
 

Stable length in steel portal frames 
A parametric study of the influence of purlins on lateral-

torsional buckling 
Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology  

MAGNUS HEIDAR BJÖRNSSON 

MATHIAS WERNBORG 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Steel and Timber Structures 

CHALMERS UNIVERSITY OF TECHNOLOGY 

Göteborg, Sweden 2013 

Master’s Thesis 2013:96 



 

 



  

 

MASTER’S THESIS 2013:96 

Stable length in steel portal frames 
A parametric study of the influence of purlins on lateral-torsional buckling 

 Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology  

MAGNUS HEIDAR BJÖRNSSON 

MATHIAS WERNBORG 

 

 

 

 

 

 

 

 

 

 

 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Steel and Timber Structures 

CHALMERS UNIVERSITY OF TECHNOLOGY 

Göteborg, Sweden 2013 

 



 

Stable length in steel portal frames  

A parametric study of the influence of purlins on lateral-torsional buckling 

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology  

MAGNUS HEIDAR BJÖRNSSON 

MATHIAS WERNBORG 

 

© MAGNUS HEIDAR BJÖRNSSON, MATHIAS WERNBORG, 2013 

 

 

Examensarbete / Institutionen för bygg- och miljöteknik,  

Chalmers tekniska högskola 2013:96 

 

 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Steel and Timber Structures 

Chalmers University of Technology 

SE-412 96 Göteborg 

Sweden  

Telephone: + 46 (0)31-772 1000 

 

Cover: 

Finite element model showing lateral-torsional buckling of a beam from a portal 

frame.  

 

Chalmers Reproservice / Department of Civil and Environmental Engineering 

Göteborg, Sweden 2013 

 



 

 
I 

Stable length in steel portal frames 

A parametric study of the influence of purlins on lateral-torsional buckling 

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology  

MAGNUS HEIDAR BJÖRNSSON 

MATHIAS WERNBORG 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Steel and Timber Structures 

Chalmers University of Technology 

 

ABSTRACT 

To date, there exist expressions in Eurocode3 regarding the stable length in portal 

frames where LT-buckling can be ignored. The expressions provided in Eurocode are 

semi-empirical and they have been simplified in order to fit for practical application. 

The steel portal frame industry is interested in utilizing simple expressions, taking into 

account all influencing parameters. The objective of this thesis is therefore to derive a 

stable length according to elastic design and study the stabilizing effect of purlins and 

compare with the existing expressions. The stable lengths will be derived using the 

buckling curve method in Eurocode3, where second order effects such as geometric 

imperfections and residual stresses are taken into account. Verification of the derived 

stable length will be performed with finite element simulation. 

The derivation of the stable length for the investigated cross-sections results in 

relative short lengths when compared to the existing expressions in Eurocode. The 

short length involves a significant critical buckling moment resulting in LT-buckling 

of the beam in combination with distortion of the web. Despite distortion, all 

investigated beams yields in the extreme fibres before occurrence of LT-buckling. It 

can be concluded that the derived stable length is accurate, according to the results 

from the finite element analysis.  

It is also concluded the plastic stable length as provided in EN 1993-1-1 Annex BB.3 

is un-conservative. The expression assumes a greater limit of slenderness for 

restrained beams compared to recommendations in Eurocode3. According to the non-

linear analysis it appears that the greater limit of slenderness is not justified.  

The simplified method yields similar result as the derived stable length and 

corresponds very well with the results from the finite element analysis. Depending on 

the limit of slenderness assumed in the analytical derivation, it is either more 

conservative or marginally un-conservative. The approach of the simplified method is 

considered to be conservative since important parameters have been neglected, which 

indicates that the method is reliable. However the simplified method has to be used 

cautiously for beams with large initial imperfection.  

Key words: Lateral-torsional buckling, stable length, steel portal frames, purlins,     

lateral restraints, stability problem, finite element analysis.   
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Stabila vippningslängden i stålramar 

En parametrisk studie av stabiliseringseffekten från takåsar 

Examensarbete inom Structural Engineering and Building Technology 

MAGNUS HEIDAR BJÖRNSSON, MATHIAS WERNBORG 

Institutionen för bygg- och miljöteknik 

Avdelningen för konstruktionsteknik 

Stål- och träbyggnad 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Idag finns det uttryck i Eurocode3 som fastställer den maximala längden mellan 

vridstag där vippning inte behöver beaktas. Dessa uttryck är namngivna som 

”simplified method” samt ”plastic stable length”. Dessa uttryck är kraftigt förenklade 

och semi-empiriska. Det finns ett intresse inom branschen att bestämma den stabila 

vippningslängden, genom att beakta samtliga påverkande parametrar, genom enkla 

beräkningsmetoder. Syftet med rapporten är därför att bestämma ett uttryck för den 

stabila vippningslängden där den stabiliserande inverkan från takåsar är inkluderad. 

Vid en jämförelse med de befintliga uttrycken i Eurocode3 kan det sedan fastslås om 

huruvida den framtagna vippningslängden är tillämpbar i projekteringsskedet.   

Särskilda antaganden har gjorts vid härledningen av den stabila vippningslängden. 

Exempelvis finns det i Eurocode3 rekommenderade gränsvärden för slankhet samt 

bestämda värden för initialkrokighet och initialspänningar. Vidare genomförs finita 

element-simuleringar för att verifiera uttrycket för vippningslängden.   

Den stabila vippningslängden för de undersökta tvärsnitten resulterar i relativt korta 

längder vilket följaktligen innebär ett betydande kritiskt bucklingsmoment i 

proportion till slankheten av livet. Detta innebär att tvärsnittet förvrids vilket medför 

lägre kritiskt bucklingsmoment. Trots förvridning av tvärsnittet uppfylls kriteriet att 

den elastiska böjkapaciteten uppnås innan balken blir instabil, detta gäller för samtliga 

undersökta balkar. Slutsatsen utifrån detta är att det härledda uttrycket för den stabila 

vippningslängden är korrekt.  

Utifrån undersökningen kan det fastslås att ”plastic stable length” ger betydande 

längre stabila vippningslängder i jämförelse, vilket utifrån antaganden i denna rapport 

ger resultat på den osäkra sidan. I beräkningsuttrycket antas ett högre gränsvärde för 

slankhet gällande balkar där effekten från takåsar är inkluderat, i jämförelse med 

rekommendationen i Eurocode3. Utifrån de genomförda icke-linjära analyserna i 

denna studie är detta inte motiverat.  

Metoden ”simplified method” ger liknande resultat som den härledda stabila 

vippningslängden. Beroende på vilket gränsvärde av slankhet som antas i uttrycket 

sker instabilitet efter eller samtidigt som den elastiska kapaciteten är uppnådd.  Dock 

anses tillvägagångssättet vid beräkningen av metoden ”simplified method” vara 

konservativ eftersom viktiga parametrar har försummats vilket visar att metoden är 

tillförlitlig. Metoden måste dock användas med försiktighet för balkar med betydande 

initialkrokighet. 

Nyckelord: Vippning, kritiska vippningsländen, stålramar, takåsar 
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Notations 

Roman upper case letters 

A Cross-sectional area 

C Constant of integration 

C1 Modification factor for a moment gradient 

E Young´s modulus 

G Shear modulus 

It Torsion constant 

Iw Warping constant 

Iy Second moment of inertia about the major axis  

Iz Second moment of inertia about the minor axis 

Ks Torsional stiffness of one lateral support 

L Length of the beam 

Lc Stable length according to the simplified method 

Lk Plastic stable length with the tension flange laterally restrained 

Lk.e Elastic stable length with the tension flange laterally restrained 

Lm Plastic stable length with the tension flange laterally unrestrained 

Lunr Derived stable length with the tension flange laterally unrestrained 

Lr Derived stable length with the tension flange laterally restrained 

M Bending moment 

Mcr Critical lateral-torsional buckling moment, unrestrained beam 

Mcr.o Critical lateral-torsional buckling moment, restrained beam 

Mcr.wo Critical lateral-torsional buckling moment for an unrestrained beam with 

zero warping stiffness 

Mref Applied reference moment 

M1 Bending moment about the major axis 

M2 Bending moment about the minor axis 

N Applied axial force 

P Concentrated force, axial force in beam-column 

PE Critical flexural buckling load in between lateral support at the tension 

flange 

Px.cr Critical buckling load for torsional buckling 
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Py.cr Critical buckling load for major axis buckling 

Pz.cr Critical buckling load for minor axis buckling 

PTC Critical buckling load for overall torsional buckling 

We Elastic sectional modulus about the major axis 

Wpl Plastic sectional modulus about the major axis 

 

Roman lower case letters 

a Eccentricity of a lateral restraint(purlin)  

b Width of the flange  

e0 Equivalent initial bow imperfection 

fy Yielding strength 

h Depth of the cross-section 

hx Coordinate of the offset axis of restraint relative to the centroid of a cross-

section in the x-direction 

hy Coordinate of the offset axis of restraint relative to the centroid of a cross-

section in the x-direction 

i Imaginary number 

is Polar radius of gyration about the restrained longitudinal axis  

  
     

    . 

iz Polar radius of gyration about major axis 

iz Polar radius of gyration about minor axis 

io Polar radius of gyration about the longitudinal axis through the centroid 

   
  

     

 
. 

kx Lateral stiffness of spring support in x-direction 

ky Lateral stiffness of spring support in y-direction 

kφ Equivalent continuous torsional stiffness 

  Number of half sinus waves 

s Spacing of supports 

tf Thickness of flange 

tw Thickness of web 

u Total lateral displacement (y-direction) 

uL Lateral displacement (y-direction) due to bending about minor axis 

uT Lateral displacement (y-direction) due to torsion 
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v Vertical displacement (z-direction) 

Greek lower case letters 

ϕ Angle of twist about the longitudinal axis 

ϕ0 Initial imperfection as an angle of twist about the restrained longitudinal 

axis at the mid-section of a beam 

 ̅ Non-dimensional slenderness 

λ Eigenvalue 

σ Normal stress 

 

Abbreviations 

 

LT – Lateral-torsional 

FE – Finite element 

DE – Differential equation 

DOF – Degrees of freedom   
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Definitions 

 

Beam and beam segment – Both represent the part extracted from a portal frame in 

between torsional restraints seen in figure below. 

 

 

Buckling capacity and critical buckling moment – The theoretical critical moment 

that cause instability in a “perfect” beam; i.e. assuming elastic response and omitting 

geometrical and mechanical initial imperfections. 

 

Elastic capacity – The moment capacity of a cross sections when yielding occurs in 

the extreme fibres caused due to constant moment about the major axis. Illustration of 

elastic capacity is shown in the figure below.   

 

 

 

 

 

 

 

 

 

M1 = Moment about major axis. 

M1 

σ1 

σ1 = fy (235 MPa) 
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Ultimate moment – The maximum moment when considering geometrical 

imperfections, residual stresses and material plasticity seen in the figure below. 

 

 

Lateral restraints or purlins – Both of these words are used defining lateral 

restraints on the tension flange. 

 

Linear buckling analysis – Considers only elastic material, no geometrical 

imperfections or residual stresses.  

 

Non-linear buckling analysis – Considers material plasticity with strain hardening, 

geometrical imperfections and residual stresses. 

 

Plastic stable length – Stable length assuming the formation of a plastic hinge in 

accordance with Eurocode3. 

 

Stable length – Length derived in this Master’s Project assuming elastic design. 

 

Restrained beams  –  Beams that are laterally restrained at the tension flange.     

 

Unrestrained beams  –  Beams that are not laterally restrained at the tension flange.     

 

M1 

M2 

σ1 

σ2 

M1 = Moment about major axis 

M2 = Moment about minor axis caused by imperfections. 

σ1 = Stress caused by M1. 

σ2 = Stress caused by M2. 
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1 Introduction 

 

1.1 Problem definition 

To date, there exist expressions in Eurocode3 regarding the stable length in steel 

portal frames, where LT-buckling can be ignored and only cross-section checks apply. 

The stable length comprises the length of a segment in between torsional restraints, 

which can be either laterally unrestrained or restrained with purlins. EN 1993-1-1 – 

Annex BB.3 provides several analytical expressions to calculate the stable length in 

various frame types. These expressions are however simplified and semi-empirical. 

The industry is interested of utilizing simple expressions which are not time-

consuming, taking into account all influencing parameters. Existing expressions might 

be conservative and possible to simplify. Finding an expression which considers 

several important parameters like the stabilizing effect from purlins, an extensive 

investigation must be performed obtaining an overview of the behaviour.   

      

1.2 Aim and objective  

The aim of the work performed in this thesis is to investigate the stable length in steel 

portal frames with respect to lateral-torsional buckling. 

The objective is to derive a stable length according to elastic design and study the 

stabilizing effect of purlins. The new derived stable lengths are verified through 

plastic 2
nd

-order analysis and compared to the expressions suggested in Annex BB.3 

in EN-1993-1-1. 

 

1.3 Method 

A literature review is performed in order to achieve an overview of the most 

important parameters affecting the phenomenon lateral-torsional buckling in steel 

portal frames. Furthermore, linear buckling analyses are executed with the finite 

element software ABAQUS CAE aiding to visualize the behaviour and to verify the 

models produced. In addition the stable length is derived analytically using the 

recommendations given in Eurocode3 concerning the limits of slenderness and 

geometrical imperfections. The stable length is then verified by performing non-linear 

analyses in ABAQUS CAE.    

   

1.4 Scope and limitations 

The scope of this project is to establish an expression for the stable length in a portal 

frame. However, simplifications have been made to facilitate the analysis. The models 

studied represent a segment in a portal frame, between torsional restraints. The 

boundary conditions assumed in the derivation of the analytical expressions utilized in 

this Master’s Project are equivalent to torsional restraints. The same conditions are 

therefore also assumed for the simulated models. This report will only focus on 

doubly symmetric cross-sections.  
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The segments simulated have flat web, uniform geometry and are subjected to 

constant moment only, i.e. the effect of axial force is neglected. Furthermore the 

purlins between the torsional restrains are assumed to be laterally rigid but provide no 

torsional resistance to the beam. The yield strength of the steel is limited to fy of 

235MPa.   

Aspects which are not studied but are essential considering portal frames are; 

 Haunched and tapered segments. 

 Moment gradients both linear and non-linear. 

 Axial force.  

 Bending stiffness of the purlins. 

 Different yield strength of the steel. 

 

1.5 Outline of the Thesis 

Below, the content of the following chapters has been described. 

