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Abstract
We propose a new splittable pseudorandom number generator
(PRNG) based on a cryptographic hash function. Splittable PRNGs,
in contrast to linear PRNGs, allow the creation of two (seemingly)
independent generators from a given random number generator.
Splittable PRNGs are very useful for structuring purely functional
programs, as they avoid the need for threading around state. We
show that the currently known and used splittable PRNGs are either
not efficient enough, have inherent flaws, or lack formal arguments
about their randomness. In contrast, our proposed generator can
be implemented efficiently, and comes with a formal statements
and proofs that quantify how ‘random’ the results are that are
generated. The provided proofs give strong randomness guarantees
under assumptions commonly made in cryptography.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Algorithms, Languages

Keywords splittable pseudorandom number generators, provable
security, Haskell

1. Introduction
Splittable pseudorandom number generators (PRNGs) are very useful
for structuring purely functional programs that deal with random-
ness. They allow different parts of the program to independently
(without interaction) generate random values, thus avoiding the
threading of a random seed through the whole program [10]. More-
over, splittable PRNGs are essential when generating random infinite
values, such as random infinite lists in a lazy language, or random
functions. In addition, deterministic distribution of parallel random
number streams, which is of interest to the High-Performance Com-
puting community [22, 26], can be realised using splitting.

In Haskell, the standard module System.Random provides a
default implementation of a splittable generator StdGen, with the
following API:

split :: StdGen -> (StdGen, StdGen)
next :: StdGen -> (Int, StdGen)

[Copyright notice will appear here once ’preprint’ option is removed.]

The function split creates two new, independent generators from
a given generator. The function next can be used to create one
random value. A user of this API is not supposed to use both next
and split on the same argument; doing so voids all warranties
about promised randomness.

The property-based testing framework QUICKCHECK [13]
makes heavy use of splitting. Let us see it in action. Consider
the following simple (but somewhat contrived) property:

newtype Int14 = Int14 Int
deriving Show

instance Arbitrary Int14 where
arbitrary = Int14 ‘fmap‘ choose (0, 13)

prop_shouldFail (_, Int14 a) (Int14 b) = a /= b

We define a new type Int14 for representing integers from 0 to 13.
Next, we create a random generator for it that randomly picks a
number from 0 to 13. Finally, we define a property, which states that
two randomly picked Int14 numbers, one of which is a component
of a randomly picked pair, are always unequal.

Testing the property yields the following result:

*Main> quickCheckWith
stdArgs { maxSuccess = 10000 } prop_shouldFail

+++ OK, passed 10000 tests.

Even though the property is false (we would expect one of every 14
tests to fail), all 10000 tests succeed!

The reason for this surprising behaviour is a previously unknown
flaw in the standard Haskell pseudorandom number generator
used by QUICKCHECK during testing. The PRNG should pick all
combinations of numbers 0–13 for a and b, but in fact combinations
where a and b are the same number are never picked.

It turns out that the StdGen standard generator used in current
Haskell compilers contains an ad hoc implementation of splitting.
The current implementation is the source of the randomness flaw1

demonstrated above. The flaw requires a particular pattern of split
operations to manifest and results in very strong correlation of
generated numbers. In fact, when 13 in the Int14 generator is
replaced by other numbers from range 1–500, the problem arises for
465 of them! Unfortunately, this pattern of splits is simple and likely
to arise often in typical usage of QuickCheck. Because of this, we
cannot be sure that QuickCheck properties that pass a large number
of tests are true with high probability.

Unfortunately, research devoted to pseudorandom generation
has mainly concentrated on linear generators, which do not support
on-demand splitting. Several attempts have been made at extending

1 http://hackage.haskell.org/trac/ghc/ticket/3575 and .../
3620
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linear PRNGs into splittable ones [10, 19, 29]. Most proposed
constructions were incompatible with unlimited on-demand splitting.
Yet the ones that supported it did not assure the independence of
derived generators. In fact, the current implementation of splitting
in System.Random contains a comment ‘no statistical foundation
for this!’. Indeed.

Attempting to generalise an existing traditional linear PRNG
into a splittable one is problematic for two reasons. First, it is
not clear how randomness properties of a linear generator carry
over to a splittable generator. For example, demanding that every
path through a splitting tree is a good linear PRNG is not at all
enough to ensure that the two subgenerators created by a split are
independent. And second, which may even be more problematic,
the formal requirements satisfied by traditional linear PRNGs are
not even sufficient to guarantee good randomness. Instead, their
randomness is assessed using suites of statistical tests [25, 34, 36].
However, even if a linear generator passes these tests, this may not
guarantee that it will work well in particular situations, as some
linear PRNGs have been found to fail in intricate ways [30]. So,
because of the lack of strong formal properties satisfied by linear
PRNGs, there is no reliable way of extending a linear PRNG into a
splittable one that guarantees good statistical properties.

In contrast, cryptographic research has resulted in methods for
generating high-quality pseudorandom numbers, which are provably
random, using pseudorandom functions (PRFs) [5, 20, 24, 31]. The
proofs depend on unproven but commonly accepted assumptions,
such as the computational difficulty of some problems, or on the
existence of secure block ciphers. Despite that, they provide a
much higher degree of confidence than statistical test suites. Even
more importantly, the proofs serve as guidance for deciding which
constructions of PRNGs are sound.

Cryptographic methods have been proposed for implementing
splittable PRNGs recently. In a Haskell-Cafe mailing list discus-
sion [32] Burton Smith et al. propose basing such a generator on a
cryptographic block cipher. Another example are random number
generators specified in NIST SP 800-90A [2], which are based on
PRNGs (called DRBGs2 there), whose one instance can be initialised
using pseudorandom output from another instance. This mechanism
has been used for implementing splitting in the crypto-api Hackage
package3.

The idea behind both of these designs is similar and appears
to give good results. However, only an informal justification is
provided for the first of them, and none for the second. Furthermore,
splitting is costly in both of them, as every split operation requires
one (or more) run of the underlying cryptographic primitive, such
as a block cipher.

An efficient PRNG that supports splitting under the hood has been
proposed by Leiserson et al. [26]. To generate random numbers,
the generator hashes a path, which identifies the current program
location, using a hash function. The hash function is constructed in
a way that minimises the probability of collisions and contains a
final mixing step to make the output unpredictable. However, low
probability of collisions is the only property that is proven for the
hash function, whereas randomness of its results is only evaluated
using statistical test.

Micali and Schnorr [31] present a PRNG based on the RSA cryp-
tosystem, which is provably random and supports n-way splitting.
However, the results are asymptotic, which means that they do not
indicate what parameters to choose to achieve a particular level of
randomness, or whether the generator is practical at all [12, 18, 35].

