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We discuss the Josephson effect in strongly spin-polarized ferromagnets where triplet correlations are induced
by means of spin-active interface scattering, extending our earlier work [R. Grein, M. Eschrig, G. Metalidis, and
G. Schön, Phys. Rev. Lett. 102, 227005 (2009)] by including impurity scattering in the ferromagnetic bulk and the
inverse proximity effect in a fully self-consistent way. Our quasiclassical approach accounts for the differences
of Fermi momenta and Fermi velocities between the two spin bands of the ferromagnet, and thereby overcomes
an important shortcoming of previous work within the framework of Usadel theory. We show that nonmagnetic
disorder in conjunction with spin-dependent Fermi velocities may induce a reversal of the spin current as a
function of temperature.
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I. INTRODUCTION

Ferromagnet-superconductor hybrid systems are currently
subject to intense research activity, as they were conjec-
tured to host triplet superconductivity induced by the prox-
imity effect.1–5 While the first successful experiments on
these structures found evidence for so-called Sz = 0 triplet
correlations,6–8 whose hallmark are 0 − π oscillations2 of the
critical current in Josephson junction devices, the existence of
equal spin triplet pairing is currently in the focus of attention.1,5

So far, the main experimental prove of such triplet correlations
is based on the Josephson effect and on phase coherent
electron transport in proximity structures.9–16 After two first
confirmations of long-range triplet amplitudes in 2006,9,10

an impressive series of affirmative experimental results was
published in 2010.11–15 The systems under investigation varied
largely in terms of materials and fabrication, the common
idea being that a breaking of spin-rotation symmetry around
the bulk magnetization axis must somehow be enforced at
the superconductor (SC)-ferromagnet (FM) contacts, which
is in line with the general theoretical concepts behind this
effect.1,17–21

In this article, we elaborate on our earlier work concerning
long-range triplet supercurrents,22 where we used a recent
extension of the quasiclassical Green function technique,23

which allows us to consider ferromagnets whose exchange
splitting J is of the same order of magnitude as the Fermi
energy EF consistently within quasiclassical theory.22,24 In
the following, we include additional relevant effects like the
suppression of the superconducting energy gap in proximity
to the interfaces, the induced magnetization in the super-
conductor close to the ferromagnet, and disorder in the FM
bulk. These calculations are performed numerically and cover
all ranges of junction length, interface transparency, and
impurity scattering. As applications we consider a symmetric
Josephson geometry (see Fig. 1), calculate spin-resolved
current-phase relations and critical Josephson currents, and
study the induced magnetization due to the inverse proximity

effect. In Appendix B, we provide detailed discussions of the
intricacies involved in solving the self-consistency equation
in quasiclassical theory with spin-active boundary conditions.
In particular, we point out a previously not discussed tech-
nical problem with the self-consistent solution of the order
parameter that arises for quasiclassical transport equations
with boundary conditions where the quasiclassical propagator
undergoes a jump discontinuity during reflection from the
interface.

With regard to the inverse proximity effect, we show that
while the suppression of the gap function in the SC electrodes
is indeed substantial for highly transparent junctions, this
does not imply that higher harmonic contributions to the
current-phase relation (CPR) are necessarily suppressed. As
expected, impurity scattering reduces the Josephson current
and in particular higher harmonic contributions to the CPR.
We also find that there may be a reversal of the Josephson spin
current as a function of temperature if impurity scattering is
sufficiently strong.

II. QUASICLASSICAL THEORY
OF SUPERCONDUCTIVITY

Let us first summarize the theory for a system where the
band structure is not spin polarized. The quasiclassical Green
function is obtained from Gor’kov’s Green function26 by an
integration over momentum:27–30

ĝ( �pF, �R,εn,t) = 1

a( �pF)

∫
dξpτ̂3Ĝ( �p, �R,εn,t), (1)

where a( �pF) is a quasiparticle renormalization parameter,
and ξp = �vF · ( �p − �pF). The “hat” denotes a 4×4 matrix in
combined spin and Nambu-Gor’kov space. The propagator
ĝ depends on the spatial coordinate �R, time t , Matsubara
frequency31 εn = 2πT (n + 1

2 ) and the momentum �pF, which
lies on the Fermi-surface. The Fermi velocity corresponding to
Fermi momentum �pF is denoted by �vF. The resulting equation
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FIG. 1. (Color online) The setup studied here is a ferromagnetic
symmetric Josephson junction. Blue regions indicate the super-
conducting electrodes, red regions the central ferromagnetic layer.
Yellow regions are spin-active interfaces that feature a magnetization
misaligned with that of the FM bulk.

of motion, which can be obtained from the Dyson-equation of
Gor’kov’s Green function, is the Eilenberger equation:27

ih̄�vF · ∇ �Rĝ + [iεnτ̂3 − �̂ − �̂,ĝ] = 0̂, (2)

which must be supplemented by a normalization condition: ĝ ◦
ĝ = −1̂π2. �̂ denotes off-diagonal self-energies in particle-
hole space and �̂ the diagonal ones.

The equilibrium current density in a system without spin
polarization reads

�j ( �R) = eNFkBT
∑
εn

1

2
Tr4〈�vF( �pF)τ̂3ĝ( �pF, �R,εn)〉, (3)

where Tr4 denotes a trace over spin and particle-hole
(Nambu-Gor’kov) degrees of freedom, and 〈•〉 and NF are
defined by

〈•〉 = 1

NF

∫
FS

d2pF

(2πh̄)3|�vF( �pF)| (•), (4)

NF =
∫

FS

d2pF

(2πh̄)3|�vF( �pF)| . (5)

NF is the density of states per spin at the Fermi level. In
Appendix A, we detail our numerical Fermi-surface averaging
procedure.