Chapter 2 - Comprises the literature review. 

Chapter 3 - Covers the method utilized to reach the aim. 

Chapter 4 - Explains the procedure of the modelling in ABAQUS. 

Chapter 5 - The theory behind lateral-torsional buckling with and without distortion is 

presented. 

Chapter 6 - Results are presented from analytical parametric studies, elastic linear 

buckling analyses and non-linear studies of the stable length. 

Chapter 7 - Conclusions and suggestions for further studies are discussed.      
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2 Literature review 

In this chapter a theoretical background for the following research is established. 

First, an overview of the phenomena known as lateral-torsional buckling is presented. 

Secondly the effect of lateral support on the tension flange, both continuous and 

discrete, for different load cases is studied. Finally, the background of the plastic 

stable length in Eurocode3 is presented, where the effects of purlins are taken into 

account. 

2.1 Elastic buckling 

Structural beams have two equilibrium states; stable or unstable. A structural element 

is stable if it returns to its initial position when a small load is applied and then 

removed. The unstable state is when the loaded element undergoes further increase of 

deflection. In other words, in the stable state, additional energy is required to produce 

the deflection, and in the unstable state energy is released. When the unstable state 

occurs the structure has reached its limit of stability. (Galambos, 1968) The load 

causing this unstable phenomenon is denoted as the critical load and is obviously of 

great interest in structural engineering. Furthermore, a structure is a complex system, 

forces and moments interact, beams are not symmetric etc. which affects the critical 

load. This report will focus on doubly symmetric cross-sections which simplify the 

derivations of the equations.  

Critical loads or moments can be derived either by equilibrium conditions of 

differential equations (DE:s) or by energy theorems, taking into account equilibrium 

between the external load and internal resistance.  

The derivations of the critical forces and moments are based on elastic buckling which 

neglects material non-linearity, geometrical imperfections and residual stresses.         

2.1.1 Laterally unrestrained beams 

The global buckling mode depends on how the beam is loaded, boundary conditions 

and the shape of the cross-section. Axial loaded beams will either buckle about minor 

or major axis as in Figure 1b and c or pure torsion as in Figure 1d. Beams subjected to 

pure moment will undergo lateral-torsional buckle, a combination of Figure 1b and d. 

In this chapter derivation has been executed of different buckling modes for laterally 

unrestrained beams subjected to either axial compression or pure moment.       

 

Figure 1 Different buckling modes. (Louw, 2008)   
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2.1.1.1 Beams subjected to axial compression 

Axially loaded beams, when reaching unstable state, have the possibility to buckle in 

three modes. Three DE:s eqn.(1-3), which can be seen below (representing each 

buckling mode), can therefore be produced based on equilibrium conditions 

expressing this unstable phenomenon. The potential buckling modes are lateral 

displacement about major or minor axis and pure torsional buckling about the 

longitudinal axis. For a doubly symmetric cross-section there is only one unknown 

variable ( ,  ,  ) in each expression and the differential equations can be treated 

separately. Due to the independence of each equation it is necessary to check all three 

equations to determine the lowest critical load. For asymmetric sections the DE:s 

contain both twist   and lateral displacement   and the critical load will be found by 

calculating the determinant of  the system equation. (Galambos, 1968) 

 

Figure 2 Beam subjected to an axial compression. (Galambos, 1968) 

 

    
   

   
  

   

   
   (1) 

    
   

   
  

   

   
   (2) 

    
   

   
     

      
   

   
   (3) 

The equations below are obtained by solving the three independent DE:s with respect 

to the load.  

        
     

  
 (4) 

        
     

  
 (5) 

        
 

  
 
(
     

  
    ) (6) 

            
  

     
 

 (7) 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:96 
5 

2.1.1.2 Beams subjected to pure bending  

In the same manner as for axially loaded beams, three differential equations are 

determined from equilibrium conditions for beams subjected to bending. The 

equations hold for doubly symmetric sections. (Galambos, 1968)  

The first equation (8) involves only vertical deflections and is therefore independent 

of the other two. The latter equations (9&10) are interrelated due to both lateral 

displacement about minor axis and rotations about the longitudinal axis coexist in the 

equations. Solving for the lateral displacement in eqn.(9) and insert this into eqn.(10) 

it is possible to solve for the critical moment when the beam reaches the unstable state 

and LT-buckling occurs. The procedure can be followed below, (Galambos, 1968).  

 

Figure 3 Beam subjected to uniform moment. (Galambos, 1968) 

    

    
   

   
   (8) 

    
   

   
  

   

   
   (9) 

    
   

   
    

   

   
  

   

   
   (10) 

Equation (8) is independent while the latter ones contain both the lateral deflection   

and twist  . To be able to solve the system of equations with two unknowns, eqn.(9) 

is integrated twice, that is,    

    
   

   
             (11) 

Where    and    are constants of integration and equal to zero from the boundary 

conditions (simply supported). If the equation (11) is solved for lateral deflection we 

get 

 
   

   
  

  

   
 (12) 

Eqn.(12) is then set into eqn.(10) and the equation obtained when solving for the 

critical bending can be seen in eqn.(13). The eqn.(13) holds for when the moment 

distribution is linear and the ratio between the end moments is equal to one. 
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Furthermore it is assumed that the load is applied in the shear centre of the segment. 

(NCCI, 2007) 

     
     

  
√

  
  

 
     
     

 (13) 
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2.1.2 Laterally restrained beams 

If lateral supports are added to the tension flange of the beam this has an effect on the 

differential equations derived previously in eqn.(1-3&8-10). Timoshenko and Gere 

established and derived the equations for a beam subjected to an axial load with 

continuous lateral supports. However, lateral supports are often attached at discrete 

intervals. A study was therefore performed by Dooley considering axially loaded 

beams with discrete lateral supports. Later Horne and Ajmani determined the critical 

buckling moment regarding discrete lateral supports. Timoshenko and Gere 

established the general differential equations assuming the conditions expressed in 

Figure 4. The point C represents the shear centre of the beam,   ,   ,    describes the 

stiffness (produced by the lateral supports) of the beam to deflect and twist. The 

variables   ,    represent the eccentricity from rotational axis to the shear centre of 

the beam.  (Timoshenko & Gere, 1961) 

  

 

 

Figure 4 Lateral-torsional buckling of a bar with continuous elastic support. 

(Timoshenko & Gere, 1961) 
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2.1.2.1  Beams subjected to axial compression 

The differential eqn.(14-16) seen below is the general form for doubly symmetric 

cross-section subjected to compression load.  

    
   

   
  

   

   
             (14) 

    
   

   
  

   

   
             (15) 

 
   

   

   
         

  
   

   

   [     ](   )                      
(16) 

Now consider a beam with continuous lateral supports, assuming elastic resistance in 

the DOF:s seen in eqn.(17-19), attached with a zero eccentricity from the shear centre. 

When simplifying the DE:s (14-16) the support eccentricity    and    has evidently 

been set to zero according to Figure 4. The differential eqn. (14-16) can be solved to 

determine three respective solutions for the system as following; (Timoshenko & 

Gere, 1961)  

        
     

  
    

    

       
  (17) 

        
     

  
    

    

       
  (18) 

 

       
 

  
 
(
       

  
       

  

    
) 

           
  

     
 

 

(19) 

The first two eqn.(17&18) are the well-known buckling equations about major and 

minor axis respectively and eqn.(19) represents the critical torsional load. The 

eqn.(17-19) are considering the lateral and torsional resistance generated by the lateral 

supports which is the difference compared  to the derived expressions in eqn.(4-6). It 

should be noted that assuming the eccentricity as zero is an optimal case regarding the 

resistance and will result in a greater critical load. 

When considering a beam with continuous lateral restraints   &   = ∞), prescribed 

rotation about the longitudinal axis and a non-zero eccentricity    from the shear 

centre the DE:s (14-16) can be solved as following. Eqn.(20&21) will be infinitely 

great due to that the length between the lateral restraints converges zero.   

        
     

  
            (20) 
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            (21) 

        
 

  
 
(
        

 

  
 

       
  

       

  

    
) (22) 

            
    

    
     (23) 

Eqn.(22) represents critical torsional load when considering lateral restraints with a 

certain eccentricity   (   has been replaced by   which is the notation in Eurocode3) 

from the restrained longitudinal axis to the shear centre of the beam. (Louw, 2008) 

The major drawback of these equations is the assumption that the lateral restraints acts 

continuously over the beam. The most common setup of lateral restraints is when they 

act as purlins on a beam or side-rails on columns which can be seen in Figure 5 

below. Dooley studied whether discrete restrains could be regarded as continuous 

(Dooley, 1966). 

 

Figure 5 Column with side rails. (Dooley, 1966) 

Dooley derived the critical load from the energy theorem considering an axially 

loaded column with discrete lateral restraints, assuming that the discrete restraints 

generate an elastic torsional resistance to the beam. From this it was concluded that 

failure will occur either by flexure buckling in between the lateral restraints (no 

torsion) or by an overall torsional buckling mode without displacement of the laterally 

restrained flange. Furthermore, it was concluded for I-sections that if the lateral 

supports are torsional rigid, flexural buckling will occur before torsional instability in 

between the lateral restraints.     

The equation derived from the energy theorem regarding the overall torsional 

buckling for axially loaded column is shown below in eqn.(24). It can be noted that it 

is identical with Timoshenko’s eqn.(22) except for the expression considering the 

torsional spring resistance generated by purlins.   
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(
        

 

  
 

       
  

     
    

    
∑     

    

 

 

   

) (24) 
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Further studies made by Dooley (1966) were to compare the difference between the 

overall torsional instability with discrete and continuous lateral restraints, where he 

concluded;  

“The evident conclusion is that a column attached at discrete intervals to sheeting 

rails responds as if continuously attached to a foundation of uniform rotational 

stiffness”. 

This result is helpful in order to simplify the torsional spring stiffness in eqn.(24) 

which is complicated to use in practice. It also gives the possibility to use eqn.(22) by 

Timoshenko and Gere (1961) with an equivalent torsional stiffness for a discrete 

elastic lateral support shown in the eqn.(25). 

        
 

  
 
(
        

 

  
 

       
  

       

  

    
) (25) 

 
where         ⁄  

 

 
 

   is the spacing between purlins. 

   is the torsional stiffness of an elastic lateral support by taking into account the 

bending stiffness of the purlins and local stiffness of the beam against distortion.  

   is the equivalent torsional spring stiffness. 

It should be noted that the lowest energy mode   of the torsional buckling load,       , 

in eqn.(25) must be found by a trial and error method because the term   is both in the 

nominator and the denominator. If the torsional stiffness is disregarded, as in 

Eurocode3, then the equation is simplified and the lowest energy mode is with a half 

sinus curve.   
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2.1.2.2 Beam subjected to pure bending 

In the same manner as Dooley derived the equation for flexural and torsional 

instability only considering an axial load, Horne determined the instability only 

allowing for pure moment and discrete lateral supports. 

 

Figure 6  Lateral restrained beam subjected to uniform moment. (Horne & Ajmani, 

1969) 

Considering the beam presented in Figure 6, it is subjected to pure moment and the 

lateral supports are assumed totally rigid. At a critical moment LT-instability will 

occur between lateral restraints or by overall torsion. The lateral displacement is given 

by,     

         
  

 
 (26) 

However,    is assumed to be zero when the distance in between discrete lateral 

restraints are sufficiently small, treating the beam as one on continuous supports. 

The rotation about the restrained axis is given by,  

        
   

 
 (27) 

 The total lateral displacement   of the centroidal axis is       so that 

        
  

 
       

   

 
 (28) 

The eqn.(29&30) express the energy theorem which is established from equilibrium 

conditions between total resistance and the added load and moment. The resistance is 

determined regarding; 

 flexural energy  

 torsional energy  

 warping energy  

 rotational energy of elastic supports  
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The resistance is expressed by the strain energy   and the buckled form is given by 
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(29) 

The change in potential energy   due to work by axial load   and equal end moments 

  is given by 

 

   
 

 
   

 ∫        
 

 

 
 

 
 ∫           ∫          

   

 

 

 

 
(30) 

According to equilibrium conditions the strain energy   and potential energy   have 

to be equal. The next step is to substitute   and   from eqn.(27&28) in eqn.(29&30). 

To find the location where the stable state converges to unstable a differentiation has 

to be performed of the sum     with respect to both lateral displacement    and 

twist    in eqn. (31&32). This results in a system of two equations. To be able to find 

the critical moment, the load   has been set to zero and the system of equations is 

solved for the moment  . (Horne & Ajmani, 1969) 

 
      

   
   (31) 

       

   
   (32) 

When the differentiation is performed and the system of equations is determined, two 

different situations are regarded. The first case is considered to be general and occurs 

when the twist is non-zero at lateral supports. The second one is when the twist is zero 

at lateral supports. The lateral displacement is assumed to be zero at the location of 

the supports in both cases. (Horne & Ajmani, 1969)   

Case 1:                                                              

Infinite lateral rigidity and elastic torsional supports is assumed. When solving the 

system of equations the following result was obtained; 

        
 

  
( 

      
   

  
 

       

  
       

  

    
) (33) 

Eqn.(33) determines the critical moment when the beam buckles by torsion about the 

restrained longitudinal axis. 
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Case 2:                                                                      

     
     

  
√

  
  

 
     
     

 (34) 

Eqn.(34) is identical to eqn.(13) derived in section 2.1.1.2 and determines the 

buckling in between lateral supports. However, the critical length has been adjusted 

from   to  . (Horne & Ajmani, 1969)  

Summarizing this chapter the critical moment is governed by three parameters; 

 Eccentricity of lateral support    

 Torsional stiffness of lateral support    

 Spacing of lateral support   

Depending on these three factors above, the beam will buckle in one of the two 

following modes; 

 Torsion about the laterally restrained longitudinal axis, the critical moment 

being       eqn.(33). 

 Lateral-torsional buckling in between the lateral supports, with no lateral and 

torsional displacement at the supported section. The critical moment is then 

given by     eqn.(34). (Horne & Ajmani, 1969)  

 The governing buckling mode will be the lower of       and    . 

 (Horne & Ajmani, 1969)  
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2.1.2.3 Beam subjected to bending and axial compression 

A similar procedure as in section 2.1.2.2 has to be performed to find the critical 

combination of   and  . The difference from the previous derivation is that both 

variables in the energy theorem are taken into account. 