2 Deterministic Random Bit Generators
3 http://hackage.haskell.org/packages/archive/crypto-api/
0.12.2.1/doc/html/Crypto-Random.html

Thus, until now all splittable PRNGs were either ad hoc ex-
tensions of linear PRNGs, informally justified solutions based on
cryptographic primitives, or cryptographic constructions covered by
asymptotic arguments, which do not say anything about their practi-
cal quality. In this paper, we propose an efficient, provably-random
splittable PRNG and give concrete security bounds for it. Our gener-
ator is based on an existing cryptographic keyed hash function [5],
which uses a block cipher as the cryptographic primitive. The gener-
ator is provably-random, which makes use of previously established
concrete security proof of the hash function. Our contributions are
as follows:

• We propose a splittable PRNG that provides provable randomness
guarantees under the assumption that the underlying block cipher
is secure. The construction is conceptually very simple, and
relies on a known keyed hash function design. (Section 3)
• We provide proofs of randomness of the proposed generator,

which rely on previously known results about the hash function.
The randomness results are concrete, not asymptotic, and de-
grade gracefully if the assumptions about the block cipher are
relaxed. (Section 4)
• We present benchmark results indicating that QUICKCHECK

executes typical properties about 8% slower than with StdGen,
and the performance of linear random number generation is
good. (Section 6)
• We show that the problem solved by a splittable PRNG is

essentially the same as the one solved by a keyed hash function.
(Section 7)
• The obtained randomness bounds are weaker than those possible

for a linear PRNG. So, we quantify the price in randomness we
have to pay for the increased flexibility that splitting provides.
(Section 7)

2. Splittable PRNGs
The traditional way of using random numbers is to give a program
access to a process that generates a linear sequence of random
numbers. This, however, is not a modular approach. Consider that
we have function f that calls two other functions g and h that perform
subcomputations.

f x = ... (g y) ... (h z)

Normally, when using a linear pseudorandom generator, f would
pass a reference to the generator to g, which would consume some
number of random numbers and change the state of the generator,
and then to h, which would do the same.

There are two problems with this approach. First, it would
create an unnecessary data dependency between g and h which
may otherwise have been independent computations, destroying
opportunities for possible laziness or parallelism. Secondly, any
change to g that would influence the amount of random numbers
that it consumes would also influence the computation of h. Thus,
repeating the computation with the same random seed and a changed
program would also introduce disturbances in unchanged places.

Addressing these problems is the goal of splittable PRNGs [10].
Consider the following interface for a PRNG whose state is repre-
sented by the type Rand. This API is simpler than the one presented
in the introduction in that the linear next operation is replaced by
rand that only returns one random number. We will come back to
the original API in Section 5.

split :: Rand -> (Rand, Rand)
rand :: Rand -> Word32

Operation split takes a generator state and returns two independent
generator states, which are derived from it. Operation rand gener-
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ates a single random number from a generator state. Both split
and rand are pure, which means that given the same arguments
they yield the same result. Calling rand many times with the same
generator state will yield the same result each time. The intended
way of using such a generator is to start with an initial value of Rand
and then split it to generate many random numbers.

Similar to the original API, an additional requirement is placed
on the program that it is not allowed to call both split and rand
on a given generator state, since the parent generator state is not
guaranteed to be independent from generator states derived from it.

When using this API, function f can simply call split and pass
two independent derived generator states to its subcomputations,
which may use them without any data dependencies. This allows for
generating random lazy infinite data structures in an efficient way,
as independent subcomputations can be launched at any time.

2.1 Naı̈ve approach
A naı̈ve way of implementing a referentially-transparent splittable
PRNG is to start with a linear PRNG and make split divide the
sequence of random numbers in some way [10]. For example, split
may return the even-indexed elements as the left sequence and odd-
indexed elements as the right sequence, whereas rand may return
the first number of the sequence.

split (〈x0, x1, . . .〉) = (〈x0, x2, . . .〉, 〈x1, x3, . . .〉)
Similarly, split may divide the whole sequence period into two
halves and return them as subsequences. However, both of these
approaches allow for a very short sequence of split operations,
as after n splits the resulting sequence would be of length one,
assuming the state size of n bits. Moreover, the amount of memory
required to store a generator grows at least linearly in the number of
splits.

Furthermore, there are no guarantees that the resulting numbers
have good randomness properties. Traditionally, linear PRNGs are
evaluated in terms of their periods, which is how long a sequence
they can generate without experiencing a state collision. Making
statements about periods is meaningless for a splittable generator;
for any generator that uses a constant amount of n bits of memory,
there will be two identical generator states at most n splits away
from each other, given that a full binary tree of depth n has 2n

leaves. The precise overall randomness properties have not been
formalised for traditional linear PRNGs, and thus cannot be carried
over to splittable generators at all.

An improved idea for a splittable PRNG is that the split
operation jumps to a random place in the linear sequence [10].
The design is compelling, as it does not suffer from the obvious
limitation that concerns regular ways splitting. However, the quality
of returned random numbers would again depend on the suitability
of the original sequence, which is hard to determine.

Another approach for distributing unique generator states to
subcomputations is to use an impure operation under the hood that
returns numbers from a pseudorandom sequence, similarly to this
solution for generating unique names [1]. However, such generator
would no longer give deterministic results if the order of evaluation
changes.

2.2 Pseudorandomness
We found that a formal definition of pseudorandomness is essential
for designing and evaluating a splittable PRNG. In particular, we
found that the concept of pseudorandomness used in cryptography
matches closely our goal of creating random-looking numbers,
which we explain in this section.

For simplicity, we first consider linear pseudorandom number
generation. Consider non-deterministic program D that can perform
a number m of coin flips and use their results in computations. We

can model such a program with a deterministic function that has
access to a sequence of m bits that has been chosen uniformly at
random (we will use bits instead of numbers for simplicity). We
assume that all ‘deterministic’ inputs are already baked into the
program, and that it returns ‘0’ or ‘1’.

We quantify the behaviour of the non-deterministic program D
by the probability that it returns ‘1’ when run with a sequence of
bits chosen uniformly at random.

Pr
r←{0,1}m

[D(r) = 1]

The goal of pseudorandom number generation is to replace the
randomly chosen sequence of bits by one generated by deterministic
function p (the generator) from a small seed (s ∈ S = {0, 1}n)
chosen at random, so that the program gives almost the same results
with both random sequences. Thus, the probabilities of returning ‘1’
by program D should be close to each other when run with a fully
random sequence and with a pseudorandom sequence generated
by function p. The absolute difference in these probabilities is D’s
advantage in distinguishing the output of p from random bits.

AdvD(p) =

∣∣∣∣ Pr
r←{0,1}m

[D(r) = 1] − Pr
s←S

[D(p(s)) = 1]

∣∣∣∣
Unfortunately, when m > n, it is always possible to construct a

‘distinguishing’ program that will make the difference in results
large, since the image p[S] is only a small part of all possible
sequences. If program D checks whether the sequence of bits
belongs to p[S] outputting ‘1’ in that case and ‘0’ otherwise, then
its results would always be ‘1’ with p, but only half of the time or
less with fully random bits.

Thus, any pseudorandom number generator p can be distin-
guished from a fully random choice of bits in the sense of informa-
tion theory, that is when the distinguishing program has unlimited re-
sources. However, it is widely believed that it is possible to construct
effectively computable p, whose output can be distinguished from a
true random sequence by a non-negligible margin only by programs
that perform an enormous amount of computation [8, 20, 24, 36].

It has been shown that such deterministic functions whose output
appears to be random (in an asymptotic sense) to any polynomial-
time program can be constructed from one-way functions [20, 24].
At the same time, the existence of one-way functions is considered
to be a reasonable complexity-theoretic assumption. For example,
some number-theoretic functions, such as the RSA-function, are
believed to be one-way [4].

However, PRNG constructions based on one-way functions are
inefficient. Cryptographic block ciphers, on the other hand, offer
a more efficient alternative for implementing PRNGs [5, 34]. Pseu-
dorandomness of such generators depends on the security of block
ciphers they are based on.

Block ciphers are common and widely used cryptographic primi-
tives. Unlike number-theoretic constructions, the security of block
ciphers does not follow from complexity-theoretic assumptions.
Instead, their security is asserted based on careful design and unsuc-
cessful cryptanalytic attempts on them [4, 33]. Even though there
are many block ciphers that had once been considered safe and
were subsequently broken, there exists a selection of them that suc-
cessfully underwent a thorough peer-review process without being
broken, and are generally considered to be trusted primitives.

Asserting the security of a block cipher appears to be an un-
necessarily strong assumption, given that constructions based on
one-way functions could be used. However, proving their concrete
(non-asymptotic) pseudorandomness requires making additional
concrete assumptions about the one-way functions, which are much
less obvious.

