
 
 Chalmers Publication Library  

Copyright Notice  

©2013 IEEE. Personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or for creating new 
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the IEEE.  

This document was downloaded from Chalmers Publication Library (http://publications.lib.chalmers.se/), 
where it is available in accordance with the IEEE PSPB Operations Manual, amended 19 Nov. 2010, Sec.  

8.1.9 (http://www.ieee.org/documents/opsmanual.pdf)  

(Article begins on next page)  

 



Diffusion Estimation over Cooperative Networks with Missing

Data

Mohammad Reza Gholami and Erik G. Ström
Department of Signals and Systems

Chalmers University of Technology, Gothenburg, SE-412 96, Sweden

Ali H. Sayed
Department of Electrical Engineering

University of California, Los Angeles, CA 90095

Abstract—In many fields, and especially in the medical and social

sciences and in various recommender systems, data are often gathered

through clinical studies or targeted surveys. Participants are generally

reluctant to respond to all questions in a survey or they may lack
information to respond adequately to the questions. The data collected

from these studies tend to lead to linear regression models where the

regression vectors are only known partially: some of their entries are
either missing completely or replaced randomly by noisy values. There

are also situations where it is not known beforehand which entries are

missing or censored. There have been many useful studies in the literature

on techniques to perform estimation and inference with missing data. In
this work, we examine how a connected network of agents, with each

one of them subjected to a stream of data with incomplete regression

information, can cooperate with each other through local interactions
to estimate the underlying model parameters in the presence of missing

data. We explain how to modify traditional distributed strategies through

regularization in order to eliminate the bias introduced by the incomplete

model. We also examine the stability and performance of the resulting
diffusion strategy and provide simulations in support of the findings. We

consider two applications: one dealing with a mental health survey and

the other dealing with a household consumption survey.

I. INTRODUCTION

In data gathering procedures, it is common that some components

of the data are missing or left unobserved. For example, in a clinical

study, a participant may be reluctant to answer some questions.

Likewise, in a recommender system using content based filtering [1],

a participant may prefer to leave some questions unanswered. The

phenomenon of missing data is ubiquitous in many fields including

the social sciences, medical sciences, econometrics, and machine

learning [2]–[5]. There are generally two methods to deal with the

estimation problem in the presence of missing data: imputation and

deletion [6]. If the positions of the missing data are known, then they

can either be replaced by some values (deterministic or random) or

the corresponding data can be removed from the dataset altogether.

Removing data generally leads to performance degradation while data

imputation results in bias estimates [2], [6], [7].

In this work, we examine how a connected network of agents,

with each one of them subjected to a stream of data with incomplete

regression information, can cooperate with each other to estimate

the underlying model parameters in the presence of missing data.

We explain how to adjust the traditional diffusion strategies through

(de)regularization in order to eliminate the bias introduced by im-

putation. We consider two applications: one dealing with a mental

health survey and the other dealing with a household consumption

survey.

Notation. We use lowercase letters to denote vectors, uppercase

letters for matrices, plain letters for deterministic variables, boldface
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letters for random variables. We use ⊙ and ⊗ for the Hadamard

and Kronecker products, respectively. Moreover, diag{x1, . . . , xN}
denotes a diagonal matrix with diagonal elements x1, . . . , xN . We

use col{a, b} to represent a column vector with entries a and b,

while IM denotes the M ×M identity matrix.

II. PROBLEM STATEMENT

Consider a connected network with N agents. Each agent senses

a stream of wide-sense stationary data {dk(i),uk,i} that satisfy the

linear regression model:

dk(i) = uk,iw
o + vk(i), k = 1, . . . , N (1)

where k is the node index and i is the time index. Moreover, the row

vector uk,i denotes a zero mean random process with covariance

matrix Ru,k = Eu∗
k,iuk,i > 0, while vk(i) is a zero mean white

noise process with variance σ2
v,k. The vector wo ∈ R

M is the

unknown parameter that the network is interested in estimating.