 

Figure 7 Lateral restrained beam subjected to uniform moment and axial 

compression. (Horne & Ajmani, 1969)  

Case 1:       

   
   

  
 

     (35) 

    is the critical load causing overall torsion about the restrained axis. 

 Case 2:        

 (
 

  
)  (  

 

  
) (  

 

    
)    (36) 

Eqn.(36) is an interaction formula where; 

   expresses the lateral-torsional buckling moment in between the supports. 

   is the flexural buckling load in between the supports. 

    is the axial load producing torsional buckling in an unsupported beam of length  . 

The eqn. can be seen below (40-42).     

        
     

  √
  
  

 
     
     

 (37) 

       
     

  
 (38) 

     
  

 

    
 
 (39) 

If Case1 gives the lowest  , buckling is by torsion about the restrained axis, 

otherwise lateral-torsional buckling occurs in between the lateral restraints. (Horne & 

Ajmani, 1969)    
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2.2 Stable length in Eurocode3 

In En 1993-1-1, Annex BB.3 there exists a method for calculating thestable length 

regarding lateral-torsional stability taking into account the effect of purlins. Studies by 

Horne et al. (1964, 1971, 1979) constitute the theoretical background of the method. 

The stable length gives the limiting length of a segment in a portal frame, between 

torsional restraint at a plastic hinge and the adjacent torsional restraint for which 

lateral torsional buckling may be ignored. The method is only appropriate for plastic 

design and where the spacing of the purlins is sufficiently small for the section 

between the purlins to be stable against LT-buckling. (King, 2002) 

2.2.1 Plastic stable length-Tension flange unrestrained  

To be able to conclude that no LT-buckling occurs in between the purlins on the 

tension flange, a check of the maximum length    has to be performed. This 

procedure ensures that an overall torsional instability is the critical one. The stable 

length    for combined axial compression and moment is shown below; (King, 2002) 

   takes into account the shape of bending moment diagram. 

N  is the applied axial force. 

A  is the cross-sectional area. 

Wpl  is the plastic sectional modulus. 

It  is the torsional constant. 

fy  is the steel yield strength. 

 

The stable length is based on the work by Horne et al. (1964) where the authors found 

the limit of slenderness Lm/iz  in which an unrestrained beam segment in a portal 

frame with a uniform moment can be regarded as stable against LT- buckling when 

the cross-section reaches its plastic moment resistance. 

Horne concluded that if a beam segment is subjected to a near uniform moment it is 

impossible for the section to reach complete plasticity due to the loss of stiffness 

about the minor axis. However the requirement that the cross-section of the segment 

reaches complete plasticity was determined not to be the essential criteria when 

considering a segment within a continuous structure, where re-distribution of stresses 

occurs. 

The criteria for plastic design were (Horne, 1964) 

1) The curve of the applied moment versus end rotation is sufficiently flat-topped 

2) The peak of the moment-rotation curve is not more than a few percentages 

below the theoretical full plastic moment.  
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(40) 
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This limit of slenderness Lm/iz proved difficult to obtain theoretically and therefore it 

was established with experiments on full scale I-sections using the previous criteria. It 

was detected that the sections subjected to uniform moment were stable as long as the 

length Lm was smaller than 0.6 L, where the length L is the unrestrained length when 

the elastic capacity is equal to critical buckling moment       with zero warping 

stiffness. 

The derivation of the stable length for a uniform moment is shown below. (King, 

2002) 

Stable length under uniform moment is         

             √
        

  
  

This is rearranged to find L 

    √
        

(    )
   

Then inserting L= Lm / 0.6 gives the stable length for a uniform moment. 

        √
        

(    )
  (41) 

 

2.2.2 Plastic stable length–Tension flange restrained 

The plastic stable length Lk is the only method in Eurocode3 where the beneficial 

effect of the purlins on the tension flange is taken into account. It is still quite 

conservative since the bending stiffness of the purlins is ignored. This is done because 

of the difficulty to consider the torsional resistance produced by the purlins. The 

properties of the purlins are case specific (different types of connections). In addition 

it was mentioned in section 2.1.2.1, that the lowest energy buckling mode is difficult 

to determine due to the number of half sinus curves n present both in the numerator 

and denominator of the analytical expressions. In order to apply this in practice it was 

necessary to ignore this effect. 

The beneficial effect of the purlins acting as only lateral restraints is still significant.   

The derivation of the elastic stable length without imperfection and the plastic stable 

length with imperfection are shown next section. 
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2.2.2.1 The elastic stable length Lke - Tension flange restrained 

Although the elastic stable length is not used in Eurocode3 it is convenient to examine 

it in order to understand the more complicated plastic stable length. 

The stable length Lke is derived from the critical moment eqn.(42) by solving for   

when the critical bucking moment is equal to the yield moment. The purlins are 

assumed to have no torsional resistance.  
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By inserting the expression of the warping constant in eqn.(42), eqn.(43) is obtained.  
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This is rearranged to find  . 
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(44) 

The equation was limited to a hot rolled I-section with the eccentricity   equal to 

     . In addition, sectional dimensions and material constants are approximated for 

an I-section in order to present the equation with fewer parameters. The 

approximations are G/E= 0,4, d/b=2,5 and tw/tf=0,6 (King, 2002). 
 

By expressing normal stress     as yield strength   , the length     is the limit where 

the section yields before it buckles.  
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The equation above is difficult to use in practice and therefore a more simple 

empirical expression was established that gives results that are in close agreement.   
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(46) 

h is the depth cross-section. 

tf  is the thickness of the flanges. 

fy is the yield strength. 

E is the Young´s modulus. 

iz is the polar radius about the minor axis 
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2.2.2.2 The plastic stable length-Tension flange restrained 

The plastic stable length    is based on the work by Horne et al. (1964, 1971, 1979) 

where they found the limiting slenderness Lk/iz, in which a plastic collapse 

mechanism is formed before LT-buckling. The work took the form of theoretical and 

parametric studies, which was supported by test work. 

In the research by Horne the most severe loading condition, constant moment about 

the major axis, was assumed. Furthermore, elastic-plastic material and imperfections 

as an initial twist about the restrained axis were assumed. The fillets were neglected 

which is a conservative approach giving lower torsional stiffness. In addition, the 

spacing of the lateral restraints were sufficiently close (1,5m) producing an overall 

torsional buckling of the beam. Also the eccentricity    was fixed to 75% of the depth 

of the beam. 

 

Figure 8 Laterally restrained beam subjected to uniform moment. (Horne & 

Ajmani, 1969) 

As mentioned in section 2.1.1 it was concluded that for an unrestrained beam with a 

uniform moment, complete plasticity was impossible to reach before a loss in 

stability. This also applies for a restrained beam and the criteria for the plastic design 

was: (Horne, 1964) 

1) The curve of the applied moment versus end rotation is sufficiently flat-topped 

2) The peak of the moment-rotation curve is not more than a few per cent below 

theoretical full plastic moment.  

As for an unrestrained beam it was difficult to get a pure theoretical expression for the 

limit of slenderness. Therefore a theoretical expression combined with criterion that 

was established from tests on full scale I-sections was used to find the limit of 

slenderness. 

In order to explain the work, it is best to reflect on the graph in Figure 9 that shows 

the relation between the applied moment and the angle of twist in the middle of the 

beam. 
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Figure 9 Out-of-plane behaviour of restrained I-beam under uniform moment. 

(Horne, Shakir-Khalil & Akhtar, 1979) 

The curve AGC is the elastic response of the beam with an initial imperfection and 

DB is the plastic mechanism line. These curves are convenient to obtain theoretically, 

while the curve AGFH (plastic response with imperfection) and curve AGJK (plastic 

response with imperfection and strain hardening) are on the other hand difficult to 

obtain. In order to extend the work for plastic response it was necessary to use a 

criterion that was found by a full-scale test of I-sections. Test results have shown that 

the point E, where the elastic response and the plastic mechanism line intersect is 

closely related to the plastic response. It has been shown that if the moment    at 

intersection point E is not less than 96% of    then the curve of the applied moment 

versus the rotation is reasonably flat topped, satisfying the stated requirement. With 

this criterion established it was possible to find the limit of slenderness by using the 

more easily obtained curve AGC (the elastic response). 

The elastic response curve AGC in Figure 9 is derived by assuming an initial twist   

about the restrained axis, at the middle of the column. 
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The maximum twist at the middle of the beam, with a uniform moment has been 

shown by Horne to be: 
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 )       
   (48) 

In order to present the eqn.(48) with fewer parameters sectional dimensions and 

material constants are approximated for standard I-sections, G/E= 0,4, d/b=2,5 and 

tw/tf=0,6. The general equation is expressed in the parameters of h/tf and fy/E. The 

equation is extensive and can be seen in the article; The post-buckling behaviour of 

laterally restrained column by Horne and Ajmani. 

The general expression was used to determine the limit of slenderness with trial and 

error method. The procedure was to try different lengths in the general equation 

simplified from eqn.(48). The limit of slenderness was obtained by trying different 

lengths until the curve AGC (elastic response with initial imperfections) intersects the 

mechanism line at a moment equal to       . 

The graph of the critical slenderness limits Lk/iz obtained is reproduced and shown in 

Figure 10. 

 

Figure 10 Critical slenderness ratios of restrained I-sections.(Horne, Shakir-Khalil 

& Akhtar, 1979) 
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An empirical expression for the plastic stable length Lk was found using the curves for 

the limiting slenderness in the Figure 10. 
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(49) 

h is the depth cross-section. 

tf  is the thickness of the flanges. 

fy is the yield strength. 

E is the Young´s modulus. 

iz is the polar radius about the minor axis. 

 

Horne concluded that the limit of slenderness given in eqn.(50) is significantly greater 

for a restrained beam than for an unrestrained beam. The limit of slenderness for a 

restrained beam was found to vary from 0,63 to 0,71 while for the unrestrained beam 

it varies from 0,38 to 0,46. 

  ̅  
                         

                            
 

  

  
    

  

  (50) 

It should be noted that Horne did not mention the effect of the residual stresses in his 

work, however by using test results on full-scale I-sections, it can be reasoned that the 

effect is taken into account. In addition the initial imperfection used in Horne’s 

research is significantly smaller than the imperfection according to the buckling curve 

method in Eurocode3. 
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3 Method 

The objective is to derive a stable length in steel portal frames according to elastic 

design and study the stabilizing effect of purlins. Furthermore compare the length 

with existing expressions in Eurocode3. The stable lengths will be derived using the 

buckling curve method in Eurocode3 where second order effects such as geometric 

imperfections and residual stresses are taken into account. Verification of the derived 

stable length will be performed with finite element simulation. 

3.1 Analytical parametric study 

To date, there exist analytical expressions for the critical buckling moment regarding 

unrestrained and restrained I-sections with flat web. To be able to gain an 

understanding of these expressions an analytical parametric study is performed in 

order to examine the influence from purlins. The analytical equations are then verified 

with numerical studies assuming first order analysis.        

In the equations for the critical buckling moment the following parameters are 

studied;  

 influence of the eccentricity a of the lateral restraint on the tension flange  

 different types of cross-sections (standard and customized cross-sections)  

 different lengths combined with having restraints at two different eccentricities 

of a 
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3.2 Stable length between torsional restraints 

As mentioned previously the aim the thesis is to find an analytical expression for the 

stable length between torsional restraints. The beam segment which is investigated is 

extracted from the portal frame shown in Figure 11. The beam is assumed to be 

subjected to a constant moment, which results in the most severe condition and 

consequently will give the shortest length between torsional restraints. Furthermore it 

is assumed that the beam is free to warp at the edges, which is considered to be 

conservative. The beam segments with its notations can be seen in Figure 11 below. 

 

Figure 11 Beam segments, laterally restrained to the left and laterally unrestrained 

to the right. 

Attacking this problem analytically, reasonable assumptions have to be made. For 

example the non-dimensional slenderness of the beam that defines the limit where 

buckling effects may be ignored and only cross-sectional checks apply. The equation 

for the non-dimensional slenderness is seen in eqn.(51).  
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In theory LT-buckling effects can be ignored if the limit of slenderness  ̅ is equal or 

greater than one. However in reality the beam is not completely straight, creating 

additional bending moment about the minor axis. Furthermore residual stresses 

generated in the manufacturing of the beams influence the ultimate capacity 

significantly. According to Eurocode3 imperfections and residual stresses are 

considered with the buckling curve method.  
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Each buckling curve represents different imperfection factors depending on the cross-

section. There is a limit where the buckling curves converge despite different 

imperfection factors. 

 

Figure 12   Buckling curve according to Eurocode3. (M E Brettle, 2009) 

In Eurocode3 for unrestrained beams the slenderness limit  ̅ is recommended to be 

equal to 0,4 where the capacity of the cross-section is reached before the occurrence 

of LT-buckling. By assuming the limit presented and solving for the length      in    

eqn.(54) a reasonable stable length for an unrestrained beam is found.  
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(54) 

Unfortunately it is not possible to find an expression for the unrestrained stable length 

when solving for      in eqn.(54), the result can be seen in eqn.(55) which includes 

an imaginary number. This occurs because the length of the beam is both in the 

nominator and in the denominator. However, the length is still found by iteration and 

compared to the restrained stable length   . 

 

      √
     
   

 (55) 

When restraining the beam on tension flange is it reasonable to utilize the same limit 

of 0,4? According to previous research there is a greater limit for restrained beams 

and this is something that has to be studied. 

  

0,4 
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Solving for    in eqn.(56) when using     , assuming the already stated slenderness 

limit 0,4 and elastic capacity of the cross-section, the restrained stable length is 

established in eqn.(57). The results from a non-linear finite element simulation will 

determine whether the restraint has an impact and if a different slenderness limit 

should be utilized for laterally restrained beams. 
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The critical buckling moment for laterally restrained beams includes the variable   

which is the distance from the shear centre of the beam to the shear centre of the 

lateral restraint which is seen in Figure 13.   

In this investigation the parameter “a” is limited to the following two values; 50% and 

75% of the depth of the beam (0,5h and 0,75h). The distance 0,5h is chosen of 

theoretical interest since it is the same as having the flange restrained without having 

any volume of the restraint. Restraint at 0,75h is chosen for two reasons. In Eurocode3 

there exists a semi-empirical expression for the plastic restrained stable length. When 

investigating the derivation of that equation it has been assumed that the distance is 

0,75h to simplify the equation. By using the same eccentricity in the derived 

analytical equation for the stable length a more accurate comparison to the Eurocode3 

equations can be performed. The second reason is to have a distance which is in 

proportion with the depth of the beam.  