We propose to use the 256-bit variant of the ThreeFish [17] block
cipher for the construction of our PRNG, which is one such peer-
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Figure 1. Splittable PRNG through hashing of paths.

reviewed primitive. It has been proposed as the basis for the Skein
hash function, which was one of the finalists of the National Institute
of Standards and Technology (NIST) SHA-3 secure hash standard
competition4. The hash function survived three rounds of public
peer-review, withstanding the best attacks with a reasonable security
margin, and its security was considered acceptable by NIST [11].

3. Proposed construction
We propose a simple construction that gives a splittable PRNG,
whose output appears to be fully random to any program that
performs a reasonably bounded amount of computation. A program
that has access to such a generator, using the API presented in
Section 2, can use splitting to create a number of generator states
over the course of its execution, and can also query some of these
states for random numbers using rand. Observe that we can identify
each generator state with the path that was used to derive it from
the initial generator state. The main idea behind our construction is
to map these paths to numbers using a keyed hash function, whose
results for different arguments appear to be unpredictably random.

First, we injectively encode each path as a sequence of bits.
Starting from the initial generator state we take ‘0’ each time we go
to the left and ‘1’ to the right. Then we use a cryptographic keyed
hash function to map that sequence of bits to a hash value. The
initial seed of the generator is used as the key for the hash function.
The result of the hash function is our random number.

Figure 1 shows a tree of generator states created by splitting
the initial generator state a. Random numbers are generated by
computing the hash function of the encoded paths leading to the
respective generator states. For example, generator state c has been
obtained from the initial state using 3 split operations: first the
right generator state has been chosen, second also the right one, and
third the left one. Hence, the path leading to c is encoded as bit
sequence 〈110〉, and the hash of that is the random number returned
by rand c.

The following code shows a simple, but inefficient Haskell
implementation of this generator.

type Rand = (Seed, [Bit])

split :: Rand -> (Rand, Rand)
split (s, p) = ((s, p ++ [0]), (s, p ++ [1]))

rand :: Rand -> Word32
rand (s, p) = extract $ hash s p

The concern of this simple construction is to uniquely encode each
derived generator state. The entire task of creating random-looking
output is outsourced to the keyed hash function, which we chose to
implement with a tried and tested construction.

4 http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

m0 m1 · · · mn

k = h0 f f · · · f hn+1
h1 h2 hn

Figure 2. Merkle-Damgård construction. f represents the compres-
sion function.

m0 m1 · · · mn

h0 E E · · · E hn+1
h1 h2 hn

Figure 3. Merkle-Damgård construction using a block cipher. Input
indicated with a triangle is the key of the block cipher.

3.1 Efficient hashing
Using a cryptographic hash function to process the paths leading
to every random number may seem to be very slow. However,
cryptographic hash functions often have an iterated construction,
which allows them to be computed incrementally. By doing so we
can implement both split and rand inO(1) time, and make split
a very cheap operation most of the time. In this way we achieved
performance that almost matches the current standard splittable
generator for Haskell.

We use the Merkle-Damgård construction [5, 15, 16] to imple-
ment hashing, which is a common pattern for iterated hash functions.
In this construction, shown in Figure 2, the input consists of a num-
ber of fixed-width data blocks m0 to mn that are iteratively fed
into function f (the compression function), which takes both a data
block and intermediate state hi and computes new intermediate state
hi+1.

hi+1 = f(hi,mi)

The hash key is used as the initial state of the iteration h0, and
the final state hi+1 is the value of the hash. The function is essen-
tially a fold of the compression function f , and can be computed
incrementally.

hash k [m0, . . . ,mn] = foldl’ f k [m0, . . . ,mn]

The purpose of the compression function is to mix a block of input
data into an intermediate state in an unpredictable way.

The unpredictability can only be achieved when the initial state
and all intermediate states are unknown to the program receiving
the outputs of the hash function. For this reason, none of the inputs
for the hash function with a given key should be a prefix of another
one. Otherwise, the result of the hash function for the shorter input
would be the same as one of the intermediate states for the longer
one, which would mean that one function result could be predicted
from another. In other words, the construction requires that the set
of queried inputs is prefix-free.

The construction relies on the compression function for unpre-
dictability, merely extending its domain from single blocks to their
sequences. The compression function can be implemented using a
block cipher by feeding the state hi as the key of the cipher and the
data blocks as the data blocks of the cipher, as shown in Figure 3.

The requirements of the hash function that the input is a sequence
of blocks of a size determined by the block cipher, and that the
inputs used during one program run form a prefix-free set, need
to be addressed by the encoding used to create inputs. Below we
present such an encoding.

3.2 Encoding
We encode the paths leading to generator states as sequences of
blocks. First, let’s represent a path as a sequence of bits as previously,
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by walking the path from the initial generator state and taking ‘0’
for going left and ‘1’ for going right. Then, we divide this sequence
into blocks of the required size and if the last block is incomplete,
pad it with ‘0’s.

Observe that the paths to the generator states that are queried
in a single run of a program must form a prefix-free set, due to
the requirement that split and rand cannot be called on the same
generator state.

The fact that the paths form a prefix-free set is required for the
encoding to be injective. To show the injectivity, let’s assume the
opposite. Suppose that we have two different paths that are mapped
to the same sequence of k blocks. Given that the initial k− 1 blocks
are equal, the paths must have a common prefix that was encoded
in these blocks. Since the last block is also equal, the two paths
must have different lengths and the suffix of the longer one must
be encoded as all ‘0’s to match the padding in the encoding of the
shorter one. Furthermore, the part that precedes that suffix must be
equal to the last part of the shorter path. From this we can see that
the shorter path must be a prefix of the longer one, which contradicts
our assumption.

We can similarly show that no sequence of blocks is a prefix of
another one if both are encodings of paths that are not each other’s
prefixes. Thus, the encodings of paths that form a prefix-free set
will themselves form a prefix-free set, which is required by the hash
function.

The encoding is efficient in the sense that to hash a given path a
block cipher is invoked only once every b splits where b is the block
size in bits.

3.3 Incremental computation
To obtain hashing and encoding presented above in an efficient and
incremental way we implemented both of these stages together in
the split and rand operations. Operation split takes a partially-
computed hash value and returns two partially-computed hash
values. Operation rand completes the computation of the hash
and returns its value. Implementing the encoding and hashing
together has the added benefit that the hash computation of the
initial common part of the path can be shared between different
generator states.

To allow incremental computation the generator state must
contain both the last intermediate state block of the hash function
and the last part of the path that has not been hashed yet. Operation
split adds a bit (‘0’ in the right generator state, ‘1’ in the left
one) to the unhashed sequence and if the unhashed sequence has
reached the length of a block, it runs one iteration of the hash
function that consumes the sequence and updates the intermediate
state. Operation rand runs the final iteration of the hash function
with whatever unhashed sequence there is (it might be empty), pads
it with ‘0’s and extracts a random number from the hash.

type Rand = (Block, [Bit])

hashStep :: Rand -> Rand
hashStep s@(h_i, unhashed)

| length unhashed < blockLength = s
| otherwise = (compress h_i (pad unhashed), [])

split :: Rand -> (Rand, Rand)
split (h_i, unhashed) =

(hashStep (h_i, unhashed ++ [0]),
hashStep (h_i, unhashed ++ [1]))

rand :: Rand -> Word32
rand (h_i, unhashed) =

extract $ compress h_i (pad unhashed)

Since the length of unhashed is at most equal to blockLength,
the run time of both rand and split operations is bounded. Also,
split is usually inexpensive, as most of the time it only adds a
single bit to the state.