Assumption 1: We assume that the regression and noise processes

are each spatially independent and temporally white. In addition, we

assume that uℓ,i and vk(j) are independent of each other for all

ℓ, i, k, and j. �

In this study, we examine the situation in which some entries in

the regression vectors may be missing at random due to a variety of

reasons, including incomplete information or censoring. We denote

the incomplete regressor by ūk,i and express it in the form:

ūk,i = uk,i(IM − F k,i) + ξk,iF k,i (2)

where F k,i = diag
{

f 1
k,i, . . . ,f

M
k,i

}

consists of random indicator

variables, f
j

k,i ∈ {0, 1}. Each variable f
j

k,i is equal to one with

some probability p and equal to zero with probability 1−p. The value

of p represents the likelihood that the j−th entry of the regression

vector uk,i is missing at time i. In that case, the missing entry is

assumed to be replaced by an entry from the zero mean perturbation

variable ξk,i.

Assumption 2: We assume that the random variables uk,i,f
j

k,i,

and ξk,i are independent of each other. We also assume that the ran-

dom process ξk,i is temporally white and spatially independent with

covariance matrix E ξ∗
k,iξk,i = σ2

ξIM . �

From model (1), the minimum mean-square-error (MSE) estimate

of the unknown vector wo based on the data collected at node k is

given by [8]:

wo
k = R−1

u,k rdu,k (3)

where rdu,k , Edk(i)u
∗
k,i. It is easy to verify from (1) that

wo
k = wo so that the MSE solution allows node k to recover the

unknown wo if the actual moments {Ru,k, rdu,k} happen to be

known. The resulting mean-square-error is

Jk,min , σ2
d,k − r∗du,kR

−1
u,krdu,k = σ2

v,k. (4)



Now, we investigate the MSE estimate that would result based

on the censored regressor, ūk,i. We first introduce the following

matrices, which will be used in the analysis:

P1 , (2p− p2)1M1

T
M − (p− p2)IM (5)

P2 , p21M1

T
M + (p− p2)IM (6)

P , pIM (7)

where 1M is the M -column vector with all its entries equal to one.

The censored estimate is given by

w̄o
k = R−1

ū,k rdū,k (8)

with the covariance matrix Rū,k given by

Rū,k , Ru,k +Rr,k (9)

where we are introducing

Rr,k , −P1 ⊙Ru,k + pσ2
ξIM . (10)

Moreover, the cross correlation vector rdū,k is given by

rdū,k , Edkū
∗
k,i = (1− p)rdu,k. (11)

We assume the matrix (IM + R−1
u,kRr,k) is invertible. We can then

relate w̄o
k from (8) to wo

k from (3) as follows:

w̄o
k = (IM −Qk)(1− p)wo

(12)

where

Qk , R−1
u,kRr,k(IM +R−1

u,kRr,k)
−1.

It is observed from (12) that the new estimate is biased relative to

wo.

III. ADAPTIVE DISTRIBUTED STRATEGY

To mitigate the bias, we associate the following individual cost

with each agent k:

J̄k(w) , E|dk(i)− ūk,iw|2 − ‖w‖2Tk
(13)

where Tk is a symmetric matrix to be chosen. The minimizer of (13)

is seen to be
w̄o

k = (Rū,k − Tk)
−1(1− p)rdu,k. (14)

Therefore, if we select

Tk = pRu,k − P1 ⊙Ru,k + pσ2
ξIM (15)

then w̄o
k = wo

k (i.e., the (de)regularised estimate from (14) would

coincide with the unbiased estimate from (3)). The corresponding

mean-square-error for this choice of Tk is given by

J̄k,min , σ2
d,k − (1− p)2r∗du,k(Rū,k − Tk)

−1rdu,k

= Jk,min + pr∗du,kR
−1
u,krdu,k > Jk,min. (16)

For the remainder of the paper, we introduce a simplifying assump-

tion.

Assumption 3: The covariance matrix Ru,k is diagonal, which is

satisfied if the entries of the regression vector uk,i are uncorrelated

with each other. �

Under Assumption 3, it can be verified that

Rr,k = −pRu,k + pσ2
ξIM (17)

Rū,k = (1− p)Ru,k + pσ2
ξIM (18)

Tk = pσ2
ξIM . (19)

We first assume that p and σ2
ξ are known. Later, we estimate σ2

ξ from

the data, assuming an estimate for p is available.