 

Figure 13   Illustrating the level of the restraints. 

3.3 Finite element analysis 

The investigation is performed with finite element analysis (FE-analysis) and the 

software executing the calculations is ABAQUS CAE. The models are constructed to 

represent analytical assumptions considering boundary conditions and loads. The 

numerical results are then verified by comparing with existing analytical equations.   

restrained at 0,5h  restrained at 0,75h 
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The first verification is to perform an elastic static analysis and then continue with a 

linear buckling analysis of the models created. Similar or equal results between 

analytical and numerical solutions will consequently verify the models. Additionally 

the elastic linear buckling analysis is performed to obtain a greater understanding of 

the LT-stability. By investigating the buckling modes it is possible to determine what 

conditions affect the flexural- and torsional displacement. Furthermore the LT-

buckling shape is recorded and used in the non-linear analysis. By assuming a 

geometrical imperfection shape as the LT-shape the worst case scenario is obtained.  

A non-linear analysis is carried out in order to get closer to the real behaviour of the 

studied beam. The non-linear analysis considers geometrical imperfections, residual 

stresses and elastic-plastic material. The analyses are limited to a yield strength of 

fy=235N/mm
2
. Comparing the results for beams, with different cross-sections, 

different lengths, unrestrained and restrained at two eccentricities the stabilizing effect 

from purlins can be seen. Performing the non-linear analysis verifies if the non-

dimensional slenderness  ̅ equal to 0,4 is a satisfactory limit when deriving the 

restrained stable length.  

The boundary conditions assumed in the analytical eqn.(52&53) are equivalent to 

fork- support at the edges. In order to enable a verification of the models produced in 

the FE-simulation the boundary conditions have to be the same as in the analytical 

equations.   

As mentioned previously the aim is that this Master´s project can be applied on portal 

frames. Instead of modelling the whole frame, simplified models are produced. The 

assumption made is to consider segments in between torsional restraints in the portal 

frame. By assuming fork-supports as the torsional restraints in the portal frame it will 

represent the reality sufficiently well. The assumption will be on the safe side since 

the model is free to warp which in reality is not true and the critical buckling moment 

will be increased.        
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3.4 Investigated beams 

When performing a parametric study there has to be a discussion of how to make the 

survey as reliable as possible. The results obtained have to be comprehensive thus the 

overall picture can be seen. Achieving this aim several cross-sections have to be 

checked. The aim is also to apply this survey to portal frames therefore only cross-

sections often used in frames are considered. In the analytical parametric study both 

standard (hot-rolled) and customized (welded) cross-sections are studied and the 

dimensions are seen in Table 1.  

 

Table 1   Dimensions of cross-sections studied in the investigation. 

Studying both standard- and customized sections different buckling curves apply in 

the non-linear analyses making the investigation more extensive. In the survey an 

initial aim is to check several cross-section classes. However, when studying slender 

customized cross-sections with a short length local buckling occurs despite that the 

cross-section is not in class four. To get around this problem in the linear and non-

linear analyses standard cross-sections in class one are utilized and geometrical 

imperfection is applied assuming it is welded. This procedure will therefore still cover 

both welded and standard cross-sections and all buckling curves. 

Cross-

section 

h 

[mm] 

b 

[mm] 

tf 

[mm] 

tw 

[mm] 

Buckling 

curve 

Cross-

section 

class 

IPE200 200 100 8,5 5,6 b 1 

IPE400 400 180 13,5 8,6 c 1 

IPE600 600 220 19 12 c 1 

200 200 200 10 6 c 2 

400 400 200 10 6 c 2 

600 600 200 10 6 d 3 
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4 Modelling 

The numerical results are obtained with finite elements analysis using the commercial 

software package ABAQUS CAE version 6.12-1. The investigated beams will be 

simulated without welds. 

The modelling is performed in the following steps 

 Linear buckling analysis 

 Non-linear buckling analysis 

4.1 Linear buckling analysis 

The first step is performing a linear buckling analysis where the critical buckling 

moment is obtained and verified with the analytical results. The buckling shape is also 

recorded and used in the non-linear buckling analysis in chapter 4.2. For the linear 

buckling analysis the material response is elastic with a Young modulus E of 210GPa 

and Poisson’s ratio v of 0,3. This analysis records the eigenvalue λ required to reach 

the LT-buckling mode. The critical buckling moment is then obtained by multiplying 

the eigenvalue with the applied reference moment. 

           (58) 

All analyses are performed with eight node shell elements with quadratic base 

function and reduced integration. The elements have five integration points over its 

thickness and Simpson integration rule is utilized. For the linear buckling analysis a 

fine mesh of 25mm is used. This is a much finer mesh than needed according to the 

convergence study in chapter 4.3 but since the analysis is not time consuming and in 

order to get as accurate results as possible a fine mesh is chosen. 

 

Figure 14 Fine mesh of 25mm. 
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The investigated models are all subjected to a constant reference moment of 100kNm. 

According to the ABAQUS manual only a concentrated load or a pressure load can be 

used in following analyses (buckle and static risk). In order to simulate a constant 

moment, an evenly distributed load is applied on the flanges (shell edge loading), 

creating a force couple at each end corresponding to 100kNm. The top flange is 

subjected to tension and the bottom flange to compression. The load follows the 

rotation of the section and is defined to act on the un-deformed area of the flanges. 

The load conditions can be seen in Figure 15 below. 

 

Figure 15 The applied load.  

In this study there are three types of boundary conditions (see Figure 16) and in the 

following text will be termed as follows; 

 Unrestrained; Fork supports at the ends. 

 Restrained at 0,5h; Fork supports at the ends and a continuous lateral restraint 

at the top of the tension flange.  

 Restrained at 0,75h; Fork support at the ends and a discrete lateral restraint 

above the tension flange at the eccentricity of 0,75h from the shear centre of 

the web. 

 

Figure 16 Types of lateral restraints considered in analysis. 

(a) unrestrained (b) restrained at 0,5h (c) restrained at 0,75h 
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Unrestrained 

The boundary conditions for the lateral unrestrained beam (see Figure 17) are 

equivalent to fork supports at the ends and are simulated as follow; 

 Point a is restrained in all directions (x, y and z) and to rotate about the 

longitudinal axis (x). 

 Point b is restrained from translating in vertical (z) and lateral (y) direction. It 

is also restrained to rotate about the longitudinal axis (x). 

 Line A is restrained with a feature in ABAQUS called coupling constraint, 

were all the nodes on Line A are coupled to displace the same amount in the 

lateral (y) direction as the reference point a.  

 Line B is coupled to point b to displace the same amount in the lateral (y) 

direction.  

 

Figure 17 Illustration of how the fork supports at the ends are simulated. 
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Restrained at 0,5h 

The boundary conditions at the ends are the same as for the laterally unrestrained 

beam. In addition a continuous restraint is applied at top of the tension flange, 

preventing it to displace laterally (y). The continuous lateral restraint is shown in 

Figure 18 below. 

 

Figure 18 Boundary condition of the laterally restrained beam at the tension flange. 

Restrained at 0,75h 

The boundary conditions at the ends are the same as for the laterally unrestrained 

beam. In addition, discrete lateral restraints are applied above the tension flange. The 

distance from the shear centre of the web to the discrete restraint is 75% of the total 

depth of the cross-section. This is simulated by adding plates on the top of the tension 

flange with a spacing of 1,2m. The plate is half the width of the corresponding flange 

and the thickness is the same as the web. A spacing of 1,2m is sufficient to assume it 

acts like a continuous restraint. For short beams as in Figure 19 a restraint is added in 

the mid span. 

 

Figure 19 Boundary condition of the beam laterally restrained above the tension 

flange. 
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4.2 Non-linear buckling analysis 

The second step is performing a non-linear buckling analysis where imperfection, 

residual stresses and material plasticity are taken into account. In this analysis the 

ultimate moment is obtained, where the relation between load and displacement gives 

a zero stiffness (unstable). In ABAQUS a step module ‘’Static Risk’’ is used to 

simulate the non-linear behaviour. The number of increments used is 100 when 

generating the moment-displacement curve. 

In the “Static Risk” step the buckling shape obtained in the linear buckling analysis is 

used as a reference shape, which is multiplied by the equivalent initial bow 

imperfection, recommended in Eurocode3, where both geometrical imperfection and 

residual stresses are taken into account. The magnitude of the bow imperfection is 

found in table 5.1 in Eurocode3 and depends on the length of the beam and the 

buckling curve of the cross-section.  

 

Figure 20 Initial bow imperfection. (Sabat, 2009) 

The initial imperfection in table 5.1 in Eurocode3 only applies for columns subjected 

to compression. In order to take into account the lateral torsional buckling of a beam 

in bending, Eurocode3 suggest multiplying the initial bow imperfection by a factor k. 

By using this procedure no additional torsional imperfection needs to be considered. 

The value of k is taken as 0,5. 

           (59) 

The moment and the boundary conditions are the same as in the linear buckling 

analysis in chapter 4.1. Furthermore the elements are the same except the size. In this 

analysis it was necessary to use a larger mesh of 250mm, which is sufficient 

according to the convergence study in chapter 4.3. A non-linear buckling analysis is 

time consuming and in order to make the work more efficient a coarser mesh is 

chosen. In addition it proved difficult to obtain the descending shape of the moment-

displacement curve when a fine mesh is used. 

The stress and strain relation is considered to follow an elastic-plastic path with strain 

hardening assuming mild steel with a yield strength fy of 235MPa. The plastic 

material model can be seen in Figure 21.  
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Figure 21 Stress-strain curve. 
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4.3 Convergence study 

Results from FE-analyses are more accurate as the mesh gets finer. However, using a 

fine mesh also increases the computation time. In order to find a satisfactory balance 

between accurate results and computation time, a convergence study is performed.  

The convergence study is based on results from a linear buckling analysis and is 

performed for all the cross-sections. The critical buckling moment versus element size 

is plotted and the point of convergence is found. For all the cross sections, a mesh 

with an element size of 250mm is sufficient. The results from the convergence study 

can be seen in Figure 22-24.  

 

 

Figure 22 Convergence study of an IPE 200, with the tension flange unrestrained 

and restrained.  
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Figure 23 Convergence study of an IPE400, with the tension flange unrestrained and 

restrained. 

 

Figure 24 Convergence study of an IPE600, with the tension flange unrestrained and 

restrained. 
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5 Theory  

The phenomena studied in this Master’s project, are lateral-torsional buckling and 

distortion. This chapter is intended to be an introduction, explaining the behaviour 

that occurs and thereby providing the reader with an explanation of the results 

obtained. 

5.1 Lateral-torsional buckling 

In chapter 2.1 the differential equations for a laterally unrestrained beam is established 

giving a critical moment when the beam becomes unstable and laterally displace and 

twist. The total lateral displacement is divided into two parts provided by; flexure 

buckling about minor axis uL and torsional buckling uT. The proportions of each 

displacement are of interest since it determines the location of the free rotational axis 

illustrated in Figure 25.   

 

Figure 25 Lateral- torsional buckling of a beam unrestraint laterally on the tension 

flange. 

The distance from the shear centre to the rotational axis differs between cross-sections 

and is not in proportion with the depth of the section. This effect causes some cross-

sections to flexural buckle about minor axis more than others and correspondingly 

affects the efficiency of lateral restraints. When the beam is laterally restrained at the 

tension flange the shear centre is displaced to the location of the lateral restraint 

giving rotation about the tension flange. This results in an increase of the rotational 

angle corresponding to an increasing buckling capacity. Having the beams laterally 

restrained at a height which is above the tension flange, with an eccentricity of 0,75h 

from the shear centre of the beam, will also have positive influence on the buckling 

capacity. However, it is distinguished differently depending on the cross-section. For 

shallow beams the lateral restraints above its tension flange has a significant impact 

but for deep beams the buckling shape coincides with the unrestrained shape. This is 

illustrated in Figure 26.  

 

 

 

http://tyda.se/search/coincide?w_lang=en
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Figure 26 Buckling modes IPE200 and IPE600, unrestrained, restrained at 0,5h and 

0,75h.   

The previous reasoning is true for long lengths (about 6m and longer) for the cross-

sections, with corresponding slenderness, studied in this report. For laterally 

unrestrained beams with short lengths the flexural buckling displacement are 

significantly decreased, resulting in no or almost negligible lateral displacement of the 

tension flange. The rotational axis is then very close to the tension flange. The 

buckling shape will therefore significantly consist of lateral displacement caused by 

torsion which is almost identical to the buckling shape when having lateral restraints 

at the tension flange. The conclusion is that lateral restraints at 0,5h for short lengths 

have no influence. However, lateral restraints above the tension flange will increase 

the buckling capacity for short lengths. Restraining the beam above the tension flange 

with an eccentricity of 0,75h will evidently force the rotational axis to act above its 
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initial unrestrained location which correspondingly increases the buckling capacity as 

more energy is required. The buckling shapes for a short beam are seen in Figure 27.    

 

 

Figure 27 Buckling modes IPE400 with length 1,85m, unrestrained, restrained at 

0,5h and 0,75h.  
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5.2 Lateral-torsional buckling with distortion 

The analytical expressions eqn.(52&53) determine the critical buckling moment 

considering LT-buckling assuming that the section remain plane. However, these 

equations do not apply for all cases because of local buckling of the web called 

distortion (see Figure 28). Since the web is slender it will locally deform in 

combination with LT-buckling. This effect significantly reduces the buckling capacity 

of the beam. 

 

Figure 28 The buckling shape of IPE sections; A is without distortion and B is with 

distortion 

In the following investigation, distortion is detected but only for beams with short 

length. When the length of the beam is decreased the corresponding buckling load 

capacity increases until a certain point where the web is unable to withstand the load 

without buckling locally. The behaviour is more pronounced for beams laterally 

restrained above the tension flange since the rotational axis is further from the tension 

flange. This phenomenon can be seen in section 6.3.1. 

 

Figure 29 The distortion of IPE sections; A is beam laterally restrained above the 

tension flange and B is a beam not restrained laterally at the tension 

flange.  

 

 

 

A B 

A B 
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6 Results and Discussion 

This chapter consists of an analytical parametric study, establishing an understanding 

to the critical buckling moment equations. Furthermore the stable lengths are 

presented for each cross-section and compared with FE-simulations using linear 

analyses. The last section presents non-linear analyses of the stable length confirming 

the assumptions made in the method chapter. 

