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Abstract. A new numerical model for simulating the dynamics of mooring cables is
presented. The model uses the hp formulation of the discontinuous Galerkin method.
Verification against analytical solutions for a static and a dynamic case is carried out
and the model is shown to exhibit exponential convergence with increasing polynomial
order of the expansion basis. A simulation of the cyclic movement of a cable endpoint is
compared to experimental results, and there is a good agreement between the computed
and measured tension force.

1 INTRODUCTION

Snap loads have always been an important aspect of mooring cable dynamics. Within
the field of floating wave energy converters (WECs), the importance of snap loads will
most likely be even greater. Unlike the typical moored offshore structures, these devices
will be installed in relatively shallow water in energetic wave climates. Their working
principle of operation in many cases requires them to oscillate at the water surface with
large amplitudes and close to their resonant frequency. These characteristics will make
the mooring cables of floating WECs more prone to snap load effects, requiring tools that
can accurately model this.

Many numerical models for cable dynamics have been proposed since the early 1960’s
and the work of Walton and Polachek [1]. Some of the more frequently used methods
include the finite difference method, e.g.[1, 4], and the popular lumped mass method, e.g.
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[2, 3]. Linear finite element methods have been used by e.g. [5] and, more recently, studies
employing higher-order finite elements including cubic splines [6] and mixed hp elements
[7] have been presented.

The formulation presented in this paper uses the discontinuous Galerkin (DG) method
of arbitrary spatial order to model a perfectly flexible cable with no bending or torsional
stiffness. The hallmark of the DG method is that the solutions are allowed to be dis-
continuous over elemental boundaries and that the elements are coupled by numerical
fluxes, as in the finite volume method. Thus the discrete space of the DG method can
be argued to be better suited for handling shock waves such as snap loads. Although the
final aim of the new mooring cable solver is directed towards snap loads, in this paper
only the first step towards accomplishing this is presented: verification and validation of
the fundamental DG model using hp elements.

The paper is organised as follows. In Section 2 the equations governing the cable
dynamics are presented and in Section 3 the numerical discretization, focusing on the
DG method, is described. The results of the numerical model are presented in Section
4. First, to verify the model and to establish the accuracy of the formulation, the model
is compared against well known analytical solutions for the static elastic catenary and a
linear transverse wave on a string. Then, model simulations of a submerged cable with
forced cyclic end point motion are presented and compared to measurements of a physical
model test. Finally, concluding remarks are found in Section 5.

2 GOVERNING EQUATIONS

The dynamics of a perfectly flexible cable are described by a one-dimensional second-
order non-linear wave equation, see e.g. [5, 7]. Let r and s denote the cable position
vector and the curvilinear abscissa along the unstretched cable, respectively, and let t
denote the time. Following [12], the equations are made non-dimensional by scaling r and
s with a characteristic length Lc and by scaling the time with a characteristic time tc.
The cable dynamics in non-dimensional form are then given as

∂2r

∂t2
−

∂

∂s

(
c2 ∂r

∂s

)
= f , (1)

c2 =
t2c
L2

c

EA0

γ0

ǫ

1 + ǫ
, (2)

ǫ =

∣∣∣∣
∂r

∂s

∣∣∣∣ − 1 , (3)

where c is the non-linear and non-dimensional celerity of the wave propagation and the
source term f represents all external forces acting on the cable segment. In the expression
for the celerity, EA0 and γ0 are the axial stiffness and mass per unit length of the cable,
and ǫ represents the strain. For the typical problems treated in this study the character-
istic length of the problem is chosen to be the unstretched length of the cable, and the
characteristic time is given by the period of oscillation.
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The external forces in f can be divided into four separate forces: f = f1 + f2 + f3 + f4.
Here f1 is the sum of gravity and buoyancy, f2 is the added mass force, and the tangential
and normal drag forces are given as f3 and f4. Introducing the unit tangential vector t,
defined as

t =
∂r

∂s

/∣∣∣∣
∂r

∂s

∣∣∣∣ =
∂r

∂s

/
(1 + ǫ) , (4)

the expressions for the external forces on the cable segment read

f1 = −
γe

γ0

t2c
Lc

g , (5)

f2 = CM
Aρw

γ0

(arel − (arel · t) t) (1 + ǫ) , (6)

f3 =
1

2
CDt

ρwdLc

γ0

(vrel · t)
2
t (1 + ǫ) , (7)

f4 =
1

2
CDn

ρwdLc

γ0

|(vrel − (vrel · t) t)| (vrel − (vrel · t) t) (1 + ǫ) . (8)

