the Analysis phase.

Table 36. Example classification; Example 1, Recognition phase

Attribute Value

Timing / Detection 2009-04-14 (Manufacturing test)

Timing / Preferred U2 (unit testing)

Affect SW Yes

Detection activity Manufacturing

Urgency Immediate

Severity Show-Stopper

Effect Maintenance

Functional Safety Impact No

214

Resolution

The urgency of the defect (due to its late discovery) resulted in the resolution

being applied in the same development phase in which it was discovered; the

date (and development phase) of successful verification of the resolution was

noted as the Removal time.

The necessary resolution was determined to be confined to a single

software module, as no other components would need any modifications; thus

the Product Impact attribute was set to Local modification. Finally, a test

report from the supplier showing successful test of the binary component was

considered sufficient means of verification; thus Inspection was set as value

for the attribute Required Verification Level.

Table 38 summarizes the classification for the Resolution phase.

Post-mortem

In the final defect life-cycle phase, the single attribute Disposition records

what finally was done to resolve the defect. In this example, a proper

resolution was applied; thus the value Corrected was assigned to the

Disposition attribute.

Table 39 summarizes the classification for the Post-mortem phase.

Table 37. Example classification; Example 1, Analysis phase

Attribute Value

Artefact Implementation / Code

Injection Activity Implementation / Supplier auto-coding

Component / Asset XYZ-1256

Type Data

Table 38. Example classification; Example 1, Resolution phase

Attribute Value

Timing / Removal 2009-05-09 (Manufacturing test)

Product Impact Local modification

Required Verification Level Inspection

 Appendix C—Example classification 215

Example 2
The defect was found in a feature that issues an audible warning if the driver

is unintentionally drifting off-lane. The function monitors the vehicle’s

position by tracking the lane markers in the road and gives a warning signal

when a lane is about to be crossed and the driver does not use the turn signals.

During the first field test (also called expedition) – where a mature build of

the full vehicle is tested on a large variety of road types – it was found that the

sensitivity of the warning was too high, resulting in frequent false alarms. The

problem was detected on specific road types were the lanes were narrower

than what had been anticipated.

Recognition phase

The date on which the defect report was submitted in the issue management

system was used for the Timing/Detection attribute (2008-10-04) and noted

along with the development phase in which it was detected. The detection

time was considered (subjectively) by the reported as appropriate. The defect

was, furthermore, considered to affect software, as (according to the reporter)

it was the behaviour of the software that caused the problem.

The defect was discovered during the functional testing of the vehicle on an

expedition, thus the value Functional Test / Expedition was selected for the

Detection Activity attribute. As the defect in this case caused considerable

nuisance to the driver on specific road types, it was considered to impossible

to release the software into production with the defect remaining (the value

was thus set to Show-stopper). As the resolution of the defect was considered

to need further testing (on the problematic road type, as well as other types to

ensure no regressions had been introduced) and that additional development

releases had already been planned for testing, the Urgency attribute was set to

Next Major Release.

The Effect attribute was set to Capability / Undesired Activation as its main

effect related to false warnings. Initially, there was some confusion whether

the defect should be classified as having effect on the Usability. However, as

Table 39. Example classification; Example 1, Post-Mortem phase

Attribute Value

Disposition Corrected

216

the problem was not related to the way the user was warned (i.e. through an

audible cue), the problem did not have impact on usability.

Finally, the defect was considered to have no impact on any ASIL-

classified requirements, it was thus not considered to have any impact on the

functional safety (as defined by ISO 26262). If, on the other hand, the feature

had been able to autonomously intervene in steering or braking, it would

indeed have had impact on functional safety.

Table 40 summarizes the classification for the Recognition phase.

Analysis phase

The problem occurred in running code (i.e. in the binary code of on one of the

software components realizing the feature). However, as the feature was

designed to be configurable (using tuning parameters) with respect to the

width of the lanes, the Artefact attribute was set to Implementation /

Configuration Parameters. It was, furthermore, found that the requirements

specification for the feature did not take the particular road type into

consideration. Additionally, the design as well as the executable model and

the binary code were found to have been correctly derived and implemented

from the requirements specification. Consequently, the attribute Injection

Activity was assigned the value Specification. The Component/Asset attribute

was assigned the company’s internal code identifying the software module as

well as the software version.