For a ferromagnet, these expressions need to be modified
in order to take into account the different Fermi surfaces for
the two spin channels. As discussed in our earlier work,22,24

we model the ferromagnet by two spin-scalar quasiclassical
Green functions for each band. This is consistent with the
quasiclassical approximation in the limit J > 0.1 EF and
naturally results in a three-channel matching problem at the
SC/FM interface. We underline that an equivalent approach in
the diffusive limit of quasiclassical theory (Usadel equation25)
is currently not available for lack of multichannel boundary
conditions. All definitions given above remain the same apart
from the reduced matrix structure of the Green function and
the fact that �vFη, �pFη, NFη, and 〈•〉η now depend on the spin
band η in question.

We will make extensively use of a fundamental symmetry
relating particlelike and holelike quantities in quasiclassical
theory for which we introduce the -̃operation defined by

Q̃( �pF, �R,εn,t) = [Q(− �pF, �R,εn,t)]
∗. (6)

A. Riccati parameterization

We use a particular Riccati parametrization of the quasiclas-
sical (QC) Green function23,32–35 which has proven very useful
in the past. For Matsubara’s Green functions,31 it consists
of two parameters (“coherence functions”) γ , γ̃ , describing
particle-hole coherence in the superconducting state. The
Green function ĝ reads in terms of these parameters:23

ĝ = ∓ 2πi

( G F
−F̃ −G̃

)
± iπτ̂3, (7)

whereG = (1 − γ γ̃ )−1,F = Gγ , ∓ and ± correspond to εn >

0 and εn < 0, respectively. The transport equations are

(ih̄�vF · ∇ + 2iεn)γ = (γ �̃γ + �γ − γ �̃ − �),
(8)

(ih̄�vF · ∇ − 2iεn)γ̃ = (γ̃ �γ̃ + �̃γ̃ − γ̃ � − �̃).

For a superconductor or normal metal the γ , γ̃ , �, �̃, �, and �̃

are 2 × 2 spin matrices for each Fermi surface point �pF, as all
Fermi surfaces can be regarded as doubly spin degenerate on
the scale of the Fermi energy. A weak band splitting due to an
external field or as in ferromagnetic alloys can be incorporated
as source field in these equations, leading to spin-dependent
self energies. In contrast, for a ferromagnet with strong
spin splitting of the energy bands the transport equations
hold separately for each spin band η with corresponding
Fermi surface point �pFη, and the above-mentioned quantities
are all scalars. The important difference lies in the integration
over ξp in Eq. (1), which destroys all coherence between
quasiparticle excitations living on different spin bands for the
latter case of strong spin polarization, however, allows for
quasiparticle coherence between spin bands when the band
splitting is on the low-energy scale that constitutes the phase
space for quasiparticles.

The self-energies introduced here are related to those we
used in Eq. (2) by

[�̂ + �̂] =
(

� �

�̃ �̃

)
. (9)

There is a further symmetry relating the Matsubara coherence
functions with positive and negative frequencies:

γ (−εn) = [γ̃ (εn)]†. (10)

As a result, we only need to consider γ (εn > 0) in the
following. All other quantities can then be obtained from the
symmetry relations. The current density in the FM spin bands
(η ∈ 2,3) is obtained from

�jη( �R) = 4eNFηkBT
∑
εn>0

〈�vFη( �pFη)Re[gη]〉η+, (11)

with g the 11-component of ĝη and 〈•〉η+ denotes a Fermi-
surface average, which is taken over momenta with positive
projection on the z axis only. To obtain this expression, we
did not only exploit the symmetry relations but also the fact
that for the spin channels an additional symmetry between the
diagonal components of ĝ holds: gη(εn,pFη) = −g̃η(εn,pFη).

B. Boundary conditions

The boundary conditions for Riccati amplitudes at inter-
faces and surfaces are formulated in terms of the normal
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state scattering matrix S.23,35 The transport equations for
Riccati amplitudes can be solved by integrating them along
their characteristics, which are straight lines in real space.35

Every amplitude has a unique stable direction of integration.
One may hence group them into “incoming” and “outgoing”
amplitudes with respect to a scattering region, which will be
the interfaces here. The convention is that outgoing amplitudes
are denoted by capital case letters and incoming ones by
small case letters. The transport channels that participate in
scattering are labeled by k,k′. In our case, these will be band
indices, as the conservation of parallel momentum that we
assume excludes the scattering between different momenta in
the same band. The boundary conditions then relate outgoing
to incoming amplitudes. For numerical calculations, the most
convenient way of solving these boundary conditions is to
calculate23

F = (1 − γ̃ ◦ γ ′)−1 ◦ γ ′, G = (1 − γ ′ ◦ γ̃ )−1, (12)

where ◦ denotes a matrix product in channel space and

γ̃ kk′ = δkk′ γ̃k, γ kk′ = δkk′γk, γ ′ = S ◦ γ ◦ S̃. (13)

S is the normal state scattering matrix, which—thanks to the
conservation of parallel momentum—is block-diagonal here,
and the blocks can be labeled by k||. The outgoing Riccati
amplitudes are then obtained from

�k = G−1
kk F kk. (14)

As explained at length in our earlier publications,23,24 the S

matrices will be either 4 × 4 or 3 × 3, depending on whether k||
is larger or smaller than the Fermi wave vector of the minority
band in the FM. Thus all matrices defined above will have
these dimensions, as channels with different k|| do not mix.

III. SOLUTION OF THE EILENBERGER EQUATION

A. Impurities

The simplest way to consider impurity scattering is to look
at elastic, nonmagnetic scattering in the self-consistent Born
approximation. This gives the following self-energies in the
ferromagnet:21 (

� �

�̃ �̃

)
η

= 1

2πτη

〈ĝη〉η. (15)

Note that here �, �̃ denote all off-diagonal self-energies in
Nambu space, rather than a superconducting gap. The Riccati
transport equations then need to be solved numerically, and in
each step the impurity self-energy 1/(2πτη)〈ĝη〉η is updated.

