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Waves in the ion cyclotron range of frequencies with linear polarization detected

by satellites can be useful for estimating the heavy ion concentrations in planetary

magnetospheres. These waves are considered to be driven by mode conversion (MC)

of the fast magnetosonic waves at the ion-ion hybrid resonances. In this paper, we

derive analytical expressions for the MC efficiency and tunneling of waves through

the MC layer. We evaluate the particular parallel wavenumbers for which MC is

efficient for arbitrary heavy ion/proton ratios and discuss the interpretation of the

experimental observations.

Introduction The presence of multiple ion species influences the plasma dispersion

characteristics in various magnetized plasmas. In fusion plasmas, contamination with

carbon impurities was shown to have profound consequences on the absorption efficiency

of ion cyclotron resonance heating and can be used for its optimization [1]. Waves in the

ion cyclotron range of frequencies, further referred to as ion cyclotron waves, have been

frequently observed and studied also in planetary magnetospheres. Observational studies

indicate, in addition to protons, the presence of several ion species e.g. He+ at the Earth’s,

Na+ at Mercury’s, S2+ and O+ at Jupiter’s planetary environments [2]. The presence of

multiple ion species, even with small concentrations, can lead to the appearance of new and

modified resonance, cutoff and crossover frequencies [3]. The observation of these waves

can give information on the concentration of the various ion species and the underlying

physical processes. The waves can be important in coupling different ion species via wave-

particle interactions. For example, in the terrestrial magnetosphere it is believed that ion

cyclotron waves, excited by energetic protons, transfer energy to helium (and maybe even
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oxygen) ions which escape from the ionosphere [4]. Ion cyclotron wave interactions are

also considered as an important non-adiabatic process leading to pitch-angle scattering of

protons.

The frequency of ion cyclotron waves in magnetospheric plasmas is usually within the

ultra-low frequency (ULF) range (a few Hz) due to the low magnetic field of the planets.

Narrowband linearly polarized ULF waves, clearly having a resonant structure, have been

observed in the magnetospheres of the Earth and Mercury [5, 6]. Such ULF events have

been suggested to be driven by mode conversion (MC) of the fast magnetosonic waves

(FW) at the ion-ion hybrid (IIH) resonances [7]. The radial inhomogeneity of the planetary

magnetic field causes the presence of a cutoff layer in the direction of lower magnetic fields

close to the resonance layer. The efficiency of mode conversion and tunneling of waves

through the MC layer formed by the cutoff-resonance pair depends on the ion composition.

This gives restrictions on the heavy ion concentrations.

In this paper we discuss how tunneling and MC efficiencies depend on the

concentrations of various ion species and the FW parallel wavenumber. We show that for

strictly perpendicular wave propagation from the outer magnetosphere MC can only be

efficient for very small heavy ion concentrations, i.e. less than a few percent. But for such

low concentrations the observed ULF frequency would be practically indiscernible from the

heavy ion cyclotron frequency, in contradiction to the observations. On the contrary, we

will show that for particular finite parallel wavenumbers, MC can be efficient for arbitrary

heavy ion/proton density ratios. This happens when the IIH resonance approaches the

cutoff layer and for such conditions the IIH frequency is close to the crossover frequency.

The results can be used for the interpretation of observations of linearly polarized waves in

the magnetospheres and to estimate the local heavy ion concentration. Similar diagnostic

techniques based on launching the FW in plasmas and further analysis of the MC and

reflected waves have recently become a tool to measure the ion composition also in fusion

plasmas [8, 9].

Wave dispersion To analyze how efficiently the waves coming from the outer

magnetosphere tunnel through the IIH resonance and penetrate into the inner

magnetosphere, we adopt a simplified 1D slab model that captures the essential features of

the IIH resonance and MC process [2, 7]. The dispersion relation for the fast magnetosonic
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wave propagating predominantly across the magnetic field lines is approximately given

by [10]:

n2
⊥,FW =

(ǫL − n2
‖)(ǫR − n2

‖)

ǫS − n2
‖

=
(ǫ1 − n2

‖)
2 − ǫ22

ǫ1 − n2
‖

, (1)

where n‖ = ck‖/(2πf) is the refractive index parallel to the equilibrium magnetic field,

and f is the wave frequency. In Eq. (1), ǫS = ǫ1, ǫL = ǫ1 − ǫ2 and ǫR = ǫ1 + ǫ2 are the

plasma dielectric tensor components in the notation of Stix [10]. In a cold-plasma limit

and for the ion cyclotron frequency range the tensor components can be written as

