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Abstract

The electromechanical oscillations damping through the synchronous generator is analyzed in this work.

Traditionally, this has been achieved using a conventional Power System Stabilizer PSS controller, which

has the aim of enhancing the dynamic stability of the generator through the excitation control system, there-

fore a PSS tuning methodology is developed and tested. Moreover, other damping control alternative for

the synchronous generator based on signal estimation theory is proposed in this thesis.

Initially, a detailed modelling of the Synchronous Machine Infinite Bus SM-IB system has been accom-

plished in order to study the electromechanical interaction between a single generator and the power system.

The SM-IB system model is the base to analyze and to tune the PSS controller. It was concluded that it is

not necessary to include the damper windings dynamics in the system phase lag analysis since, in the PSS

frequency range of interest, the biggest phase lag difference including them was about 10◦. This difference

could be considered not sufficient to include the sub-transient model in the PSS tuning analysis. Therefore,

the linearized transient model of the system is a suitable model for the tuning process.

Secondly, the main concepts for a PSS tuning methodology, which is based on linear control system theory,

are established. Specifically, frequency response techniques are used to define the setting for the lead lag

filters time constants and PSS gain. This is supported on the fact that the predominant trend in the industry

is still to use frequency response based tuning methods [12], even more in the case of PSS providers who

should tune the controller having detailed information about the generator but not exact details about the

connecting grid. The methodology is implemented as a software tool in Matlab/Simulink R2011b using

the mathematical model of the excitation system provided by the company VG Power AB and giving the

option to chose between static and rotating type of exciters; it is also designed considering the rotor speed

change as input signal to the PSS. The performance of the PSS with the achieved tuning is validated via

simulations in the complete SM-IB system model. Furthermore, a sensitivity analysis of the local oscillation

mode damping to changes in the system operating point is carried out verifying the robustness of the tuning

process. In all analyzed cases, the minimum damping of the local mode was never less than 10%.

Finally, the application of a Phasor Power Oscillation Damping POD controller to the excitation control

system in the synchronous generator is studied. Nowadays, POD for inter-area oscillation modes in power

systems is also achieved through FACTS. Control structures using low-pass filter based and recursive least

square based estimation methods to extract the oscillatory component of a signal has been successfully

applied to control FACTS [3], [17] and [5] achieving damping. The same idea is used in this work to define

an alternative controller for the generator which is based on a low-pass filter based signal estimation algo-

rithm. The analysis is done again using the SM-IB system. The obtained results indicate that the alternative

controller is able to damp successfully the local oscillation mode that appear after applying a disturbance to

the system. However, deeper studies are needed in order to be able to compare fairly the performance of the

PSS and the Phasor POD controller when they are applied to the synchronous generator. Additionally, the

proposed control approach should be test in a power system model of higher order. These are recommended

topics for future work.

Index Terms: Synchronous Generator, PSS Tuning, Signal Estimation, Phasor POD Controller.
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Chapter 1

Introduction

1.1 Problem Background

The increasing magnitude and complexity of interconnected power systems due to competitive energy mar-

kets, economy and population development have created the need to operate the power systems close to

their capacity limits. This leads sometimes to stability problems or poor dynamic behaviours like power

oscillations. These oscillations can cause a reduction of the system components lifetime, expensive opera-

tions of the electrical grids and in the worst case, risks of partial system collapses. On the other hand, in the

synchronous generator, the damping that the field and damper windings provide to the rotor oscillations is

weakened due to excitation control system action. The reason for this is that in the rotor circuits appear ad-

ditional currents induced by the voltage regulation and those currents oppose to the currents induced by the

rotor speed deviations [18]. Therefore, an additional stabilizing signal was needed and the Power System

Stabilizer PSS was developed with this aim [14].

The PSS is a feedback controller, part of the control system for a synchronous generator, which provides

an additional signal that is added to the input summing point at the Automatic Voltage Regulator AVR. The

PSS main function is to damp generator rotor oscillations in the range from 0.1 to 2.5 Hz approximately,

which according to [11], are oscillations due to electromechanical dynamics and are called electromechani-

cal oscillations. By adding the stabilizing signal the PSS is expected to produce an electric torque component

that counteracts the mechanical dynamics. The produced electric torque component should be in phase with

the deviations of the generator rotor speed in order to be able to damp the oscillations.

Different input signals have been used to extract the rotor oscillations. The most common input signals

are the active power, the terminal frequency and the shaft speed [1], [14], [18]. In the classical PSS, the in-

put signal passes through a washout filter which is a high pass filter that prevents the PSS to act when slow

changes (operating point changes) occur. This filter defines the frequency from which the PSS begins to

operate. The PSS is also constituted by a phase compensation algorithm by using lead lag filters, which are

introduced to supply the phase shift needed to compensate for the phase lag between the excitation system

input and the resulting electric torque.

To provide effective damping and ensure the stability of the system, the PSS should be carefully tuned.

The tuning process is a topic of big interest for excitation systems and PSS manufacturers, who should

complete the commissioning of a controller with a suitable and robust tuning according to the specific

generator where the PSS is added and to the different operating conditions of the system. Therefore, ana-

lytical methodologies to tune the PSS in order to achieve the mentioned conditions becomes of relevant

importance. The task of controller tuning should be supported in formal methods and not only in the

knowledge generated by the field experience. Several methods have been used and are available in the

literature to tune the PSS. Those methods could be mainly classified in linear and non-linear approach, as

described in [4]. Among the linear design methods are: Pole Placement, Pole-Shifting, Linear Quadratic

Regulator Formulation, Linear Matrix Inequalities, Linear Optimal Control, Quantitative Feedback The-

ory, Eigenvalue Sensitivity Analysis, Sliding Mode Control and Conventional P-Vr Method. Among the
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Chapter 1. Introduction

non-linear methods of design are: Adaptive Control, Genetic Algorithm, Tabu Search, Particle Swarm Op-

timization, Simulated Annealing, Neuronal Networks, Support Vector Machine, Fuzzy Logic, Rule-Based

Method, Lyapunov Method, Frequency Response Methods, Dissipativity Methods, Agent Technology, Gain

Scheduling Method, Phasor Measurement, Optimization Methods and H∞ Based Optimization [4].

However, two important aspects should be considered at this point regarding the tuning and performance

of the classical PSS for electromechanical oscillation damping:

• First, a difficulty of the PSS tuning appear when it is consider that the modes of oscillations that

must be compensated by the controller vary with the operating point of the system and the network

reactance seen at the generator terminals [21]. The lead lag filters are to be design to provide damping

for a fixed oscillation frequency or a narrow range of frequencies close to it. However, the power

system is a dynamic system and other poorly damped oscillations modes can appear. Therefore, the

good performance of the PSS is limited to an operating point or a narrow frequency range for which

it is tuned.

• Second, the PSS is defined to provide damping for local area oscillations. The traditional PSS tuning

process is based on a Synchronous Machine Infinite Bus SM-IB model, which doesn’t allow consi-

dering the entire dynamic interactions at which the generator will be exposed to. That may define

the oscillations modes that the PSS should damp and therefore limiting its effectiveness in damping

inter-area oscillations. Additionally, for damping both, local and inter-area modes, it is required a

phase compensation over a wider frequency range, which may be difficult to achieve.

The classical PSS drawbacks makes it interesting to study other types of control structures. Power Osci-

llation Damping POD in the power system has been also achieved nowadays through FACTS controllers.

The conventional control strategy for FACTS to provide POD is similar to the one used for the generator

using the classical PSS (a cascade of washout and lead lag filters). However, the same limitations described

before are valid in this case; adding the fact that the slow response of the washout filters causes a slow

response for the FACTS control system. Consequently, other control structures are being investigated and

implemented to control FACTS in order to provide a proper injection of active and reactive power to the

grid that allows to obtain electromechanical oscillations damping, specifically for inter-area modes [3], [6].

Therefore, it is interesting to investigate if those other control structures, which differs mainly in the way

how the oscillation angle is extracted, could be implemented in the generator control system to overcome

the presented difficulties of the classical PSS based on lead lag filters. This analysis would be of interest for

the academy and the industry.

Finally, this project will be developed in close collaboration with the company VG Power AB, manu-

facturer of synchronous generators and provider of excitation systems, which is interested in a software tool

based on an analytical method to tune the classical PSS parameters. The advantage of the tool is that it will

allow having an initial settings which could be slightly modified during the PSS commissioning process.

1.2 Purpose

The purpose of this master thesis project is to develop a methodology to tune the classical PSS applied

to the synchronous generator with particular focus on the lead lag filters. Additionally, the aim of this

work is extended to study the application of an alternative control structure to the generator for damping

electromechanical oscillations, which is based on signal estimation theory.

1.3 Scope

The tuning algorithm to be developed is constrained to an analysis in a SM-IB model. Moreover, the analysis

of the PSS performance and the application of the other control structure is conceived as a theoretical

analysis with the results supported by simulations.

2



1.4. Method

1.4 Method

The first step is to develop a SM-IB model in MATLAB. The AVR, exciter and PSS will be modelled

in MATLAB/Simulink according to information provided by VG Power AB. The next step is to perform

the PSS tuning analysis using the SM-IB model. For this task MATLAB Control System Toolbox will be

used to build an automatic tool to tune the lead lag filters in the PSS compensation stage. A detailed study

of Synchronous Machine Modelling, Control Theory, Frequency Domain Techniques and Modal Analysis

needs to be done in order to define the final tuning methodology that will be programmed in MATLAB.

Additionally, commissioning and field PSS tuning experience by VG Power AB will enrich the methodol-

ogy.

After the MATLAB tool has been built and test, a theoretical analysis of the PSS performance to damp

electromechanical oscillations will be carried out. Other control structure reported in the literature that is

being used in the power system to damp oscillations will be analyzed considering aspect as principle of

operation, advantages and drawbacks. A deep study of that control structure will open the possibility to

evaluate if it can be implemented as a controller in the synchronous generator. Simulations will be per-

formed.

Finally, all the studies and simulations will be presented in a final report of the thesis project including

detailed description and instructions how to use the tuning software. It is also important to mention as part

of the method of working in this project that periodical meetings will be held with VG Power AB engi-

neers for technical discussions, transfer of information and required data and to evaluate the progress of the

project. However, the thesis will be developed at Chalmers University of Technology.
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Chapter 2

Synchronous Machine Infinite Bus

Modelling

In this chapter the modelling stages of the SM-IB system necessary to study its dynamic behaviour are

presented. A diagram of the SM-IB system is shown in Fig. 2.1. The synchronous machine is connected to

the infinite bus through a transmission system represented by a transformer and a line with reactance and

resistance Xt, XL, Rt and RL respectively.

Fig. 2.1 Diagram of the SM-IB System

The SM-IB system can be considered as a theoretical simple system that allows to study the electrome-

chanical interaction between a single generator and the power system. It is not useful for studies of large

power systems but it helps to understand the effect of the field, damper circuits and the excitation system in

the dynamic response of a single generator [11]. The SM-IB system model is also the base to analyze and

to tune the PSS controller to enhance the dynamic stability of the generator through the excitation control

system. Different degree of details are presented in the complete and linearized models of the SM-IB system

described in this chapter. The linearized model will be a suitable model for PSS tuning while the complete

one will allow to test the results reached from the PSS tuning process and from the application of other

control structures to damp power oscillations in the power system. The parameters of the test generator and

the models used for the excitation system are provided by VG Power AB and are presented in Appendix A.

2.1 SM-IB Complete Model

The model developed in this section includes a detailed mathematical model of the synchronous generator

which consider stator and rotor windings flux dynamics and rotor mechanical dynamics. It also includes the

mathematical model of the transmission system, current dynamics and the infinite bus, which is represented

as a constant voltage. The modelled system is shown in Fig. 2.1.

It is assumed that the generator to be modelled has three stator windings and in the rotor, one field

winding which is connected to a source of direct current, and three damper or amortisseur windings which

is assumed to have a current flowing in closed circuits, as it is shown in the circuit of Fig. 2.2. From the

figure it is also observed that the rotor circuit is in dq coordinates. In the model, the field flux is considered

to be aligned to the d-axis, where there is also a damper winding 1d. The other two damper windings 1q and

2q are placed in the q-axis. The dq reference system is a rotating system and to express the stator circuit in

5



Chapter 2. Synchronous Machine Infinite Bus Modelling

the same reference, the dq Transformation is used, specifically Power Invariant Transformation [11]. The

transformations equations for three phase systems are presented in Appendix B. The angle θ in Fig. 2.2

is the transformation angle and it represents the angle by which the d-axis leads the magnetic axis of the

a-phase winding [11].

Fig. 2.2 Synchronous Machine Stator and Rotor Circuits

The equations of the synchronous machine that are presented as follows are stated under generator

convention for polarities (positive direction of stator currents going out of the machine) and assuming

positive direction of field and damper windings currents coming into the machine [11]. In the equations,

including the ones of the external network, all quantities are presented in per unit except for the time which is

presented in seconds, and balanced conditions are assumed which means that not zero sequence component

is included.

Stator Voltage Equations

Usd =
1
ω0

dψsd

dt
− ωrψsq −Rsisd

Usq =
1
ω0

dψsq

dt
+ ωrψsd −Rsisq (2.1)

Where Usd, Usq , isd, isq , ψsd, ψsq are the stator voltage, current and flux components in the dq reference

system. ω0 is the synchronous electrical angular speed, ωr is the rotor speed and Rs is the stator resistance.

Rotor Voltage Equations

Ufd =
1
ω0

dψfd

dt
+Rfdifd

0 = 1
ω0

dψ1d

dt
+R1di1d (2.2)

0 = 1
ω0

dψ1q

dt
+R1qi1q

0 = 1
ω0

dψ2q

dt
+R2qi2q

Where Ufd, ifd, Rfd are the field voltage, current and resistance respectively. i1d, i1q, i2q , ψ1d, ψ1q , ψ2q ,

R1d, R1q , R2q are the damper winding current, flux and resistance components in the dq reference system.