The scattering time τ is related to the scattering length
l by l = vFτ . Since l corresponds to the mean free path
of the quasiparticles, it is directly related to the impurity
concentration and should be the same for both spin bands (we
consider here spin-inactive scattering). The Fermi-velocities,
however, are different and hence τ2 = l/vF,2 < τ3 = l/vF,3.
This argument can also be made quantitative by noting that the
impurity self energy in Born approximation is proportional to
ciV

2
i NF, with impurity concentration ci , impurity scattering

potential Vi , and density of states at the Fermi level NF.
As this defines 1/τ , one obtains for the two spin directions
τη ∼ 1/NF,η. As shown in Appendix A, NF,η ∼ m2vF,η and

thus (assuming equal effective masses for the spin bands)
vF,2τ2 = vF,3τ3, i.e., the mean-free path l for both spin bands
is equal.

B. Gap equation

The mean-field gap equation in the SC is

�(z) ln

(
T

Tc

)
=

∑
n

(
〈f (εn,�kF,z)〉 − π

�

|εn|
)

, (16)

where the coupling constant is eliminated in favor of Tc. In
Appendix B, we discuss in detail some sophisticated problems
when iterating this equation at an interface. We show that
whenever the quasiclassical Green function undergoes a jump
discontinuity under reflection from the interface, the only self-
consistent solution of the above equation at the interface is � =
0. The discontinuity of the quasiclassical propagator in turn
results from the fact that the microscopic reflection process
at the interface falls outside the range of applicability of QC
theory. To remedy this issue, we introduce a length cutoff
ξc � ξ0 and calculate the gap equation only for distances larger
than ξc from the interface. We show that if the cutoff length is
chosen small enough, neither its precise value nor the profile of
the SC gap for distances smaller than ξc influences the results.
We choose for our numerical calculations ξc = 0.01ξ0.

C. Numerical solution

We found that a very stable way of solving the Riccati
differential equations for spin-polarized systems is to resort to
analytical solutions for constant self-energies. That is, instead
of using a standard solver for ordinary differential equations
along each trajectory, we approximate the self-energies by a
constant in each interval that corresponds to the grid-spacing
of our discretization in the z direction and use the analytical
solution for homogeneous self-energies:23

γ (ρ) = γh + eiρ
1 (γ0 − γh)[eiρ
2 + C(ρ) (γ0 − γh)]−1,

(17)

where γh is the homogeneous bulk solution, γ0 is the
initial value, and ρ parameterizes the respective trajectory
as �R = �vF(�kF)ρ + �R0. Moreover, 
1 = iεn − � − γh�̃, 
2 =
−iεn − �̃ + �̃γh and

C(ρ) = C0e
iρ
1 − eiρ
2C0, (18)

where C0 is given by the solution of

�̃ = C0
1 − 
2C0. (19)

The value of γ at grid point n is then calculated from the
analytical solution with the value at grid point n − 1 as initial
value. These general formulas simplify inside the FM, because
all quantities are scalar and commute. In the SC they simplify
as well, since we only consider the order parameter self-energy
there and thus always have �, �̃, γh ∝ iσy , and �, �̃ = 0.
The homogeneous bulk solution is for these cases

γh = − �

E ± i
√

−��̃ − E2
, (20)

where E = iεn − (� − �̃)/2.
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FIG. 2. (Color online) Illustration of the iterative procedure for
obtaining a fully self-consistent solution.

As we include the self-consistent equations for the impurity
potential and the order parameters, we have to deal with
a nonlinear problem, in which the solutions for different
trajectories and Matsubara frequencies are coupled. We solve
this problem iteratively as as illustrated in Fig. 2 (see also
Appendix B 2). At each step, we assume a given set of initial
values for the coherence functions at the outer boundaries
of the system and at the interfaces and given values for the
impurity potential and order parameters. We then integrate
the transport equations and solve the boundary conditions
at the interfaces to update all coherence functions and calculate
the initial values for the next step of the iteration. Subsequently,
all self-energies are updated by evaluating the respective
self-consistent equation with the new coherence functions.
The initial values at the outer boundaries are always assumed
to be the respective SC bulk solution. The order-parameter
phase difference �χ enters via these boundary values. At the
initial step, we chose the coherence functions and the impurity
potential inside the FM to be zero and the SC gap to be constant
up to the interface.

IV. SCATTERING MATRIX

The normal-state scattering matrices entering the quasi-
classical boundary conditions cannot be obtained within QC
theory itself. We calculate them from plane wave matching
in the normal-state using a simple model for the interface
scattering potential that captures all relevant effects.

The interface Hamiltonian reads

H I =
∑
�kμν

c
†
�kμ

(
ξ I
�kδμν + �h · �σμν

)
c�kν, (21)

where �h is the interface exchange field, and

ξ I
�k = h̄2�k2

2m
+ VI − EF. (22)

VI plays the role of a spin-independent interface potential. Ac-
cordingly, the normal-state Hamiltonians of the ferromagnet
and the superconductor read

H FM =
∑
�kμν

c
†
�kμ

(
ξFM
�k δμν + �J · �σμν

)
c�kν, (23)

H SC =
∑
�kμν

c
†
�kμ

(
ξSC
�k δμν

)
c�kν . (24)

Obviously, H SC is invariant under rotations in spin-space,
while both H I and H FM break spin-rotation symmetry. For
ξ

I,SC,FM
�k , we assume for simplicity a parabolic dispersion with

the same effective mass in all cases. The dispersions ξ I
�k and and

ξFM
�k are shifted by a constant energy V I and V FM, respectively,

compared to ξSC
�k . The unitary matrix U , which maps the

spin-eigenbasis of the interface to that of the ferromagnet,
reads

U =
(

cos α
2 − sin α

2 e−iϕ

sin α
2 eiϕ cos α

2

)
. (25)

The scattering matrix is obtained by diagonalizing the
Hamiltonians and inferring the respective values of kz at the
Fermi level for a given k||. The corresponding wave functions
in the three layers are then matched at the SC/I and the I/FM
interfaces, respectively, choosing a spin-quantization axis in
the SC aligned with that of the interface, while at the I/FM
interface, the rotation U must be taken into account.