To develop a distributed algorithm, we let Nk denote the set of

neighbors of agent k. The network then seeks to solve:

minimize
w∈RM

N
∑

k=1

J̄k(w). (20)

Following arguments similar to [9], [10], we can motivate the

following Adapt-then-Combine (ATC) diffusion strategy:

φk,i = (1 + µkpσ
2
ξ)wk,i−1 + µkū

∗
k,i[dk(i)− ūk,iwk,i−1]

wk,i =
∑

ℓ∈Nk

aℓkφℓ,i (21)

where µk is a small step size and the convex combination coefficients

{aℓk} satisfy
∑

ℓ∈Nk

aℓk = 1, aℓk = 0 for ℓ /∈ Nk. (22)

IV. PERFORMANCE ANALYSIS

A. Error Dynamics

We associate with each agent the error vector

w̃k,i , wo −wk,i (23)

and collect the errors from across the network into the block vector:

w̃i , col{w̃1,i, · · · , w̃N,i}. (24)

Then, it can be verified that w̃i evolves according to the following

dynamics:

w̃i =AT [INM −M(R̄i − pσ2
ξINM )]w̃i−1 −ATMsi

−ATM(Re,i + pσ2
ξINM )wo

e (25)

where
wo

e , 1N ⊗ wo, A , A⊗ IM (26)

R̄i , diag{ū∗
1,iū1,i, ū

∗
2,iū2,i, . . . , ū

∗
N,iūN,i} (27)

Re,i , diag
{

{ū∗
k,i(uk,i − ξk,i)F k,i}k=1,...,N

}

(28)

M , diag{µ1IM , µ2IM , . . . , µNIN} (29)

si , col{ū∗
1,iv1(i), . . . , ū

∗
N,ivN (i)} (30)

where the matrix A is left-stochastic, i.e., AT
1M = 1M , with its

(ℓ, k) entry equal to aℓk. From the above definitions, we get

Esi = 0 (31)

S , Esis
∗
i = diag{σ2

v,1Rū,1, . . . , σ
2
v,NRū,N} (32)

R̄ , ER̄i = diag{Rū,1, . . . , Rū,N}

= (1− p)diag{Ru,1, . . . , Ru,N}+ pσ2
ξINM (33)

ERe,i = −pσ2
ξINM . (34)

B. Mean Stability Analysis

Since the variables uk,i and ξk,i are temporally white and spatially

independent, then the error vectors w̃ℓ,j are independent of uk,i and

ξk,i for all j if k 6= ℓ and for k = ℓ if j ≤ i− 1. Therefore, taking

the expectation of both sides of (25), we get

Ew̃i = AT [INM −M(R̄ − pσ2
ξINM )]Ew̃i−1. (35)

The recursion in (35) is stable if the step sizes are chosen to satisfy

0 < µk <
2

(1− p)λmax(Ru,k)
(36)

where λmax(·) denotes the maximum eigenvalue of its matrix argu-

ment. It is seen that the estimator is asymptotically unbiased, i.e.,

limi→∞ Ew̃i = 0.



C. Mean Variance Analysis

We rewrite (25) more compactly as

w̃i = Biw̃i−1 − Gsi −Diw
o
e (37)

where

Bi , AT [INM −M(R̄i − pσ2
ξINM )] (38)

Di , ATM(Re,i + pσ2
ξINM ) (39)

G , ATM. (40)

The mean-square error analysis relies on evaluating a weighted vari-

ance of the error vector. Let Σ denote an arbitrary nonnegative definite

matrix that we are free to choose. Considering limi→∞ Ew̃i = 0,

Esi = 0, and the independence between w̃i and si, from (37) we

get

lim
i→∞

E‖w̃i‖
2
Σ = lim

i→∞

[

E(w̃∗
i−1B

∗
iΣBiw̃i−1) + E(s∗i G

TΣGsi)

+ E(wo∗
e D

∗
iΣDiw

o
e)
]

(41)

from which we can write

lim
i→∞

E‖w̃i‖
2
σ = lim

i→∞
E‖w̃i−1‖

2
Fσ + [vec(ZT + YT )]Tσ (42)

in terms of the following quantities:

F , A⊗A−A⊗ (R̄ − pσ2
ξINM )TMAT

− (R̄ − pσ2
ξINM )TMA⊗A+O(M2) (43)

Z , −p2σ4
ξA

TMwo
ew

o∗
e MA+ATME(Re,iw

o
ew

o∗
e R

∗
e,i)MA

(44)

Y , GSGT . (45)

The shorthand notation σ in (42) represents the weighting matrix

Σ and is given by σ = vec(Σ), where the vec operator vectorizes

a matrix by placing its columns on top of each other. Following

arguments similar to [9], the diffusion algorithm in (25) can be

verified to be stable in the mean-square-error if the matrix F is stable,

which can be satisfied for sufficiently small step-sizes.