6



2.1. SM-IB Complete Model

Stator Flux Linkage Equations

ψsd = −Lsdisd + Lmdifd + Lmdi1d

ψsq = −Lsqisq + Lmqi1q + Lmqi2q (2.3)

Where Lsd, Lsq , Lmd and Lmq are the stator and mutual inductance components in the dq reference system.

Rotor Flux Linkage Equations

ψfd = −Lmdisd + Lfdifd + Lmdi1d

ψ1d = −Lmdisq + Lmdifd + L1di1d (2.4)

ψ1q = −Lmqisq + L1qi1q + Lmqi2q

ψ2q = −Lmqisq + Lmqi1q + L2qi2q

Where Lfd is the field inductance, L1d, L1q and L2q are the damper windings inductance components in

the dq reference system.

Inductances

The inductances introduced in the previous equations are defined as:

Lsd = Lmd + Lsλ

Lsq = Lmq + Lsλ (2.5)

Lfd = Lmd + Lfλ

L1d = Lmd + L1dλ

L1q = Lmq + L1qλ

L2q = Lmq + L2qλ

Where the subscript λ means the leakage component of the inductance.

Electrical Airgap Torque

The electrical torque Te produced by the generator is calculated as:

Te = ψsdisq − ψsqisd (2.6)

Equations of Motion

For power system analysis, it is used to consider the whole rotor of a generation unit (generator and turbine)

as one rigid rotating mass [7]. The mechanical dynamics in the rotor are represented by the following

equations considered as a single-mass model:

2H dωr

dt
= Tm − Te −KDωr (2.7)

1
ω 0

dδr
dt

= ωr − 1 (2.8)

Where H is the inertia time constant of the entire rotor of the system expressed in seconds, Tm is the

mechanical torque, Te is the electrical torque,KD is the damping torque coefficient given in p.u. torque/p.u.

speed and δr is the angular position of the rotor with respect to a reference frame which is synchronously

rotating. It is important to mention that the angular speed of a grid connected synchronous machine may

be expressed as a deviation from the nominal speed [7] as can be seen from (2.8). Equation (2.7) is usually

called Swing Equation and represents the acceleration of the rotor as a consequence of a torque unbalance

on the shaft.

7



Chapter 2. Synchronous Machine Infinite Bus Modelling

External Network Equations

Considering the system presented in Fig. 2.1, the following equations accomplishes the mathematical model

of the SM-IB system:

Usd = EBd +REisd − ωrXEisq +
XE

ω0

disd
dt

Usq = EBq +REisq + ωrXEisd +
XE

ω0

disq
dt

(2.9)

Where XE is the total external reactance Xt +XL, RE is the total external resistance Rt + RL, and EBd

and EBq are the infinite bus voltage vector ~EB components expressed in the dq reference system. Since the

rotor position is taken as a reference, the infinite bus voltage vector ~EB is defined referred to the rotor side

as:

~EB = EBd + jEBq = EB sin(δr) + jEB cos(δr) (2.10)

The infinite bus is defined to have constant voltage, therefore EB remains constant when a disturbance is

applied to the system. If the system conditions change, EB will change to represent a different operating

condition of the external network [11].

Finally, the electrical equations of the SM-IB system can be drawn as a circuit. In Fig. 2.3 the equivalent

circuit representation is shown.

Fig. 2.3 SM-IB Equivalent Circuit - d and q Components

As a general observation, the purpose of the damper windings in the synchronous generator is to coun-

teract changes of the magnetic airgap flux to obtain better dynamic performance of the system (damp out

oscillations [11]) and to protect the field winding from high currents in the case of big disturbances on the

stator side [7]. Additionally, according to the type of rotor construction and the frequency range in which

the mathematical model should represent the machine characteristics, the number of rotor circuits (dampers

or field) to be modelled is determined. If the model is used for system stability analysis, more than two or

three rotor circuits in each axis are not necessary [11]. Therefore, the model presented in this section is a

8



2.2. Excitation System Models

complete model that consider all the dynamics in the generator and in the transmission network.

2.2 Excitation System Models

The excitation control system provides the direct current to the field winding. In addition to terminal voltage

regulation, the control system performs other tasks as stabilizing and protecting functions. By controlling

the current supplied to the field winding by the exciter, the AVR regulates the terminal voltage. A voltage

error is obtained by comparing the measured terminal voltage with the reference voltage. This error is pro-

cessed to calculate a voltage reference signal for the excitation. That reference alters the exciter output and

thereby the generator field current, eliminating the terminal voltage error.

The exciter constitutes the power stage of the excitation system [11]. It supplies the DC power to the

field winding in the synchronous generator. Generally, the exciters are classified as rotating or static. In ro-

tating ones the excitation current is supplied either by an AC generator with rectifiers or by a DC generator.

In static ones the excitation current is provided using static thyristor converters which are directly controlled

by the AVR. In this case, an additional auxiliary service transformer or a generator output transformer are

the used types of supply. The main disadvantage of the static exciters is that they need to use slip rings to

feed current to the generator rotor [18].

Many models of excitations systems for power stability analysis can be found in the IEEE standard

421.5 2005 [1]. The excitation system models that will be considered in this work are the models provided

by VG Power AB which have some similarities with the standard ones presented in [1]. Two types of exciter

will be considered, static and rotating exciter as in shown in Fig. 2.4 and Fig. 2.5. The models represent the

voltage transducer, the AVR and the exciter. Vref and Vt are the reference and terminal voltage signals, Kp

and Ki are the proportional and integral gain of the AVR, Tr is the time constant of the terminal voltage

transducer, T4 is the time constant of a low pass filter to represent a delay due to digital type of AVR, Se

is a function that represents the saturation of the exciter iron which wont be considered in this work so it is

set to zero, KE and TE are the gain and time constant of the rotating exciter and Kd and Td are the gain

and time constant of a derivative filter that provides excitation system stabilization [1]. The AVR structure

corresponds to a Proportional Integral PI controller which amplifies and integrates the voltage error. The

control action is limited to the minimum and maximum ceiling voltage of the converter or power supply unit.

A signal coming from a PSS can be added to the voltage reference in the AVR input, this signal is used

to modulate the excitation of the generator with the aim of achieving rotor oscillations damping as it will

be explain as follows.

Fig. 2.4 VG Power AB Excitation System Model - Static Exciter

9
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Fig. 2.5 VG Power AB Excitation System Model - Rotating Exciter

2.3 PSS Model

The PSS is a feedback controller, part of the control system for a synchronous generator, which acts through

the excitation system, adding a signal to modulate the field voltage. The PSS main function is to damp

generator rotor oscillations in the range from 0.1 to 2.5 Hz approximately, which according to [11], are

oscillations due to electromechanical dynamics and are called electromechanical oscillations. To provide

damping, the PSS should produce an electric torque component that counteracts the mechanical dynamics

as is shown in (2.7). The created electric torque component should be in phase with the deviations of the

generator rotor speed to constitute a damping torque component. To achieve this, the PSS must compensate

the phase difference between the excitation system input and the electric torque.

The idea of power stabilization is that the voltage control system should take the control decision based

on the voltage error only if there is no rotor speed deviations. But, if oscillations in the rotor speed appear,

the voltage control system must produce a control signal based on the voltage error and on an additional

signal from the PSS.

The input signals to the PSS are measured at the generator terminals and determine the type of specific

structure of the controller. Among the most modern PSS are the ones with Dual Input which use the ro-

tor speed deviation and the active power to calculate the stabilizing signal and are called Type PSS2B in

IEEE standard 421.5 2005 [1]; and the Multiband which use the rotor speed deviation and particularly, have

three working frequency bands dedicated to different frequency oscillation modes, they are also called Type

PSS4B [1]. Figure 2.6 shows a block diagram of a generalized structure of the PSS with a single input that

is commonly used [1]. Each block in the model corresponds to a main component which are described as

follows:

Fig. 2.6 General PSS Structure Model

10



2.4. SM-IB Linearized Reduced Order Model

Initially, a Transducer Filter represents the measurement transducer that gives a signal of the measured

quantity. Then, a Washout Filter which is a high pass filter, is used to define the frequency from which the

PSS begins to operate. The measured signal is passed through this filter to prevent the PSS to act when

slow changes occur (operating point changes). The Gain determines the level of damping provided with the

PSS. The PSS is also constituted by a Phase Compensation algorithm by using lead lag filters. The phase

difference between the excitation system input and the resulting electrical torque is compensated using a

cascade of lead lag filters. Finally, a Limiter is used to keep the PSS output voltage within a range of values

that it can be added to the voltage error in the AVR.

The PSS model that will be used in this work for the theoretical PSS tuning analysis is the one repre-

sented in Fig. 2.6 using rotor speed deviations as input signal. If other input signal is used with this structure,

additional phase shift could be required from the stabilizer. In the model T6 is the transducer filter time con-

stant, Tw1 is the washout filter time constant, Tn1, Tn3 and Tn10 are the leading time constants, Td2, Td4

and Td11 are the lag time constants and Ks1 is the PSS gain.

2.4 SM-IB Linearized Reduced Order Model

Several simplifications can be applied to the complete model presented in Section 2.1 when the intention is

to perform small signal analysis for PSS tuning. Small signal analysis in this work is referred to analysis in

steady state or under small disturbances applied to the system. A disturbance is considered small if the effect

that it has in the system can be analized with linearized equations without relevant lost of accuracy [11]. A

linearized model is therefore only valid around a stationary operating point of the system.

Accordingly, the small signal stability is the ability of the system to remain in synchronism when small

disturbances occur. As is stated in [11], the synchronous machine rotor oscillations due to lack of damping

torque can be seen as a small signal stability problem. In that case, a linearized reduced order model of

the SM-IB can provide good representation of the dynamic response of the system to analyze the damping

effect that a PSS can introduce. Thus, in this section reduced order and linearized models of the SM-IB

system shown in Fig. 2.1 are presented.

The main starting assumptions made to develop the reduced order models are discussed in [11] and

listed as follows:

• The stator flux and transmission network current dynamics are neglected.

• The effect of changes in speed in the stator voltage equations is not considered.

The model is linearized around a operating point (x0,u0) and it is expressed in the form:

∆ẋ = A∆x+B∆u (2.11)

Where A is the State Matrix and B is the Input Matrix. ∆x is the States Vector and ∆u is the Inputs Vector.

The notation with ∆ represents a small signal variation around an equilibrium point [5].

2.4.1 Transient Model

The linearized Transient Model is a model developed adding the assumption that the damper windings

effects are neglected. It includes the mechanical dynamics, the effect of the field flux variations and the

effect of the excitation system. Equations (2.1) to (2.8) are linearized, reduced to an appropriate form and

then combined with the external network equations in (2.9) to develop the linearized state-space model of

the system that will be presented as follows. The complete mathematical derivation is in [11] where the

reader is referred for more details.

Let’s start considering the equations of motion and the field voltage equation of the synchronous ma-

chine combined with the external network equations to obtained the linearized state-space model of the
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system [11]. For this model the state variables are the rotor angular speed, the rotor angular position and

the field flux. The voltage of the infinite bus is defined to be constant therefore there is no input for it in

the model. The inputs to the system are the mechanical torque and the field voltage, however the last one

will be determined by the excitation system later in this subsection. With these states and inputs a linearized

state-space model of the SM-IB system can be expressed as:





∆ω̇r
∆δ̇r
∆ ˙ψfd



 =





A11 A12 A13

A21 0 0

0 A32 A33









∆ωr
∆δr
∆ψfd



+





B11 0

0 0

0 B32





[

∆Tm
∆Ufd

]

(2.12)

Where,

A11 = −KD

2H
A12 = −K1

2H

A13 = −K2

2H
A21 = ω0

A32 = −ω0Rfd

Lfλ
m1L

′

md A33 = −ω0Rfd

Lfλ
(1− L′

md

Lfλ
+m2

´Lmd)

B11 =
1

2H
B32 =

ω0Rfd

Lmd

and L′

md is the d-axis mutual transient inductance and it is defined using the d-axis stator transient induc-

tance L′

sd as L′

md = L′

sd−Lsλ. Moreover, due to per unit values, L′

sd = X ′

sd whereX ′

sd is the d-axis stator

transient reactance, a standard parameter of the synchronous machine commonly used. An aspect to men-

tion at this point is that in this work it is not considered the representation of saturation in the inductances

used in the model. The constants K1 and K2 are defined as:

K1 = n1(Lmd(−isd0 + ifd0) + Lmqisd0)−m1(−Lmqisq0 + L′

mdisq0) (2.13)

K2 = n2(Lmd(−isd0 + ifd0) + Lmqisd0)−m2(−Lmqisq0 + L′

mdisq0) +
L′

md

Lfλ
isq0 (2.14)

Where the subscript 0 denotes the initial steady-state value of the variables and:

n1 =
EB(RTot sin δr0 +XTotd cos δr0)

R2
Tot +XTotqXTotd

n2 =
RTot

R2
Tot +XTotqXTotd

(
Lmd

Lmd + Lfλ
)

m1 =
EB(XTotq sin δr0 −RTot cos δr0)

R2
Tot +XTotqXTotd

m2 =
XTotq

R2
Tot +XTotqXTotd

(
Lmd

Lmd + Lfλ
)

DefiningRTot = Rs+RE ,XTotd = XE+X
′

sd,XTotq = XE+Xsq. Additionally, the angle δr0 represents

the initial steady-state value of the angle by which the synchronous machine leads the infinite bus, taking

as reference the infinite bus angle as is shown in Fig. 2.7 where δi is the internal rotor angle of the machine.
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Fig. 2.7 SM-IB Voltage Phasor Diagram [11]

After substitutions and reorganization of the system equations (mathematical procedure that is clearly

detailed in [11]), the linearized form of the electrical torque equation can be written as:

∆Te = K1∆δr +K2∆ψfd (2.15)

The first term in (2.15) is in phase with ∆δr and is a synchronizing torque component. The second term

results from field flux variations which are determined by the third differential equation in (2.12). By rear-

ranging and grouping terms in that equation it is obtained that:

∆ψfd =
K3

1 + sT3
(∆Ufd −K4∆δr) (2.16)

Observe that (2.16) is presented in Laplace domain. The constants of the equation are defined as follows,

where T ′

d0 is the d-axis open circuit transient time constant of the machine:

K3 =
Lfλ

Lmd
(

1

1− L′

md

Lfλ
+m2L

′

md

) (2.17)

K4 =
L′

mdLmd

Lfλ
m1 (2.18)

T3 = K3T
′

d0

Lmd

Lfd
(2.19)

To add the effect of the excitation system in the linearized model, the change in the terminal voltage is

expressed [11] as:

∆Vt = K5∆δr +K6∆ψfd (2.20)

Where,

K5 =
Usd0

Vt0
(−Rsm1 + Lsλn1 + Lmqn1) +

Usq0

Vt0
(−Rsn1 − Lsλm1 − L′

mdm1) (2.21)

K6 =
Usd0

Vt0
(−Rsm2 + Lsλn2 + Lmqn2) +

Usq0

Vt0
(−Rsn2 − Lsλm2 + L′

md(
1

Lfλ
−m2)) (2.22)

Considering the block diagram of the excitation system with static exciter presented in Fig. 2.4, the next

linear expression is derived:

s∆Vmt =
1

Tr
(∆Vt −∆Vmt) (2.23)

Replacing (2.20) in (2.23) and changing from frequency to time domain, a new differential equation is

obtained that will increase by one the order of the linearized model:

∆ ˙Vmt =
1

Tr
(K5∆δr +K6∆ψfd −∆Vmt) (2.24)
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The new state variable is the measured terminal voltage Vmt. On the other hand, again from the block

diagram in Fig. 2.4 an expression for the field voltage is derived:

Ufd = (Kp +
KpKi

s
)(

1

1 + sT4
)(Vref − Vmt) (2.25)

Which in perturbed values and assuming constant voltage reference will be:

∆Ufd = (Kp +
KpKi

s
)(

1

1 + sT4
)(−∆Vmt) (2.26)

Replacing (2.26) in the differential equation for the field flux changes in (2.12) and reorganizing, the com-

plete steady-state model of the system is obtained:









∆ω̇r
∆δ̇r
∆ ˙ψfd
∆ ˙Vmt









=









A11 A12 A13 0

A21 0 0 0

0 A32 A33 A34

0 A42 A43 A44

















∆ωr
∆δr
∆ψfd
∆Vmt









+









B11

0

0

0









∆Tm (2.27)

Where,

A34 = −B32(Kp +
KpKp

p
)(

1

1 + pT4
), A42 =

K5

Tr
, A43 =

K6

Tr
, A44 = − 1

Tr and

p represents the time derivative of the signal. Finally, the equations that describe the linearized transient

model can be represented in a block diagram as is shown in Fig. 2.8. More details regarding the process of

building the linearized model and the block diagram of the SM-IB system for small signal stability analysis

can be found in [9], [10] and [11]. With this modelling approach, the dynamic characteristics of the system

are expressed through the ”K” constants. Observe in the block diagram, that the terminal voltage transducer

and the excitation system GV G(s) blocks are the same as in Fig. 2.4 and Fig. 2.5.

Fig. 2.8 Block Diagram SM-IB Linearized Transient Model [11]

2.4.2 Transient Model for System Phase Analysis

When the purpose of the modelling is the PSS tuning some modifications are made to the model of Fig. 2.8

in order to make it suitable to analize the phase compensation that the PSS should provide to the system.

To add damping to the rotor oscillations, the PSS has to guarantee that the created torque component is in

phase with the rotor speed deviations. To achieve this it has to compensate the phase lag that the excitation

system and the field circuit of the generator introduce between the excitation system input and the electrical

torque.

To determine the phase shift, the first step is to calculate the frequency response between the excitation

system input and the electrical torque. To do that, the rotor speed and angle should remain constant due

to when the excitation of the generator is modulated, the change that results in the electrical torque causes
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variations in rotor speed and angle that will affect the electrical torque [11]. Therefore, the rotor angle

variation effect is eliminated from the model and in that way the rotor speed is kept constant. The block

diagram of the modified model, that will be called the Transient Model for system phase analysis and is

used for investigating the phase lag in the system, is presented in Fig. 2.9.

Fig. 2.9 Block Diagram SM-IB Transient Model for System Phase Analysis

2.4.3 Sub-Transient Model for System Phase Analysis

To evaluate the effect that damper windings could have in the phase characteristic of the generator within

the PSS frequency range of interest or, what is the same, within the frequency range of electromechanical

oscillations, the transient model of Fig. 2.9 is expanded to consider damper windings dynamics resulting

in a model that is valid in the sub-transient time frame and that will be called the Sub-Transient Model for

system phase analysis.

Taken into account the main starting assumptions and following the same procedure that was used

in [11] to develop the transient model, the constants of this model are determined considering the four rotor

circuit equations in (2.2) and (2.4). Analogue to the transient case, the linearized form of the electrical

torque equation can be written as [11]:

∆Te = K1∆δr +K2∆ψfd +K21d∆ψ1d +K21q∆ψ1q +K22q∆ψ2q (2.28)

Where,

K1 = n1(Lmd(−isd0 + ifd0) + L′′

mqisd0)−m1(−Lmqisq0 + L′′

mdisq0) (2.29)

K2 = n2(Lmd(−isd0 + ifd0) + L′′

mqisd0)−m2(−Lmqisq0 + L′′

mdisq0) +
L′′

md

Lfλ
isq0 (2.30)

K21d = n3(Lmd(−isd0 + ifd0) + L′′

mqisd0)−m3(−Lmqisq0 + L′′

mdisq0) +
L′′

md

L1dλ
isq0 (2.31)

K21q = n4(Lmd(−isd0 + ifd0) + L′′

mqisd0)−m4(−Lmqisq0 + L′′

mdisq0)−
L′′

mq

L1qλ
isd0 (2.32)

K22q = n5(Lmd(−isd0 + ifd0) + L′′

mqisd0)−m5(−Lmqisq0 + L′′

mdisq0)−
L′′

mq

L2qλ
isd0 (2.33)

and L′′

md and L′′

mq are the d-axis and q-axis mutual sub-transient inductances. They are defined using the

d-axis and q-axis stator sub-transient inductancesL′′

sd and L′′

sq as L′′

md = L′′

sd−Lsλ and L′′

mq = L′′

sq−Lsλ.

Moreover, due to per unit values, L′′

sd = X ′′

sd and L′′

sq = X ′′

sq where X ′′

sd and X ′′

sq are the d-axis and q-axis

stator sub-transient reactances which are standard parameters of the synchronous machine commonly used.

In this case, n1 and m1 remain the same as in the transient case but changing the definition of XTotd

and XTotq as XTotd = XE + X ′′

sd and XTotq = XE + X ′′

sq. The other parameters are defined as:
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n2 =
RTotL

′′

md

(R2
Tot +XTotqXTotd)Lfλ

m2 =
XTotqL

′′

md

(R2
Tot +XTotqXTotd)Lfλ

n3 =
RTotL

′′

md

(R2
Tot +XTotqXTotd)L1dλ

m3 =
XTotqL

′′

md

(R2
Tot +XTotqXTotd)L1dλ

n4 =
XTotdL

′′

mq

(R2
Tot +XTotqXTotd)L1qλ

m4 = −
RTotL

′′

mq

(R2
Tot +XTotqXTotd)L1qλ

n5 =
XTotqL

′′

mq

(R2
Tot +XTotqXTotd)L2qλ

m5 = −
RTotL

′′

mq

(R2
Tot +XTotqXTotd)L2qλ

After some mathematical manipulation of the rotor circuit equations, the flux variation in the rotor cir-

cuit windings can be expressed as:

∆ψfd =
K3

1 + pT3
(−K4∆δ +∆Ufd −K41d∆ψ1d −K41q∆ψ1q −K42q∆ψ2q) (2.34)

∆ψ1d =
T1d

1 + pT1d
(A42∆δ +A43∆Ufd +A45∆ψ1q +A46∆ψ2q) (2.35)

∆ψ1q =
T1q

1 + pT1q
(A52∆δ +A53∆Ufd +A54∆ψ1d +A56∆ψ2q) (2.36)

∆ψ2q =
T2q

1 + pT2q
(A62∆δ +A63∆Ufd +A64∆ψ1d +A65∆ψ1q) (2.37)

where,

A42 = −ω0R1d

L1dλ
m1L

′′

md A43 = −ω0R1d

L1dλ
(m2L

′′

md −
L′′

md

Lfλ
)

A45 = −ω0R1d

L1dλ
m4L

′′

md A46 = −ω0R1d

L1dλ
m5L

′′

md

A52 = −ω0R1q

L1qλ
n1L

′′

mq A53 = −ω0R1q

L1qλ
n2L

′′

mq

A54 = −ω0R1q

L1qλ
n3L

′′

mq A56 = −ω0R1q

L1qλ
(n5L

′′

mq −
L′′

mq

L2qλ
)

A62 = −ω0R2q

L2qλ
n1L

′′

mq A63 = −ω0R2q

L2qλ
n2L

′′

mq

A64 = −ω0R2q

L2qλ
n3L

′′

mq A65 = −ω0R2q

L2qλ
(n4L

′′

mq −
L′′

mq

L1qλ
)

and,
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K3 =
Lfλ

Lmd
(

1

1− L′′

md

Lfλ
+m2L

′′

md

) (2.38)

K4 =
L′′

mdLmd

Lfλ
m1 (2.39)

K41d =
Lmd

Lfλ
(m3L

′′

md −
L′′

md

Lfλ
) (2.40)

K41q =
L′′

mdLmd

Lfλ
m4 (2.41)

K42q =
L′′

mdLmd

Lfλ
m5 (2.42)

T3 =
Lfλ

ω0Rfd(1−
L′′

md

Lfλ
+m2L

′′

md)

(2.43)

T1d =
L1dλ

ω0R1d(1−
L′′

md

Lfλ
+m3L

′′

md)

(2.44)

T1q =
L1qλ

ω0R1q(1−
L′′

mq

L1qλ
+ n4L′′

mq)

(2.45)

T2q =
L2qλ

ω0R2q(1−
L′′

mq

L2qλ
+ n5L′′

mq)

(2.46)

Adding the effect of the excitation system, the expression for the change in the terminal voltage will be:

∆Vt = K5∆δr +K6∆ψfd +K61d∆ψ1d +K61q∆ψ1q +K62q∆ψ2q (2.47)

Where,

K5 =
Usd0

Vt0
(−Rsm1 + Lsλn1 + L′′

mqn1) +
Usq0

Vt0
(−Rsn1 − Lsλm1 − L′′

mdm1) (2.48)

K6 =
Usd0

Vt0
(−Rsm2 + Lsλn2 + L′′

mqn2) +
Usq0

Vt0
(−Rsn2 − Lsλm2 + L′′

md(
1

Lfλ
−m2)) (2.49)

K61d =
Usd0

Vt0
(−Rsm3 + Lsλn3 + L′′

mqn3) +
Usq0

Vt0
(−Rsn3 − Lsλm3 + L′′

md(
1

L1dλ
−m3)) (2.50)

K61q =
Usd0

Vt0
(−Rsm4 + Lsλn4 − L′′

mq(
1

L1qλ
− n4)) +

Usq0

Vt0
(−Rsn4 − Lsλm4 − L′′

mdm4) (2.51)

K62q =
Usd0

Vt0
(−Rsm5 + Lsλn5 − L′′

mq(
1

L2qλ
− n5)) +

Usq0

Vt0
(−Rsn5 − Lsλm5 − L′′

mdm5) (2.52)

The mathematical derivation above allow redrawing the block diagram of the system as is presented in

Fig. 2.10. This model is only suited for study the phase lag between the input to the excitation system

and the resulting electric torque in the synchronous machine, under the assumption that the rotor speed is

constant.
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Fig. 2.10 Block Diagram SM-IB Sub-Transient Model for System Phase Analysis

2.5 System Phase Analysis

In this section the phase lag of the synchronous generator from the excitation system input to the electrical

torque is analyzed. The parameters of the machine are given in Appendix A. The system phase lag is

calculated using the linearized transient and sub-transient models presented in Subsections 2.4.2 and 2.4.3

which assume constant generator rotor speed and angle. Static and rotating exciter models provided by

VG Power AB are used in the phase calculation, which is also performed in two different operation points

described as follows:

• OP1: XE = 0.2 p.u, P = 0.9 p.u and Q = 0.1 p.u.

• OP2: XE = 0.6 p.u, P = 0.4 p.u and Q = 0.1 p.u.

The results are shown in the Bode diagrams of Fig. 2.11 and Fig. 2.12.

Fig. 2.11 System Bode Diagram - OP1. Left: Static Exciter. Right: Rotating Exciter
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Fig. 2.12 System Bode Diagram - OP2. Left: Static Exciter. Right: Rotating Exciter

From the phase plots the following conclusions are reached, which are important for the phase charac-

terization of generators using VG Power AB excitation system models:

• There is a larger phase lag for excitation systems with the rotating exciter than with the static exciter.

• At low frequencies, up to 1 Hz there is not representative phase difference between the transient and

sub-transient models. At 3 Hz, which is the maximum upper limit of PSS frequency range of interest,

the biggest phase difference between the two models is presented, however in the four cases shown

in Fig. 2.11 and Fig. 2.12 that difference is about 10◦ which could be considered not sufficient to

include the sub-transient model in the system phase analysis during the PSS tuning process.