          

6.1 Analytical parametric study 

According to the analytical expressions it is obvious that the dimensions of the cross-

section as well as the length of the beam have a significant impact on the critical 

buckling moment. However, other parameters also affect the end result. In the 

equation for the lateral restrained critical buckling moment eqn.(61), there exists a 

variable   that has a significant impact. The variable   is the distance between shear 

centres of the beam and the lateral restraint. In the following results the critical 

buckling moment equations will be compared. 

The critical buckling moment for a laterally unrestrained beam: 

     
     

  
√

  
  

 
     
     

 (60) 

The critical buckling moment for a laterally restrained beam: 
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    ) (61) 

 

6.1.1 Influence of eccentricity a 

The influence of the eccentricity   is observed analytically by examining the critical 

buckling moment applying   as a variable. Several cross-sections are studied 

assuming a long length of 10m and a short length of 2m. In the figures below it can be 

seen how   influences the critical buckling moment for standard and customized 

cross-sections. In the Figure 30 to Figure 33, the y-axis represents the ratio of critical 

buckling moment between lateral restrained Mcr.0 - and unrestrained Mcr. It should be 

noted that the y-axis is in logarithmic scale. The x-axis denotes a ratio of the 

eccentricity   and the depth of the beam  . The grey area in the graphs represents a 

realistic value of the eccentricity    0,5h to 0,75h). 
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Standard cross-sections 

 

 

Figure 30 Ten meter beam illustrating the impact of restraints at different 

eccentricities for three standard cross-sections. 

 

 

Figure 31 Two meter beam illustrating the impact of restraints at different 

eccentricities for three standard cross-sections. 
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Welded cross-sections    

 

 

Figure 32 Ten meter beam illustrating the impact of restraints at different 

eccentricities for three customized cross-sections. 

 

 

Figure 33 Two meter beam illustrating the impact of restraints at different 

eccentricities for three customized cross-sections. 

For both long and short beams, lateral restraints close to the shear centre of the beam 

increase the critical buckling moment significantly and result in that only torsion 

about the longitudinal axis in the shear centre of the beam occurs. Due to the 

significant critical buckling moment the instability phenomenon can be ignored.   
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When the lateral restraint is located further from the shear centre the ratio reduces 

until it reaches a turning point where there is no benefit of the lateral restraint. The 

turning point occurs when the buckling shape of the unrestrained and restrained beam 

coincides corresponding to similar location of the rotational axis. When the rotational 

axis is forced to act above the initial unrestrained location, the lateral restraint once 

again has a beneficial effect. This phenomenon is illustrated in the Figure 34. 

 

Figure 34 Illustration of the influence of the variable a on the critical buckling 

moment for 2m beam.  

It is noted that the influence of lateral restraints differs significantly between short and 

long lengths for both standard- and customized sections. For long beams the turning 

point, where there is no benefit of lateral restraint, occurs for greater eccentricity of  . 

In addition the location of the turning point differs between cross-sections. This is 

because the distance to the rotational axis differs between sections. For shallow cross-

sections the rotational axis acts further from the shear centre of the beam in proportion 

to its depth resulting in greater ratio of     to converge to the unrestrained buckling 

shape. However, great eccentricities of   is not of importance due to its improbability 

to be present in reality. The proportions in size between the beam and the restraint 

have to be realistic. A realistic eccentricity a is between 0,5h to 0,75h (grey area in 

the graphs) which have significant beneficial effect for cross-sections with shallow 

depth. For deeper beams the effect is not as pronounced. 

For all cross-sections with short length the position of the turning point, where there is 

no benefit of lateral restraint are similar, about 0,5h. This result implies that for short 

beams laterally restrained at the top of the tension flange (0,5h) result in a similar 

buckling shape as for unrestrained beams. Lateral restraints above 0,5h have a 

positive influence. As mentioned previously the positive effect is due to forcing the 

rotational axis to act above the unrestrained location. 

For the customized cross-section the contours are similar as for a standard cross-

section. The variance is not as pronounced as for a standard cross-section. 
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6.1.1.1 Summary 

Adding lateral restraints increases the critical buckling moment except at the so-called 

turning point, where the buckling shapes of the unrestrained- and restrained beam 

coincide.   

For realistic eccentricity of a, the increase in the critical buckling moment is either 

caused by forcing the rotational axis to act above or below the initial unrestrained 

rotational axis. Depending on the length of the beam one of these actions occurs. For 

long beams lateral restraints force the rotational axis to act below the initial 

unrestrained location and the positive effect is more pronounced for shallow sections. 

For short beams the opposite applies. Restraints acting above the tension flange force 

the rotational axis above its unrestrained location. This action increases the critical 

buckling capacity and occurs for all cross-sections despite depth. 
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6.1.2 Influence of beam length   

To be able to see what effects the restrains have on different cross-sections with 

variable lengths, plots have been produced to visualize the behaviour. Two different 

eccentricities of lateral restraints are studied 0,5h and 0,75h (Figure 35). In the 

following Figure 36 to Figure 41 the y-axis represents the ratio of critical buckling 

moment between lateral restrained Mcr.0 - and unrestrained Mcr while the x-axis 

denotes the length.          

 

Figure 35 The investigated eccentricities of a. 

Standard cross-sections 

It can be seen in Figure 36 that for the IPE200 the restraint has a significant impact on 

longer lengths which was mentioned in the previous chapter. The increase in critical 

buckling moment for a 10m beam unrestrained compared to one restrained at 0,5h is 

about 100%. The difference having the beam restrained at 0,75h is about 50%. 

Furthermore for a 1m beam restraining it at 0,75h has a positive effect of 

approximately 7%. For short beams restraint at 0,5h is negligible.  

 

 

Figure 36 Ratio of critical buckling moment with length as a variable for a IPE200. 

restrained at 0,5h  restrained at 0,75h 

http://tyda.se/search/negligible?w_lang=en
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Considering an IPE400 in Figure 37, the impact of restraints for longer lengths has 

less impact compared to IPE200. For a 10m beam the increase in critical buckling 

moment is about 3% compared to 48% for IPE200. However, restraints at 0,5h are 

still about 20% better for a 10m beam. As for the IPE200 the 0,75h restraints has a 

positive effect for shorter lengths with a magnitude of about 9%. It is seen in the 

figure below, at length 7m for the restrained beam at 0,75h, the ratio starts to increase 

again. For shorter lengths than 7m the restraint at 0,75h forces the rotational axis to 

act above its unrestrained location. For longer lengths than about 7m the rotational 

axis is forced to act below corresponding to an increase of the buckling capacity.        

 

 

Figure 37 Ratio of critical buckling moment with length as a variable for a IPE400. 
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The IPE600 is seen in Figure 38. The difference between unrestrained and restrained 

at 0,75h is for a 1m beam about 9%. At six meters the difference is less than 2%. For 

the IPE600 the point where the rotational axis acts below its initial unrestrained 

location appears at about 9m.     

 

 

Figure 38 Ratio of critical buckling moment with length as a variable for a IPE600. 
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Customized cross-sections 

The customized cross-section with depth 200mm seen in Figure 39 follows the same 

pattern as the standard sections. In a comparison between standard and customized 

200mm cross-sections, it can be noted that restraints for longer customized lengths 

have less impact on the buckling capacity. The customized cross-section has more 

than twice as large flanges than the standard which obviously influences the 

behaviour. A possible reason for this is that the stiffness about the minor axis is 

significantly greater in proportion to the torsional stiffness causing less lateral 

displacement of the tension flange consequently decreasing the impact of lateral 

restraints.    

 

 

Figure 39 Ratio of critical buckling moment with length as a variable for a 

customized beam with depth 200mm. 
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The customized cross-section with depth 400mm in Figure 40 restrained at 0,75h has 

about 9% higher critical moment for 1m beam compared to having it unrestrained or 

restrained at 0,5h. As for previous cross-sections the critical moment declines when 

the length is increased. For the previous cross-sections the ratio of the critical moment 

between unrestrained and restrained beam declines until a certain length and then the 

ratio starts to increase again due to the location of the rotational axis. Although for the 

customized 400mm cross-sections this increase is not seen within 10 meters.       

 

 

Figure 40 Ratio of critical buckling moment with length as a variable for a 

customized beam with depth 400mm. 
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For the customized beam, with depth 600mm in Figure 41, it can be noted that there is 

almost no difference between unrestrained and restrained at both 0,5h and 0,75h when 

considering a 10m beam.  

 

 

Figure 41 Ratio of critical buckling moment with length as a variable for a 

customized beam with depth 600mm. 

 

6.1.2.1 Summary 

For all cross-sections with short lengths the magnitudes of the critical buckling 

moment are similar between unrestrained and restrained beams at the level of the 

tension flange (0,5h). However, when the length is increased the effect of restraints at 

0,5h will improve the buckling capacity. Restraints at 0,75h will for all cross-sections 

provide greater buckling capacity for short lengths. However, the positive influence 

will decline until a certain length where the restraint has no impact. Thereafter the 

influence of restraints will once again have a positive effect on the buckling capacity 

due to forcing the rotational axis to act below the unrestrained location. The critical 

length where the restraints at 0,75h have no effect differs between cross-sections. For 

shallow sections with low stiffness about the minor axis in proportion to the torsional 

stiffness the critical point will occur at shorter lengths.  
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6.2 Stable length 

In order to find the stable length where no LT-buckling occurs before yielding due to 

bending in the major axis some assumptions have to be determined. Using 0,4 as limit 

of slenderness, assuming constant moment and elastic capacity of the cross-section, 

the following results are obtained. The stable length for both unrestrained and 

restrained at two different eccentricities is presented in Table 2 and Table 3 for 

standard and customized-sections.  

 

Table 2 Stable length for standard cross-sections  

Cross-section 
Unrestrained 

Lunr 

Restrained at 0,5h 

Lr.0,5h 

Restrained at 0,75h 

Lr,0,75h 

IPE200 1,060m 1,060m 1,098m 

IPE400 1,854m 1,854m 1,927m 

IPE600 2,215m 2,215m 2,304m 

 

Table 3 Stable length for customized cross-sections. 

Cross-section 
Unrestrained 

Lunr 

Restrained at 0,5h 

Lr.0,5h 

Restrained at 0,75h 

Lr,0,75h 

Depth 200 2,257m 2,258m 2,330m 

Depth 400 2,047m 2,047m 2,132m 

Depth 600 1,944m 1,944m 2,027m 

 

Assuming a constant moment is conservative and results in a short length in between 

torsional restraints. It is noted that there is no difference in the stable length between 

unrestrained and restrained beams at 0,5h. As can be seen in section 6.1.2, for a short 

length the critical buckling moment is almost unchanged between unrestrained and 

restrained at 0,5h. However, having the beams restrained at 0,75h, a small 

improvement of the stable length is obtained. For standard cross-sections the length is 

increased for greater cross-sections. In addition it is noted that the stable length 

decreases for deeper customized cross-sections. The customized cross-sections have 

similar stiffness about minor axis but the elastic capacity of the shallower beams is 

significantly smaller, corresponding to larger stable lengths according to the eqn.(57) 

in section 3.2.    
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6.2.1 Comparison with Eurocode3  

In Annex BB.3 in Eurocode3 there are expressions for the plastic stable lengths where 

LT-buckling effects may be ignored. The length denoted as Lm considers the 

unrestrained plastic stable length in between torsional restrains assuming one plastic 

hinge. Furthermore there is an expression determining the plastic stable length Lk 

assuming the same conditions as for Lm, provided that there are one or more discrete 

lateral restraints between the torsional restraints at a sufficiently small spacing. It is 

interesting to compare these lengths analytically with the derived stable length (Lunr  & 

Lr0,75h). In the derivation of the Eurocode3 plastic stable length Lk, a lateral restraint at 

a location of 0,75h is assumed. Therefore the comparable lengths are; Lm with the 

unrestrained stable length Lunr  and Lk with the restrained stable length at 0,75h Lr0,75h. 

Following results were obtained for standard and customized cross-sections seen in 

Table 4 and Table 5. 

 

Table 4 Comparison of stable length with Eurocode3 for standard cross-sections. 

Cross-section 
Unrestrained 

Lunr/ Lm 

Restrained at 0,75h 

Lr0,75h/Lk 

IPE200 0,80 0,52 

IPE400 1,00 0,55 

IPE600 1,08 0,57 

 

The results for the standard cross-section can be seen in Table 4 above. For the 

unrestrained beams, Eurocode3 gives shorter or equal lengths with the exception of 

the IPE200. In Eurocode3 the section is assumed to plasticise and it is reasonable to 

assume that the length should be shorter than the derived stable length. Therefore the 

longer length of the IPE200 is unanticipated. For a restrained beam the difference is 

more pronounced and Eurocode3 gives significantly longer lengths. It can be noted 

that the difference declines for greater cross-section from ratio of 0,52 to 0,57 but it is 

still substantial. The longer length of the plastic stable length raises the questions if 

the derived stable length is too conservative or if the expressions in Eurocode3 are not 

accurate. In the derivation of the stable length the same limit of slenderness is 

assumed for both unrestrained and restrained beams and the initial imperfections are 

based on the buckling curve method. A comparison of the derivation of the two stable 

lengths concludes that Eurocode3 assumes a smaller initial imperfection and a greater 

limit of slenderness for restrained beams. In order to verify the stable length a non-

linear buckling analysis is performed in section 6.3.2.   

 

Table 5 Comparison of stable length with Eurocode3 for customized cross-sections. 

Cross-section 
Unrestrained 

Lunr/ Lm 

Restrained at 0,75h 

Lr0,75h/Lk 

Depth 200 0,67 0,45 

Depth 400 1,35 0,56 

Depth 600 2,07 0,60 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:96 
54 

The results comparing customized cross-sections are seen in Table 5. For the 

unrestrained beams the length in Eurocode3 is shorter except for the cross-section 

with the depth of 200mm. Furthermore the difference is more pronounced for the 

customized cross-sections. For the restrained beams the plastic stable length in 

Eurocode3 is significantly longer. It should be noted that a comparison of the stable 

length for customized cross-sections is questionable due to the derivation of the partly 

empirical expressions in Eurocode3. The derivation is based on standard cross-

sections, where certain proportions of web and flanges are accounted for. However for 

customized cross-sections these proportions are not taken into account and a 

comparison may not be as relevant. 