4. Correct hashing
The Merkle-Damgård hashing construction shown by us in the
previous section relies on a block cipher, or another compression
function with similar properties, to provide pseudorandomness.
However, the block cipher invocations are chained, making its use
rather non-trivial. Thus, it is important to consider the correctness
of the construction.

One way of analysing a cryptographic hash function is to use a
security reduction proof to bound the advantage of any program in
distinguishing the results of the hash function from completely
random results, depending on the amount of computation the
program can perform. Proving the hash function’s correctness
amounts to showing that it gives only negligible advantage to
programs that perform reasonable amount of computation.

The M-D construction has previously been analysed from this
perspective. Below, we present a reduction proof of its pseudoran-
domness, based on [4, 5]. the proof allows us to derive concrete
bounds on the maximum discrepancy that a program using the gen-
erator can observe.

Using security proofs turned out to be very helpful in designing
the PRNG, as they helped to identify incorrect designs as well as
their elements, which were not bringing any benefits. In addition,
the bounds that they provide made the limitations of the generator
explicit.

The reduction proof assumes that the used block cipher is secure
in the sense that it can be effectively broken only by key enumeration,
which is the main assumption of our PRNG (see Section 2.2).
Moreover, even if the cipher’s known security is reduced, the bound
provided by the proof degrades gracefully.

However, perhaps the biggest value of the proof is the guarantee
that the block cipher is used in a correct way in the construction, as
otherwise it would not have been possible to achieve a low bound
on the discrepancy.

4.1 Pseudorandom functions
In order to formally model block ciphers and keyed hash functions,
we need to introduce pseudorandom functions (PRFs) [4, 5, 20],
which generalise pseudorandom number generators.

Let F = {fk : k ∈ K} be a finite family of functions fk ∈ BA

indexed by elements of finite set K. We write f ← F to mean
that f has been chosen from F by choosing its index uniformly at
random from K. Next, consider F ′ = BA to be the set of functions
from A to B, where B is a finite set, and A is possibly infinite.

This introduces a slight complication, as F ′ may be infinite, and
the uniform distribution does not exist for coutably infinite sets.
To address that, we use the lazy sampling principle [3]. That is,
instead of choosing a random member of BA, we create a lazy
non-deterministic procedure that generates the function’s random
results on demand. The procedure picks a random value of B each
time the function is called with a new argument. Consequently, the
results of the function appear exactly as if they were returned by
a ‘randomly chosen’ function. We use the same notation f ′ ← F ′

to mean that f ′ has been chosen from F ′ using lazy sampling. For
function families that are finite, when both A and B are finite, lazy
sampling gives the same observed distribution as choosing their
representant uniformly at random.

We generalise the definition of advantage from Section 2.2. Let
F1 and F2 be two function families of functions BA, each of which
may be an indexed function family, or the set of all functions from
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A to B. The advantage of D in distinguishing between F1 and F2

is defined as follows:

AdvD(F1, F2) =

∣∣∣∣ Pr
f1←F1

[D(f1) = 1] − Pr
f2←F2

[D(f2) = 1]

∣∣∣∣
where D(f) is program D instantiated with a particular function
f : BA, which it can query as a black-box oracle.

Our objective now will be to have a small and easily computable
indexed function family F ⊆ BA, whose random member appears
to programs as a random function BA. In other words, the advan-
tage AdvD(F,BA) should be as small as possible for any (rea-
sonably bounded) D, making F and BA difficult to distinguish
(indistinguishable). Such an indexed function family is said to be
pseudorandom.

The original goal of bounding the advantage of any program
with a certain run time limit has been to defend against an adversary
who could create a program that breaks the pseudorandom number
generator, or another cryptographic entity. Even though we do not
assume any adversarial behaviour, we would like that the user of
a PRNG can write any program without risking that a flaw in the
generator will compromise his results.

4.2 Iterative hash construction
We will now formalise the construction of the hash function pre-
sented in Section 3.1. The hash function uses a compression function
f to process each of the data blocks in turn. Let F = {fk : k ∈ B}
be an indexed function family representing the compression function,
so that fk(x) = f(k, x) and B = {0, 1}n represent the set of data
blocks, as well as the set of keys. We define F ∗ = {f∗k : k ∈ B}
with f∗k ∈ BB∗ to be a finite function family that represents the
iterative hash construction based on f , as follows by induction.

f∗k (〈〉) = k

f∗k (〈B0, . . . , Bn−1, Bn〉) = ff∗
k
(〈B0,...,Bn−1〉)(Bn)

To show that this iterative hash construction is a good pseudorandom
function we show a bound on the advantage program D can get in
distinguishing it from a random function.

AdvD(F ∗, BB∗) ≤ ε
The above bound can only be shown assuming that is that the
advantage in distinguishing the compression function from a random
function (AdvD′(F,B

B)) is also bounded. The proof also captures
the crucial assumption that the sequences used by D for making
queries form a prefix-free set.

To show the bound we refer to a result from [5]. The following
theorem assumes the Random-Access Machine (RAM) computa-
tional model, which we also assume for the rest of this section.

Theorem 4.1. Let F be a finite function family F = {fk : k ∈ B}
with fk : B → B. Suppose that there exists program D, which has
access to an oracle of typeB∗ → B, and makes at most q prefix-free
queries to this oracle at most l ≥ 1 blocks long, consuming at most
t units of time5. Then, there exists program E, which has access
to an oracle of type B → B, as well as to program D as another
oracle, such that:

AdvD(F ∗, BB∗) ≤ qlAdvE(D)(F,B
B)

Program E(D) makes at most q queries and runs in time at most
t + cq(l + k + b)(Time(F ) + log q), where Time(F ) is the
time required to execute the implementation of F and c is a small
constant.

Proof. The theorem follows from Theorem 3.1 in [5].

5 Time to read the program text is also counted in t.

The theorem states that if there exists program D that distin-
guishes between F ∗ from a random function with probability ε,
then it is possible to construct program E(D), which uses D as its
subprogram, and that is able to distinguish the compression function
F from a random function with probability qlε, with additional
constraints on the run time of both programs.

Conversely, if we assert that the advantage of any program in
distinguishing F ∗ from a random function is not greater than ε, then
we can bound the advantage of any program for distinguishing F
from a random function by qlε.

It is worth noting that we only specified the computational model
for the reduction as the RAM computational model, and did not
precise what additional operations programs may execute, such as
the decryption function of a block cipher. This may seem suspicious
as using a computational model that is weaker may appear to
‘leave out’ some ways to attack the hash. However, in fact using a
weaker model can only result in AdvE(D)(F,K

B) being smaller
and providing a more conservative bound on AdvD(F ∗,KB∗).

To use Theorem 4.1 to bound the advantage on the hash function,
we need to supply the bound on the compression function.

4.3 Compression function
In order to obtain an unpredictable compression function, we employ
a cryptographic block cipher. A block cipher is a pair of effectively
computable functions enc : K×B → B and enc−1 : K×B → B,
where K is the set of keys and B is the set of blocks. Both keys
and blocks are fixed-length sequences of bits, and for our purposes
we assume that K = B = {0, 1}n. Each enck : B → B is a
permutation on B and also (enck)

−1 = enc−1
k .

The theoretical model for block ciphers that we will use is
pseudorandom permutations (PRPs) [6, 33]. A PRP is an indexed
function family that is indistinguishable from a random permutation
in the same way as a pseudorandom function is indistinguishable
from a random function.

To show the security bound of the hash function we need the
compression function to be a PRF, but a block cipher that we have
is a PRP. However, using a PRP in place of a PRF does not impose
a large penalty on observed randomness, which resulted in many
analyses treating block ciphers as PRFs [3].