ǫ1 = 1 +
ω2
pe

ω2
ce

−
∑

i

ω2
pi

ω2 − ω2
ci

, ǫ2 = −
∑

i

ω

ωci

ω2
pi

ω2 − ω2
ci

, (2)

where the summation is to be taken over all ion species constituting the plasma, and

ωpe,i and ωce,i are the plasma and cyclotron frequencies of electrons and plasma ions,

respectively.

The resonance condition ǫS = n2
‖ for waves in the ion cyclotron frequency range is

commonly identified with the IIH resonance [2, 10]. This resonance arises in plasmas which

include at least two ion species with different charge-to-mass ratios. Full-wave treatment

of the problem resolves this resonance and bends it into a confluence such that at this

layer the FW is converted to a short wavelength mode. As Fig. 1(a) illustrates, when the

inhomogeneity of the magnetic field is accounted for, the IIH resonance is accompanied

by the L-cutoff layer (ǫL = n2
‖) to the low magnetic field side, where the incoming FW

undergoes partial reflection. The IIH resonance and L-cutoff layers form together the MC

layer (RS < R < RL), which is a barrier for the propagating FW since within this region

n2
⊥,FW < 0. The FW power transmits through the MC layer via tunneling.

The equations for the IIH resonance, ωS, and L-cutoff, ωL, frequencies can be

rewritten in a simpler form [11]

∑

i

fiZi

Z2
i − ω̃2

S

= α,
∑

i

fi
Zi − ω̃L

= α, (3)

where for individual ion species ‘i’ with the charge number Zi and atomic mass Ai the

following notations were introduced: Xi = ni/ne – concentration of ion species, fi = ZiXi

– fraction of the replaced electrons, Zi = Zi/Ai. Throughout the paper the tilde sign

over the frequency indicates its normalization to the cyclotron frequency of hydrogen ions

(ω̃ = ω/ωcH). The parameter α entering the right-hand side of Eqs. (3) describes the
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effect of the finite k‖ on the location of the resonance and cutoff in a plasma, and is given

by α = (ω2
cH/ω

2
pH) ñ

2
‖, where ωpH =

√

4πnee2/mH and ñ2
‖ = n2

‖ − 1 − ω2
pe/ω

2
ce.
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FIG. 1: (a) Sketch of the wave dispersion: due to the radial inhomogeneity of the magnetic field

the IIH resonance is accompanied by a cutoff layer at the low field side, which form together the

MC layer. (b) Scattering coefficients as a function of the tunneling factor for the isolated MC

layer for waves incident from the outer magnetosphere.

Efficiency of mode conversion A quantitative parameter describing transmission through

the MC layer and how much incident power undergoes mode conversion is referred to as

the tunneling factor [12]. It is defined as

η =
2

π

∫ RL

RS

|k⊥,FW(R)| dR, (4)

where k⊥,FW = (2πf/c)n⊥,FW. The transmission coefficient is then T = e−πη, which is

independent of the wave incidence side. However, the reflection and thus MC coefficients

are essentially different, when the wave approaches the MC layer from the resonance (inner

magnetosphere), compared to when it comes from the cutoff (outer magnetosphere) side.

For the former case the reflection is negligible and most of the FW energy undergoes

mode conversion if the tunneling factor is large, η ≫ 1. For the latter case, when the

waves come from the outer magnetosphere (from the cutoff side), there is a reflection of

the wave with the reflection coefficient R = (1 − T )2, limiting the conversion coefficient

to be C = T (1− T ).

Resonant absorption via MC can only be efficient if the layer is semi-transparent.

Absorption reaches its maximum if the tunnelling factor η = ln 2/π ≈ 0.22. If η ≫ 1 most
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of the power is reflected at the L-cutoff and cannot tunnel through the layer, making MC

highly inefficient. If η ≪ 1, the MC coefficient is also low since most of the power tunnels

through the layer. Figure 1(b) shows that the mode conversion is most efficient if the

tunneling factor has a value 0.05 < η < 0.61. Under these conditions, the conversion

coefficient is greater than a half of its maximum value, C ≥ 0.5 Cmax.