In Eurocode3 there also exists a simplified method, finding the stable length Lc. The 

simplification considers only the compression flange and one third of the compressed 

web. The parts of the beam that are in tension are neglected which includes the 

influence from the purlins. In the simplified method it is recommended to assume a 

limit of slenderness of 0,5 for cross-sections in class 1 and 2. It is of interest to 

compare the stable length derived from the simplified method assuming both 0,4 and 

0,5 as limit of slenderness with the stable length derived in this Master’s project 

assuming lateral restraints both at 0,5h and 0,75h. The comparison can be seen in 

Table 6. 

 

Table 6 Comparison of stable length with simplified method for standard cross-

sections.  

Cross-section 
Simplified method  ̅         

Lr0,75h/Lc 

Simplified method( ̅       

Lr0,75h/Lc 

IPE200 1,12 0,89 

IPE400 1,09 0,87 

IPE600 1,08 0,87 

 

Table 7 Comparison of stable length with simplified method for customized cross-

sections.  

Cross-section 
Simplified method( ̅        

Lr0,75h/Lc 

Simplified method( ̅       

Lr0,75h/Lc 

Depth 200 1,12 0,90 

Depth 400 1,07 0,87 

Depth 600 1,06 0,85 

 

It is noticed that when assuming a limit of slenderness of 0,4 in the simplified method, 

the derived stable length Lr0,75h is between 6% and 12% greater for both standard and 

customized cross-section. However, when assuming a limit of slenderness of 0,5 the 

length determined from the simplified method is greater for all sections. The 

difference is not as significant as for the plastic stable length.  

Performing a non-linear analysis using the stable length derived from the simplified 

method, assuming the worst initial imperfection, will conclude whether it is more 

efficient to utilize the simplified method or the stable length derived in this thesis. 
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6.2.1.1 Summary 

The derived stable length is conservative compared to expressions in Eurocode3. 

Furthermore the difference is more pronounced for beams laterally restrained at the 

tension flange. It is observed that the simplified method, when assuming a limit of 

slenderness of 0,5, will give slightly greater lengths than the derived stable length.   

6.2.2 Sensitivity of different slenderness limits 

According to Eurocode3 the non-dimensional slenderness  ̅ equal to 0,4 is the 

maximum limit where LT-buckling may be ignored and only cross-section checks 

apply. In this report the limit of slenderness is set to 0,4 but it is of interest to 

understand analytically how a different slenderness limit affects the stable length for 

unrestrained and restrained at two levels. The results are presented in Figure 42 and 

Figure 43. The y-axis represents the ratio of the stable length for a non-dimensional 

slenderness of 0,4 versus 0,3 and 0,5. It is evident that changing the slenderness 

affects the stable length significantly (about 28%) which concludes that the length is 

sensitive to the change. The effect is similar between cross-sections.      

 

 

Figure 42 The stable length for unrestrained and restrained beam at 0,5h, assuming 

different non-dimensional limit of slenderness 
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Figure 43 The stable length for a restrained beam at 0,75h, assuming different non-

dimensional limit of slenderness.  

 

6.2.2.1 Summary  

The derived stable length is sensitive to a change of the non-dimensional slenderness. 
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6.3 Finite element analyses 

The finite element analyses (FE-analyses or FE-simulations) are performed by the 

software ABAQUS CAE. By FE-simulations several analyses can be obtained. Elastic 

linear buckling analysis executes numerical calculations determining the critical 

buckling modes for the produced models. Furthermore a non-linear buckling analysis 

is performed taking into account geometrical imperfections, residual stresses and 

plasticity. In the FE-simulations only standard cross-sections are investigated. The 

reason for this is to ensure that no local buckling occurs.  However, in the non-linear 

buckling analysis different initial imperfections are utilized for the same cross-section 

representing both hot-rolled and welded. 

6.3.1 Linear buckling analysis 

Linear analyses determine the critical load when buckling occurs. The buckling mode 

considered is LT-instability. The analysis does not consider initial imperfections or 

plasticity in the material which is a condition verifying the analytical equations. The 

verification of the produced models is done by comparing the numerical results with 

the analytical, which is presented in the tables below for different cross-sections and 

lengths, unrestrained and restrained at 0,5h and 0,75h. The linear buckling analyses 

also contribute to an understanding to the analytical parametric study. By simulating 

models with different parameters, the buckling shapes are obtained and compared to 

the analytical results. In Table 8, unrestrained 10m beams are compared between 

analytical- and numerical results and in Table 9 for the stable lengths.  

 

Laterally unrestrained beams 

Table 8 Analytical and numerical results for unrestrained 10m beams.  

Cross-section 
Length  

[m] 

Analytical 

[kNm] 

Numerical 

[kNm] 

Ratio  

[%] 

IPE200 10 11,3 11,1 98,3 

IPE400 10 104,0 101,5 97,6 

IPE600 10 338,7 329,9 97,4 

 

Table 9 Analytical and numerical results for unrestrained beams regarding stable 

lengths. 

Cross-section 
Length 

 [m] 

Analytical 

[kNm] 

Numerical 

[kNm] 

Ratio  

[%] 

IPE200 1,060 271,1 257,0 94,8 

IPE400 1,854 1606,0 1531,0 95,3 

IPE600 2,215 4324,0 4088,2 94,5 

 

For 10m beams the models are considered verified due to a maximum difference of 

only 2,6%. However, when shorter lengths are studied, the ratio between analytical 

and numerical results declines. The cause of this occurrence, for short beams, is due to 

distortion which is something the analytical equations do not account for. The 

distortion is observed in the software and the models can be confirmed to represent 

the reality closer.  
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The analytical results are therefore for short beams on the unsafe side. The buckling 

deformation of the cross-section IPE400, both 10m and 1,85m, is presented in Figure 

44 showing the distortion for the short beam.   

 

 

Figure 44   IPE400 unrestrained for the following lengths; A=10m, B= 1,85m.  

 

Laterally restrained beams at 0,5h 

When restraint is added to the tension flange the following results are obtained. Table 

10 and Table 11 present the results when assuming continuous restraint at an 

eccentricity of 0,5h.    

 

Table 10  Analytical and numerical results for a 10m beam restrained at 0,5h. 

Cross-section 
Length  

[m] 

Analytical 

[kNm] 

Numerical 

[kNm] 

Ratio  

[%] 

IPE200 10 24,1 23,3 96,8 

IPE400 10 129,1 124,4 96,3 

IPE600 10 383,7 369,5 96,3 

 

Table 11 Analytical and numerical results regarding stable lengths for a beam 

restrained at 0,5h. 

Cross-section 
Length  

[m] 

Analytical 

[kNm] 

Numerical 

[kNm] 

Ratio  

[%] 

IPE200 1,060 271,9 257,4 94,8 

IPE400 1,854 1606,0 1531,8 95,4 

IPE600 2,215 4324,0 4090,0 94,5 

 

The ratios between numerical and analytical results for 10m beams restrained at 0,5h 

are within a satisfactory limit, seen in Table 10.  

A 

 

B 
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Similarly as for unrestrained beams distortion occurs for the stable lengths, in Table 

11. An IPE400 cross-section with length 10m and 1,85m restrained at 0,5h is 

presented in Figure 45.   

    

 

Figure 45   IPE400 restrained at 0,5h for the following lengths; A=10m, B=1,85m. 

 

Laterally restrained beams at 0,75h 

An elastic linear analysis is also performed for models restrained at 0,75h. The lateral 

restraints are applied every 1,2m for the 10m beams and in the midspan for the stable 

lengths. Both stable- and 10m lengths are verified and presented in Table 12 and 

Table 13.   

Table 12 Analytical and numerical results for a 10m beam restrained at 0,75h. 

Cross-section 
Length 

 [m] 

Analytical 

[kNm] 

Numerical 

[kNm] 

Ratio  

[%] 

IPE200 10 16,7 16,2 97,2 

IPE400 10 107,1 104,1 97,2 

IPE600 10 339,6 330,6 97,4 

 

Table 13 Analytical and numerical results regarding stable lengths for a beam 

restrained at 0,75h. 

Cross-section 
Length 

 [m] 

Analytical 

[kNm] 

Numerical 

[kNm] 

Ratio  

[%] 

IPE200 1,098 271,1 247,3 91,2 

IPE400 1,927 1606,0 1447,9 90,2 

IPE600 2,304 4323,0 3867,0 89,5 

The ratio in Table 12 between analytical and numerical results for the 10m beams are 

satisfactory, however for the stable length in Table 13 the ratio is decreased compared 

to unrestrained and restrained at 0,5h. It can be concluded that greater distortion 

occurs for beams restrained at 0,75h which is presented in Figure 46. 

A B 
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Figure 46 IPE400 restrained at 0,75h for following lengths; A=10m, B=1,927m. 

Cross-section C is showing unrestrained IPE400 with length C=1,85m. 

 

Figure 44 to Figure 46 show that small or almost negligible distortion occurs for the 

10m beams unrestrained or restrained. The greatest distortion occurs for the 1,927m 

beam restrained at 0,75h, which reflects the previous results in Table 12 and Table 13. 

6.3.1.1  Summary 

The derivation of the stable length for the investigated cross-sections results in 

relative short lengths. This corresponds to a significant critical buckling moment in 

proportion to its slenderness resulting in distortion of the web. The magnitude of the 

distortion is increased when the rotational axis acts further away from the shear centre 

of the beam. It can be concluded that the analytical expressions are not as reliable for 

short lengths as for long.     

 

  

C A B 
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6.3.2 Non-linear buckling analysis 

In this chapter the derived stable lengths are verified with non-linear buckling 

analyses. By comparing the ultimate moment (unstable) obtained from the analysis 

with the elastic capacity of the section, conclusion can be made if the derived length is 

stable regarding LT-buckling, when considering non-linear effects and distortion. As 

in the previous chapter, the investigated models are unrestrained (L.unr), restrained 

above (Lr.0,75h) and at the tension flange (Lr.0,5h). 

In the analysis, geometric non-linarites and residual stresses are taken into account by 

applying an equivalent initial bow imperfection as recommended in Eurocode3. 

Furthermore a plastic material model shown in Figure 47 is assumed.  

 

Figure 47 Stress-strain curve. 

The shape of the imperfection (see Figure 48) is acquired from the previous linear 

buckling analysis in section 6.3.1. 

 

Figure 48 Shape of the imperfection for: IPE400 with stable length Lr.0,75h= 1.93m. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:96 
62 

The magnitude of the initial bow imperfection in Eurocode3, depends on the buckling 

curve related to the cross-section. In this analysis only beams with standard cross-

section dimension are checked because of the risk of local buckling.  

In order to represent both standard and welded cross-sections, analyses are performed 

with two initial imperfections: one according to the dimensions of the cross-section 

and another with imperfection, representing an equivalent welded cross-section. The 

buckling curve category for the standard and an equivalent welded cross-section are 

shown in Table 14 below. 

 

Table 14 The buckling curve for a standard and equivalent welded cross-sections. 

Cross-section 
Standard cross-section 

Buckling curve 

Eq. Welded cross-section 

Buckling curve 

IPE200 b d 

IPE400 c d 

IPE600 c d 

 

The results from the non-linear buckling analyses can be seen in Figure 49 to Figure 

54 where the y-axis represents the applied moment and the x-axis denotes the 

maximum lateral displacement of the compression flange. It should be noted that the 

x-axis is in logarithmic scale. In the graphs, the maximum applied moment before it 

reaches unstable state (plateau) will be regarded as the ultimate moment of the beam. 

If the plateau is formed above the elastic capacity of the cross-section no LT-buckling 

will occur before yielding in the extreme fibre, caused by a moment about the major 

axis. 

 

 

Figure 49 A non-linear buckling analysis of the stable lengths for a standard section 

IPE200: L.unr = unrestrained at the tension flange, Lr.0,5h = restrained at 

the tension flange, Lr.0,75h = restrained above the tension flange.   
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Figure 50 A non-linear buckling analysis of the stable lengths for a standard section 

IPE400: L.unr = unrestrained at the tension flange, Lr.0,5h = restrained at 

the tension flange, Lr.0,75h = restrained above the tension flange.   

 

 

Figure 51  A non-linear buckling analysis of the stable lengths for a standard section 

IPE600: L.unr = unrestrained at the tension flange, Lr.0,5h = restrained at 

the tension flange, Lr.0,75h = restrained above the tension flange.   
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Figure 52  A non-linear buckling analysis of the stable lengths for an equivalent 

welded section IPE200: L.unr = unrestrained at the tension flange, Lr.0,5h = 

restrained at the tension flange, Lr.0,75h = restrained above the tension 

flange.   

 

 

Figure 53  A non-linear buckling analysis of the stable lengths for an equivalent 

welded section IP400: L.unr = unrestrained at the tension flange, Lr.0,5h = 

restrained at the tension flange, Lr.0,75h = restrained above the tension 

flange.   
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Figure 54 A non-linear buckling analysis of the stable lengths for an equivalent 

welded section IP600: L.unr = unrestrained at the tension flange, Lr.0,5h = 

restrained at the tension flange, Lr.0,75h = restrained above the tension 

flange. 

For all the beams both standard and equivalent welded cross-sections the stable 

lengths are fairly accurate and give an ultimate moment that is about 2-5% greater 

than the elastic capacity of the sections. This concludes that the non-dimensional 

slenderness assumed in the derivation of the stable length is appropriate for both 

lateral restrained and unrestrained beams. Furthermore it appears that although the 

beams distort, the limit of slenderness gives accurate results. The ratio between the 

ultimate moment and the elastic capacity can be seen in the Appendix A.  

It is of interest comparing the derived stable length to the already existing expressions 

in Eurocode3, both the simplified method and the plastic stable length. In section 6.2, 

it is concluded that the plastic stable lengths (Lk and Lm) are significantly longer and 

according to the result in this section it is obvious that they are un-conservative. On 

the other hand the lengths (Lc) from the simplified method in Eurocode3 are closer to 

the stable length and are relevant to investigate. In order to represent the worst case 

possible, an analysis is performed with the largest initial imperfection assuming the 

recommended limit of slenderness of 0,5 for an unrestrained beam. The result from a 

non-linear buckling analysis for the simplified method length is presented in Figure 

55.  
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Figure 55 The ultimate moment when assuming length according to the simplified 

method in Eurocode3 and buckling curve d.   

 

As can be observed form the figure above, the simplified method length gives an 

ultimate moment that is 2,4% lower than the elastic capacity of the cross-section when 

assuming the worst imperfection. When an initial imperfection according to the 

dimensions of the cross-section is applied the length is very accurate.  