The ‘similarity’ of PRPs and PRFs is stated by the PRP/PRF Switch-
ing Lemma [3, 21], which gives a bound on the ability to differen-
tiate between a PRF and a PRP by a computationally-unbounded
program (Perm(B) denotes the set of permutations of B).

AdvD(BB ,Perm(B)) ≤ q(q − 1)

2b+1

where B = {0, 1}b and q is the number of queries D can make to
the oracle. Thus, the best way of distinguishing a PRP from a PRF is
to query it a large number of times and look for collisions.

Given that, we can obtain a bound on expression AdvD
E (F,BB)

from Theorem 4.1. From the definition of Adv we have the inequal-
ity:

AdvED (F,BB) ≤ AdvED (F,Perm(B))+

AdvED (Perm(B), BB)

Now we can bound AdvED (Perm(B), BB) using the Switch-
ing Lemma:

AdvED (BB , F ) ≤ AdvED (F,Perm(B)) +
q(q − 1)

2b+1

To bound AdvED (F,Perm(B)), we have to invoke our assertion
that F is a good block cipher. It is reasonable to assume that the
best attacks on F are by key search [4].

AdvED (F,Perm(B)) ≤ 2−b

(
q +

t′

Time(F )

)

To appear in the Proceedings of Haskell Symposium 2013 6 2013/9/15



Finally

AdvED (F,BB) ≤ 2−b

(
q +

t′

Time(F )
+
q(q − 1)

2

)
Now invoking Theorem 4.1, we get:

AdvD(F ∗, BB∗) ≤

2−bql

(
q +

t+ cq(l + k + b)(Time(F ) + log q)

Time(F )
+
q(q − 1)

2

)
After simplification and omitting insignificant terms we obtain the
final bound:

AdvD(F ∗, BB∗) ≤ 2−b

(
q3l

2
+ c1q

2l2(1 + log q) +
c2tql

Time(F )

)
For example for a 256-bit block cipher, if program performs at most
250 queries, each of at most 230 blocks, then the discrepancy can be
bounded by 2−70, provided that the run time is bounded by 290. We
assume that the constants are small (c2/Time(F ) < 210).

5. Linear generation
We presented only a simplified version of splittable pseudorandom
number generators with split and rand operations. Splittable
generators in Haskell also support linear generation, which is
possible with a modified API:

split :: Rand -> (Rand, Rand)
next :: Rand -> (Word32, Rand)

Operation next replaces rand and, in addition to returning a random
number, also returns a new generator state. Calling next repeatedly
allows generating a sequence of random numbers. The API does
not allow calling both split and next on the same generator state,
similarly as in the original API presented earlier.

Replacing rand with next does not give any additional expres-
siveness to the API, as next can be implemented on top of the old
API in the following way:

next g = (rand g1, g2)
where
(g1, g2) = split g

However, having next allows implementing linear random num-
ber generation more efficiently by counting the number of next
operations on the path (which takes only O(logn) bits), in addition
to keeping the sequence of right and left operations. Figure 4
presents encodings of paths from the initial state a to several derived
generator states (marked in black). For example, path to state d is
encoded as (〈110〉, 1), because it contains one occurrence of next
and the remaining operations on the path form the sequence right,
right, left. Observe that it is possible for another path to be en-
coded as (〈110〉, 1). However, reaching both that other state and d
would require calling both split and next on some state, and thus
violating the API requirement.

The used encoding (e1) is defined below. We formally show its
uniqueness, together with a stronger property, which is of interest
for creating more advanced encodings.

Definition 5.1. Encoding e1 is a function that maps a path of three
operations: right, left and next to a pair of a sequence of bits and
a number. The number is equal to the number of next operations
and the sequence of bits represents the sequence of right and left.

The following definition captures the requirement that must be
satisfied by programs using the splittable PRNG API.

Definition 5.2. A program run that uses the API is valid iff, for any
two distinct generator states queried in a single program run, the
following holds. Let paths c1 and c2 represent the two states. Let

a

b

c

e

d

h(〈0〉, 1)

h(〈1010〉, 1)
h(〈110〉, 1)h(〈00〉, 2)

Figure 4. Splittable PRNG with next operation. Snake arrows ( )
lead to states derived using next operation.

cp be their longest common prefix, and c′1 and c′2 be the respective
remainders of c1 and c2. The following condition must be satisfied

c′1 = 〈〉 ∧ c′2 = 〈next, . . .〉
∨ c′1 = 〈next, . . .〉 ∧ c′2 = 〈〉
∨ c′1 = 〈right, . . .〉 ∧ c′2 = 〈left, . . .〉
∨ c′1 = 〈left, . . .〉 ∧ c′2 = 〈right, . . .〉

(5.1)

where 〈〉 denotes the empty path, and ‘. . .’ any remainder of a path.

To be able to state the main property of encoding e1 we define
relation m. Let p1 and p2 be sequences; then p1 m p2 means that
one of p1 and p2 is a prefix of the other one. That is,

p1 m p2 iff p1 � p2 ∨ p2 � p1.
Note that � is reflexive, hence m is also reflexive. We will use m as
a relation on both, sequences of bits and sequences of blocks.

The uniqueness of encoding e1 for all states reachable from a
single program run is implied by the following, stronger property.

Proposition 5.3. If a program run is valid by Definition 5.2, then,
for any two distinct generator states queried in the run, the following
holds. Let paths c1 and c2 represent the two states, and (p1, n1) and
(p2, n2) be their encodings using encoding e1. Then

p1 6m p2 ∨ n1 6= n2 (5.2)

Proof. Consider a program run that is valid according to Defini-
tion 5.2. Then, if c1 and c2 are paths to two queried states, then c′1
and c′2 defined as in Definition 5.2 satisfy Condition 5.1 stated there.
We perform case analysis on the alternatives of that condition.

If any of the two initial alternatives is satisfied, then there is at
least one more occurrence of next in one of c1 and c2 compared
to the other one, hence n1 6= n2, which means that the second
alternative of Condition 5.2 is satisfied.

If any of the two final alternatives is satisfied, then p1 6m p2.

5.1 Concrete encoding
We use the following scheme (e2) to encode the bit sequence and
the counter, obtained from encoding e1, into a sequence of blocks.
Zero or more initial blocks are devoted to encoding the bit sequence,
while the last block encodes the counter. The following diagram
shows the data layout of a sequence of blocks that encodes a path.

bseq1 0 · · · bseqn 0 ctr 1

The bit sequence runs through the bseqi regions from front to back
and is padded with ‘0’s in the last region if it does not occupy the
whole of it. The region in the last block marked ctr contains a binary
number representing the counter. The last bit of the last block is set
to ‘1’ and to ‘0’ for all other blocks.

We ignore the situation where the value of the counter is too large
to be represented by the ctr field, and leave the encoding undefined
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in that case. We deal with overflow in a more complex encoding that
is presented in Appendix A.

Note that linear random number generation using next requires
only one iteration of the hash function as only the value of the
counter is changing, which requires changing only the last block.
This way, when next is called repeatedly, the block cipher used
as the compression function is effectively run in counter mode for
generating random numbers. Splitting, on the other hand, requires
rehashing two blocks at the end. The more efficient encoding that
is presented in Appendix A usually requires updating only the last
block on during splitting.

5.2 Compatibility with hash function
To be compatible with the hash function presented in Section 3.1,
the encoding must transform any set of paths, which are reachable in
a single program run that satisfies the restriction imposed by the API,
into a prefix-free set of blocks. Below, we show that this property
holds for paths for which the encoding is defined.