The requirement that k|| must be conserved across the
interface implies that even if the ferromagnet is not fully
spin-polarized, some trajectories will have an evanescent
solution in the minority band of the FM, corresponding to
the half-metallic case. In the case where this minority band
solution is propagating we obtain a 4 × 4-scattering matrix, if
it is evanescent, the matrix is 3 × 3 as discussed in Appendix C.

V. RESULTS

Our scattering geometry is shown in in Fig. 3. In what
follows, the Fermi momentum of the majority (spin-up) band
is assumed to be identical to the Fermi momentum of the
SC. This is simply a matter of convenience, as we must only
distinguish two and not three types of trajectories in this case.
The third type of trajectories would describe total reflection
from the interface, which does not contribute to transport. Our
methods can easily applied to the general case as well. The
value of the minority band Fermi momentum is determined by
the exchange field J , the magnitude of which is assumed to be
the same in the interface and in the FM bulk (however, not the
direction).

In what follows, we consider two parameter sets for the
interface. A “high”-transparency interface with thickness d =
0.25 λF/2π and VI = 1 EF and a “low”-transparency interface
with d = 2 λF/2π , and VI = 2 EF. If S↑,SC = (t↑↑ , t↑↓)
and SSC,↑ = (t ′↑,↑ , t ′↑↓)T are the submatrices of S related to
transmission from the SC to the spin-up band of the FM and

FIG. 3. (Color online) Scattering geometry considered here. The
majority band of the FM is assumed to have the same Fermi
momentum as the superconductor.
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FIG. 4. (Color online) The triplet transmission parameters T↑,↓ as
a function of p||, for the high-transparency interface (d = 0.25 λF/2π ,
VI = 1 EF) (left), and the tunneling interface (d = 2 λF/2π , VI =
2 EF) (right). Other parameters are J = 0.5 EF, α = 0.5 π .

vice versa, then the relevant transmission quantity for inducing
triplet correlations in the spin-up band is

T↑ = |S↑,SCiσySSC,↑|, (26)

and analogously, we have T↓ for the spin-down band. These
quantities are plotted in Fig. 4 for the two interfaces discussed
here. Their functional dependence on k|| was investigated
extensively in Ref. 24.

In order to discuss various symmetry components of
the induced triplet pair correlations, we use the following
decomposition of the quasiclassical Green functions:

g = g0 + �σ · �g, f = (fs + �σ · �ft )iσy, (27)

and obtain the induced magnetization from

�M = 2μBkBT NF

∑
n

〈�g(εn, �pF)〉. (28)

As measures of odd-frequency and odd-momentum triplet
amplitudes, we define

�fε = kBT

2

∑
n>0

〈 �ft (εn, �pF) − �ft (−εn, �pF)〉, (29)

�fp = kBT

2

∑
n

[〈 �ft (εn, �pF)〉+ − 〈 �ft (εn, �pF)〉−
]
. (30)

Here, �fε is the s-wave component of the odd-frequency
correlations. �fp does not correspond to a particular spherical
harmonic; our model system only breaks translational invari-
ance in the z direction and is rotationally invariant in the x-y
plane. We therefore project out the correlations which are odd
under pz �→ −pz.

We first investigate the inverse proximity effect, as shown
in Fig. 5. Spin-active scattering at the SC/FM interface induces
triplet-pairing correlations and a magnetization inside the
SC electrodes close to the interface. Moreover, the order
parameter is suppressed at the interface. While this is also
caused by spin-active scattering, here the predominant cause
for this suppression is the transparency of the interface. This
can be seen in the topmost plots of Fig. 5 (left), where we
compare a highly transparent interface to an interface in the
tunneling limit. The reason why the spin-mixing effect plays
a minor role here, is that under the assumption of a box
shaped scattering potential the magnitude of the interface
spin-mixing parameters that are responsible for creating

FIG. 5. (Color online) Inverse proximity effect in the SC leads,
“high,” refers to the high-transparency interface and “low” to the
low-transparency interface. The top row plots show the spatial profile
of the SC gap � (left) and the magnitude of the induced magnetization
M = | �M| (right). At the bottom row, the induced triplet correlations
which are odd in momentum (right, green) or odd in frequency (left,
orange) are shown. Parameters are l = 100ξ0, L = 0.5ξ0, α = 0.5π ,
T = 0.5 Tc, �χ = 0, z ∈ [ξc,8ξ0].

triplet-pair correlations are typically small (see our extensive
discussion of this effect in Ref. 24). This can be seen in
the top right panel, where the absolute value of the induced
magnetization is shown. The transparency is largely irrelevant
here, as the inverse proximity effect is due to spin-active back-
scattering from the superconducting side, i.e., a property of
the spin-dependent scattering phases in the reflection parts of
the scattering matrix. The induced magnetization is directed
opposite to the effective magnetization in the interface region
of the ferromagnet (which is an average between contributions
from the interface and from the bulk; see Appendix D), in
agreement with previous studies,21,36,37 and decays on the
scale of the superconducting coherence length, ξ0. Note that
this induced magnetization is a result of the superconducting
inverse proximity effect (production of triplet pair correlations
by the magnetic interface) and absent in the normal state.