The tunneling factor can be calculated by expanding the dielectric tensor

components at the IIH resonance, R = RS: ǫ1(R) = n2
‖ + ǫ′1(R − RS), ǫ2(R) =

ǫ2+ǫ′2(R−RS), where the prime denotes derivative with respect to R. Then, the dispersion

equation for the FW can be rewritten as follows:

k2
⊥,FW(R) = −ω2

c2
2ǫ2ǫ

′
2

ǫ′1

[

1 +
ǫ2

2ǫ′2(R− RS)

]

= k2
A

[

1− ∆

R −RS

]

, (5)

which is equivalent to the Budden potential [10, 13] with the asymptotic FW perpendicular

wavenumber kA = (ω/c)
√

−2ǫ2ǫ′2/ǫ
′
1 and the MC layer width ∆ = −ǫ2/(2ǫ

′
2). For the

Budden problem the tunneling factor is given by

η = kA∆ = (ω/c)
√

−ǫ32/(2ǫ
′
1ǫ

′
2) , (6)

thus to evaluate the tunneling factor, the quantities ǫ′1, ǫ2 and ǫ′2 have to be calculated at

the IIH resonance.

For k‖ = 0 and a two-ion species plasma, using the tensor components and their

derivatives at the resonance [12], Eq. (6) leads to η10 = [ωpHLB/(2c)]
√

Z2/A2[(1 −
µ)2/µ2]

√

(1 + µ)/2 f2(1 − f2)
√

a1/[a32(1− g1)], where µ = q1m2/(q2m1) (subscripts

‘1’ and ‘2’ denote majority and minority ions, respectively), a1 = 1− (1− µ)f2,

a2 = 1− (1− 1/µ)f2, g1 = (1 + µ)(1 − 1/µ)2f2(1 − f2)/(2a2). Here, LB =

−(∂ lnB/∂R)−1 = RS/NB is the characteristic magnetic field gradient length, RS is

the radial position of the IIH resonance (point of observation) and NB is an exponent

describing the magnetic field variation and defined as B(R) = B0(R0/R)NB . The

planetary magnetic field has a dipole structure best described by NB = 3.

When estimating the tunneling factor using an expansion of the tensor components

at the resonance, the dispersion of the FW, Eq. (1), can be fitted accurately by Eq. (5)

at R = RS. However, as Eq. (4) shows, there is a finite contribution to the tunneling

factor from the whole MC layer, although the contribution from the cutoff area is smaller

than that from the area close to the resonance. To account for that, we derive a more
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accurate formula for the tunneling factor. We replace ǫ′2 in Eq. (6) with −ǫ2/(2∆), and

keep a rigorous expression for the MC layer width, ∆MC/Rs = (a1a2)
1/(2NB) − 1, instead

of its Budden approximation. Then, the tunneling factor, η2 = (ω/c)(ǫ22∆MC/ǫ
′
1)

1/2 as

a function of minority concentration and plasma parameters for k‖ = 0 is given by

η20 =

(

ωpHLB

2c

)

√

Z2

A2

(1− µ)2

µ3/2
f2(1− f2) G(f2, NB),

G(f2, NB) =

√

2NB a1
a22

· (a1a2)
1/(2NB) − 1

a1a2 − 1
.

(7)

The function G(f2, NB) tends to unity for small minority concentrations. Fig. 2(a) shows

a comparison of the tunneling factor calculated as a function of He+ concentration at

the geostationary orbit, R = 6.6RE. Circles represent the tunneling factor calculated by

numerical evaluation of the general expression Eq. (4), whereas dashed and dash-dotted

lines represent analytical approximations given by η10 and η20. The approximation for

the tunneling factor given by η20 is in very good agreement with the numerical values,

while the approximation only involving tensor components at the resonance differs by

a factor of ∼ (2µ/(1 + µ))1/2. Note that η10 and η20 are valid for arbitrary f2, and

obey η(f2, µ) = η(1 − f2, 1/µ). In Ref. [5], fobs/fcH ≈ 0.44 was reported, and then it

corresponds to X [He+] = 38.9%. For such a concentration of helium ions η20 = 24.6, and

the MC efficiency is completely negligible, as C ≈ T ≈ 2.7 × 10−34. As Fig. 2(b) clearly

illustrates, MC can be efficient only for He+ concentrations less than a few percent. Almost

total reflection (η = 1) is already reached at X [He+] = 5.5%/1.8%/0.6% for plasma

densities ne = 1/10/100 cm−3, respectively. However, for low helium concentrations the

IIH frequency is very close to the He+ cyclotron frequency, and thus contradicts the

observations.