Recall that, from Proposition 5.3, if (p1, n1) and (p2, n2) are
two different paths that are inspected in the same program run
encoded with e1, then the following holds:

p1 6m p2 ∨ n1 6= n2

We must show that if (p1, n1) and (p2, n2) satisfy the above
condition, then their encodings with e2 are not each other’s prefixes.
We prove this fact by contrapositive. Without loss of generality, we
assume that s1 � s2, where s1 = e2 (p1, n1) and s2 = e2 (p2, n2).
The last bit of each block of s1 and s2 is set to ‘0’, except for the last
block, where it is set to ‘1’. Therefore, the last block of s1 cannot
be equal to a non-terminal block of s2, hence s1 = s2. The counter
is uniquely determined by the ctr region, therefore n1 = n2. The
sequence of bits encoded with e2 is also uniquely determined, except
for a number of possible trailing ‘0’, which are indistinguishable
from padding. Thus, p1 and p2 differ only by the amount of trailing
zeroes, hence p1 m p2, which gives us ¬(p1 6m p2 ∨ n1 6= n2).

5.3 n-way split
The design of the generator suggested one more primitive operation
splitn:

splitn :: Rand -> Word32 -> Rand

Calling splitn g yields 232 new generator states derived from g,
which can be accessed by applying the resulting function to numbers
0 . . . 232 − 1. Consistently with the original API, we require that
only one of the operations next, split and splitn can be called
on a given generator state.

The n-way split operation can be used to efficiently create many
derived generator states when their number is known in advance. For
example, an array of random numbers can be efficiently generated
using splitn. Another scenario when splitn might be useful
is generating random functions in QUICKCHECK, which uses a
sequence of split operations to derive a generator state, which is
uniquely determined by an argument that was applied to the random
function.

Semantically, splitn can be expressed in terms of a sequence
of 32 split operations, and selecting one of the 232 possible
derived states, determined by the splitn argument. An efficient
implementation, however, would instead add all 32 bits at once to
the bit sequence that encodes the path to the generator state.

6. Performance
Cryptographic techniques have long been known for producing high-
quality random numbers. However, their perceived low performance
has been a barrier for their adoption. The original goal for this work
has been to assess whether a splittable PRNG based on a block cipher

H.prop RemoveMin

H.prop Size

H.prop Merge

S.prop Invariant

S.prop Size

S.prop Insert

S.prop Delete

S.prop Union

S.prop FromList

S.prop ToSortedList

prop functions1

prop functions2

-5% 0% 5% 10%

Figure 5. Relative slowdown (speedup) of example QUICKCHECK
properties using TFGen compared to baseline runs with StdGen
( ). Black bars ( ) indicate how much time has been spent in the
ThreeFish cipher by TFGen.

can give acceptable performance so that it can be proposed to be the
default PRNG in Haskell.

The proposed PRNG (Section 3), whose implementation we will
refer to as TFGen in this section, uses a cryptographic block cipher
to generate random numbers. We chose the 256-bit ThreeFish [17]
block cipher, which is efficiently implementable in software. Despite
the large block size, the encryption of a single block takes less time
than for 128-bit AES, which is a standard contemporary block cipher.
In addition, ThreeFish does not require an additional costly key setup
phase, which is required by AES when a new encryption key is used.
The actual implementation of the cipher used is a simplified version
of the one from the Skein C reference implementation6, which is
accessed from Haskell using the Foreign Function Interface.

The encoding used in TFGen is the one presented in Appendix A.
We chose to use 64 bits for the bit sequence in each block (bseqi)
and another 64 bits for the counter (ctri), leaving 128 bits unused.
Choosing 64 bits for the bit sequence means that rehash is needed
every 64 splits, which brings the cost of doing that to below 2%7 in
split-intensive benchmarks. Similarly, overflow of a 64 bit counter
will happen very rarely and have a negligible impact on performance.
Using more bits for representing the bit sequence or the counter
would, on the other hand, likely cause more overhead than give
benefits.

One difference between the benchmarked code and the encoding
from Appendix A is that if next is called repeatedly, it returns
subsequent words from a single generated block, generating a new
block every 8 calls. Implementing this particular feature requires
only small changes to the encoding.

6.1 QuickCheck
The primary application that we considered for the proposed PRNG
is random testing tool QUICKCHECK. Currently, QUICKCHECK
uses the default splittable PRNG in Haskell, StdGen, for generating
random test data. QUICKCHECK’s random data generators make
heavy use of splitting, in order to avoid generating parts of values
that are never inspected.

Figure 5 shows the relative performance of some typical proper-
ties that test implementations of an ordered set (S.*) and heap
(H.*) data structures, taken from the examples folder in the
QUICKCHECK distribution. In addition, two last properties used ran-

6 http://www.schneier.com/skein.html
7 All measurements were performed using GHC 7.6.2 targeting x86-64
architecture on Intel XEON E5620 processor (Westmere-EP) clocked at
2.4 GHz.
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Figure 6. Run times of micro benchmarks for StdGen ( ) and
TFGen ( ). Benchmark micro n executes 20k next operations and
(n + 1)20k split operations. Benchmark micro 4 is the same,
except that it runs 4 next operations in sequence instead of one in
each case.

Arith 0.99
Bools 0.48
Composition 1.55
Heaps 55.51
Lists 70.74
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Figure 7. Run times of QUICKSPEC (in s) on its example problems
with StdGen and relative TFGen performance ( ).

domly generated functions, whose generators are also provided in
QUICKCHECK. The set and heap properties execute 3–11% slower
(8% slower on average) with TFGen, compared to StdGen. The two
last properties, on the other hand, execute about 9% quicker.

The likely explanation for this is that QUICKCHECK’s random
function generators perform a large number of splits. As micro
benchmarks presented in Figure 6 suggest, split is executed 2.3x
faster by TFGen than by StdGen.

On the other hand, operation next is over 30% slower with
TFGen (micro 0) when it is called for isolated states, and never
called twice in a sequence. Such a situation occurs often in
QUICKCHECK generators, which can explain the slow down in
the properties. However, executing subsequent next operations is
much less expensive in TFGen as it only requires reading the next
word from the block, and regenerating the block once every 8 words,
which is confirmed by the micro 4 benchmark.

Benchmarks using QUICKCHECK (Figure 5) also contain an
estimation of the percentage of time consumed by computing the
ThreeFish block cipher. The estimation has been obtained by running
the properties with a modified version of TFGen, which runs the
block cipher four times, instead of one, and discards three of the
results. As can be seen from the figure, the cost of running ThreeFish
is very low for all of the properties, which indicates that the run time
cannot be improved much by speeding up the cipher.

6.2 QuickSpec
QUICKSPEC [14] is a tool that discovers an equational specification
of Haskell code based on the behaviour it observes through random
testing. Testing is performed with the use of QUICKCHECK’s
random data generators, and usually consumes a significant portion
of total run time of QUICKSPEC.

Figure 7 shows run times of QUICKSPEC version 0.9 on ex-
amples from its examples folder. As seen in the figure, Arith
and Bools perform the same with both generators, Lists and
Composition are about 13–15% faster with TFGen, and Heaps
is are about 5% slower with it. QUICKSPEC relies on generating
random valuation functions for testing, which require executing
many split operations. This is likely to have equalised the ad-
vantage StdGen has over TFGen. In addition, Composition and

StdGen

TFGen

TFGen no-op
random-mwc

0 2 4 6 8 (ms)

Figure 8. Run time of generating a vector of 100k 32-bit integers
(in ms) using next ( ), and functions native for each generator ( ).

Lists examples contain higher-order functions in their signatures,
necessitating random generation of even more functions.

6.3 Linear generation
The standard StdGen generator is considered to be very slow for
linear random number generation. Its slowness to a large extent
comes from using standard Random instances, which serve as high-
level primitives for generating random values of different types
using the numbers returned by the random generator. On top of
that, code using StdGen usually uses the Haskell lazy list as the
intermediate data structure, which adds additional overhead.