• For both kind of exciters, from low frequencies up to 1.5 Hz approximately, the phase lag is larger

in the first operation point OP1 which represents a strong external power system and a high loaded

synchronous generator. In Chapter 3 will be showed that it is exactly the operating conditions where

the PSS should be tuned.

• Finally, it can be concluded that it is not necessary to include the damper windings dynamics in the

PSS tuning. Moreover, if the small phase lag introduced by the sub-transient characteristic wants to

be taken into account, it is possible to treat it as a PSS design criteria which makes to increase the

compensation angle some few degrees.

2.6 Synchronizing and Damping Torque Coefficients Calculation

The variation in the electrical torque ∆Te due to small disturbances consists of one part which is propor-

tional to the rotor angle variation and is called Synchronizing Torque component and one part which is

proportional to the rotor speed variation and is called Damping Torque component [7] as:

∆Te = KS∆δr +KD∆ωr (2.53)

Where KS and KD are the synchronizing and damping torque coefficients respectively. The value of these

coefficients depends on the parameters and the operation point of the generator, the parameters of the con-

necting grid and the parameters of the excitation control system. KS and KD must be positive to guarantee

the stability of the system [7].

Using the model shown in Fig. 2.8, the effect of the excitation system and the PSS on the synchronizing

and damping torque components can be evaluated through the changes in field flux caused by them, consi-

dering the electrical torque equation presented in (2.15) as:

∆Te = K1∆δr +K2∆ψfd = K1∆δr +K2∆ψfd|exar +K2∆ψfd|pss
∆Te = K1∆δr +∆Te|exar +∆Te|pss (2.54)
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From (2.16) and Fig. 2.8, the variation in the field flux due to the excitation system and the armature

reaction [11] can be rewritten as:

∆ψfd|exar =
K3

1 + sT3
(−K4∆δr −

GV G(s)

1 + sTr
(K5∆δr +K6∆ψfd)) (2.55)

In the same way, the variation in the field flux due to the PSS can be written as:

∆ψfd|pss =
K3

1 + sT3
GV G(s)(−

∆Vt
1 + sTr

+∆Vpss) (2.56)

Where GV G(s) represents the transfer function of the excitation system. In the next two subsections, the

calculations of the torque components will be developed replacingGV G(s) with the transfer function of the

static and rotating exciter respectively.

2.6.1 Using Excitation System with Static Exciter

Considering the model presented in Fig. 2.4, GV G(s) for the static exciter is given by:

GV G(s) = (Kp +
KpKi

s
)(

1

1 + sT4
) (2.57)

After replacing (2.57) in (2.55), grouping terms and reorganizing, and inserting ∆ψfd|exar in (2.54), the

change in the torque component can be expressed as:

∆Te|exar =
−K2K3[sK4(1 + sTr)(1 + sT4) + sKpK5 +KpKiK5]∆δr

s4T3T4Tr + s3(T4Tr + T3(T4 + Tr)) + s2(T3 + T4 + Tr) + s(1 +KpK3K6) +KpKiK3K6

(2.58)

The interest here is to get the torque coefficients at a certain rotor oscillation frequency, thus the Laplace

operator in (2.58) will be replaced by s = α+jω. Observe that in this case s is defined as a complex number

instead of jω. The concept of Complex Frequency, is used in [11], which considers that the properties

of sinusoids functions, when s = jω, are shared by damped sinusoids functions, when s = α + jω.

Consequently, it is possible to have also a phasor representation of a damped sinusoid function in the

form [11]:

v = Vme
αt cos(ωt+ θ) = Re(vest) (2.59)

Where v = Vm∠θ is the phasor for both sinusoid and damped sinusoid functions.

Therefore, the expression obtained for the electrical torque component has the following general form:

∆Te|exar = R∆δr + jI∆δr (2.60)

Where R and I represent the real and imaginary components of the torque ∆Te|exar. Now, from Fig. 2.8 it

can be noticed that:

∆ωr =
s∆δr
ω0

=
(α+ jω)∆δr

ω0
(2.61)

After solving for j∆δr, it is obtained that:

j∆δr =
ω0

ω
∆ωr −

α

ω
∆δr (2.62)

Inserting (2.62) in (2.60) and reorganizing:

∆Te|exar = (R− I
α

ω
)∆δr + (

ω0

ω
)I∆ωr = KS |exar∆δr +KD|exar∆ωr (2.63)

Where, KS |exar and KD|exar are the synchronizing and damping torque coefficients due to the change in

field flux caused by the excitation system action and the armature reaction.
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Let’s now consider the effect of the PSS in the torque coefficients. Inserting (2.57) in (2.56) and defining

∆Vt and ∆Vpss from Fig. 2.8 and Fig. 2.6 respectively as:

∆Vt = K6∆ψfd (2.64)

∆Vpss = Ks1(
1 + sTn1

1 + sTd2
)(
1 + sTn3

1 + sTd4
)(

sTω1

1 + sTω1
)(

1

1 + sT6
)∆ωr = Gpss(s)∆ωr (2.65)

It is obtained an expression for ∆ψfd|pss which is inserted in (2.54) to have the change in the torque

component:

∆Te|pss =
K2K3(sKp +KpKi)(1 + sTr)Gpss(s)∆ωr

s(1 + sT3)(1 + sT4)(1 + sTr) +K3K6(sKp +KpKi)
(2.66)

Again, replacing s with α+ jω, the expression obtained in this case has the following general form:

∆Te|pss = R∆ωr + jI∆ωr (2.67)

From (2.61), j∆ωr can be expressed as:

j∆ωr =
j(α+ jω)∆δr

ω0
=

α

ω0
(j∆δr)−

ω

ω0
∆δr (2.68)

Inserting (2.62) in (2.68), then in (2.67) and reorganizing:

∆Te|pss = −I( α
2

ωω0
+

ω

ω0
)∆δr + (R + I

α

ω
)∆ωr = KS|pss∆δr +KD|pss∆ωr (2.69)

Finally, the total synchronizing and damping torque coefficients are given by:

KS = K1 +KS |exar +KS |pss (2.70)

KD = KD|exar +KD|pss (2.71)

2.6.2 Using Excitation System with Rotating Exciter

The same procedure is followed using the model presented in Fig. 2.5. In this case, GV G(s) for rotating

exciter is given by:

GV G(s) = (Kp +
KpKi

s
)(

1 + sTd

(1 + sT4)(1 + sTd)(sTE +KE + Se) + sKd

) = (Kp +
KpKi

s
)Grot(s)

(2.72)

The torque components in this case are:

∆Te|exar =
−K2K3[sK4(1 + sTr) + sKpK5Grot(s) +KpKiK5Grot(s)]∆δr

s3T3Tr + s2(Tr + T3) + s(1 +KpK3K6Grot(s)) +KpKiK3K6Grot(s)
(2.73)

∆Te|pss =
K2K3(sKp +KpKi)(1 + sTr)Grot(s)Gpss(s)∆ωr
s(1 + sT3)(1 + sTr) +K3K6(sKp +KpKi)Grot(s)

(2.74)

In the calculations for rotating exciter case, the third lead lag filter is added to the PSS transfer function

Gpss(s) presented in (2.65). Finally, KS and KD are computed in the same way than in static case.

2.6.3 Sensitivity Analysis

A sensitivity analysis is presented in Fig. 2.13 and Fig. 2.14 to evaluate the impact of excitation system in

the damping and synchronizing torque coefficients with both kind of exciters and under different system

operating conditions. The value of reactive power is fixed to Q = 0.1 p.u. The parameters used for the

calculations are given in Appendix A.
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Fig. 2.13 Damping KD|exar Torque Coefficients as Function of P. Left: Static Exciter. Right: Rotating Exciter.

Fig. 2.14 Synchronizing KS |exar Torque Coefficients as Function of P. Left: Static Exciter. Right: Rotating Exciter.

From Fig. 2.13 it is observed that with static exciter, the damping coefficient becomes negative as the

external reactance increases and it gets worse as the machine is more loaded. For a value of reactance

around 0.3 p.u, the coefficient becomes negative for high active power and for very low values of XE , it is

always positive. The damping coefficient with rotating exciter is always positive independent of the external

reactance value, and it gets better as the generator active power increases; the reason could be the stabilizing

loop in that control structure which add damping ability to the system. In general, it was also observed that

the reactive power has a negative impact in the damping toque coefficients decreasing its values.

On the other hand, from Fig. 2.14 it is observed an opposite behaviour of the synchronizing torque co-

efficient. With rotating exciter it is always negative and decreases as the active power increases. With static

exciter the coefficient is always negative for low values of XE and always positive for high values of XE

while for values of the external reactance around 0.5 p.u the coefficient becomes positive for high active

power values.

The points in Fig. 2.13 and Fig. 2.14 are calculated for different complex frequencies as it was explained

in Section 2.6.1. Each complex frequency corresponds to the real and imaginary part of the eigenvalue asso-

ciated to the local oscillation mode in each operating point; those local modes appear in a range from 0.9 Hz

to 1.4 Hz approximately. To evaluate the coefficients as function of the local mode oscillation frequency,

Fig. 2.15 is built for fixed values: XE = 0.5 p.u, P = 0.9 p.u, Q = 0.1 p.u. It is observed that again

the damping coefficient with rotating exciter is always positive in the whole frequency range although it

becomes very close to zero after 1 Hz. The opposite case happens for the damping coefficient with static

exciter which is always negative and worse at low frequencies. The synchronizing coefficient with static

exciter is positive until around 1 Hz and with rotating exciter is negative from about 0.3 Hz.
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Fig. 2.15 Synchronizing KS|exar and Damping KD|exar Torque Coefficients as Function of f [Hz]

It should be taken into account that, from (2.70) and without considering the PSS component, the net

synchronizing torque coefficient KS in the presented cases is not negative since K1, which is always posi-

tive and with higher magnitude thanKS|exar, makes it positive. An example of this is illustrated in Fig. 2.16

for static and rotating exciter and as a function of the local mode oscillation frequency.

Fig. 2.16 Synchronizing KS Torque Coefficient as Function of f. Left: Static Exciter. Right: Rotating Exciter.

Finally, the results show how the excitation system may negatively impacts the synchronizing and

damping torque components. Also, it was mathematically demonstrated the need of a PSS to increase the

damping torque component specially in the case of excitation systems with static exciters and at low fre-

quencies. In the next chapter a PSS tuning methodology based on frequency response techniques is pre-

sented. A proper tuning of this controller will allow reaching better damping conditions for the system.
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Chapter 3

PSS Tuning

In the academic and industry community of power systems, the PSS tuning is a topic that has been widely

researched for many years. Several methods have been proposed and tested based on linear and non-linear

control system theories. Among the classical linear methods are the pole placement and frequency res-

ponse methods, and more complex ones as LMI, Multivariable Control and Linear Optimal Control [4].

Techniques based on state space feedback, H∞ robust controller design and intelligent methods have been

also applied. Classical linear methods offer good results but might suffer from lack of robustness. On the

other hand, advanced linear and non-linear methods are useful specially in the case of coordinated tuning

of hundreds of PSS but might result either in oversimplification of the power system model used or in too

complex tuning algorithms [22]. In addition they may be difficult to implement in some practical situations,

and some of those methods are still in research stages and are not developed enough for general appli-

cations. Consequently, the predominant trend in the industry is still to use the frequency response based

tuning method [12] even more in the case of a PSS provider company as VG Power AB, who should tune

the controller having detailed information about the generator but not exact details about the connecting

grid. Therefore, in this chapter the main concepts of a PSS tuning methodology based on frequency res-

ponse techniques are summarized. The models presented in the previous chapter will be used here to tune

the PSS and to test the obtained results. The parameters of the SM-IB system are given in Appendix A.

3.1 Eigenvalues Calculation

The first step in the PSS tuning methodology is to perform an eigenvalues calculation of the SM-IB line-

arized transient model whose state-space equation was presented in (2.27) and block diagram in Fig. 2.8.

The linearized model, which includes the field and excitation system dynamics, can be expressed in the

general form:

∆ẋ = A∆x+B∆u (3.1)

∆y = C∆x+D∆u (3.2)

Where, A is the State Matrix, B is the Input Matrix, C is the Output Matrix and D is the Feedforward Ma-

trix. ∆x is the States Vector, ∆u is the Inputs Vector and ∆y is the Outputs Vector. The calculation is based

on the information contained in matrix A which is the Jacobian matrix of the system whose elements are

evaluated at the equilibrium point where the system is being analyzed. The modes of the system dynamic

response are related to the Eigenvalues λi of matrix A, the ones that determine the stability of the linearized

system [11].

The definition of eigenvalues is that λ is an eigenvalue of A if there exists a nonzero column vector w

that satisfies:

Aw = wλ (3.3)
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w is called the Right Eigenvector associated with the eigenvalue λ. To find λ, (3.3) can be rewritten as:

(A − λI)w = 0 (3.4)

Where I is a diagonal identity matrix and 0 a column vector of zeros. Equation 3.4 has a non-trivial solution

w 6= 0 if and only if [18]:

det(A − λI) = 0 (3.5)

Equation 3.5 is called the Characteristic Equation of the system. The n solutions of λ = λ1, λ2, ..., λn are

the eigenvalues of A which may be real or complex values and n is the order of A.

If the system is excited, its free motion time response is determined in terms of the eigenvalues λi by a

linear combination of terms with the form eλit [11]. Each term eλit corresponds to the i − th mode of the

system. If λi is a real value, the i − th mode is a non-oscillatory mode which should be negative to be a

decaying mode. On the other hand, complex eigenvalues appear in conjugate pairs, each pair corresponds

to an oscillatory mode. In this case, λ is defined as λ = α ± jωosc where the real component determines

the damping and the imaginary component determines the frequency of oscillation. Then, the frequency of

oscillation in Hz and damping ratio ζ in % are given by [11]:

fosc =
ωosc

2π
(3.6)

ζ = 100
−α

√

α2 + ω2
osc

(3.7)

The system will be stable if all the eigenvalues have a negative real part in the complex plane. A more

accurate measure of the stability is reached using the damping ratio which consider both the real and the

imaginary part of the eigenvalues. The larger the imaginary part, the more negative the real part must be in

order to provide the same damping in an oscillation mode [22].