We can then evaluate the network and individual MSDs as

MSDnetwork
, lim

i→∞

1

N

N
∑

k=1

E‖w̃k,i‖
2 = lim

i→∞
E‖w̃i‖

2
1

N

=
1

N
[vec(ZT + YT )]T (I − F)−1vec(INM ) (46)

MSDk , lim
i→∞

E‖w̃k,i‖
2 = lim

i→∞
E‖w̃i‖

2
Ik

= [vec(ZT + YT )]T (I − F)−1vec(Ik) (47)

where Ik , diag{0, . . . , 0, IM , 0, . . . , 0}, with the identity matrix

appearing in the k−th block location.

D. Estimation of Regularization Parameter

In the sequel, we suggest one way to estimate the (de)regularization

coefficient σ2
ξ from the data. For a small probability of missing p,

we have P2 ≃ pIM . Moreover, note that

Jk,min , σ2
v,k = E|dk(i)− uk,iw

o|2

= E|dk(i)− ūk,iw
o|2 − p‖wo‖2Ru,k

− pσ2
ξ‖w

o‖2. (48)

After a sufficient number of iterations, the estimate wk,i in (21) will

get close to wo. We replace the optimal wo by wk,i and get

Jk,min = σ2
v,k ≃ E|ek(i)|

2 − p‖wk,i‖
2
Ru,k

− pσ2
ξ‖wk,i‖

2
(49)

where ek(i) , dk(i) − ūk,iwk,i. It is still not possible to estimate

pσ2
ξ directly from (49). We need to assume that either the variance of

the original regressor or the probability of missing is known. Suppose

that an estimate for p is available, say, p̂. From (18), we can write

Ru,k ≃
1

1− p̂
Rū,k −

p̂

1− p̂
σ2
ξIM . (50)

Substituting Ru,k in (49) by the right-hand side of (50), we can

estimate the variance σ2
ξ at node k as follows:

σ̂2
ξ,k

(a)
≃

(1− p̂)E|ek(i)|
2 − p̂‖wk,i‖

2
Rū,k

p̂(1− 2p̂)‖wk,i‖2
(51)

where in (a) we assumed that the noise variance σ2
v,k is sufficiently

small compared to other terms. Since E|ek(i)|
2 and the diagonal

matrix Rū,k are unknown, we estimate them by means of the

following smoothing filters from data realizations:

R̂ū,k(i) = (1− α1)R̂ū,k(i− 1) + α1(ū
∗
k,iūk,i)⊙ IM (52)

fk(i) = (1− α2)fk(i− 1) + α2|ek(i)|
2

(53)

g(i) =
(1− p̂)fk(i)− p̂‖wk,i‖

2
R̂ū,k(i)

p̂(1− 2p̂)‖wk,i‖2
(54)

σ̂
2
ξ,k(i) = (1− α3)σ̂

2
ξ,k(i− 1) + α3g(i) (55)

where 0 < αi ≪ 1, for i = 1, 2, 3. To prevent large fluctuations in

estimating σ̂2
ξ,k(i), we used a smoothing filter for updating σ̂2

ξ,k(i)
in (52).

V. SIMULATION RESULTS

In this section, two applications are considered. In the simulations,

we consider the connected network of 7 agents shown in Fig. 1 and

employ the uniform combination rule aℓ,k = 1/|Nk|.