To benchmark linear generation we decided to sidestep the
Random instances and generate numbers directly using next. To
remove the overhead caused by using lists we used the vector8

package, which allows for efficient generation of unboxed vectors.
Figure 8 shows run times for generating an unboxed vector of

100k 32-bit random numbers. The grey ( ) bars show results for code
that used the next method from RandomGen class, implemented
by both generators. StdGen returns Int values from range 0–
2147483562. TFGen, on the other hand, generates the full range
of Word32 values, which are then transformed into Int values from
StdGen’s range, in order to be able to benchmark it with Random
instances, which were written for StdGen. Results shown in black
( ) were obtained using code that directly generated Word32 values.

As shown in the figure, TFGen is marginally faster than StdGen
at generating numbers using next. However, TFGen performs
almost twice as fast when directly generating Word32 values. The
observed difference is most likely due to the code that transforms
the results into the smaller range, which is simple, and yet appears
to prevent some optimisations to be performed by the compiler,
such as fusion [27]. We did not see the need to improve that
code, as its only function was benchmarking that also used the
Random instances, which themselves impose considerable overhead.
However, it suggests that much performance is to be gained by
giving that code, and the Random instances, some attention.

We chose the random-mwc package, which is considered to be
the fastest linear PRNG for Haskell, as the baseline for comparing
the ‘raw’ random generation speed. As shown in the figure, TFGen
is slower by 65% than random-mwc in generating 32-bit random
numbers. The fastest reported performance for random-mwc is still
higher than the one measured by us, at 16.7 ns per 32-bit number
(with an unreported CPU)9, which would correspond to 1.67 ms in
the figure.

The entry marked ‘TFGen no-op’ in the figure is the run time
of the TFGen generator with the code running the actual cipher
replaced by a very cheap operation (XOR). This version of TFGen is
only slower by 1.41 ms, suggesting that the generator’s performance
is heavily affected by book-keeping computations.

6.4 Conclusion
We found that an implementation of a high-quality splittable PRNG
based on a cryptographic block cipher can have competitive per-

8 http://hackage.haskell.org/package/vector
9 http://www.serpentine.com/blog/2011/03/18/a-little-care
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formance with respect to traditional PRNGs. We found our imple-
mentation (TFGen) to be, on average, 8% slower than StdGen on
typical QUICKCHECK properties and about 9% faster on properties
involving random functions, and we observed a similar speedup with
QUICKSPEC. We found that linear random number generation with
TFGen is slower by 65% than with random-mwc, a state-of-the-art
linear random number generator for Haskell.

Measurements performed by us suggest that it will be possible
to improve the performance of TFGen in the future by optimising
the Random instances and making sure that the generator’s code gets
properly optimised together with the code that uses it.

7. Discussion and future work
Splittable PRNGs are keyed hash functions We showed that a
splittable PRNG can be constructed using a keyed hash function
in a straightforward way. The crucial observation that allowed
this was that the property that is expected from keyed hash func-
tions, that they are indistinguishable from random mappings to
computationally-bounded programs, is exactly the property we need
for splittable PRNGs. Similarly, a keyed hash function can be con-
structed based on a splittable PRNG with a reasonable efficiency
by mapping each possible input to the hash function to a unique
sequence of PRNG operations. In that case, the security of the keyed
hash function would depend on the pseudorandomness of the PRNG.
Based on this observation, both these constructions appear to solve
the same problem.

Bounds As shown in Section 4, the presented splittable PRNG
construction has a bound on the order of 2−b(q3l + q2l2 + tql).
In contrast, the bound for a linear PRNG based on a block cipher
running in the CTR mode is 2−b(q2 + tq) [33], which can be shown
using the Switching Lemma, mentioned in Section 4.3. Thus, by
using a splittable PRNG we have to trade a worse bound for the
flexibility that splitting provides. The bound on the splittable PRNG
used as a linear generator trivialises to 2−b(q3 + tq), which is a
worse result than the bound derived directly. It may be possible to
improve our analysis and get a better bound for the generator.

Analysis performed in [5] for the Merkle-Damgård construction
shows that the best bound that can be achieved with this construction
is on the order of 2−blq2, if the compression function is modelled
as a pseudorandom function. However, other similar constructions
can provide better bounds (see below).

Alternative hashing constructions Thanks to basing a splittable
PRNG on hashing, any keyed hash function can be used for its con-
struction. Keyed hash functions are commonly used as Message
Authentication Codes (MACs), and there is a large variety of con-
structions available.

One construction that we considered is CBC-MAC [7], which is a
standard way of creating a MAC on top of a block cipher. Its mode of
operation is very similar to the construction used by us, and it also
requires a prefix-free set of inputs. The main difference from our
construction is that the intermediate state of CBC-MAC contains both
a block with the result of previous block cipher run, and the key,
which needs to be kept during the entire computation. In practical
terms, this would mean that the state of the generator would have
to keep one more pointer to the key that would be shared by all
states. On the other hand, a better bound has been proved for CBC-
MAC than for our construction, namely on the order of 2−blq2 [7]
(when l < 2b/3). Therefore, the trade-off between slightly slower
performance and better bound should be explored.

A variation of this construction, called ECBC-MAC, has even
better bound 2−blo(1)q2, where l < 2b/4 and o(1) is a diminishing
function. However, ECBC-MAC requires an extra encryption step
at the end of hashing, which would impose large overhead in a
splittable PRNG.

Prefix-freedom Another design choice that we considered was
whether to use a hash function, which requires the set of its inputs
queried in one run to be prefix-free, or a hash function that does not
have this requirement. Hash functions that do not require this are, in
general, less efficient (for example ECBC-MAC), and usually need to
perform more work at the end of hashing, which makes them less
suitable for our application.

A related issue concerns the API requirement that next and
split cannot be called on the same state. This requirement results
in the set of paths to states queried in one program run to be prefix-
free. Relaxing this requirement would be possible, but would require
another, possibly less efficient encoding. However, we found that
this API requirement is reasonable for the reason of compositionality,
not performance. Consider a composable random data generator [13]
that generates random lists given a generator for their elements, and
another generator for integers:

myList :: Gen a -> Gen [a]
myInt :: Gen Int

Generator myList will internally perform some number of split
operations, which may depend on random numbers that it had
consumed itself. Then it will use its argument generator to generate
elements of the list, giving a different generator state to it each time.
Now consider that the API requirement has been dropped, and that
of two different states given to the argument generator, one may
be derived from the other. If the argument generator also performs
the split operation, as would be the case when we call myList
(myList myInt), then two equal states may be used in different
places of the program, leading to the same numbers being generated.

Thus, to be safe myList must make sure that it does not call the
argument generator with states that may have been derived from
each other. The easiest way to ensure that is to never call split on
a state which is passed to a subcomputation, which is essentially
the strategy used for satisfying the original API requirement. It is
thus likely that compositional use of the API was the reason for this
requirement to be created.

8. Related work
Splittable PRNGs based on a Linear Congruential Generator (LCG)
proposed by Fredrickson et al. [19] ensured that a number of right-
sequences of bounded length starting from a single left-sequence
are disjoint. Mascagni et al. discuss a number of traditional PRNGs
(LCGs and others) that can be used as parallel generators. However,
none of these two works supports unlimited on-demand splitting.

Burton and Page [10] discuss a number of splittable PRNGs for
Haskell, based on an LCG. The ideas include (1) distributing halves
of the random sequence, which would exhaust the sequence very fast,
(2) using a non-deterministic solution, and (3) randomly jumping
in the sequence on split. The last solution looks promising, but the
only statistical argument presented in favour of it is the measured
lack of local state collisions. We implemented the last solution and
found it to be slower than our generator.