3.2 Lead Lag Filters Tuning

Through the eigenvalues analysis of the system without PSS the less damped mode is identified for an

operation point, this mode could have negative or critical damping. Negative damping is presented when

ζ < 0% and critical damping when 0% < ζ < 5%. In those cases, if a disturbance occurs in the system,

it is considered that poorly damped dynamic responses are created. To overcome that situation and provide

damping torque with the PSS, the next step in the tuning process is to compute the phase lag of the system

at the frequency of the identified mode. The last is done with the model described in Subsection 2.4.2 and

Bode Diagram frequency response technique. Once the phase shift that the PSS should provide to the sys-

tem is known, the parameters of the cascade lead lag filters stage in the PSS structure shown in Fig. 2.6 can

be tuned.

Two ways of tuning the filters are presented here: Method 1 [20], [22], [15] and Method 2. Both give

the wanted phase compensation at the selected frequency, ωosc.
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Method 1

In this case the parameters are calculated as follows:

N =
θpss

55◦
=















1 θpss 6 55◦

2 θpss 6 110◦

3 110◦ < θpss 6 180◦















σ =
1− sin

θpss

N

1 + sin
θpss

N

(3.8)

Tnl
=

1

ωosc
√
σ

Tdp = σTnl

Where θpss, given in degrees, is the angle that the PSS should compensate at the oscillation frequency

ωosc. N is the number of filters in cascade which are defined according to θpss. The restriction of 55◦

compensation per filter is to ensure acceptable phase margin and noise sensitivity at high frequencies [22].

Tnl
are the lead time constants with l = 1, 3, 10 and Tdp are the lag time constants with p = 2, 4, 11. This

way of calculation can be applied for lead and for lag compensation effect, that depends on the sign of θpss.

Method 2

In this case the parameters are calculated considering that a lead lag filter can be defined as:

1 + sTnl

1 + sTdp
= Kfe

j
θpss

N = Kf (cos
θpss

N
+ j sin

θpss

N
) (3.9)

WhereKf is the filter gain andN follows the same definition than in 3.8. Taking into account that s = λ =

α + jωosc and neglecting the real part α of the frequency component, then s = jωosc is inserted in 3.9 to

group real and imaginary parts and to solve for the time constants:

Tnl
=

Kf

ωosc
(
cos

θpss

N

tan
θpss

N

+ sin
θpss

N
− 1

Kf tan
θpss

N

) (3.10)

Tdp =
1

ωosc sin
θpss

N

(cos
θpss

N
− 1

Kf

)

The gainKf must not be less than about 2 to avoid Tdp taking negative values. It was also observed thatKf

should have a maximum value due to filter stability reasons. According to the cases analyzed in this work,

a maximum value for Kf could be about 10. The effect of varyingKf is to move the compensation central

frequency of the filter which will have an impact in the compensated system phase characteristic. Also, the

higher Kf the smaller the PSS gain Ks1 should be to guarantee the system stability.

Some important aspects related to the lead lag filters tuning process must be considered and they are

listed as follows:

• Objective System Phase at ωosc:

In the SM-IB modelling task presented in Chapter 2, the dynamics of other machines in the power

system were neglected therefore their effect on the phase characteristic of the SM-IB system is elimi-

nated. In addition, the phase lag of the system varies according to the operation point of the generator

and the external reactance. Considering this, an acceptable phase compensation for different system

conditions should be selected. According to [11], undercompensation by about 10◦ over the complete
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frequency range of interest can provide enough tolerance to support the assumptions made in the

modelling process of the SM-IB. Even more, in [16] is said that undercompensation between 20◦ and

40◦ at ωosc is desirable. This is to avoid the PSS to contribute negatively to the synchronizing torque

as can be seen in Fig. 3.1 which is built extending the example case presented in Subsection 2.6.3 but

now presenting the torque coefficients due to the PSS effect.

In this case, the calculation is done for a system with fixed external reactance XE = 0.1 p.u, fixed

reactive power Q = 0.1 p.u and fixed active power P = 0.9 p.u. What is changing now is the

objective system phase at the analyzed oscillation frequency, which implicitly change the angle θpss

that the PSS should compensate. A fixed PSS gain Ks1 = 10 pu is also assumed. Observe that as the

angle that the lead lag filters have to compensate for increases, the synchronizing torque coefficient

for static exciter decreases. At exact compensation the PSS effect with static exciter would be to

decrease the synchronizing torque component of the system but with rotating exciter it seems to be

the best condition. In contrast, the bigger the angle to be compensated by the PSS the more damping

torque component will be achieved with both exciters, result that is predictable considering the theory

discuss until now.

Fig. 3.1 Synchronizing KS|pss and Damping KD|pss Torque Coefficients as Function of the Objective System Phase

at Analyzed Frequency [deg]

• System Operation Point for Tuning:

According to [14], [15], [16] when the PSS is a rotor speed input PSS as the one analyzed in this work,

the filters should be tuned for a system condition that represents the highest gain and the greatest

phase lag. Those conditions are reached under generator full load and strongest external transmission

system.

Finally, a comment about the washout filter is that its time constant Tw1 depends on the oscillatory fre-

quency. The lower the oscillatory frequency, the higher Tw1 must be. In other words, it should be big

enough to pass the stabilizing signals at the frequencies of interest but not so big that causes terminal vol-

tage changes as a result of PSS action when the operation point change [13]. Tw1 can be set in the range

from 1 s to 20 s. In this work a value of 7 s will be assumed as it is reported by VG Power AB as a common

value to be used with this parameter. In Fig. 3.2 is presented the Bode diagram of the washout filter in the

PSS frequency range of interest. Observe that with Tw1 = 7 s the phase contribution by the filter is about

1◦ in almost all the range. For this reason, the washout filter effect wont be considered in the phase analysis

of the system.
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Fig. 3.2 Washout Filter Bode Diagram

3.3 Gain Tuning

When the phase compensation stage has been defined, the next step is to set the PSS gain Ks1. Commonly,

the chosen gain is related to the instability gain as is described in the following comments about two ways

of getting the instability gain of the system:

• One way is using the Root Locus Plot of the system, which is a frequency response technique that

indicates how the poles and zeros of the open loop system are modified when the controller gainKs1

takes different values. Theory about root locus technique can be found in [20]. The block diagram

including the PSS used to compute the plot is shown in Fig. 3.3. As the open loop gain takes different

values, the roots or eigenvalues of the transfer function from ∆Vref to ∆Vpss change. For a certain

value of gain, the closed loop system, with positive feedback in the case of the PSS, will be critically

or marginally stable, which means that the real part of a pair of eigenvalues is zero. It is a common

practice to set the PSS gain to one third of the gain where instability starts [15], [16]. The instability

gain must be determined at the same system operating condition mentioned in the previous section

for lead lag filters tuning.

• If the root locus plot can not be built, the other way to obtain the instability gain is by a field test

usually called the Gain Margin Test. It consists of slowly increase the gain from zero until the value

that cause the instability. Details about the test can be found in [16]. Again, the recommendation is to

set the gain to one third of the obtain gain value.

It is important to mention that setting the gain in one third of the instability gain value is a guide based on

field experiences of many years, but it is not an exact method. In order to tune the gain more accurately it is

recommended to analyze the root locus of the system in detail and evaluate the paths of critical modes. The

closed loop system including the PSS has several eigenvalues and consequently several modes, but only the

local mode of the generator oscillating against the infinite bus and the ones associated with the PSS transfer

function become critical or relevant to analize [15], [19].

In conclusion, the PSS gain should be set to the minimum value that satisfies a damping requirement

for the mode to be damped, in order to avoid compromising the stability of the system. The maximum value

allowed would be one third of the value at which the damping of any critical mode becomes zero [12].

Nevertheless, it is common in the industry a conservative design of the gain in a value less than the optimum

that limits the performance of the controller but assures the stability of the system. In this work the gain

will be chosen through the root locus analysis and according to the performance requirements that will be

presented in the next section.
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Fig. 3.3 Block Diagram SM-IB with PSS for Root Locus Analysis

3.4 Tuning Performance Requirements

As it has been discussed until now, the nature of the generator and the assumed infinite bus where it is

connected provide the local oscillation mode where the PSS tuning task is focussed. The tuning objective

then is to provide the best damping for that mode, and an acceptable phase compensation in the whole

frequency range of interest. Certain tuning conditions and performance requirements for that case have

been established in the literature [15], [16], [19] as:

• To get the maximum damping in the range from 0.2 Hz to 3 Hz, the compensated system should have

a phase lag less than 90◦ in the whole range. This is more important than perfect phase compensation

results at specific frequencies.

• The phase lag of the compensated system at the local mode frequency should be less than 45◦.

• Some phase lag at lowest frequencies, from 0.2 HZ to 0.5 Hz, is needed since phase lead specially at

those frequencies will cause the PSS to deteriorate the synchronizing torque component.

• The change in local mode frequency with and without PSS in operation should be less than 10% to

limit the effect of the PSS on the synchronizing torque coefficient.

• Not exact damping percentage is recommended to satisfy a damping requirement, it is more a user

decision, despite that is said that excess of local mode damping is unnecessary and it is obtained at

the expense of transient stability.

However, specific requirements associated to the external power system dynamics may change the tuning

objective, this refers to obtain the PSS parameters so as to contribute as much as possible with the damping

of a specific mode, usually an inter-area mode, in the wide area of the system [12].

3.5 Sensitivity Analysis

To examine the sensitivity of the local mode damping to changes in the system operation point, the parameters

of the PSS are tuned for the synchronous machine presented in Appendix A using the static exciter. Two

cases are reviewed: one where the tuning objective is the local oscillation mode and one where the tuning

objective is a specific mode with different oscillation frequency. In both cases, the tuning is made consi-

dering a strong external power system XE = 0.2 p.u and high load for the synchronous generator where

P = 0.9 p.u and Q = 0.1 p.u.
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3.5.1 Tuning for Local Oscillation Mode

In the mentioned operation point for tuning, the local oscillation mode appears at a frequency of 1.348 Hz

with a damping of 0.1942%. The system phase lag at the oscillation frequency is −84.05◦, the objective

system phase at that frequency is set to −15◦ and as a result, θpss = 69.05◦. In Table 3.1 the obtained

parameters using both ways of lead lag filters tuning presented in section 3.2 are summarized. In Fig. 3.4

the root locus plots used to tune the gain Ks1 are shown and a value of 25 p.u is chosen for both cases in

order to be able to compare the results.

Table 3.1: PSS Parameters - Tuning for Local Oscillation Mode

Parameter

Tn1 Td2 Tn3 Td4 Tn10 Td11 Ks1 Tw1 T6

Method 1 0.2245 0.0621 0.2245 0.0621 1 1 25 7 0

Method 2 0.2450 0.0675 0.2450 0.0675 1 1 25 7 0

Fig. 3.4 System Root Locus Plots. Left: Method 1. Right: Method 2

The phase compensation provided by the PSS with both tuning methods is presented in Fig. 3.5 through

the Bode diagram of the lead lag filters. Observe that there is not representative difference between the two

methods and that at the local mode frequency the compensation provided is 69◦.

Fig. 3.5 PSS Bode Diagram - Tuning for Local Oscillation Mode

The sensitivity of local mode damping to changes in the system operating point is shown in Fig. 3.6
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where a constant value of reactive power was assumed Q = 0.1 p.u. The main observations after the

analysis are:

Fig. 3.6 Sensitivity of Local Mode Damping. Left: Method 1. Right: Method 2

• As the external reactance increases (the external system becomes weaker) the damping of the local

mode of oscillation decreases, also the frequency of it as is shown in Fig. 3.7.

• As the active power increases the damping of the local mode of oscillation increases, however the

opposite occurs when the magnitude of the reactive power increases.

• For the analyzed case with Q = 0.1 p.u, the minimum damping of the local mode is never less than

10% which can be considered a sufficient level of damping to do not put on risk the stability of the

system in all operating conditions. As the reactive power increases, the minimum damping slightly

decreases.

• For an undercompensation of −15◦, it is observed that the Method 1 gives smaller damping, however

as the undercompensation decreases or θpss increases, the Method 2 becomes the method giving

smaller damping.

• It can be seen from Fig. 3.7 that if the reactive power increases the local mode has higher frequencies

for strong power systems, XE up to 0.4 p.u approximately and smaller frequencies for weak power

systems, XE higher than 0.4 p.u.

• As a general comment, it was observed during the simulations that, the average delta damping gain

when adding the PSS is higher with the static exciter than with the rotating exciter.

Fig. 3.7 Local Oscillation Mode. Solid: Q = 0.1. Dashed: Q = 0.5
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3.5.2 Tuning for a Different Oscillation Frequency

Now, to examine the case when the PSS is tuned for a frequency different than the natural local mode

of oscillation, a frequency of 0.5 Hz is chosen. The system phase lag at that frequency is −70.15◦, the

objective system phase at that frequency is set to −15◦ and as a result, θpss = 55.15◦. In Table 3.2 the

obtained parameters using both ways of lead lag filters tuning presented in section 3.2 are summarized.

Similarly to the previous case, the gainKs1 is tuned using the root locus plot and a value of 25 p.u is chosen

for both cases in order to be able to compare the results.

Table 3.2: PSS Parameters - Tuning for Different Oscillation Frequency

Parameter

Tn1 Td2 Tn3 Td4 Tn10 Td11 Ks1 Tw1 T6

Method 1 0.5254 0.1929 0.5254 0.1929 1 1 25 7 0

Method 2 0.7657 0.2657 0.7657 0.2657 1 1 25 7 0

The phase compensation provided by the PSS with both tuning methods is presented in Fig. 3.8 through

the Bode diagram of the lead lag filters. Observe that at 0.5 Hz in both cases the phase provided is 55◦ as

expected. However, the phase compensation at the local mode frequency differs about 7◦.