Finally, the Type attribute was assigned the value Description because the

requirements did not take the particular road type into consideration.

Table 41 summarizes the classification for the Analysis phase.

Table 40. Example classification; Example 2, Recognition phase

Attribute Value

Timing / Detection 2008-10-04 (First full vehicle functional

test)

Timing / Preferred -

Affect SW Yes

Detection activity Expedition

Urgency Next major release

Severity Show-Stopper

Effect Capability / Undesired activation

Functional Safety Impact No

 Appendix C—Example classification 217

Resolution

The resolution was applied in next major release of the software; the date (and

development phase) of successful verification of the resolution was noted as

the Removal time.

The necessary resolution was determined to be confined to one component

(specifically, the configuration parameters of a software module). However, as

the particular module also provided other features in the vehicle with data,

and thus might be affected by the modification, the Product Impact attribute

was set to Multiple Components. Finally, it was considered necessary to verify

the resolution in a full vehicle build, where all features dependent on the

modified software model were tested; thus Expedition was set as value for the

attribute Required Verification Level.

Table 42 summarizes the classification for the Resolution phase.

Post-mortem

The resolution of the defect was finally done in two parts: first, the

configuration parameters of the software module were modified, and; second,

the requirement specification was updated with a description of the road type

that caused the problem. Thus, the value Corrected was assigned to the

Table 41. Example classification; Example 2 Analysis phase

Attribute Value

Artefact Implementation / Configuration Parameters

Injection Activity Specification

Component / Asset ABC-5431

Type Description

Table 42. Example classification; Example 2, Resolution phase

Attribute Value

Timing / Removal 2009-02-09 (Second full vehicle functional

test)

Product Impact Multiple modules

Required Verification Level Expedition

218

Disposition attribute. If, on the other hand, the requirements specification had

not been updated, it should have been set to Work-around / Fix as the problem

would have been mitigated, but the root cause not properly removed.

Table 43 summarizes the classification for the Post-mortem phase.

Table 43. Example classification; Example 2, Post-Mortem phase

Attribute Value

Disposition Corrected

Appendix D. IEEE STD. 1044

COMPLIANCE MATRIX

Table 44 shows the IEEE Std. 1044 compliance matrix (see table 3 in (IEEE,

1996)). Attributes from IEEE Std. 1044 that are not available or that are

implicit in LiDeC other attributes are shown in shaded cells. Attributes that

have been redefined in LiDec are marked with an asterisk(
*
). For more

detailed information about the mapping, refer to Appendix E.

Table 44 IEEE Std 1044 compliance matrix

IEEE Std

1044-1993

attribute

LiDeC

equivalent

attribute

Mandatory

in IEEE Std.

1044-1993

Comment

Actual cause Injection

activity*
√

Whereas IEEE records actual

cause as the artefact that caused

the defect, LiDeC records in

which activity it was injected

Corrective action Not available

Customer value Implicit

Implicit in LiDeC.Severity

Disposition Resolution

state
√

Mission/safety Implicit

Implicit in LiDeC.Severity

D

220

IEEE Std

1044-1993

attribute

LiDeC

equivalent

attribute

Mandatory

in IEEE Std.

1044-1993

Comment

Priority Implicit

Implicit in LiDeC.Urgency

Product status Severity

Project activity Detection

activity
√

Project cost Product

impact*
√

The level of impact on the

product – in terms of required

change – is considered a better

estimate of “cost” than money

Project phase Timing /

Detection
√

Project quality /

reliability

Not available

Project risk Not available

Project schedule Re-verification

level*

√

Whereas IEEE.ProjectSchedule

is described as “an appraisal of

the amount of effort required to

address the defect”, LiDeC

instead expresses it in terms of

the amount of re-verification

required. This is because

verification is a costly activity,

and it is a more convenient way

for individual teams to estimate

impact on schedule

Repeatability Not available

Resolution Urgency*

√

Whereas the LiDeC.Urgency

records how quickly the defect

needs to be removed, the

attribute IEEE.Resolution also

records the type of resolution

applied

 Appendix D—IEEE Std. 1044 Compliance Matrix 221

IEEE Std

1044-1993

attribute

LiDeC

equivalent

attribute

Mandatory

in IEEE Std.