Critical parallel wavenumber Now we will show how finite wave tunneling can occur

for large minority concentrations and the resonant IIH frequency can be consistent with

the observed values. As k‖ increases, both the IIH resonance and L-cutoff frequencies

increase (as shown in Fig. 3) and the corresponding layers shift towards the low magnetic

field side; at the same time the distance between the layers gradually decreases. For

a certain parallel wavenumber, k‖ = k∗
‖ (further referred to as a critical wavenumber),

the MC layer width approaches zero, and thus the tunneling may be significant. When

ωS = ωL, we have ǫ2 = 0, and this condition determines the crossover frequency, ωcr [14].
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FIG. 2: (a) Tunneling factor as a function of the He+ concentration at the geostationary orbit

for k‖ = 0, ne = 10 cm−3. (b) Tunneling factor η20 (log-scale) for various plasma densities. Note

that in all cases, MC can only be efficient for X[He+] less than a few percent.

In two-ion component plasmas it is given by ωcr/ωc2 =
√

1− (1− µ2)f2, and is higher

than both ωL0 and ωS0. Using Eqs. (3), it can be shown that ωS = ωL = ωcr is fulfilled

if the parameter α is equal to α∗ = 1/(Z1 + Z2). This yields the FW critical parallel

wavenumber to be

k∗
‖ =

ωpH

c

(f/fcH)√
Z1 + Z2

. (8)

For parallel wavenumbers close to the critical wavenumber but somewhat smaller, the

fraction of the MC power for the waves incident from the outer magnetosphere (low

magnetic field side) can be large. This is due to the significant reduction of the MC layer

width, that may result in smaller values for the tunneling factor. We therefore conclude

that k‖ must be sufficiently large in order to explain the observations. Note that the

ratio k∗
‖/k⊥ ∝ (RS/R)NB is small at the outer magnetosphere regions far away from the

MC layer, whereas within the cutoff-resonance layer it varies strongly.

Estimate of the heavy ion concentration We are now in a position to discuss the

implications of these results for determining the heavy ion concentrations in planetary

magnetospheres. The main constituents of Mercury’s magnetosphere are H+, He+ and

Na+. The source of H+ and He+ is the solar wind, while other heavy ions (Na+, O+

and K+) result from sputtering of the planetary surface. The contributions of O+ and

K+ are negligible compared to that of Na+, that makes up between 10–50 % of the

magnetospheric ion composition [7, 14]. The presence of Na+ is therefore important
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FIG. 3: Normalized IIH resonance and L-cutoff frequencies as a function of the FW parallel

wavenumber.

to take into account when modelling the ULF wave propagation. Mariner 10 detected

ULF waves with a peak frequency fobs = 0.5Hz during its first passage of Mercury’s

magnetosphere [6, 7]. The local proton gyrofrequency was fcH = ωcH/(2π) = 1.31Hz. For

proton majority plasmas with singly ionized heavy ions, µ = Z1/Z2 = A2, i.e. µ equals

the atomic mass of heavy minority ions. If we assume k‖ = 0, the observed wave frequency

leads to unrealistically high sodium concentrations. In fact, if we take the Buchsbaum

frequency, i.e. the IIH frequency relevant for k‖ = 0, as that corresponding to the observed

peak in the spectrogram, ωS0/ωc2 =
√

[1− (1− µ)f2]/[1− (1− 1/µ)f2] = 8.78, then it

leads to f2 = X [Na+] = 79.5%. However, if we assume the detection of waves with

k‖ ≃ k∗
‖ and take the crossover frequency to interpret the observed wave, one concludes

X [Na+] = 14.4%. While the former estimate is unrealistically high, the latter is within

the 10–50% range for Na+ identified earlier. The reason for such a large difference between

the estimates of the sodium concentrations is because ωS0 and ωcr include terms µf2 and

µ2f2, respectively. Since µ = ANa+ = 23 ≫ 1, a much lower sodium concentration is

needed for the crossover frequency to match the observed event frequency.