Fig. 3.8 PSS Bode Diagram - Tuning for Different Oscillation Frequency

The sensitivity of local mode damping to changes in the system operating point is shown in Fig. 3.9

where a constant value of reactive power was assumed Q = 0.1 p.u. What is observed in this case is:

• As the external reactance increases (the external system becomes weaker) the damping of the local

mode of oscillation also increases. This result is expected since weak external power systems have

natural local oscillation modes of lower frequencies and the PSS was tuned for lower frequency

therefore it provides better compensation in lower frequency range and consequently better damping.

• Comparing with the first tuning case, the reached level of damping for low active power values is

higher in this tuning case, but for medium and high generator load better damping results are obtained

when the tuning is performed for the local oscillation mode.
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Fig. 3.9 Sensitivity of Local Mode Damping. Left: Method 1. Right: Method 2

Through the Bode diagram of the system, from the excitation system input to the electrical torque, that

is presented in Fig. 3.10, without and with compensation, it is possible to observe the difference in the phase

compensation provided by the PSS in the analyzed tuning cases. It is noticed that when the tuning is done

for the specific frequency of 0.5 Hz, phase lead can occur at low frequencies causing deterioration of the

synchronizing torque. Therefore, the tuning algorithm would have to be improved in order to handle this

situation. In addition, it is seen that the phase compensation after 0.5 Hz is obviously reduced affecting the

damping of the natural local modes. Particularly, at 1.34 Hz the reached phase values are about −46◦ with

the Method 1 and about −53◦ with the Method 2.

Fig. 3.10 System Bode Diagram. Left: Method 1. Right: Method 2

3.6 PSS Tuning Performance Evaluation

In this final section the results of time domain simulations of the SM-IB system when disturbances are

applied are presented. Different cases are analyzed using the models presented in Chapter 2. Again the

analysis is done for static exciter.

3.6.1 PSS Gain Sensitivity

The PSS performance with Method 1 tuning for local oscillation mode presented in Subsection 3.5.1 is

evaluated using the complete model of the system which is not linearized. In this case, the order of the

model described in Section 2.1 is reduced neglecting the stator flux and transmission network current dy-

namics, and also the effect of changes in speed in the stator voltage equations. The assumptions are made

to facilitate the understanding of the electromechanical dynamics in the system [5].
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According to the sensitivity analysis, an interesting operation point to perform the simulations is: weak

external power system XE = 0.6 p.u, generator active power P = 0.4 p.u and reactive power Q = 0.4 p.u

since at these conditions low level of damping may be presented. The disturbances are steps of 15% in the

voltage reference and in the mechanical torque, which are applied at 2 s of the simulation. Different values

of the PSS gain are tested. The results are presented as follows.

Voltage Reference Step

The rotor angle speed and terminal voltage response are shown in Fig. 3.11. In Fig. 3.12 is presented the

control action which is the output signal of the PSS.

Fig. 3.11 SM-IB Dynamic Response. Left: Rotor Angular Speed ωr. Right: Terminal Voltage Vt

Fig. 3.12 Control Action - PSS Output Signal Vpss

Mechanical Torque Step

The rotor angle speed and electrical torque response are shown in Fig. 3.13. In Fig. 3.14 is presented the

control action which is the output signal of the PSS.
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Fig. 3.13 SM-IB Dynamic Response. Left: Rotor Angular Speed ωr . Right: Electrical Torque Te

Fig. 3.14 Control Action - PSS Output Signal Vpss

The main conclusions from the simulations results are:

• The PSS tuning obtained using the transient linearized model of the system works adequately to damp

out the oscillation created by the disturbance in the system model that is not linearized.

• The industry practice of a conservative design of the PSS gain is validated since reducing drastically

the gain affects the performance of the controller but not in a critical way. The oscillation takes few

seconds more to disappear but they are acceptable if the objective is to protect the system from a

instability produced by high gains. Also reducing the gain, the PSS control action does not have to be

limited.

• It is observed that without PSS, the disturbance applied drives the system to the be almost critically

stable since the magnitude of the created oscillation remains constant with time, therefore the PSS is

definitely needed.

• In the case of the step in the voltage reference, the terminal voltage response is influenced by the

fact that the output signal of the PSS is limited in the first swing for the three test gain values. In the

highest gain case, the AVR also reaches its limits.

• The control action when the step is applied to the mechanical torque is less severe than in the case of

step in the voltage reference, however the damping results are good.

3.6.2 Impact of Tuning Operation Point

In this case, the impact of tuning operation point is evaluated in the linearized transient model. The line-

arized model is chosen to observe also the impact of the linearization in time domain simulations. The

Method 1 tunings from Subsections 3.5.1 and 3.5.2 are used but changing the PSS gain to Ks1 = 10 in both
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cases. The simulation is performed in the same operation point (XE = 0.6 p.u, P = 0.4 p.u, Q = 0.4 p.u)

and a mechanical torque step of 15% is applied. The rotor angle speed and electrical torque response are

shown in Fig. 3.15. In Fig. 3.16 are presented the terminal voltage and the PSS control action.

Fig. 3.15 SM-IB Dynamic Response. Left: Rotor Angular Speed ωr . Right: Electrical Torque Te

Fig. 3.16 SM-IB Dynamic Response. Left: Terminal Voltage Vt. Right:PSS Output Signal Vpss

It is important to have in mind that an step of 15% is a big disturbance for the linearized model, however

it was applied to it with the aim to compare the models results. The main conclusions from the simulations

results are:

• Both PSS tunings work adequately to damp out the oscillation. At the tested operation point, the

oscillation that is triggered with the disturbance has a frequency about 1.01 Hz. At that frequency, it

is observed from the Bode diagram presented in Fig. 3.17 that the compensated system has an under-

compensation of 6.87◦ and of 28.2◦ with the two analized tuning cases. Slightly better performance

is observed with the tuning made for local oscillation mode, also in that case the control action is

less severe. According to the sensitivity analysis, at the test operation point, both tunings should pro-

vide similar level of damping, however the better performance of the tuning for the local mode could

be explained due to the 20◦ compensation difference. Finally, it is important to remember that both

tunings were performed for frequencies different than 1.01 Hz.
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Fig. 3.17 System Bode Diagram

• Comparing Fig. 3.15 with Fig. 3.13, it is noticed that the linearization has an impact in the gain of

the system, this can be seen from the magnitude difference in the variables dynamic response. In

addition, from the rotor speed simulations with No PSS in both cases, it can be observed that the

linearization also decreases the oscillation frequency of the response. Despite of this fact, the PSS

shows to be robust enough to handle with the simplification of being tuned using a linearized model.

• In the linearized model simulation also appears that without PSS the system is inherently unstable

under the level of disturbance applied.
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Chapter 4

Control Structure Based on Signal

Estimation

Nowadays, POD for inter-area oscillation modes in power systems is also achieved through FACTS con-

trollers. The conventional control strategy for FACTS to provide POD is similar to the one used for the

generator, using a cascade of washout and lead lag filters [3]. However, the PSS limitations, like the fact

that its good performance is limited to an operating point and that it is conceptually built to provide lo-

cal stabilization, are also valid in this case. In addition, the slow response of the washout filters causes a

slow response for the FACTS control system. Consequently, other control structures are being investigated

and implemented to control FACTS in order to provide a proper injection of active and reactive power to

the grid, that allows to obtain electromechanical oscillations damping [3], [6], [17]. Those other control

structures are based on signal estimation theory. Low-pass filter based and recursive least square based esti-

mation methods to extract the oscillatory component of a signal were used and reported in [3], [17] and [5]

to control FACTS achieving POD successfully.

Despite the fact that PSS has shown good performance to damp out local oscillation modes through the

excitation system of a synchronous generator which is connected to an infinite bus, the same idea that has

been used to damp oscillations with FACTS will be used in this work to define an alternative controller

for the generator. In this chapter the controller, which is based on a low-pass filter based signal estimation

algorithm and it is also applied to the excitation system, will be tested again using a SM-IB system. No

reference has been found in the literature of such a kind of controller used in the synchronous generator to

replace the PSS action.

4.1 LPF Based Estimation Algorithm

A signal estimation method based on low-pass filters is described in this section. The method was proposed

in [3] to separate the average and oscillatory component of a power signal; the extracted power oscillation

component was used to define the reactance reference for a TCSC in order to damp low frequency oscilla-

tions in the power system. In [2] is presented the single-phase implementation of the estimation algorithm

which consider a single-phase signal as input signal. In this work, the single phase implementation consi-

dering as input signal the generator rotor angular speed change ∆ωr will be used.

According to [3], [2] and [5], where the algorithm is clearly explained, the input signal can be defined

as to have an average and an oscillatory component as:

∆ωr(t) = ∆ωr0(t) + ∆ωrosc(t) (4.1)

The oscillatory component is defined as:

∆ωrosc(t) = Re[∆ωrph(t)e
jθosc(t)] = ∆ωrph(t) cos(ωosct+ ϕ(t)) (4.2)
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And it can be rewritten as:

∆ωrosc(t) =
1

2
∆ωrph(t)e

jθosc(t) +
1

2
∆ω∗

rph(t)e
−jθosc(t) (4.3)

Where, ∆ωrph, ωosc and ϕ are the amplitude, angular frequency and phase of the oscillatory component

respectively. ∆ωrph = ∆ωrphejϕ is the complex phasor of the oscillatory component and θosc(t) = ωosct

is the oscillation angle.

Inserting (4.3) in (4.1) and solving for the complex phasor:

∆ωrph(t) = [2(∆ωrosc(t)−∆ωr0(t))−∆ω∗

rph(t)e
−jθosc(t)]e−jθosc(t) (4.4)

Therefore, the estimation algorithm is defined applying low-pass filtering to (4.1) and (4.4) to obtain the

estimate for the average and the complex phasor of the input signal as is showed in the following equations,

where H0 and Hph are the low-pass filter functions [3], [2], [5]:

∆ω̂r0(t) = H0{∆ωr(t)−∆ω̂rosc(t)} (4.5)

∆ω̂rph(t) = Hph{[2(∆ωr(t)−∆ω̂r0(t))−∆ω̂∗

rph(t)e
−jθosc(t)]e−jθosc(t)} (4.6)

Using the estimate for the phasor in (4.6) and the definition of the oscillatory component in (4.3), the

estimate of the last one will be:

∆ω̂rosc(t) =
1

2
∆ω̂rph(t)e

jθosc(t) +
1

2
∆ω̂∗

rph(t)e
−jθosc(t) (4.7)

The block diagram of the single-phase estimation algorithm is showed in Fig. 4.1. It is important to men-

tion that even though the algorithm is presented here for generator rotor speed as input signal, any other

oscillatory input signal could be applied.

Fig. 4.1 Block Diagram of LPF Based Estimation Algorithm using Generator Rotor Speed Input

The low-pass filter functions H0 and Hph are defined in Laplace domain as follows. Observe that the

same cut-off frequency value is used for both filters, however not necessarily it has to be like that. The im-

portant point is the adequate selection of the parameter to be able to separate the average and the oscillatory

components. The parameter selection depends on the oscillatory frequency and will be described later in

this chapter.

H0(s) = Hph(s) =
αLPF

s+ αLPF
(4.8)

Therefore, (4.5) can be rewritten in Laplace domain as:

∆ω̂r0(s)

∆ωr(s)−∆ω̂rosc(s)
=

αLPF

s+ αLPF
= H0 (s) (4.9)

s∆ω̂r0 = −αLPF∆ω̂r0(s)− αLPF∆ω̂rosc(s) + αLPF∆ωr(s) (4.10)
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And, taken inverse Laplace transform to (4.10), the state space equation of the estimate for the average

component is obtained:

d∆ω̂r0(t)

dt
= −αLPF∆ω̂r0(t)− αLPF∆ω̂rosc(t) + αLPF∆ωr(t) (4.11)

Considering that the estimate oscillating phasor has a real and an imaginary part as:

∆ω̂rph(t)e
jθosc(t) = ∆ω̂rosc(t) + j∆ω̂rβ(t) (4.12)

Equation 4.6 can also be expressed in Laplace domain as:

∆ω̂rosc(s) + j∆ω̂rβ(s) =
αLPF

s− jωosc + αLPF
[2(∆ωr(s)−∆ω̂r0(s))− (∆ω̂rosc(s)− j∆ω̂rβ(s))]

(4.13)

Separating the real and imaginary part, the following equations are obtained:

s∆ω̂rosc(s) = −2αLPF∆ω̂r0(s)− 2αLPF∆ω̂rosc(s)− ωosc∆ω̂rβ(s) + 2αLPF∆ωr(s) (4.14)

s∆ω̂rβ(s) = ωosc∆ω̂rosc(s) (4.15)

Again, taken inverse Laplace transform to (4.14) and (4.15), the state space equations of the estimate for

the oscillatory (real) and imaginary components of the complex phasor are obtained:

d∆ω̂rosc(t)

dt
= −2αLPF∆ω̂r0(t)− 2αLPF∆ω̂rosc(t)− ωosc∆ω̂rβ(t) + 2αLPF∆ωr(t) (4.16)

∆ω̂rβ(t)

dt
= ωosc∆ω̂rosc(t) (4.17)

Finally, the state space model of the LPF based estimation algorithm is defined by (4.11), (4.16) and (4.17)

which in a matrix way is:

d

dt





∆ω̂r0(t)

∆ω̂rosc(t)

∆ω̂rβ(t)



 =





−αLPF −αLPF 0

−2αLPF −2αLPF −ωosc
0 ωosc 0









∆ω̂r0(t)

∆ω̂rosc(t)

∆ω̂rβ(t)



+





αLPF

2αLPF
0



∆ωr(t)

(4.18)

The characteristic frequency response of the algorithm from the input signal to the estimated oscillatory

component is presented in the Bode diagram of Fig. 4.2. The response also depends on the parameters

αLPF and ωosc whose selection will be explained in the next section.