Here γe = ((ρc − ρw) /ρc) γ0 is the effective mass per unit length of the submerged cable,
ρc and ρw are the cable and fluid densities. The terms CM , CDt and CDn denote the
hydrodynamic coefficients of added mass, tangential drag and normal drag forces, respec-
tively. The last three forces are functions of the relative velocity and relative acceleration
of the water with respect to the mooring cable, vrel and arel, given by

vrel = vw −
∂r

∂t
, (9)

arel = aw −
∂2r

∂t2
. (10)

3 NUMERICAL MODEL

3.1 Discontinuous Galerkin method

Let Ωh denote the partition of the domain Ω into Nel elemental domains Ωe = {s | se
l ≤

s ≤ se
u} with size boundaries ∂Ωe at se

u and se
l (see Figure 1). The size of the eth element

is he = se
u − se

l . The first step in the discretization of (1) is to rewrite it as a system of
first order differential equations in space, with the use of an auxiliary variable q:

∂2r

∂t2
=

∂

∂s

(
c2q

)
+ f , (11)

q =
∂r

∂s
. (12)

Within the eth elemental region the solution, for an arbitrary function f , is approximated
by setting f(s, t) ≈ f e(s, t) =

∑i=p

i=0 φi(s)f̃
e
i (t). Here f̃ e

i (t) denotes the local degrees of
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Figure 1: Notation for elemental discretization.

freedom of expansion coefficients and φi are the expansion basis of order p. In the tests
in Section 4 the so-called modal p-type basis [8] is used. This is a hierarchical basis made
up of two linear boundary modes and the interior modes given by of Jacobi polynomials.

Taking the inner product (· , ·) of eqs. (11)–(12) with respect to the basis functions
φk(s) we obtain the elemental Galerkin approximation:

(
φk,

∂2rh

∂t2

)

Ωe

=

(
φk,

∂

∂s

(
c2
hqh

))

Ωe

+ (φk, fh)Ωe , ∀ k , (13)

(φk,qh)Ωe =

(
φk,

∂rh

∂s

)

Ωe

. (14)

Integrating the terms involving derivatives of s by parts, exchanging the boundary flux
terms with numerical fluxes, denoted by ·̂ , and integrating by parts once more yields the
following formulation

(
φk,

∂2rh

∂t2

)

Ωe

=

(
φk,

∂

∂s

(
c2
hqh

))

Ωe

+
[
φk(ĉ2

hqh

e

− c2
hq

e
h)

]se
u

se

l

+ (φk, fh)Ωe , (15)

(φk,qh)Ωe =

(
φk,

∂rh

∂s

)

Ωe

+ [φk(r̂h
e − re

h)]
se
u

se

l

. (16)

For the numerical fluxes, a modified version of the local discontinuous Galerkin (LDG)
method developed by Cockburn and Shu [9] is used,

r̂h = {rh} + β [rh] , (17)

ĉ2
hqh = {c2

hqh} − β
[
c2
hqh

]
+

η1

h
[rh] + η2h [vh] , (18)
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where η1 and η2 are constant mesh-independent parameters, h is the non-dimensional
element size, β ∈ [−1/2, 1/2] controls the level of up- and downwinding of the fluxes, and
the trace, {x}, and jump ,[x], operators are introduced as

{xe
h}|s =

1

2

(
xe

h|se
u

+ xe+1
h |se+1

l

)
if s = se

u , (19)

{xe
h}|s =

1

2

(
xe

h|se

l
+ xe−1

h |se−1
u

)
if s = se

l , (20)

[xe
h] |s =

(
xe

h|se
u
− xe+1

h |se+1

l

)
if s = se

u , (21)

[xe
h] |s =

(
xe−1

h |se−1
u

− xe
h|se

l

)
if s = se

l . (22)

The choice of β and η1 will give rise to different computational stencils affecting the
convergence rates [9, 8]. In the test cases presented in Sections 4, β = 0 is used which
gives a centred flux with a wide stencil, but typically allows for larger time steps to be
used. The η1 penalty term is employed to obtain optimal convergence. The use of the
additional penalty term η2, which is non-standard, was found to increase the robustness
of the scheme for the validation tests. A more in-depth investigation into the behaviour
of the penalty terms is ongoing work.

Dirichlet and Neumann boundary conditions are implemented weakly through the def-
inition of the numerical fluxes [9]

r̂h = gD on ΓD , r̂h = re
h on ΓN , (23)

ĉ2
hqh = (ce

h)
2qe

h +
η1

h
(re

h − gD) on ΓD , ĉ2
hqh= gN on ΓN , (24)

where gD and gN are the non-dimensionalised values at the cable end points.