1044-1993

Comment

Severity Severity*

√

The IEEE attribute also

includes whether a solution

exist in the severity attribute.

LiDeC, however, assesses

“Severity“ on the observed

failure, and does thus not take

the availability of a fix into

consideration

Societal Functional

Safety Impact

The attribute Functional safety

impact captures whether the

defect may risk causing harm to

persons (as defined by the ISO

26262 (ISO/DIS, 2011)). This

maps to the IEEE Std. 1044

attribute Societal in that it

captures data about the impact

of the defect on the

environment (e.g. driver,

passenger or other persons in

the vehicle’s surroundings).

Source Artefact
√

Suspected cause Not available

Symptom Effect
√

Type Type
√

Appendix E. MAPPING BETWEEN

IEEE STD. 1044 AND LIDEC

This appendix provides a detailed mapping between the attributes in LiDeC

and in IEEE Std. 1044.

E

Table 45 Mapping between IEEE Std. 1044 and LiDeC

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

Recognition Project

Activity

What were you doing when

the anomaly occurred?
Detection

activity

How was the defect

detected?

 Project Phase In which life cycle phase is

the product?
Timing /

detection

When was the defect

detected?

 Suspected

cause

What do you think might

be the cause?

n/a

Speculation of the cause would

mainly be of interest when analysing

the fault. This is done as part of the

defect management process at the

company, but is not of interest for our

analysis

 Repeatability Could you make the

anomaly happen more than

once?

n/a

This attribute is captured by

Disposition

 Symptom How did the anomaly

manifest itself?
Effect What requirements

category does the defect

affect?

The IEEE Std. 1044 has a very

detailed symptom classification. In

our approach we analyse instead the

type of impact the symptom would

have on the product; e.g. Capability,

maintainability etc

 Product

Status

What is the usability of the

product with no changes?
Severity How severely does the

defect affect the

product?

2
2

4

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

n/a

Timing /

Preferred

When should the defect

have been detected?

The attribute records the developers

(subjective) opinion on whether this

defect's discovery was timely or if

there was an earlier project phase in

which it reasonably should have been

detected. No such attribute exist in

IEEE 1044

n/a

Affects

Software

Does the defect affect

software?

As the development of automotive

software is a hybrid of hardware and

software development, and that our

main interest lies in studying aspects

related to software development, we

use this attribute to make an initial

coarse filtering of the defects

Investigation Actual cause What caused the anomaly to

occur?
Injection

Activity

When was the defect

introduced in the

product?

Closely related to IEEE.Source and

LiDeC.Component.

Whereas the IEEE maps this on

product parts LiDeC captures the

activity in which the defect was

injected; i.e. a defect discovered in

code may have been introduced due

to ambiguous requirements.

 Source Where was the origin of the

anomaly?
Artefact Which software work

product contained the

defect?

A
p

p
en

d
ix

 E
—

M
ap

p
in

g
 b

etw
een

 IE
E

E
 S

td
. 1

0
4

4
 an

d
 L

iD
eC

2

2
5

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

 Type What type of

anomaly/enhancement at

the code level?

Type What type of defect was

it?

Directly mappable, though LiDeC

use a much higher abstraction level of

the selection of types. There were still

cases where the distinction between

types was not straight-forward –

mainly because the types were not

easily understandable (rather than

lack of understanding of the defect

itself)

Action supporting data item

Component/

Asset

Which design

component contained

the defect?

The attribute captures which part of

the product contained the defect. This

relates to IEEE.ActualCause and is

also part of the supporting data items

in the Action life-cycle phase,

although that data item captures

which part of the product will need

changing (which may not be the same

as the one containing the defect!)