Fig. 4.2 Bode Diagram from ∆ωr(t) to ∆ω̂rosc(t)
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4.2 Controller Applied to the Synchronous Generator

Basically, using a LPF based estimation algorithm, the oscillatory component of the generator rotor speed

deviation when an oscillation mode appears is extracted and, adding a phase shift (as with the lead lag filters

in the PSS) that oscillatory component can be applied to the summing input point of the AVR (as with the

PSS) to produce an electrical torque component in phase with the rotor speed deviation.

The phase compensation is done separating the magnitude and angle of the complex phasor ∆ω̂rph(t)

and adding a phase shift θest as is shown in Fig. 4.3. The magnitude remains unchanged while the phase is

shifted to compensate the phase lag in the generator. Then, the real part of the estimate oscillating compen-

sated phasor ∆ω̂rph,com(t)e
jθosc(t) is the compensated oscillatory component ∆ω̂rosc,com(t) of the input

signal.

Fig. 4.3 Block Diagram of Phase Compensation of the Complex Phasor

Consequently, the complete structure of the controller based on signal estimation, which will be called

from now on as Phasor POD Controller, is shown in the block diagram of Fig. 4.4. As in the PSS, the gain

Kest allows to determine the level of damping provided by the controller and the limiter allows to keep

the controller output voltage Vest within an appropriate range of values to be added to the voltage error

in the AVR. A general block diagram of the controlled system is presented in Fig. 4.5 where the feedback

damping controller is applied to the synchronous generator. And the effect of the phase shift and gain can

be seen through the Bode diagram of the algorithm in Fig. 4.6.

Fig. 4.4 Block Diagram of Damping Controller Based on Signal Estimation

Fig. 4.5 General Block Diagram of Damping Controller Closed Loop with the Synchronous Machine
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Fig. 4.6 Bode Diagram from ∆ωr(t) to ∆ω̂rosc(t) with Phase Shift and Gain

From Fig. 4.6 it can be seen that for an oscillation frequency of 1 Hz (ωosc = 2π), the phase of

the oscillatory component in the original algorithm is approximately 0◦ and the gain is 1 p.u. For the

same oscillation frequency, setting Kest = 5 p.u and θest = 60◦, it is observed how the gain and phase

characteristic are modified. The performance of the controller when it is applied to the generator to damp

local oscillation modes is influenced by the parameters tuning that will be presented as follows.

4.2.1 Parameters Selection

Oscillation Frequency ωosc

The frequency of the oscillation presented in the SM-IB system when a disturbance is applied needs to

be well known in order to tune the controller. From the eigenvalue analysis of the linearized system this

frequency can be obtained and represents the local oscillation mode.

LPF Cut-off Frequency αLPF

The cut-off frequency αLPF of the low-pass filters H0 and Hph must be smaller than the oscillation fre-

quency ωosc in order to be able to separate the average and oscillatory components of the input signal [5].

In [3] is recommended that αLPF should be about 0.2-0.5 times ωosc. In [5] is proved that for αLPF larger

than 0.4 times ωosc, the dynamic performance of the estimator starts to decrease; it is also mentioned that

typically αLPF is selected to be 0.1 times ωosc. The effect of different values of αLPF in the frequency

response of the estimator is presented in Fig. 4.7 which is calculated using an oscillation frequency of 1 Hz.

Fig. 4.7 Bode Diagram from ∆ωr(t) to ∆ω̂rosc(t). Sensitivity to αLPF

43



Chapter 4. Control Structure Based on Signal Estimation

Setting αLPF to 0.1 times ωosc the algorithm gives the best frequency selectivity but the estimation can

be slow, on the contrary, when it is 0.5 times ωosc the possibility of not extracting the right frequency is

increased (the selectivity is deteriorated) even a faster estimation can be achieved. In this case, it is also

observed from the magnitude diagram that if another oscillation frequency different than the frequency of

interest appears, it could be amplified. Therefore, the selection of the cut-off frequency should be done

considering an acceptable compromise among the mentioned factors.

Compensation Angle θest

θest, given in degrees, is the angle that the controller should compensate at the oscillation frequency ωosc.

This angle depends on the selected objective system phase at ωosc as was discussed in Section 3.2.

Controller Gain Kest

The gain will be set in such a way that a fair comparison can be made between the Phasor POD controller

and the PSS. Through the Bode diagram, it will be confirmed that at the analyzed oscillation frequency,

both controllers have the same gain. An example for an oscillation frequency of 1 Hz is shown in Fig. 4.8

where the gain of the controller should be tuned about 11 p.u in order to be able to compare the level of

damping that both controllers can provide for the oscillation mode.

Fig. 4.8 PSS and Phasor POD Controller Bode Diagrams

4.3 Simulations Results

In this section the results of time domain simulations of the SM-IB system when a disturbance is applied are

presented. Different cases are analyzed using the presented models. As in the PSS performance evaluation,

the analysis is carried out for static exciter.

4.3.1 With Complete Model

The Phasor POD controller performance is verified using the complete model of the system. In this case, the

order of the model described in Section 2.1 is reduced neglecting the stator flux and transmission network

current dynamics, and also the effect of changes in speed in the stator voltage equations. The assumptions

are made to facilitate the understanding of the electromechanical dynamics in the system [5].

The Phasor POD controller is tuned for the same operation point used to tune the PSS, which consider

a strong external power system XE = 0.2 p.u and high load for the synchronous generator where P = 0.9

p.u and Q = 0.1 p.u. In that point, the local oscillation mode appears at a frequency of 1.348 Hz and the

system phase lag at the oscillation frequency is −84.05◦. The objective system phase at that frequency is

set to −15◦. The parameter selection is summarized in Table 4.1.
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Table 4.1: Phasor POD Controller Parameters

Parameter Value Unit

fosc 1.348 Hz

αLPF 0.2(2πfosc) rad/s

θest 69.05 deg

Kest 5 p.u

The value of the controller gain Kest being tuned as was explained in Subsection 4.2.1 should be set

to 18 p.u, however the best results are obtained when the gain take a reduced value of 5 p.u. On the other

hand, the simulations are performed in the same tuning operation point. The applied disturbance is a step of

15% in the voltage reference of the AVR at 2 s of the simulation. The results are presented in Fig. 4.9 and

Fig. 4.10 and include a simulation using the PSS for comparison. The PSS is tuned as it was presented in

Subsection 3.5.1 with a gain Kpss = 5 p.u.

Fig. 4.9 SM-IB Dynamic Response. Left: Rotor Angular Speed ωr. Right: Terminal Voltage Vt

Fig. 4.10 Control Action - PSS Vpss and Phasor POD Controller Vest Output Signals

The time needed to damp the oscillation created by the disturbance is approximately the same with both

controllers, however the control action is significantly lower with the Phasor POD controller than with the

PSS. The effect of the control action magnitude can be also observed in the terminal voltage response. Due

to the aggressive action of the PSS, the AVR hits its lower and upper limits in the first swings, while with

the Phasor POD controller the terminal voltage is less modulated.
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4.3.2 With Linear Transient Model

The simulation presented here using the linearized transient model consider the Phasor POD controller

tuned to compensate all the phase lag in the synchronous generator, therefore θest = 84.05◦ and a value of

Kest = 18 p.u. The simulation is carried out for the same operation point, with the same PSS tuning and

under the same disturbance than in the previous case with the complete model. The results are presented in

Fig. 4.11 and Fig. 4.12.

Fig. 4.11 SM-IB Dynamic Response. Left: Rotor Angular Speed ωr . Right: Terminal Voltage Vt

Fig. 4.12 Control Action - PSS Vpss and Phasor POD Controller Vest Output Signals

The effects of the system linearization were discussed in Subsection 3.6.2, and even this test with line-

arized model is less realistic, it helps to illustrate the similarities in the system response when using both

controllers.

4.4 Critical Comparison - PSS vs. Phasor POD Controller

Finally, the control approach evaluated in this chapter to damp electromechanical oscillations has been

widely researched and its advantages demonstrated when it is applied to FACTS. Still more studies are

needed in order to be able to compare fairly the performance of the PSS and the Phasor POD controller

when it is applied to the synchronous generator. Furthermore, this control approach should be test in a

power system model different than the SM-IB model, where it can be possible to reproduce inter-area os-

cillations modes for which it is well recognized that the PSS effectiveness is not that good as for local

oscillations modes. In that case, the benefits of the proposed damping control design could be highlighted.
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In Table 4.2 is presented a critical comparison between the PSS and the Phasor POD controller regarding

important aspects that determine the performance of a controller.

Table 4.2: Controller Analytical Comparison

Controller

PSS Phasor POD

Response

Speed

Generally a slow speed of action is

presented [18].

The estimation algorithm separates

the average and oscillatory compo-

nent of the input signal with a small

time constant, therefore a fast res-

ponse can be achieved.

Phase

Compensation

The lead lag filters have a limit in the

phase compensation that can be pro-

vided per filter due to stability rea-

sons.

No restriction in the phase

compensation.

System Order

Higher order introduced by the lead

lag, washout and low-pass filters,

therefore the controller has more

poles and zeros. See Fig. 2.6.

Lower order since the control struc-

ture only needs two low-pass filters.

See Fig. 4.4

Tuning

More parameters to tune. Require

knowledge of the connecting grid.

Tuning usually performed for a

fixed local oscillation mode achiev-

ing good damping performance on

it but limiting the performance on

different operating points or for dif-

ferent mode frequencies. Classical

and advanced methods have been

applied.

Less parameters to tune also higher

robustness due to less parameters.

Good performance can be achieved

independent of the oscillation fre-

quency value if the oscillation mode

is well known and the phase angle to

compensate is chosen correctly.

Parameters

Adaptation

Usually, the PSS technology nowa-

days is develop to set a fixed tuning

of the parameters.

There are more advanced algorithms

with the same principle that make

possible to adapt the oscillation fre-

quency and the phase shift in real

time. An adaptive version of the con-

troller would lead in a satisfactory ac-

tion of it in a wider range of operating

points.
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Chapter 5

PSSVG 1.0 Software Tool

This chapter aims to be a user manual for the PSS tuning software tool PSSVG 1.0 built in Matlab R2011b.

The concepts and theoretical background for PSS tuning were presented in Chapters 2 and 3 and should

be taken into account in the final decision for the parameters values. The tuning methodology is based on

linear control system theory, specifically frequency response techniques are used to define the setting for

the lead lag filters time constants and controller gain when the PSS is analyzed on a SM-IB system. The

software will be for the use of VG Power AB company, to have an initial tuning during commissioning

of the controller in generation power plants. The calculated tuning might be adjusted with field test and

the company PSS tuning experience. The tool has implemented the mathematical model of the excitation

system provided by VG Power AB giving the option to chose between static and rotating exciters, it is

also designed considering the rotor speed change as input signal to the PSS. Finally, detailed explanation is

given for the main algorithm which uses the local oscillation mode as oscillation frequency to tune the lead

lag filters, additionally the program for tuning the filters at a different oscillation frequency will be briefly

described.

5.1 Algorithm Flow Chart

The general algorithm under PSSVG 1.0 is built is presented in Fig. 5.1. The steps are described as follows:

• First, The parameters of the SM-IB, AVR, exciter, and tuning operation point should be input in order

to calculate the linear transient model constants of the SM-IB system (see Subsection 2.4.1).

• Second, an eigenvalue analysis of the system without PSS is computed (see Section 3.1) to identify the

local oscillation mode of the system at the tuning operation point. In the main algorithm, the tuning

is carried out for that oscillation frequency, however there is an alternative algorithm to perform the

tuning for a manually input oscillation frequency.

• In the next step, the software computes the phase lag of the system at the specific oscillation fre-

quency. The user should input the objective system phase at the analyzed frequency taking into ac-

count the previously calculated phase lag and the discussion presented in Section 3.2.

• According to the phase shift to compensate, the software calculates the lead lag filters time constants

and the number of filter required using the two methods of tuning presented in Section 3.2.

• Then, from the root locus plot and considering the recommendations presented in Section 3.3 a gain

should be selected by the user.

• The gain and phase margin are calculated by the software to have an idea of the relative stability of

the system with the actual tuning.

• Later, the software computes again the phase of the system but now with compensation through the

PSS. At the oscillation frequency, the system phase should be the selected one. However depending

on the phase characteristic of the system it is important to analyze the phase of the compensated

system at different frequencies into the PSS frequency range of interest.
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• Finally, an eigenvalue analysis of the system with PSS is computed now to evaluate the level of

damping reached with the actual tuning.

• If the obtained results are accepted, the tuning would be the final tuning, if not, the process and

analysis should be done again changing the objective system phase at the analyzed frequency and the

selected gain. This will be repeated until an acceptable tuning is reached.

Fig. 5.1 PSS Tuning Algorithm

5.2 Matlab and Simulink Files

A file structure for the main algorithm is presented in Fig. 5.2. A file called MainProgram executes three

scripts: SMIBPar, SMIBNoPSS and SMIBPSS. SMIBPar load the parameters previously input by the user.

SMIBNoPSS computes the three first algorithm steps by calling the functions: Ks VG, ModalNoPSS VG

and PhaseNoPSS VG. ModalNoPSS VG calls the Simulink model SM ExcSys VG (see Subsection 2.4.1)

and PhaseNoPSS VG calls the Simulink model SM IB Trans (see Subsection 2.4.2). The results of SMIBNoPSS

are inputs to SMIBPSS which executes the rest of the algorithm steps calling the following functions and

Simulink models: FilterTuning O, FilterTuning M, SM ExcSys VG RL (see Section 3.3), GPhMargin

(wich calls SM ExcSys VG M), PhasePSS VG (which calls PSS), ModalPSS VG (which calls SM PSS VG),

TeCoeff VG and ResFig.
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Fig. 5.2 PSSVG 1.0 Files Structure

Simulink block diagram models are masked under a function block as in the example shown in Fig. 5.3

for SM ExcSys VG model. Giving double click to the block it will display a window with the system

parameters. To find the block diagram it is needed to right click the block and select ”Look Under Mask”

option. The model will appear in a new window as is presented in Fig. 5.4. In this case, the block AVR-

Exciter is also masked, the same procedure described before should be done to reach the block diagram

of the AVR and exciter model. In general, all Simulink models (.mdl extension) follow the same masked

design.