 

 

  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:96 
67 

7 Conclusions 

The critical buckling moment (or capacity) is increased by forcing the rotational axis 

either to act above or below its initial unrestrained rotational axis. One of these 

actions occurs when lateral restraints at the tension flange are added. However, there 

are conditions where the location of the restrained- and unrestrained rotational axis 

coincide resulting in similar buckling shape and capacity.   

Lateral restraints at the level of the tension flange (0.5h) has no or negligible effect for 

short beams. However, when the length is increased, the influence of lateral restraints 

at 0,5h will considerably improve the buckling capacity. This occurs for all the 

investigated beams, although more noticeable for shallow sections with low ratio 

between stiffness’s about the minor axis Iz and torsion It. 

Lateral restraints, with its shear centre located above the tension flange, will increase 

the buckling capacity for short beams where almost no lateral displacement of the 

tension flange is taking place. However, when increasing the length, the restrained 

buckling shape approaches the shape of the unrestrained beam, resulting in similar 

capacity. The length where no impact of lateral restraints occurs depends on the 

properties of the cross-section.  

The derivation of the stable length for the investigated cross-sections results in 

relative short lengths. This corresponds to a significant critical buckling moment in 

proportion to the slenderness of the web resulting in distortion. The magnitude of the 

distortion is increased when the rotational axis acts further away from the shear centre 

of the beam. Since analytical expressions do not account for this phenomenon, it 

indicates that they are not as reliable for short lengths as for long. Although distortion 

occurs, the limit of slenderness of 0,4 assumed in the derivation appears to take this 

phenomenon into account. For all investigated beams yielding in the extreme fibres 

occurs before LT-buckling. It can be concluded that the derived stable length is 

accurate although the ultimate moment is overestimated with about 2-5% compared to 

the elastic capacity of the cross-sections.     

There are two expressions in Eurocode3 that are comparable to the derived stable 

length; the plastic stable length and the simplified method.  

The plastic stable length is un-conservative. Furthermore the difference is more 

pronounced for laterally restrained beams at the tension flange. The expression 

assumes a smaller initial imperfection and a greater limit of slenderness for restrained 

beams of a 0,63 to 0,72. According to the non-linear analysis it appears that the 

greater limit of slenderness is not justified.  

The simplified method yields similar result as the derived stable length. Depending on 

the limit of slenderness assumed in the expression (0,4 or 0,5) it is either more 

conservative or marginally un-conservative for the maximum imperfection. Since the 

bending stiffness of the purlins, generating torsional resistance to the beam, are not 

accounted for in the simplified method it indicates that the method is reliable. 

However the simplified method has to be used cautiously for beams with large initial 

imperfection.  
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7.1 Suggestions for further studies 

To make this Master’s Project broader and more applicable to portal frames further 

studies have to be performed considering the points below.   

 Non-uniform moment 

 Haunched and tapered models 

 Axial force 

Further studies are to consider the modification factor for the moment gradients, both 

linear and non-linear, which will result in greater critical buckling moment 

corresponding to longer lengths in between torsional restraints. Furthermore it is of 

interest to investigate how haunched and tapered beams will influence the stable 

length. Additionally when considering portal frames the rafters are commonly 

inclined and an axial force will be present. 

Other interesting parameters to study can be seen in the points below.   

 Corrugated web 

 Bending stiffness of the purlins  

From this study it can be concluded that the depth of the cross-section and the ratio 

between the stiffness about the minor axis and the torsional stiffness determines the 

efficiency of laterally restraining a beam. By establishing a reliable ratio of the 

mentioned stiffness’s for a corrugated web it can be concluded if the influence of 

purlins differs compared to beams with flat web. In addition it is of interest to see if 

the corrugated web distorts less which results in longer stable lengths.  

Furthermore the bending stiffness of the purlin (added as a torsional spring on the 

simulated beam segment) has a significant impact on the buckling capacity. This is 

something which is neglected in Eurocode3 due to its complexity resulting in a 

conservative approach. If there were a simplified method including the bending 

stiffness to the existing analytical expressions a lot would be gained.   
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Appendix A 

The results from the non-linear buckling analysis 
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Unrestrained 

Table 15 The ratio of the ultimate moment and the elastic capacity for the derived 

stable lengths, standard sections. 

Cross-section 
Derived length 

Lunr 

Ratio 

Mult/Mel 

IPE200 1,060m 1,06 

IPE400 1,854m 1,03 

IPE600 2,215m 1,04 

 

Table 16 The ratio of the ultimate moment and the elastic capacity for the derived 

stable length, Eq. welded sections. 

Cross-section 
Derived length 

Lunr 

Ratio 

Mult/Mel 

Eq. welded 200 1,060m 1,03 

Eq. welded 400 1,854m 1,02 

Eq. welded 600 2,215m 1,02 

 

Table 17 The ratio of the ultimate moment and the elastic capacity for the length 

according to the simplified method. 

Cross-section 
Simplified method 

Lc 

Ratio 

Mult/Mel 

IPE400 2,209m 1,00 

Eq. welded 400 2,209m 0,98 

 

Restrained at 0,5h 

Table 18 The ratio of the ultimate moment and the elastic capacity for the derived 

stable length, standard sections 

Cross-section 
Derived length 

Lr,0,5h 

Ratio 

Mult/Mel 

IPE200 1,060m 1,06 

IPE400 1,854m 1,04 

IPE600 2,215m 1,04 

 

Table 19 The ratio of the ultimate moment and the elastic capacity for the derived 

stable length, Eq. welded sections. 

Cross-section 
Derived length 

Lr,0,5h 

Ratio 

Mult/Mel 

Eq. welded 200 1,060m 1,04 

Eq. welded 400 1,854m 1,02 

Eq. welded 600 2,215m 1,02 
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Restrained at 0,75h 

Table 20 The ratio of the ultimate moment and the elastic capacity for the derived 

stable length, standard sections 

Cross-section 
Derived length 

Lr,0,75h 

Ratio 

Mult/Mel 

IPE200 1,098m 1,05 

IPE400 1,927m 1,02 

IPE600 2,304m 1,03 

 

Table 21 The ratio of the ultimate moment and the elastic capacity for the derived 

stable length, Eq. welded sections. 

Cross-section 
Derived length 

Lr,0,75h 

Ratio 

Mult/Mel 

Eq. welded 200 1,098m 1,03 

Eq. welded 400 1,927m 1,01 

Eq. welded 600 2,304m 1,03 
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Appendix B 

The derived stable length and the stable lengths according to Eurocode3 
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Cross section class

Internal compression
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32.679= Less than 72ε, Class 1