In the lower panels of Fig. 5, we project our various
symmetry components of the triplet pair correlations. Since the
SC itself is spin-rotation invariant, it makes sense to plot the
invariant quantity ft = | �ft | rather than the individual compo-
nents of �ft , which are not invariant. Since we consider in Fig. 5
a rather clean superconductor (l = 100ξ0), odd-momentum
and odd-frequency correlations are comparable in magnitude
and decay on the same length scale ξ0. In the case of the
high-transparency interface, the induced triplet-correlations
and the magnetization show a slight dependence on the length
of the junction (not shown), i.e., superconducting correlations
that propagated through the FM layer also contribute to the
inverse proximity effect in that case.

We now study the influence of impurity scattering on the
triplet pair correlations. In Fig. 6, we plot both the spatial
profiles of the absolute value of the total momentum averaged
equal-spin triplet correlations, |f η

ε | (s-wave, odd frequency)
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|f ↑|

|f ↑
p |

|f ↓|

|f ↓
p |

FIG. 6. (Color online) Spatial profile of equal-spin triplet cor-
relations. The plots show the magnitude of the total momentum
averaged triplet correlations f η

ε (s = wave, odd frequency) and of the
correlations odd in momentum (even frequency) f η

p , with η = ↑,↓,
inside the FM-layer at the lowest Matsubara frequency. The interfaces
are located at z = 0 and z = 0.5 ξ0. d = 0.25 λF/2π , T = 0.5 Tc.
The mean-free path for the three rows are from top to bottom: l = ξ0,
l = 0.1ξ0, and l = 0.01ξ0. Other parameters as in Fig. 5.

and of the correlations, which are odd under pz �→ −pz, |f η
p |

(odd momentum), for each spin direction inside the FM slab.
Note that for the large exchange-field case we study (J � |�|),
singlet correlations are negligible inside the ferromagnet.
As the impurity concentration increases, these correlations
decay faster into the FM and the relative magnitude of
|f η

p | decreases. However, the magnitude of the latter only
becomes negligible for very high impurity concentrations. This
shows that the Usadel approximation does require very short
scattering lengths in order to be able to neglect odd-parity
correlations in the ferromagnet. Right next to the interfaces,
to suppress |fp| to about 1/10 of |fε | requires a scattering
length as short as l = 0.01 ξ0. One needs to carefully estimate
if this is then already on the inter-atomic length scale, a
length scale outside the scope of quasiclassical theory (both
Eilenberger-Larkin-Ovchinnikov and Usadel theory) in which
case the boundary layer must be treated microscopically. One
option is to incorporate this region as an “isotropization” zone
in effective boundary conditions for the Usadel equation.

We next discuss the Josephson effect in the structure shown
in Fig. 1. With regard to the CPR, we first observe that higher
harmonics, i.e., a nonsinusoidal CPR, can still be present
in the high-transparency case, even if the suppression of
pairing-correlations in the SC is properly taken into account.

Δ χ /2π

J
↑

Δ χ /2π

J
↑/

J
↑,

m
a
x

J
↓

J
↓/

J
↓,

m
a
x

FIG. 7. (Color online) Influence of disorder—current-phase rela-
tion of spin-up (top) and spin-down (bottom) currents for different
scattering lengths. Data are shown unnormalized (left column) and
normalized to its maximum value (right column). Other parameters
as in Fig. 5 for high transparency. The current density is stated in
units of ekBTc( �pF/2π )2/h̄3.

To show this, we consider a junction with high-transparency
interfaces in Fig. 7. The CPR is calculated as a function of
the impurity concentration. Decreasing the scattering length
leads to a suppression of the critical current, but also of higher
harmonics contributions, as can be seen in the normalized plots
on the right-hand side.

In Fig. 8, we consider a junction in the tunneling limit
(d = 2 λF/2π , VI = 2 EF) and calculate the critical current
as a function of temperature. For a clean junction, l = 10 ξ0,
we find a strong spin polarization of the current. For higher
impurity concentrations, the current is not only suppressed
globally, but the spin current, I↑ − I↓, also decreases relative
to the total current. At high impurity concentrations, there

FIG. 8. (Color online) Critical current in spin-up (blue, squares)
and spin-down (green, circles) bands for different impurity con-
centrations and L = 0.5 ξ0 as a function of temperature. The
low-transparency interface is considered, where the critical current
is found at �χ = 3/2π . The current density is stated in units of
ekBTc( �pF/2π )2/h̄3.
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may even be a crossover to a negative spin-current at small
temperatures. This can be understood as follows. From the
clean-limit solution, we see that the loss of particle-hole
coherence due to temperature penalizes the spin-down current
more than the spin-up current. The mean-free path due to
impurity scattering is, however, the same for both bands, and
the cumulative effect of the scattering only depends on the
length of the trajectory. This can easily be understood by
rewriting the transport equation as(

ih̄ �̂vFη∇ + i2εn/vFη

)
γ = (γ �̃γ + �γ − γ �̃ − �)/vFη.

(31)

Since all self-energies are proportional to 1/τη ∝ vFη (the
superconducting gap is zero in the FM), the vFη factor cancels
on the right hand side of this equation, which describes
impurity scattering, and only remains in iεn/vFη—which is
the term that can be interpreted as the suppression due to finite
temperatures, and which clearly is seen to be spin-dependent.