The idea about using a block cipher to implement a splittable
PRNG has appeared on the Haskell-Cafe mailing list [32]. The
proposed design keeps a block cipher’s key and a counter and
implements split as follows, by regenerating the key in the right
derived state at split operation.

split (k, n) = ((k, n+ 1), (enck (n), 0))

The rationale behind it is that the randomness of block cipher
encryption will carry over to the whole construction. However, it
is not formally justified why it is the case, or how many splits can
be executed without compromising the randomness. In our view
the scheme is correct, since in fact it is an instance of the generator
proposed by us, using a suitable encoding, and thus is covered by
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our correctness argument. Its disadvantage is the high cost of split
due to having to run the block cipher for each right derived generator
state.

Random number generators specified in NIST SP 800-90A [2] are
designed to provide unpredictable random input for cryptographic
applications. The generators have pseudorandom cores (DRBGs10),
each of which is based on a different cryptographic primitive, such
as a block cipher, a keyed hash function (HMAC), a non-keyed hash
function or Eliptic Curves (EC).

The generators can be seeded using other generators’ pseudo-
random output, which been used for implementing splitting in the
crypto-api Hackage package11. Unfortunately, while all the genera-
tors appear to be correct, the NIST publication does not formalise
or prove any aspects of any of them. The pseudorandom parts of
the HMAC and EC generators have been analysed elsewhere [9, 23],
however the proofs do not cover seeding one generator using another
generator’s output. Furthermore, purely deterministic (up to initial
seeding) functionality is likely not to be the main focus of these
generators, as cryptographic applications require frequent reseeding
with external entropy [2].

Micali and Schnorr [31] present a PRNG based on the rsa cryp-
tosystem, which is provably random and supports n-way splitting.
However, the randomness proofs are asymptotic, which means that
they do not indicate what parameters to choose to achieve a par-
ticular level of indistinguishability, or whether the generator can
practically achieve reasonable randomness [12, 35].

Leiserson et al. [26] propose a PRNG for deterministic parallel
random number generation. Their generator is integrated with
the MIT Cilk platform, which tracks the call path of the current
program location, which is then used to generate random numbers
in a way that is independent of thread scheduling. To generate
random numbers, the generator hashes the call path using a specially-
constructed hash function. The hash function first compresses the
path minimising the likelihood of collisions, and then applies
a mixing operation. The compressing function ensures that the
probability of collisions is low, while the mixing function provides
randomisation. It is only the former of these properties that is
formally stated and proved. The quality of the generated random
numbers obviously depends on the quality of the mixing function,
but it is hard to say what level of randomness it provides, especially
that the presented results of statistical tests include failures.

The generator supports paths of length up to 100 (or similar
value), due to the fact that the whole path must hashed when a
random number is requested, and that a vector of random ‘seed’
values of the same length as the path is required. Thus, the general
construction could not be considered to use bounded space, although
the paper considers adapting it into an incremental one, as well as
using alternative methods for path compression.

Salmon et al. [34] present a high-performance PRNG based on a
block cipher running in CTR mode. Their generator is parallelisable,
but does not support splitting on demand. Their proposed generator
solves two problems of traditional PRNGs, namely that they are
difficult to parallelise and that their quality is unproven, and often
low. The proposed generator is correct, but the randomness claims
are only stated informally. The authors consider a number of
block ciphers, such as ThreeFish and AES, but also their weakened
versions, which offer higher performance. Finally, they propose a
parallel random number generation API, which separates keeping
track of counters from random number generation. The generator
does not provide functionality equivalent to on-demand splitting,

10 Deterministic Random Bit Generators
11 http://hackage.haskell.org/packages/archive/
crypto-api/0.12.2.1/doc/html/Crypto-Random.html

as it is the application that is responsible for ‘distributing’ the
independent random streams.

9. Conclusion
In this paper, we show that cryptographic keyed hash functions
are attractive means for implementing splittable PRNGs. While the
general construction of a splittable PRNG shown by us can be based
on any keyed hash function, we propose using a well-known and
efficient keyed hash function based on a cryptographic block cipher.

The hash function itself is based on a provably secure construc-
tion, which is guaranteed to yield high-quality randomness under
the assumption that a secure block cipher is used. Our Haskell imple-
mentation is only marginally slower than Haskell’s default splittable
PRNG, which makes it a promising drop-in replacement.

The proposed design also suggests a new operation splitn,
which would speed up some of the split-intensive code, and could
be added to the API of splittable PRNGs in Haskell.
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A. Appendix. Efficient encoding
We present an efficient encoding of paths containing the next
operation. The encoding uses the general idea of keeping the bit
sequence and counter separate, as does e1.

We use the following scheme (e4) to encode the bit sequence
and the counter in a sequence of blocks. Each block has a fixed
region for encoding part of the bit sequence and another one for
encoding the counter. The following diagram shows the data layout
of a sequence of blocks that encodes a path.

bseq1 ctr1 bseq2 ctr2 · · · bseqm ctrm

Regions marked ctri contain binary numbers ranging from 0 to N .
Regions marked bseqi contain B-bit segments of a bit sequence,
except the last segment, which may be shorter. The main part of
the encoding is defined inductively, as a function e3 mapping a
path into a sequence of pairs of numbers and sequence of bits, each
pair representing a block. The following definition assumes that
e3 (c) = 〈. . . , (b, n)〉 for recursive cases.
e3 (〈〉) = (〈〉, 0) (A.3a)

e3 (c‖ 〈left〉) =

{
〈. . . , (b‖ 〈0〉, n)〉 if |b| < B,
〈. . . , (b, n), (〈0〉, 0)〉 otherwise.

(A.3b)

e3 (c‖ 〈right〉) =

{
〈. . . , (b‖ 〈1〉, n)〉 if |b| < B,
〈. . . , (b, n), (〈1〉, 0)〉 otherwise.

(A.3c)

e3 (c‖ 〈next〉) =


〈. . . , (b, n+ 1)〉 if n < N ′,

〈. . . , (b‖ 〈1〉, 0)〉 if n = N ′ and
|b| < B,

〈. . . , (b,N), (〈〉, 0)〉 otherwise.
(A.3d)

Adding an operation at the end of the path changes only the last
block of the resulting sequence and possibly adds another one after
it. Operations left and right add one bit to the segment in the last
block. If the segment is full, a new block is started. Operation next
increments the counter in the last block. Valid values of the counter
are 0 . . . N ′ = N − 1. In the event of an overflow, bit ‘1’ is added
to the last segment. If the segment is full, special value N is used as
the counter and a new block is added.

The result of the function is transformed into actual sequence of
blocks by encoding the numbers in binary and putting the segments
verbatim. The last incomplete segment is zero-padded. Let to block
be the function that turns a pair into a block. We omit it’s definition,
but we note the important property that we require from it.

Proposition A.1. Let (b1, n1) and (b2, n2) be inputs to to block
function. If n1 6= n2 or b1 ≺ b2 and b2 6= b1‖ 〈0, . . . , 0〉12 or b1 6m
b2 then to block (b1, n1) 6= to block (b2, n2).

Note that linear random number generation using next requires
only one iteration of the hash function for most random numbers
as only the counter in the last block is changing. This way, when
next is called repeatedly, the block cipher used as the compression
function is effectively run in counter mode for generating random
numbers. Similarly, splitting usually requires updating only the last
block.

Proofs about the encoding have been omitted for the lack of
space.

12 We use the shorthand b2 6= b1 ‖ 〈0, . . . , 0〉 to denote that b2 is not b1
extended with some number of zeroes.
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