Outstanding

part flanges
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0.4
2

G1 It⋅−








1.098 m=:=

Critical buckling moment for a derived stable length restrained  at 0,75h

Mcr.0.r075
1

2a2

π
2

E⋅ Iz⋅ a2
2

⋅

Lr.075h
2

π
2

E⋅ Iw⋅

Lr.075h
2

+ G1 It⋅+











⋅ 271.071 kN m⋅⋅=:=

The stable length according to Eurocode

 The plastic stable length, unrestrained

Lm

38iz

1

756

wpl
2

A It⋅











⋅

fy

235
N

mm
2













2

⋅

1.331 m=:=

 The plastic stable length, restrained

Lk

5.4
600fy

E
+









h

tf









⋅ iz⋅

5.4
fy

E









⋅
h

tf









2

⋅ 1−

2.129 m=:=



 The stable length according to the simplified method

f
hw

6
0.031 m=:=

Izf

b
3

tf⋅

12

f tw
3

⋅

12
+ 7.088 10

7−
× m

4
=:=

Asimp b tf⋅( ) f tw⋅( )+ 1.021 10
3−

× m
2

=:=

if

Izf

Asimp

0.026 m=:=

Lc if 93.9⋅ 0.5⋅ 1.237m=:=



IPE 400

Material parameters

E 210GPa:=

G1 81GPa:=

fy 235
N

mm
2

:=

Geometrical Parameters 

Dimensions of the cross-section

h 400mm:= b 180mm:= tf 13.5mm:= tw 8.6mm:=

hw h tf 2⋅− 373 mm⋅=:= d h tf− 0.387m=:=

A hw tw⋅ b tf⋅ 2⋅+ 8.068 10
3−

× m
2

=:=

Second moment of inertia according to the software LTB

Iz 13.142 10
6

⋅ mm
4

:= Iw 490.79 10
9

⋅ mm
6

:= It 364.87 10
3

⋅ mm
4

:=

Second moment of inertia about the major axis

A1 b tf⋅ 2.43 10
3−

× m
2

=:=

Iy

hw
3

tw⋅

12

hw

2

tf

2
+









2

2A1( )⋅+

2tf
3

b⋅

12
+ 2.188 10

8
× mm

4
⋅=:=

wy

Iy

h

2

1.094 10
6

× mm
3

⋅=:=

Polar radius of gyration about the minor axis

iz

Iz

A
40.36 mm⋅=:=

Plastic sectional modulus about major axis

At1 tf b⋅ 2.43 10
3−

× m
2

=:=

At2

hw

2









tw⋅ 1.604 10
3−

× m
2

=:=

yn

At1

tf

2

hw

2
+









⋅ At2

hw

4









⋅+

A

2









153.489 mm⋅=:= wpl
A

2
yn⋅









2⋅ 1.238 10
6

× mm
3

⋅=:=



Cross section class

Internal compression

partc h 2 tf⋅− 0.373 m=:=

t tw 8.6 mm⋅=:=

c

t
43.372= Less than 72ε, Class 1

Outstanding

part flanges
cout

b tw−

2
0.086 m=:=

tout tf 13.5 mm⋅=:=

cout

tout

6.348= less than 9ε, Class 1

The derived stable length

 Unrestrained 

x 1m:=

Given

0.4
wy fy⋅

π
2

E⋅ Iz⋅

x
2

Iw

Iz

x
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5
=

Lunr Find x( ):=

Lunr 1.854 m=

Critical buckling moment for a derived stable length unrestrained

Mcr.unr

π
2

E⋅ Iz⋅

Lunr
2

Iw

Iz

Lunr
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5

1.607 10
3

× kN m⋅⋅=:=

 Restrained at 0.5h

a1 0.5 h⋅ 0.2 m=:=

Lr.05h

π
2

E⋅ Iz a1
2

⋅ Iw+



⋅

2 a1⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








1.854 m=:=



Critical buckling moment for a derived stable length restrained  at 0,5h

Mcr.r05
1

2a1

π
2

E⋅ Iz⋅ a1
2

⋅

Lr.05h
2

π
2

E⋅ Iw⋅

Lr.05h
2

+ G1 It⋅+











⋅ 1.607 10
3

× kN m⋅⋅=:=

 Restrained at 0.75h

a2 0.75 h⋅ 0.3 m=:=

Lr.075h

π
2

E⋅ Iz a2
2

⋅ Iw+



⋅

2 a2⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








1.927 m=:=

Critical buckling moment for a derived stable length restrained  at 0,75h

Mcr.0.r075
1

2a2

π
2

E⋅ Iz⋅ a2
2

⋅

Lr.075h
2

π
2

E⋅ Iw⋅

Lr.075h
2

+ G1 It⋅+











⋅ 1.607 10
3

× kN m⋅⋅=:=

The stable length according to Eurocode

 The plastic stable length, unrestrained

Lm

38iz

1

756

wpl
2

A It⋅











⋅

fy

235
N

mm
2













2

⋅

1.848 m=:=

 The plastic stable length, restrained

Lk

5.4
600fy

E
+









h

tf









⋅ iz⋅

5.4
fy

E









⋅
h

tf









2

⋅ 1−

3.499 m=:=



 The stable length according to the simplified method

f
hw

6
0.062 m=:=

Izf

b
3

tf⋅

12

f tw
3

⋅

12
+ 6.564 10

6−
× m

4
=:=

Asimp b tf⋅( ) f tw⋅( )+ 2.965 10
3−

× m
2

=:=

if

Izf

Asimp

0.047 m=:=

Lc if 93.9⋅ 0.5⋅ 2.209m=:=



IPE 600

Material parameters

E 210GPa:=

G1 81GPa:=

fy 235
N

mm
2

:=

Geometrical Parameters 

Dimensions of the cross-section

h 600mm:= b 220mm:= tf 19mm:= tw 12mm:=

hw h tf 2⋅− 562 mm⋅=:= d h tf− 0.581m=:=

A hw tw⋅ b tf⋅ 2⋅+ 0.015 m
2

=:=

Second moment of inertia according to the software LTB

Iz 3380cm
4

:= Iw 2.8523 10
6

⋅ cm
6

:= It 129.22cm
4

:=

Second moment of inertia about the major axis

A1 b tf⋅ 4.18 10
3−

× m
2

=:=

Iy

hw
3

tw⋅

12

hw

2

tf

2
+









2

2A1( )⋅+

2tf
3

b⋅

12
+ 8.833 10

8
× mm

4
⋅=:=

wy

Iy

h

2

2.944 10
6

× mm
3

⋅=:=

Polar radius of gyration about the minor axis

iz

Iz

A
47.306 mm⋅=:=

Plastic sectional modulus about major axis

At1 tf b⋅ 4.18 10
3−

× m
2

=:=

At2

hw

2









tw⋅ 3.372 10
3−

× m
2

=:=

yn

At1

tf

2

hw

2
+









⋅ At2

hw

4









⋅+

A

2









223.524 mm⋅=:= wpl
A

2
yn⋅









2⋅ 3.376 10
6

× mm
3

⋅=:=



Cross section class

Internal compression

partc h 2 tf⋅− 0.562 m=:=

t tw 12 mm⋅=:=

c

t
46.833= Less than 72ε, Class 1

Outstanding

part flanges
cout

b tw−

2
0.104 m=:=

tout tf 19 mm⋅=:=

cout

tout

5.474= less than 9ε, Class 1

The derived stable length

 Unrestrained 

x 1m:=

Given

0.4
wy fy⋅

π
2

E⋅ Iz⋅

x
2

Iw

Iz

x
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5
=

Lunr Find x( ):=

Lunr 2.215 m=

Critical buckling moment for a derived stable length unrestrained

Mcr.unr

π
2

E⋅ Iz⋅

Lunr
2

Iw

Iz

Lunr
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5

4.324 10
3

× kN m⋅⋅=:=

 Restrained at 0.5h

a1 0.5 h⋅ 0.3 m=:=

Lr.05h

π
2

E⋅ Iz a1
2

⋅ Iw+



⋅

2 a1⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








2.215 m=:=



Critical buckling moment for a derived stable length restrained  at 0,5h

Mcr.r05
1

2a1

π
2

E⋅ Iz⋅ a1
2

⋅

Lr.05h
2

π
2

E⋅ Iw⋅

Lr.05h
2

+ G1 It⋅+











⋅ 4.324 10
3

× kN m⋅⋅=:=

 Restrained at 0.75h

a2 0.75 h⋅ 0.45 m=:=

Lr.075h

π
2

E⋅ Iz a2
2

⋅ Iw+



⋅

2 a2⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








2.304 m=:=

Critical buckling moment for a derived stable length restrained  at 0,75h

Mcr.0.r075
1

2a2

π
2

E⋅ Iz⋅ a2
2

⋅

Lr.075h
2

π
2

E⋅ Iw⋅

Lr.075h
2

+ G1 It⋅+











⋅ 4.324 10
3

× kN m⋅⋅=:=

The stable length according to Eurocode

 The plastic stable length, unrestrained

Lm

38iz

1

756

wpl
2

A It⋅











⋅

fy

235
N

mm
2













2

⋅

2.045 m=:=

 The plastic stable length, restrained

Lk

5.4
600fy

E
+









h

tf









⋅ iz⋅

5.4
fy

E









⋅
h

tf









2

⋅ 1−

4.046 m=:=



 The stable length according to the simplified method

f
hw

6
0.094 m=:=

Izf

b
3

tf⋅

12

f tw
3

⋅

12
+ 1.687 10

5−
× m

4
=:=

Asimp b tf⋅( ) f tw⋅( )+ 5.304 10
3−

× m
2

=:=

if

Izf

Asimp

0.056 m=:=

Lc if 93.9⋅ 0.5⋅ 2.648m=:=



Customized, depth 200

Material parameters

E 210GPa:=

G1 81GPa:=

fy 235
N

mm
2

:=

Geometrical Parameters 

Dimensions of the cross-section

h 200mm:= b 200mm:= tf 10mm:= tw 6mm:=

hw h tf 2⋅− 180 mm⋅=:= d h tf− 0.19 m=:=

A hw tw⋅ b tf⋅ 2⋅+ 5.08 10
3−

× m
2

=:=

Second moment of inertia according to the software LTB

Iz 1333.7cm
4

:= Iw 120363cm
6

:= It 14.324cm
4

:=

Second moment of inertia about the major axis

A1 b tf⋅ 2 10
3−

× m
2

=:=

Iy

hw
3

tw⋅

12

hw

2

tf

2
+









2

2A1( )⋅+

2tf
3

b⋅

12
+ 3.905 10

7
× mm

4
⋅=:=

wy

Iy

h

2

3.905 10
5

× mm
3

⋅=:=

Polar radius of gyration about the minor axis

iz

Iz

A
51.239 mm⋅=:=

Plastic sectional modulus about major axis

At1 tf b⋅ 2 10
3−

× m
2

=:=

At2

hw

2









tw⋅ 5.4 10
4−

× m
2

=:=

yn

At1

tf

2

hw

2
+









⋅ At2

hw

4









⋅+

A

2









84.37 mm⋅=:= wpl
A

2
yn⋅









2⋅ 4.286 10
5

× mm
3

⋅=:=



Cross section class

Internal compression

partc h 2 tf⋅− 0.18 m=:=

t tw 6 mm⋅=:=

c

t
30= Less than 72ε, Class 1

Outstanding

part flanges
cout

b tw−

2
0.097 m=:=

tout tf 10 mm⋅=:=

cout

tout

9.7= less than 9ε, Class 1

The derived stable length

 Unrestrained 

x 1m:=

Given

0.4
wy fy⋅

π
2

E⋅ Iz⋅

x
2

Iw

Iz

x
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5
=

Lunr Find x( ):=

Lunr 2.257 m=

Critical buckling moment for a derived stable length unrestrained

Mcr.unr

π
2

E⋅ Iz⋅

Lunr
2

Iw

Iz

Lunr
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5

573.537 kN m⋅⋅=:=

 Restrained at 0.5h

a1 0.5 h⋅ 0.1 m=:=

Lr.05h

π
2

E⋅ Iz a1
2

⋅ Iw+



⋅

2 a1⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








2.258 m=:=



Critical buckling moment for a derived stable length restrained  at 0,5h

Mcr.r05
1

2a1

π
2

E⋅ Iz⋅ a1
2

⋅

Lr.05h
2

π
2

E⋅ Iw⋅

Lr.05h
2

+ G1 It⋅+











⋅ 573.537 kN m⋅⋅=:=

 Restrained at 0.75h

a2 0.75 h⋅ 0.15 m=:=

Lr.075h

π
2

E⋅ Iz a2
2

⋅ Iw+



⋅

2 a2⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








2.33 m=:=

Critical buckling moment for a derived stable length restrained  at 0,75h

Mcr.0.r075
1

2a2

π
2

E⋅ Iz⋅ a2
2

⋅

Lr.075h
2

π
2

E⋅ Iw⋅

Lr.075h
2

+ G1 It⋅+











⋅ 573.537 kN m⋅⋅=:=

The stable length according to Eurocode

 The plastic stable length, unrestrained

Lm

38iz

1

756

wpl
2

A It⋅











⋅

fy

235
N

mm
2













2

⋅

3.369 m=:=

 The plastic stable length, restrained

Lk

5.4
600fy

E
+









h

tf









⋅ iz⋅

5.4
fy

E









⋅
h

tf









2

⋅ 1−

5.227 m=:=



 The stable length according to the simplified method

f
hw

6
0.03 m=:=

Izf

b
3

tf⋅

12

f tw
3

⋅

12
+ 6.667 10

6−
× m

4
=:=

Asimp b tf⋅( ) f tw⋅( )+ 2.18 10
3−

× m
2

=:=

if

Izf

Asimp

0.055 m=:=

Lc if 93.9⋅ 0.5⋅ 2.596m=:=



Customized, depth 400

Material parameters

E 210GPa:=

G1 81GPa:=

fy 235
N

mm
2

:=

Geometrical Parameters 

Dimensions of the cross-section

h 400mm:= b 200mm:= tf 10mm:= tw 6mm:=

hw h tf 2⋅− 380 mm⋅=:= d h tf− 0.39 m=:=

A hw tw⋅ b tf⋅ 2⋅+ 6.28 10
3−

× m
2

=:=

Second moment of inertia according to the software LTB

Iz 1334cm
4

:= Iw 507260cm
6

:= It 15.764cm
4

:=

Second moment of inertia about the major axis

A1 b tf⋅ 2 10
3−

× m
2

=:=

Iy

hw
3

tw⋅

12

hw

2

tf

2
+









2

2A1( )⋅+

2tf
3

b⋅

12
+ 1.796 10

8
× mm

4
⋅=:=

wy

Iy

h

2

8.978 10
5

× mm
3

⋅=:=

Polar radius of gyration about the minor axis

iz

Iz

A
46.089 mm⋅=:=

Plastic sectional modulus about major axis

At1 tf b⋅ 2 10
3−

× m
2

=:=

At2

hw

2









tw⋅ 1.14 10
3−

× m
2

=:=

yn

At1

tf

2

hw

2
+









⋅ At2

hw

4









⋅+

A

2









158.694 mm⋅=:= wpl
A

2
yn⋅









2⋅ 9.966 10
5

× mm
3

⋅=:=



Cross section class

Internal compression

partc h 2 tf⋅− 0.38 m=:=

t tw 6 mm⋅=:=

c

t
63.333= Less than 72ε, Class 1

Outstanding

part flanges
cout

b tw−

2
0.097 m=:=

tout tf 10 mm⋅=:=

cout

tout

9.7= larger than 9ε, Class 2

The derived stable length

 Unrestrained 

x 1m:=

Given

0.4
wy fy⋅

π
2

E⋅ Iz⋅

x
2

Iw

Iz

x
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5
=

Lunr Find x( ):=

Lunr 2.047 m=

Critical buckling moment for a derived stable length unrestrained

Mcr.unr

π
2

E⋅ Iz⋅

Lunr
2

Iw

Iz

Lunr
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5

1.319 10
3

× kN m⋅⋅=:=

 Restrained at 0.5h

a1 0.5 h⋅ 0.2 m=:=

Lr.05h

π
2

E⋅ Iz a1
2

⋅ Iw+



⋅

2 a1⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








2.047 m=:=



Critical buckling moment for a derived stable length restrained  at 0,5h

Mcr.r05
1

2a1

π
2

E⋅ Iz⋅ a1
2

⋅

Lr.05h
2

π
2

E⋅ Iw⋅

Lr.05h
2

+ G1 It⋅+











⋅ 1.319 10
3

× kN m⋅⋅=:=

 Restrained at 0.75h

a2 0.75 h⋅ 0.3 m=:=

Lr.075h

π
2

E⋅ Iz a2
2

⋅ Iw+



⋅

2 a2⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








2.132 m=:=

Critical buckling moment for a derived stable length restrained  at 0,75h

Mcr.0.r075
1

2a2

π
2

E⋅ Iz⋅ a2
2

⋅

Lr.075h
2

π
2

E⋅ Iw⋅

Lr.075h
2

+ G1 It⋅+











⋅ 1.319 10
3

× kN m⋅⋅=:=

The stable length according to Eurocode

 The plastic stable length, unrestrained

Lm

38iz

1

756

wpl
2

A It⋅











⋅

fy

235
N

mm
2













2

⋅

1.52 m=:=

 The plastic stable length, restrained

Lk

5.4
600fy

E
+









h

tf









⋅ iz⋅

5.4
fy

E









⋅
h

tf









2

⋅ 1−

3.802 m=:=



 The stable length according to the simplified method

f
hw

6
0.063 m=:=

Izf

b
3

tf⋅

12

f tw
3

⋅

12
+ 6.668 10

6−
× m

4
=:=

Asimp b tf⋅( ) f tw⋅( )+ 2.38 10
3−

× m
2

=:=

if

Izf

Asimp

0.053 m=:=

Lc if 93.9⋅ 0.5⋅ 2.485m=:=



Customized, depth 600

Material parameters

E 210GPa:=

G1 81GPa:=

fy 235
N

mm
2

:=

Geometrical Parameters 

Dimensions of the cross-section

h 600mm:= b 200mm:= tf 10mm:= tw 6mm:=

hw h tf 2⋅− 580 mm⋅=:= d h tf− 0.59 m=:=

A hw tw⋅ b tf⋅ 2⋅+ 7.48 10
3−

× m
2

=:=

Second moment of inertia according to the software LTB

Iz 1334.6cm
4

:= Iw 1.1612 10
6

⋅ cm
6

:= It 17.204cm
4

:=

Second moment of inertia about the major axis

A1 b tf⋅ 2 10
3−

× m
2

=:=

Iy

hw
3

tw⋅

12

hw

2

tf

2
+









2

2A1( )⋅+

2tf
3

b⋅

12
+ 4.457 10

8
× mm

4
⋅=:=

wy

Iy

h

2

1.486 10
6

× mm
3

⋅=:=

Polar radius of gyration about the minor axis

iz

Iz

A
42.24 mm⋅=:=

Plastic sectional modulus about major axis

At1 tf b⋅ 2 10
3−

× m
2

=:=

At2

hw

2









tw⋅ 1.74 10
3−

× m
2

=:=

yn

At1

tf

2

hw

2
+









⋅ At2

hw

4









⋅+

A

2









225.214 mm⋅=:= wpl
A

2
yn⋅









2⋅ 1.685 10
6

× mm
3

⋅=:=



Cross section class

Internal compression

partc h 2 tf⋅− 0.58 m=:=

t tw 6 mm⋅=:=

c

t
96.667= Less than 72ε, Class 1

Outstanding

part flanges
cout

b tw−

2
0.097 m=:=

tout tf 10 mm⋅=:=

cout

tout

9.7= larger than 9ε, Class 2

The derived stable length

 Unrestrained 

x 1m:=

Given

0.4
wy fy⋅

π
2

E⋅ Iz⋅

x
2

Iw

Iz

x
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5
=

Lunr Find x( ):=

Lunr 1.944 m=

Critical buckling moment for a derived stable length unrestrained

Mcr.unr

π
2

E⋅ Iz⋅

Lunr
2

Iw

Iz

Lunr
2

G1⋅ It⋅

π
2

E⋅ Iz⋅

+











0.5

2.182 10
3

× kN m⋅⋅=:=

 Restrained at 0.5h

a1 0.5 h⋅ 0.3 m=:=

Lr.05h

π
2

E⋅ Iz a1
2

⋅ Iw+



⋅

2 a1⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








1.944 m=:=



Critical buckling moment for a derived stable length restrained  at 0,5h

Mcr.r05
1

2a1

π
2

E⋅ Iz⋅ a1
2

⋅

Lr.05h
2

π
2

E⋅ Iw⋅

Lr.05h
2

+ G1 It⋅+











⋅ 2.182 10
3

× kN m⋅⋅=:=

 Restrained at 0.75h

a2 0.75 h⋅ 0.45 m=:=

Lr.075h

π
2

E⋅ Iz a2
2

⋅ Iw+



⋅

2 a2⋅ wy⋅ fy⋅

0.4
2

G1 It⋅−








2.027 m=:=

Critical buckling moment for a derived stable length restrained  at 0,75h

Mcr.0.r075
1

2a2

π
2

E⋅ Iz⋅ a2
2

⋅

Lr.075h
2

π
2

E⋅ Iw⋅

Lr.075h
2

+ G1 It⋅+











⋅ 2.182 10
3

× kN m⋅⋅=:=

The stable length according to Eurocode

 The plastic stable length, unrestrained

Lm

38iz

1

756

wpl
2

A It⋅











⋅

fy

235
N

mm
2













2

⋅

0.94 m=:=

 The plastic stable length, restrained

Lk

5.4
600fy

E
+









h

tf









⋅ iz⋅

5.4
fy

E









⋅
h

tf









2

⋅ 1−

3.378 m=:=



 The stable length according to the simplified method

f
hw

6
0.097 m=:=

Izf

b
3

tf⋅

12

f tw
3

⋅

12
+ 6.668 10

6−
× m

4
=:=

Asimp b tf⋅( ) f tw⋅( )+ 2.58 10
3−

× m
2

=:=

if

Izf

Asimp

0.051 m=:=

Lc if 93.9⋅ 0.5⋅ 2.387m=:=