VI. CONCLUSIONS

We carried out a comprehensive study of the triplet-
Josephson effect and inverse proximity effect in SC/FM/SC
junctions with highly spin-polarized FM-layers taking into
account impurity scattering inside the FM in the self-consistent
Born-approximation. We showed that odd-momentum triplet
correlations are generically present in these junctions and
are only suppressed at very high impurity concentrations.
We found an induced magnetization in the SC electrodes
resulting from the inverse proximity effect and a suppression
of the SC gap, which is mainly related to the transparency
of the interface for the interface model we considered here.
Larger spin-mixing phases would, however, also result in a
substantial suppression of the gap close to the interface.21

These can be realized by considering a smooth scattering
potential at the interface. Even if this suppression is taken into
account, the CPR of high-transparency junctions may have
higher-harmonic contributions. Regarding the critical current,
we see that impurity scattering suppresses the Josephson
spin-current and may even lead to an inversion of it at small
temperatures and short scattering lengths.
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APPENDIX A: EXPRESSIONS FOR THE
FERMI-SURFACE AVERAGE

For the spherical bands that we assume, the density of states
at the Fermi level is

NF,η =
∫

FS,η

d2pF,η

(2πh̄)3|�vF,η( �pF,η)| = 2m

(2π )2h̄3 pF,η. (A1)

The FS-average for the self-energies is calculated from

〈x( �pF)〉η = 1

2NF,η

∫ pF,η

0
d

(
arcsin

p||
pF,η

)
p||(x+

η + x−
η ), (A2)

with x+
η = xη(p||,pz > 0) and x−

η = xη(p||,pz < 0). And the
FS average for the current is

〈vF,ηg〉η,+ = 2π êz

(2πh̄)3NF,η

∫ pF,η

0
dp|| p|| Re(g+). (A3)

The number of p points we use in our calculation (one hundred)
is too small to make these expressions converge numerically.
Thus we use a numerical normalization factor Nnum

F,η which is
calculated from Eq. (A2) as Nnum

F,η = NF,η 〈1〉η. This ensures
that all our FS averages are properly normalized. To be precise,
the numerical integration is implemented as a trapezoidal rule
over one hundred p points, which are equidistant in p||.

APPENDIX B: NUMERICAL ITERATION OF GAP
AND BOUNDARY CONDITIONS

1. Discretization of the gap profile

The numerical solver we use is not a standard Runge-Kutta
scheme but relies on the analytical solution for constant
self-energies. The only numerical approximation made is
assuming a stepwise variation of the self-energies between
grid points. Naturally, the question arises how this stepwise
profile is to be interpolated when knowing the self-energies
at a given number of grid points. A subtlety here is that
the coupled system of transport and self-consistency equa-
tions becomes fundamentally inconsistent if the condition
�interpol(z = n h) = �n, where n denotes the nth grid point,
is violated. This is because the asymptotic solution of the
transport equation approaches the local homogeneous bulk-
solution as the Matsubara frequency goes to infinity. As we
will see in Appendix B 3, this is crucial for formulating the
gap equation in a cutoff independent way. The interpolated
profile we use is illustrated in Fig. 9 (left).

2. Iterative scheme

We assume that at the beginning of the iteration step, the
incoming solutions at all interfaces and the self-energies are
known from the previous step. The procedure works as follows:
(1) solve the boundary conditions at all interfaces, (2) integrate
all outgoing coherence functions up to the next interface or
outer boundary, and (3) update all self-energies. We use the

FIG. 9. (Color online) The discretized profile of the energy gap
must be carefully chosen to ensure the consistency of the asymptotic
solution of the transport equation. Above, the profile on the right-
hand side, interpolating the profile as 1/2[�(zn) + �(zn+1)] between
neighboring grid points violates this consistency, while the one on
the left-hand side, that we use for our calculation, does not.
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secant method to accelerate convergence, and to (4) update all
incoming coherence functions.

We use two abortion criteria, since the iteration in the SCs
may converge a lot faster than in the central FM layer if the
transparency of the interfaces is small. If the gap profile is
well-converged, the iteration in the SC is stopped and continues
only inside the FM.

3. Elimination of the high-energy cutoff

Generally, technical energy cutoffs that appear in expres-
sions for self-energies or observables in quasiclassical theory
must be eliminated in favor of phenomenological parameters.
This is usually achieved by adding and subtracting terms in
Matsubara sums or energy integrals that cancel the divergent
behavior of these expressions and allow to formally extend
the sum or integral to infinity.29 The other half of such an
“added zero” can typically be included in a phenomenological
(measurable) parameter. While this procedure is standard for
the weak-coupling gap equation in quasiclassical theory, it
turns out to be problematic at interfaces. We are not aware
of any discussion of this subtle issue in the literature before.
We here discuss a method for dealing with this issue. We start
from the self-consistency equation:

�( �pF, �R) = kBT
∑

|εn|<εc

〈V ( �pF, �p′
F)f ( �p′

F,
�R,εn)〉. (B1)

In what follows, we limit the discussion to singlet, s-wave
superconductivity, i.e., V ( �pF, �p′

F) = V0, but the argumentation
can easily be generalized. The interaction constant can be
eliminated by linearizing the above equation close to Tc

(� → 0). Since the interaction constant is a bulk property,
it is justified to consider the homogeneous bulk case, i.e.,

f (εn) = π
�√

ε2
n + �2

εn��≈ π
�

|εn| . (B2)

This equation also shows why a technical cut-off |εn| < εc

must be included in (B1), as the Matsubara sum diverges. This
problem does not arise in the microscopic theory, where the
asymptotic behavior of F is given by �/ε2

n.38 The linearized
equation reads

1

V0
= kBTcπ

∑
|εn|<εc

1

|εn| . (B3)

Given that nc = εc

2πkBTc
+ 1

2 , we then obtain the well-known
standard result in terms of the digamma function ψ ,

1

V0
= ψ

(
1

2
+ εc

2πkBTc

)
− ψ

(
1

2

)
. (B4)