3.2 Time-stepping scheme

Presently the numerical model uses explicit time-stepping schemes, either the third-
order Runge-Kutta scheme [9] typically associated with DG schemes or a simple second-
order central differencing scheme. The computations presented in this paper have used
the central differencing scheme. Writing the semi-discrete equations as

∂2rh

∂t2
= Lh (rh) , (25)

advancing from time level n to n + 1 for the central differencing scheme is simply

rn+1
h = 2rn

h − rn−1
h + ∆t2Lh (rh) . (26)

It should be noted that the time step restriction for explicit schemes for second-order
spatial derivatives is very restrictive as ∆t ∝ p−4 [8]. Thus implicit schemes will be
considered in later studies.
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4 TEST CASES

The convergence of the model and the quality of the simulation results are verified by
comparison with analytical solutions for known cases. The error in the L2-norm of the
results is computed for different choices of polynomial order p and element size h. The
L2 error is defined as

‖f‖L2
=

√∫

Ω

(fexact − f)2 dΩ , (27)

and is evaluated using the quadrature points inside every element e.

4.1 Static verification - elastic catenary equation

The analytical solution to the static equilibrium of an elastic catenary can be found in
e.g. [10] and is well known:

x = aTsinh−1

(
s

aT

)
+ aT

γeg

EA0

s , (28)

z =
√

a2
T + s2 +

γeg

2EA0

s2 − aT , (29)

aT =
TH

γeg
. (30)

The horizontal component of the tension force, TH, is constant along the cable and the
origin of the x, z and s coordinates is the lowest point of the catenary. The equations are
implicit when TH is unknown, and are solved numerically for each set of cable conditions.

The computed cable has a stiffness of EA0 = 200 kN/m, a mass of γe = 1.738 kg/m and
an unstretched length L of 100.5 m. The attachment points of the cable are horizontally
aligned and distanced by 100 m. Three cases are examined:

• p-type refinement (Nel = 2 with p = 1 , . . . , 9),

• h-type refinement using linear elements (Nel = 1 , 2 , 4 , . . . , 20 with p = 1),

• h-type refinement using quadratic elements (Nel = 1 , 2 , 4 , . . . , 20 with p = 2).

The computational results in terms of L2 error of the cable position versus total degrees
of freedom are presented in Figure 2. Both the expected exponential convergence of the
p-type refinement (as illustrated by the straight line for h = 2 in the semi-log plot to the
left in Figure 2) and the algebraic convergence of the h-type refinement (as demonstrated
by the straight lines in the logarithmic plot to the right of Figure 2) are shown in the
result. The benefit in using high-order methods for smooth problems in terms of accuracy
per degree of freedom is obvious.
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Figure 2: L2 error of the cable position as a function of the total number of degrees of freedom for the
elastic catenary case.

4.2 Dynamic verification - standing wave on a taut cable

Consider a cable with constant tension and strain, no external forces applied and only
transverse displacements allowed. Then eq. (1) simplifies to the standard linear wave
equation

d2r

dt2
=

T

γ0(1 + ǫ)

∂2r

∂s2
. (31)

The term T/ (γ0(1 + ǫ)) in eq. (31) is the square of the celerity of the wave in the
unstretched computational domain s. The celerity of the wave in the physical domain is

cp =

√
T

γp

=

√
T (1 + ǫ)

γ0

, (32)

where γp is the mass per unit length of the stretched cable. Let the end points of the
cable be horizontally aligned and stretch it to form a half sine arch that is centred at the
midpoint of the cable. The analytical solution to this problem then reads [11]:

y(x, t) = A cos

(
cp

π

L(1 + ǫ)
t

)
sin

(
π

L(1 + ǫ)
x

)
, (33)

where A is the maximum amplitude of the displacement.
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Figure 3: L2 error of the cable position as a function of the total number of degrees of freedom for the
elastic standing wave case.

The computed cable has a constant tension T = 1 N, a mass of γ0 = 1 kg/m and
an unstretched length L of 0.5 m. The attachment points are distanced by 1 m and the
wave amplitude is set to 1 m. The domain is divided into Nel = 1 , 5 , 10 , 20 elements
with p = 1 , . . . , 10. For this case no penalty term is used in the model. The solution is
integrated for 2 s (one complete oscillation cycle) using a sufficiently small time step to
ensure spatial errors dominate.

The computational results in terms of L2 error of the cable position versus total degrees
of freedom are presented in Figure 3. It is shown that – as for the static catenary case
– p-type refinement yields exponential convergence until the error get saturated around
machine precision (≈ 1×10−12 for the present case). It should be mentioned that the con-
vergence rates are generally sub-optimal and of order p. This is as expected since centred
numerical fluxes without penalty terms is known to loose an order of convergence [9].