2
2

6

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

Action Resolution What action to take to

resolve the anomaly?
Urgency How urgent is it to

resolve the defect?

LiDeC.Urgency also maps to the

IEEE.Priority attribute. However,

investigating the defect to arrive at

the priority requires resources; we

have in LiDeC chosen to record the

Urgency attribute on failure-level

instead of on fault level.

Consequently, 'Urgency' relates to

how urgent it is to remove the

manifestation of the fault rather than

the fault itself (which the

IEEE.Priority attribute specifies)

 Corrective

action

What to do to prevent the

anomaly from happening

again n/a

Whereas IEEE records the exact

resolution we have chosen instead to

record the extent of impact the

resolution would have on the product

(see IEEE.ProjectCost).

Action supporting data item

Removal

Time

When was the defect

closed?

LiDeC captures the time of closing

the problem report (regardless of the

state of the resolution) in order to be

able to measure the longevity of

defects and the project workload.

This information is interesting as it

serves as a measurement of the

pressure on the project – assuming

mistakes are more likely to be made

under pressure one would like to keep

the number of open defects to a

minimum

A
p

p
en

d
ix

 E
—

M
ap

p
in

g
 b

etw
een

 IE
E

E
 S

td
. 1

0
4

4
 an

d
 L

iD
eC

2

2
7

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

Impact

Identification

Severity How bad was the anomaly

in more objective

engineering terms?

Severity What would the impact

on the product be if

defect remain in system

on release?

Also see IEEE.ProductStatus

 Priority Rank the importance of

resolving the anomaly

(subjective)

(Urgency) How urgent is it to

resolve the defect?

See the IEEE.Resolution attribute

 Customer

value

How important a fix is to

customers? n/a

This is implicit in the LiDeC.Severity

attribute

 Mission /

Safety

How bad was the anomaly

with respect to project

objectives or human well-

being?

n/a

This is implicit in the LiDeC.Severity

attribute

 Project

schedule

Relative effect on the

product schedule to fix
Required

Verification

Level

What level of regression

testing would a proper

resolution require?

Required effort to apply a resolution

is not only captured by the amount of

necessary modification to the

product. As automotive software have

very high reliability requirements,

V&V activities require substantial

amount of resources. This attribute

records the estimated level of

regression testing that a proper

resolution would require (as order of

magnitude)

2
2

8

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

 Project cost Relative effect on the

project budget to fix
Product

Impact

What would the impact

on the product be if a

proper resolution was

applied? Value is

intended as order of

magnitude – from no

impact, local

modification to a

system re-design

Whereas IEEE.ProjectCost specifies

to record an appraisal of the cost of a

resolution in dollars, LiDeC instead

records an estimation of the impact a

resolution would have on the product

(in terms of the amount of

modification needed). We stipulate

that the impact of a resolution on the

product will correlate with the cost of

applying it; the impact, however, is

easier to estimate by the person

reporting the defect

 Project risk Risk associated with

implementing a fix n/a

 Project

quality /

reliability

Impact to the product

quality or reliability to

make the fix
n/a

A
p

p
en

d
ix

 E
—

M
ap

p
in

g
 b

etw
een

 IE
E

E
 S

td
. 1

0
4

4
 an

d
 L

iD
eC

2

2
9

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

 Societal Impact to society of

implementing the fix
Functional

Safety

Impact

Does the defect have an

impact on a software

component with ASIL-

classified requirements

(ISO 26262)?

The attribute Functional safety

impact captures whether the defect

may risk causing harm to persons (as

defined by the ISO 26262 (ISO/DIS,

2011)). This maps to the IEEE Std.

1044 attribute Societal in that it

captures data about the impact of the

defect on environment (e.g. driver,

passenger or other persons in the

vehicle’s surroundings).

Note, the Functional Safety Impact

attribute is captured in the

recognition phase

Disposition Disposition What actually happened to

close the anomaly
Resolution

State

What was the final state

of the resolution when

defect was closed?

Directly mappable (values modified)

2
3

0

	Tom sida