At this point, one can see that keeping a technical cutoff is, at
least in the Matsubara case, not tenable. nc should of course
be an integer number. Obviously one can choose εc so that nc

is integer here, but εc must be the same for all temperatures
and since the spacing of Matsubara frequencies is temperature
dependent, it will generally not be commensurate with εc. One
can verify numerically that if such a cutoff is kept in (B1), the
gap profile one finds is the BCS-relation with a jigsaw-pattern
superimposed to it, which vanishes as εc → ∞. The standard
way of dealing with this problem is to regularize the Matsubara

sum. This is achieved by subtracting the asymptotic form of f

on both sides of (B1):

�

⎛
⎝ 1

V0
− kBT π

∑
|εn|<εc

1

|εn|

⎞
⎠

= kBT
∑

|εn|<εc

(
〈f ( �p′

F,
�R,εn)〉 − π

�

|εn|
)

. (B5)

Both sides of this equation can now be regularized, if the
expression (B4) for V0 is taken into account. The cut-off can
be taken to infinity, which yields

� ln

(
T

Tc

)
= kBT

∑
εn

(
〈f ( �p′

F,
�R,εn)〉 − π

�

|εn|
)

. (B6)

For the boundary value problem one may object that the
counter term was adapted to the homogeneous bulk-case, but
expanding the solution of the Riccati equations in orders of
1/εn, one finds33

γ ( �pF, �R,εn) = −�( �R)

2iεn

− ih̄(�vF∇)�( �R)

(2εn)2
+ O

(
1/ε3

n

)
,

(B7)

γ̃ ( �pF, �R,εn) = �̃( �R)

2iεn

− ih̄(�vF∇)�̃( �R)

(2εn)2
+ O

(
1/ε3

n

)
,

and therefore

f = −2iπ
∑

n

(γ γ̃ )nγ

= π
�( �R)

|εn| ∓ 2π
h̄(�vF∇)�( �R)

(2εn)2
+ O

(
1/ε3

n

)
, εn ≷ 0. (B8)

Thus even if the gap profile is inhomogeneous, the asymptotic
behavior remains the same as long as the gap is a smoothly
varying function.

Up to this point, the procedure is well-known and estab-
lished. A problem does, however, arise at interfaces where
the boundary conditions leads to a discontinuous behavior
of the coherence functions under reflection. To see this, we
consider the coherence function to leading order in 1/εn. The
incoming coherence function at the interface is then given
by γ (z = 0) = −�(z = 0)/(2iεn). To illustrate the point, we
here assume that the solution of the boundary conditions at the
interface is

� = RSCγ (z = 0)R̃SC, (B9)

where RSC denotes the reflection matrix on the SC side of
the interface. This is not fully generic, since we assume that
the transmission from the other side of the interface can be
neglected. However, for the case, we consider here this is
reasonable as the coherence functions on the FM side are
exponentially suppressed by propagation through the FM layer
and can thus be neglected at high energies. Now it is easy to
see that the asymptotic behavior of 〈f 〉 at the interface is
given by

〈f ( �pF,εn)〉 = 〈f ( �pF,εn)〉+ + f ( �pF,εn)〉−
= π

2

�

|εn| (1 − iσy〈RSCiσyR̃SC〉). (B10)
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Here, 〈•〉± denotes an FS-average over trajectories pointing
towards/away from the interface. It is obvious that this f

function will only have the required asymptotic behavior if
RSC = 1 or � = 0. This implies that the right-hand side of
Eq. (B6) will diverge if that is not the case. Adapting the
cancellation term will not help either, since the coupling
constant V0 is fixed by the bulk behavior, which implies that
the left-hand side of (B6) would diverge in that case. So
eventually, one arrives at the conclusion that the only consistent
solution for RSC �= 1 is �(z = 0) = 0. The problem here is
the discontinuous jump of the f function upon reflection at
the interface, which is directly related to the fact that the
interface region cannot be described within quasiclassical
theory. While the use of effective boundary conditions is
sufficient to circumvent this problem if the self-consistency
relation is neglected, one must go a step further if it is
retained. Our solution to this problem is to assume that the
self-consistency equation must not be calculated if the distance
to the interface is smaller than a length cutoff ξc � ξ0. To see
how this resolves our issue, we have to calculate γ (z = ξc)
and �(z = ξc). Here, γ (z = ξc) is the incoming coherence
function and obtained by integrating the Riccati equation from
some initial value inside the bulk. Since the gap profile is
smooth for z > ξc, this implies that it does have the correct
asymptotic behavior at high energies. �(z = ξc) originates
from the interface. If we assume that the gap has a constant
value �c = �(z = ξc) in some environment [ξc − η,ξc] of ξc,
where η can be arbitrarily small, the solution for �(z = ξc)
will be given by23

�c = γh,c + eiη
1 (γ0 − γh,c)[eiη
2 + C(ρ) (γ0 − γh,c)]−1,

(B11)

where γh,c = γh(�c) and γ0 = �(z = ξc − η). This solution
has the correct asymptotic behavior, irrespective of how the gap
profile varies for z < ξc − η, as it is given by the homogeneous
solution γh,c at sufficiently high energies. We found that the
sum in (B6) must be, however, calculated up to very high
energies, since ξc should be very short. Thus we need to discuss
high-energy contributions next.

4. High-energy contribution

To numerically compute (B6), we consider two numerical
energy cutoffs on the right-hand side:

ln

(
T

Tc

)
� =

∑
|εn|<εc,low

(
〈f ( �p′

F,
�R,εn)〉 − π

�

|εn|
)

+
∑

εc,high>|εn|�εc,low

(
〈f ( �p′

F,
�R,εn)〉 − π

�

|εn|
)

.