Fig. 5.3 Simulink Models Masked as a Subsystem Function Block

51



Chapter 5. PSSVG 1.0 Software Tool

Fig. 5.4 Block Diagram Model Under the Mask

5.3 How to Run a Case

An example step by step about how to run a case for PSS tuning is presented as follows:

1. Open the folder ModalFrequencyTuning, where the user can find the main algorithm files.

2. Open the file SMIBPar and fill on it the required system parameters. Observe that XT , XL, P , Q and

the type of exciter are parameters that do not need to be input in the file since they will be asked when

the program is running.

3. As is presented in Fig. 5.5, right click to the file MainProgram and select the option ”run”.

Fig. 5.5 Run the Main Algorithm

4. In the command window, the user is asked to define the tuning operation point and the type of exciter

as can be seen in Fig. 5.6.

Fig. 5.6 Defining Tuning Operation Point
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5. Once the user has input the data, the program display the eigenvalue and phase analysis of the system

without PSS and asks the user to input the objective system phase at the analyzed frequency and the

lead lag filters tuning type. Then the filters time constants are displayed in the command window.

6. A root locus plot of the system will pop up in a new window as it is shown in Fig. 5.7. The user

should analyze the plot and input the selected gain for the PSS in the command window.

Fig. 5.7 Root Locus Plot Window

7. After the gain has been input, the following results are displayed in the command window:

• Gain and Phase Margins.

• System phase limits at the PSS frequency range 0.1 Hz - 3 Hz.

• Eigenvalue analysis of the system with PSS.

• Synchronizing and damping torque coefficients at analized oscillation frequency.

8. A group of plots as the PSS Bode diagram, the Bode diagram of the system without PSS and with

PSS, the system phase in the frequency range of interest and the system zero-pole map will pop up

in several windows as is shown in Fig. 5.8 and Fig. 5.9. These plots help the user to analyze the

particular case together with the numerical results.

Fig. 5.8 Result Plots Windows. Left: PSS Bode Diagram. Right: System Bode Diagram with and without PSS
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Fig. 5.9 Result Plots Windows. Left: Compensated System Phase Lag. Right: System Zero-Pole Map

9. At the end, the program asks if the user wants to save the final tuning in a .mat file.

10. Finally, after analyzing the results about damping, torque coefficients, phase and gain margins and

compensated system phase lag, the user should decide if keep the tuning or change any of the input

data to run the process again for a new case.

5.4 Numerical Results in The Command Window

The complete numerical results are display in the command window as is presented in Fig. 5.10. The

command window can be printed as a .pdf file to generate a separate file with the results.
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5.4. Numerical Results in The Command Window

Fig. 5.10 Command Window Displayed Numerical Results
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5.5 Program for Tuning at a Different Oscillation Frequency

An additional folder called SpecificFrequencyTuning can be found in the main folder of the software tool.

In this folder are the files of the algorithm to tune the lead lag filters for a different oscillation frequency.

This algorithm follows the same logic and steps as the main algorithm. Also, the same Simulink models

are used. In this case, the main file that should be run is called OtherFrequencyTuning as is presented in

Fig. 5.11.

Fig. 5.11 Run the Alternative Algorithm

During the execution process, the program ask the user to input the frequency for analysis as is presented

in the example of the Fig. 5.12. The system phase lag at that frequency is displayed in the command window

and should be consider to define the objective system phase at the analyzed oscillation frequency.

Fig. 5.12 Asking to Input Frequency for Anlaysis

Finally, with the previous information the program asks the user to chose the lead lag filters tuning type

and follows the same steps as in Section 5.3 for the rest of the tuning process and results.

5.6 Comments and Tuning Tips

Some aspects to be taken into account about the software tool and the tuning task are listed below:

• The objective system phase at analyzed frequency is programmed as to be always negative, this

means to obtain undercompensation. When the value is asked during the tuning process, it can be

input positive or negative but the program will always assume that the objective system phase is a

negative value. Therefore, it is not possible to tune the lead lag filters overcompensating the system

phase for the analyzed frequency.

• The lead lag filter time constants are tuned to be equal for all filters, more advanced tuning algorithms

would be needed to tune each filter in the cascade link with a different purpose. In that case, it

would be possible to get a desired compensation not only for an specific frequency but for a range of

frequencies.
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• There is not representative difference in the results obtain between the two lead lag filters tuning

methods presented in Chapter 3. For Method 2, the program has an internal value for Kf equal to 2.

This filter gain should not be modified, furthermore it must not be less than 2 or more than 10. The

effect of varying it is to move the compensation central frequency of the filter. The higherKf the more

phase lead the compensated system will have at low frequencies badly influencing the synchronizing

torque at those frequencies. Also the higherKf the smaller the PSS gainKs1 should be to guarantee

the system stability.

• Generally, it was observed that the system phase lag is higher when the excitation system use a

rotating exciter, this means that the PSS should compensate a higher angle. However, as was discussed

in Chapter 2 in the synchronizing and damping torque coefficient analysis for this type of exciter, the

damping coefficient due to the excitation system is always possitive, this condition support choosing

more undercompensation in cases with this kind of exciters.

• According to many system root locus plot analysis for different levels of phase compensation, it was

observed that the less the PSS compensation angle θpss the higher the optimal PSS gain Ks1 can be,

introducing higher level of damping.

• It is consider that a damping of 5% for an oscillation mode is acceptable to do not risk the system

stability, however there is not an standardised criteria presented in the literature for the required

damping in a power system. Additionally, it should be taken into account that the gain and phase

margins should be positive at the frequency range of interest. Also, the obtained PSS tuning should

produce positive synchronizing and damping torque coefficients to the system due to the PSS.

• Finally, the tool needs to be tested for different systems considering several kind of synchronous

generator design connected to different external grids, in order to be able to evaluate and validate the

results.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Based on the literature review, the performed analysis, and the simulations results it is possible to conclude

that:

• The synchronous machine rotor oscillations due to lack of damping torque can be seen as a small

signal stability problem [11]. In that case, a linearized model of the SM-IB can provide good rep-

resentation of the dynamic response of the system to analyze the damping effect that a PSS can

introduce.

• It is not necessary to include the damper windings dynamics in the PSS tuning analysis because the

additional phase lag introduced by the sub-transient characteristic is not relevant compared with the

increase in mathematical dimension of the system. If the small phase lag difference wants to be taken

into account, it is possible to treat it as a PSS design criteria which makes to increase the compensation

angle some few degrees. For the analyzed machine, in the PSS frequency range of interest, the biggest

phase lag difference including the damper windings dynamics was about 10◦. This difference could

be considered not sufficient to include the sub-transient model in the PSS tuning analysis.

• The results show how the excitation system may negatively impacts the synchronizing and damping

torque components. Specifically, for the analized machine, the damping torque coefficient using static

exciter with high active power and weak external connecting grid reaches values about -2 p.u. There-

fore, it is mathematically demonstrated also the need of a PSS to increase the damping torque com-

ponent specially in the case of excitation systems with static exciters and at low frequencies.

• A PSS tuning methodology, which is based on linear control system theory, is established in this

work. Specifically, frequency response techniques are used to define the setting for the lead lag filters

time constants and PSS gain. This is supported on the fact that the predominant trend in the industry

is still to use frequency response based tuning methods [12].

• The performance of the PSS with the achieved tuning is validated via simulations in the complete

SM-IB system model. Furthermore, a sensitivity analysis of the local oscillation mode damping to

changes in the system operating point is carried out verifying the robustness of the tuning process. The

sensitivity analysis is also extended to a PSS tuning performed for an oscillation frequency different

than the natural local oscillation mode and once again good damping levels of the local mode are

achieved, fact that confirms the reliable tuning. In all analyzed cases, the minimum damping of the

local mode was never less than 10%.

• The idea of applying control structures based on signal estimation theory to FACTS to damp os-

cillations in the power system has been used in this work to define an alternative controller for the

generator. This controller is based on a low-pass filter based signal estimation algorithm. The ob-

tained results indicate that the alternative controller is able to damp successfully the local oscillation

mode that appear after applying a disturbance to the SM-IB system.
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• A critical comparison between the PSS and the Phasor POD controller reveals several advantages

of the Phasor POD controller in aspects as speed of action, robustness, tuning requirements and

possibility of parameters adaptation. However, the industry still prefer the conventional stabilization

based on lead lag filters and the reason could be that acceptable results are obtained with a relative

easy way on tuning. Also, because more research is needed to guarantee the stability of the system

when another control structure or technique is applied with the same aim [4].

6.2 Future Work

Based on the obtained results, it is recommended to continue in the following working lines:

• PSS tuning algorithm improvement including optimization to expand the performance requirement

to a frequency range, which should be the PSS frequency range of interest. Some proposed objective

functions are the square error between the objective system phase and the real phase of the compen-

sated system, or the square error between a objective oscillation mode damping and the real achieved

damping.

• Deeper analysis of the Phasor POD controller applied to synchronous generator in aspects as its

impact on the system stability and on the synchronizing torque component of the machine. Additio-

nally, to study the controller in a higher order power system model where inter-area oscillations can

be reproduced and more complex dynamic interactions appear allowing to test the controller limits of

performance. This will also lead to the possibility of a stronger comparison between the PSS and the

Phasor POD controller.
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Appendix A

System Parameters

The parameters of the synchronous generator and excitation system used for the calculations and simula-

tions in all chapters of this work were provided by VG Power AB and they are listed as follows.

A.1 Synchronous Generator

Table A.1: Synchronous Generator Parameters

Parameter Value Unit

Nominal Apparent Power Sn 69 [MVA]

Nominal Voltage Vn 13.8 [kV]

Inertia Constant H 3 [s]

Frequency f 50 [Hz]

Damping Torque Coefficient KD 0 [p.u/p.u]

Stator Resistance Rs 0.0033 [p.u]

d-axis Stator Inductance Lsd 1.177 [p.u]

q-axis Stator Inductance Lsq 0.772 [p.u]

Stator Leakage Inductance Lsλ 0.174 [p.u]

d-axis Open Circuit Transient Time Constant T ′

d0 6.596 [s]

d-axis Stator Transient Reactance X ′

sd 0.324 [s]

d-axis Damper Winding Leakage Inductance L1dλ 0.17879 [p.u]

q-axis Damper Winding 1 Leakage Inductance L1qλ 0.20104661 [p.u]

q-axis Damper Winding 2 Leakage Inductance L2qλ 0 [p.u]

Field Resistance Rfd 0.00056937 [p.u]

d-axis Damper Winding Resistance R1d 0.02462133 [p.u]

q-axis Damper Winding 1 Resistance R1q 0.02768629 [p.u]

q-axis Damper Winding 2 Resistance R2q 0 [p.u]
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A.2 Excitation System

Table A.2: AVR and Exciter Parameters

Parameter Value Unit

AVR Proportional Gain Kp 20 [p.u]

AVR Integral Gain Ki 0.2 [p.u]

Terminal Voltage Transducer Time Constant Tr 0.01 [s]

Time Constant due to type of AVR T4 0.004 [s]

Power Converter Positive Ceiling Voltage V R Max 4 [p.u]

Power Converter Negative Ceiling Voltage V R Min −3 [p.u]

Maximum Integral Control Action Voltage V l Max 4 [p.u]

Minimum Integral Control Action Voltage V l Min −3 [p.u]

Maximum Proportional Control Action Voltage V p Max 10 [p.u]

Minimum Proportional Control Action Voltage V p Min −10 [p.u]

Table A.3: Parameters Depending on the Type of Exciter

Value

Parameter Rotating Static Unit

Derivative Gain Kd −5 0 [p.u/p.u]

Derivative Filter Time Constant Td 2 0 [s]

Rotating Exciter Gain Ke 1 1 [p.u/p.u]

Rotating Exciter Time Constant Te 0.9 0 [s]

Saturation Function for Rotating Exciter Se 0 0 [-]
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Appendix B

Transformations Equations for 3-Phase

Systems

The transformations from 3-phase system to αβ system which is a stationary reference frame, and to dq

system which is a rotating reference frame, are presented in the following equations. In this case, zero

sequence is not considered since the assumption of a symmetric or balanced system is made [8].

B.1 Power Invariant 3-phase to αβ Transformation

s(t) = sα(t) + jsβ(t) =

√

2

3
(s1(t)e

j0 + s2(t)e
j2π�3 + s3(t)e

j4π�3) (B.1)

[

sα

sβ

]

=

√

2

3







1 −1

2
−1

2

0

√
3

2
−
√
3

2











s1

s2

s3



 (B.2)





s1

s2

s3



 =

√

2

3











1 0

−1

2

√
3

2

−1

2
−
√
3

2











[

sα

sβ

]

(B.3)

B.2 αβ to dq Transformation

From αβ to dq

v(dq)(t) = v(αβ)(t)e−jθ(t) (B.4)

[

vd(t)

vq(t)

]

=

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

] [

vα(t)

vβ(t)

]

(B.5)
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From dq to αβ

v(αβ)(t) = v(dq)(t)ejθ(t) (B.6)

[

vα(t)

vβ(t)

]

=

[

cos(θ) sin(θ)

− sin(θ) cos(θ)

] [

vd(t)

vq(t)

]

(B.7)

Where the angle θ is the transformation angle, which is also presented in Fig. 2.2.
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