4.3 Validation test - comparison against the experiments of Lindahl

The model test of Lindahl [12] is used for validating the dynamic behaviour of the
cable solver against experimental measurements. In this section, the measured cable top
end force results will be compared to those computed by the numerical model.

The experimental set-up is shown in Figure 4. The experimental measurements were
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Figure 4: The geometrical setup of the experimental tests by [12].

made on a 33m steel chain (ρc =7800 kg/m3) submerged in 3m of water (ρw =1000 kg/m3).
One end was attached to the concrete floor and the other end was attached to a circular
plate with a fixed rotation speed. The radius of motion in the cases compared in this
study was 0.2 m. The cable characteristics suggested in [12] are presented in Table 1.

In the experiments the top part of the chain was suspended in air and the rest was
submerged in water. This is taken into account in the numerical model by the use of the
dry weight for the gravity force and by excluding any added mass- or drag forces acting
on the cable segment above the height of 3 m.

The interaction between cable segments and the concrete floor is handled by a ground
interaction model made up of a bilinear spring and damper system in the normal (vertical)
direction and a dynamic friction in the tangential direction [13, 3]. The characteristics
of the ground model are presented in Table 1. Please note that Gvc

= 0.01 m/s is the
velocity at which the dynamic, tangential friction force reaches its maximum value. Up
to that value, the friction force is ramped up from 0. The forces acting on the cable when
it is interacting with the ground are given by:

FGz = −GK d ∆z − 2 GC

√
GKd

γ0

min (0 , vz) + γe g , (34)

FGxy = −γe g Gµmin

(
vxy

Gvc

, 1

)
, (35)

where ∆z ≥ 0 is the ground penetration depth, vz is the vertical velocity of the cable and
vxy =

√
v2

x + v2
y is the velocity of the cable tangential to the ground.

In the computations the cable is divided into 10 elements with polynomial order p = 7.
Two cases with rotational periods of Tr = 3.5 s and Tr = 1.25 s, respectively, are inves-
tigated. The simulations are integrated in time for 15 rotational periods. The resulting
forces in the top end are shown in Figures 5 and 6.

As seen in Figures 5 and 6 the values match very well. The maximum value of the
tension force is correct within a few percent, and the high frequency oscillations that
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Table 1: Characteristics of the cable and the ground interaction model used in the Lindahl cases.

Name Value Unit Description

L 33 m Cable length
γ0 0.018 kg/m Mass per length

EA0 10000 N Cable stiffness
d 0.002 m Nominal cable diameter

CDt 0.5 - Tangential drag coefficient
CDn 2.5 - Normal drag coefficient
CM 3.8 - Added mass coefficient

GK 3 GPa/m Ground normal stiffness per unit area
GC 1 - Fraction of critical damping of ground
Gµ 0.3 - Friction coefficient
Gvc

0.01 m/s Cut-off velocity of friction

appear for very low tension force magnitude are small in amplitude. The end force is
never completely slack for the Tr = 3.5 s case, however other parts of the cable has
tension force that vanishes completely. In the more high frequency case of Tr = 1.25 s
the end point force does however vanish completely. As the entire cable looses stiffness
at some instances in time, the numerical oscillations after the slack are larger in the case
of higher frequency of excitation. These numerical oscillations are quickly damped out
as the cable tension increases, and the inaccuracy is only evident for very low tension
force magnitudes. The computed maximum force however is still in excellent agreement
with the experimental data. It is worth to point out that the results presented here are
unfiltered and have not been smoothed in any way. It should also be mentioned that the
ground interaction model has a large influence on the solutions and that further studies
into the effect of the ground model for high-order solutions are required.

5 CONCLUDING REMARKS

The presented high-order DG formulation for the solution of cable dynamics shows good
agreement with both experimental and analytical data, confirming the accuracy of the
model formulation. The model is shown to exhibit the expected exponential convergence
associated with p-type refinement. The DG approach allows for discontinuities in the
solution – often appearing due to the cable becoming slack, as seen in the Lindahl cases.
However, Gibbs-type oscillations, typically associated with the use of high-order schemes
in the presence of discontinuities, are occurring in the absence of any artificial viscosity,
limiters or filters. In the Lindahl cases stability of the solutions is obtained through the
use of the penalty terms. Optimising the penalty terms as well as adding additional
shock-capturing capabilities in order to better handle snap loads is ongoing work.
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Experimental results

Figure 5: Comparison between the experimental and numerical cable top end forces. r = 0.2 m and
Tr = 3.5 s.
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Figure 6: Comparison between the experimental and numerical cable top end forces. r = 0.2 m and
Tr = 1.25 s.
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