A. Household Consumption

Household consumption depends on a number of parameters such

as income, wealth, family size, and retirement status [2]. We consider

the following log-form model for household consumption [2]:

ln cℓ(i) = α+ (ln lℓ,i)β1 + (lnmp

ℓ,i)β2 + (lnmc
ℓ,i)β3 + tℓ,iβ4

+ǫℓ(i)

where cℓ(i) is the consumption of household ℓ at time i, lℓ,i is total

wealth, which is assumed to be censored, m
p

ℓ,i is the permanent part

of income, mc
ℓ,i is the current income, tℓ,i refers to the retirement

status and family size. The modeling error ǫℓ(i) is assumed to be zero

mean. Similar to [2], we only consider the first 4 components of the

regressor, i.e., β4 = 0. If we subtract the mean of the measurement

from both sides, we arrive at the model

d
c
ℓ(i) = u

c
ℓ,iwc + ǫℓ(i) (56)

where

wc = [β1 β2 β3]
T , d

c
ℓ(i) , ln cℓ(i)− E (ln cℓ(i))

u
c
ℓ,i , [ln lℓ,i lnmp

ℓ,i lnmc
ℓ,i]− E [ln lℓ,i lnmp

ℓ,i lnmc
ℓ,i].

For the complete data, the unknown parameters can be estimated

via a least-squares procedure to yield ŵc = [0.054 0.182 0.24]T .

We generate data according to ŵc and assume that the regressor

uc
ℓ,i has Gaussian distribution. We model ǫℓ(i) by a zero mean

Gaussian random variable. We further assume that the log of wealth is

randomly missed and we consider a uniform distribution over [−1, 1]
for the missing variable, thus σ2

ξ = 2/3. In the survey, it has been

observed that approximately 30% of total wealth, including housing

and stock market, are censored [2]. We use α1 = α2 = α3 = 0.01.

In the simulation, we use µk = 0.01. Fig. 2 shows the bias and

the MSD of the estimator (52) for p = 0.3 at node 1. The results
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Fig. 1. The topology of the network.
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Fig. 2. Estimating the variance of missing noise, σ2
ξ

, from the data at node

1. (a) The bias of the estimate and (b) the MSD (in dB) of the estimate.

show that the algorithm is able to estimate the variance σ2
ξ after a

number of iterations. Next, we compare the performance of different

algorithms. The results are shown in Fig. 3 for the modified diffusion

(21) (MATC), the regular diffusion (ATC) [9], and for noncooperative

(ncoop) behavior.

B. Mental Health Survey

We consider the following model, motivated by a mental health

survey study run by various companies [11], [12]:

dk(i) = xk,iθ + vk(i), i = 1, 2, . . . , N, (57)

where dk(i) is the square root of total depression score for every

individual i, xk,i ∈ R
6 denotes the regressor (covariate) for ev-

ery individual i, and vk(i) is the modeling error. Index k refers

to the company index and i is used for participant’s index. The

elements of xk,i are defined in [11] and include variables such

as income, age, and martial status. We apply the least squares

technique to a subset of the data in [11] to find the estimate of

θ̂ = [0.6352 − 0.0230 0.0163 0.1993 1.4157 − 0.2367 0.2419]T .

Then, we generate simulated depression scores according to θ̂ and

randomly realized regressors. Note that we generate (uniformly) zero

mean random regressors xk,i. We further assume that the income
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Fig. 3. The MSD of different algorithms.
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Fig. 4. MSD for modified ATC and noncooperative approach for different
missing probabilities.

is missed with probability p in the simulation study. We consider

a zero mean Gaussian distribution with standard deviation 0.05 for

missing parts. The variance of measurement noise vk(i), i.e., σ2
v,k,

is set to 0.05. In the simulation, we use µk = 0.008. The MSDs are

obtained by averaging over 40 experiments. In Fig. 4, we compare

the performance of MATC diffusion and non-cooperative (ncoop) for

different missing probabilities.

VI. CONCLUSIONS

In this paper, we have examined the estimation of an unknown

vector over a connected network of agents, with each agent subjected

to a stream of data with incomplete regressors. We have shown

that the estimator in general is biased; hence, we have modified

the cost function by a (de)regularisation term to mitigate the bias

and obtained a distributed approach based on diffusion adaptation

techniques. We have studied the mean-stability and performance

of the proposed algorithm. We have also suggested a technique to

estimate the (de)regularisation term from the data. We have evaluated

the proposed algorithm for two applications in mental health and

household consumption surveys.
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