The above result for the crossover frequency defined as ǫ2(ωcr) = 0 can easily be

generalized to treat multiple ion species. Using the notations introduced before, the

normalized crossover frequency is given by the solution of the equation
∑

i fi/(ω̃
2
cr−Z2

i ) =

0. In plasmas including only two ion species it equals to ω̃cr0 =
√

Z2
2 + (Z2

1 − Z2
2 )f2.

Accounting for additional ion species (impurities), we have ω̃cr =
√

ω̃2
cr0 + ǫ, and the
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effect of impurities on the crossover frequency is described by ǫ =
∑

imp k12f2fimp ×
(

1 +
∑

imp k22fimp

)

, with k12 = (Z2
1−Z2

2 )(Z2
1−Z2

imp)/(ω̃
2
cr0−Z2

imp), k22 = (Z2
1−Z2

imp)(Z2
2−

Z2
imp)/(ω̃

2
cr0 − Z2

imp)
2. Using these formulae, one can show that the ratio of the minority

concentration satisfying the crossover condition in plasmas with and without impurities

is given by

f ∗
2

f2
= 1−

∑

imp

Z2
1 − Z2

imp

ω̃2
cr0 − Z2

imp

fimp ≈ 1−
∑

imp

Z2
1 − Z2

imp

Z2
1f2 − Z2

imp

fimp . (9)

For the right hand side of Eq. (9) we made use of ω̃cr0 ≃ Z1f
1/2
2 if µ ≫ 1.

In the case of Mercury and ignoring the presence of He2+ ions, the observed wave

frequency corresponds to the sodium concentration 14.4%. According to Eq. (9), the

presence of helium ions leads to an increase in the sodium concentration, X [Na+] =

0.144 + 2.069X [He2+], in agreement with the formula given in Ref. [14]. For a plasma

including 5% of helium ions, the sodium concentration increases up to 24.8%. Thus, using

a two-ion species approximation only for the crossover frequency can lead to a significant

underestimate of X [Na+]. If we assume that the ratio between the concentrations of

helium ions and protons is the same as in the solar wind (X [H+]/X [He2+] = 73.2/3.05 =

96/4), we find X [Na+] = 20.7%.

In Ref. [5], a strong linearly polarized ULF emission peaking at fobs = 1Hz was

observed in the magnetosphere of the Earth. The local helium cyclotron frequency was

fc,He+ ≈ 0.57Hz. Then, from the ratio fobs/fcH ≈ 0.44, one would conclude X [He+] =

38.9% assuming the Buchsbaum IIH frequency (corresponding to the assumption of

k‖ ≃ 0). However, if the observed frequency instead is matched to the crossover frequency,

one finds X [He+] = 13.8%. The latter is in good agreement with the value used in

simulations in Ref. [15]. For the Earth’s magnetosphere the third ion species of importance

is O+, and it influences the crossover frequency such that X [He+] = 0.138− 0.731X [O+].

In contrast to Mercury’s case, accounting for the additional impurity species leads to

a reduction of the heavy ion concentration responsible for the crossover frequency. If the

oxygen concentration is 3%, then the helium concentrations drops to 11.6%.

Conclusions Mode conversion of the fast magnetosonic waves at the IIH resonance was

suggested earlier for the interpretation of linearly polarized waves detected by satellites.

However, in this paper we have shown that the Buchsbaum IIH resonance frequency



10

relevant for the waves with a small parallel wavenumber is inconsistent with experimental

observations in Earth’s and Mercury’s magnetospheres due to negligible wave tunneling

at k‖ = 0 for typical parameters of such plasmas. Instead, we show that tunneling and

conversion efficiency may become significant for waves excited with parallel wavenumbers

close to a critical value k∗
‖, corresponding to condition for which the MC layer width

approaches zero, allowing thus the detection of ULF events. Under such conditions,

the measured MC frequency is close to the crossover frequency (but somewhat below),

ω = ωS ≃ ωcr rather than to the Buchsbaum IIH frequency, ωS0. The analytical formulae

for the critical parallel wavenumber and the crossover frequency in the presence of multiple

ion species can be used for making estimates of the heavy ion concentrations in various

planetary magnetospheres.
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