(B12)

Up to εc,low we calculate the full coherence functions in
the whole structure without any approximations. The high-
energy contribution is only calculated in the SC electrodes.
To efficiently calculate this contribution, we consider the
linearized Riccati equation:

i∂ργ (ρ) + 2iεnγ = −�(ρ), (B13)

which is easily solved exactly by a variation of constants:

γ (ρ) = (C(ρ) + γ0)β(ρ), β = exp(−2εnρ),

C(ρ) =
∫ ρ

0
dρ ′ i�(ρ ′)

β(ρ ′)
. (B14)

Again assuming that the gap-profile is constant, this yields

γ (ρ) = γh + (γ0 − γh)β(ρ). (B15)

We also assume that the boundary conditions reduce to (B9). It
is easy to convince oneself that the linearized Riccati equation
is exact up to second order in 1/εn. Up to second order, we
also have

f = −2iπγ, (B16)

from which we calculate the contribution to the gap
function.

As discussed above, the need for taking into account this
high-energy correction factor arises from interface scattering.
It is therefore not surprising that it vanishes rapidly inside the
SC bulk. This fortunately implies that we must only calculate
it very close to the interface.

5. Extension to zero temperature

For T → 0, we have

εn+1 − εn = 2πkBT → 0, (B17)

kBT
∑
εn

→ 1

2π

∫ ∞

−∞
dε. (B18)

The zero-temperature Green function is thus obtained by
replacing εn �→ ε and all Matsubara sums must be replaced
with the above integral. Care must be taken in regard to the
normalization factor in the self-consistency equation:

ln

(
T

Tc

)
+

nc∑
n=1

1

n − 1/2
, (B19)

with nc = floor[εc/(2πkBT ) + 1/2], since both terms in this
sum become infinite. For T → 0, the second term approaches
ln[εc/(2πkBT )] − ψ(1/2), and we have

ln

(
T

Tc

)
+

nc∑
n=1

1

n − 1/2
= ln

(
εc

2πkBTc

)
− ψ

(
1

2

)
.

(B20)

APPENDIX C: CALCULATION OF THE S MATRIX

1. HM case

First, we need the wave vectors obtained from solving the
one-dimensional Schrödinger equation for given kx , ky . These
are k+ and k− for H I, p for H SC, and k↑ and κ for H FM,
where κ is associated to the evanescent mode. These wave
vectors k± may be real or imaginary, corresponding to either a
conducting or an insulating interface. Moreover, we have the
Fermi velocities v and v↑ in the SC and the majority band
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of the FM, respectively, which are proportional to p and k↑,
respectively. After defining the auxiliary quantities

a± = cos k±a + ip

k±
sin k±a, (C1)

b± = cos k±a − ip

k±
sin k±a, (C2)

c± = ik±
k↑

sin k±a + p

k↑
cos k±a, (C3)

d± = ik±
k↑

sin k±a − p

k↑
cos k±a, (C4)

where a is the thickness of the interface layer, and the 2 × 2
matrices:

P (x) = U†
(

x+ 0
0 x−

)
U , (C5)

where U is the spin rotation from the spin basis of the interface
to that of the FM bulk, we obtain

SR = U−1V (C6)

with

U =

⎛
⎜⎜⎜⎜⎝

−
√

v↑
v
P11(b) −

√
v↑
v
P12(b) 1

−
√

v↑
v
P11(d) −

√
v↑
v
P12(d) 1

P21(d) − iκ
k↑

P21(d) P22(d) − iκ
k↑

P22(b) 0

⎞
⎟⎟⎟⎟⎠ ,

(C7)

V =

⎛
⎜⎜⎜⎜⎝

√
v↑
v
P11(a)

√
v↑
v
P12(a) −1√

v↑
v
P11(c)

√
v↑
v
P12(c) 1

iκ
k↑

P21(a) − P21(c) iκ
k↑

P22(a) − P22(c) 0

⎞
⎟⎟⎟⎟⎠ .

(C8)

2. FM case

In the FM case, the minority band of the FM has a
propagating mode. We write k↑ and k↓ for the wave vectors
of the plane waves in the FM bands and v↑, v↓ for the
corresponding group velocities. We use the same definitions
for a±, b± and P (x) as above but redefine

c± = ik± sin k±a + p cos k±a, (C9)

d± = ik± sin k±a − p cos k±a, (C10)

and introduce

R(x) =
⎛
⎝

√
v↑
v

0

0
√

v↓
v

⎞
⎠ P (x), (C11)

R̃(x) =
⎛
⎝

√
v↑
v

0

0
√

v↓
v

⎞
⎠

(
1
q+

0

0 1
q−

)
P (x). (C12)

We then redefine

U =
( −R(b) 12×2

−R̃(d) 12×2

)
, V =

(
R(a) −12×2

R̃(c) 12×2

)
(C13)

and again obtain the scattering matrix as

SR = U−1V. (C14)

APPENDIX D: SIGN OF THE INDUCED MAGNETIZATION
IN THE TUNNELING LIMIT

In the tunneling limit, we have

R = eiϑ/2σz , � = RγR∗, (D1)

where the interface magnetic moment points in z direction and
ϑ is the spin-mixing angle associated with the interface under
consideration. Hence

g = −2πi(1 − �γ̃ )−1 + iπ, (D2)

which gives

�g = gzêz (D3)

with

gz = −2π
|γ0|2 sin(ϑ)

1 + |γ0|4 − 2|γ0|2 cos(ϑ)
. (D4)

Therefore the direction of �M is determined by the sign of
sin(ϑ). From the reflection at a spin-active tunneling barrier,
one can show that sin(ϑ) > 0. Thus the induced magnetization
�M points in direction opposite to the interface magnetic

moment. This result is true for all impurity concentrations, as
the consideration in Supplementary Material of Ref. 21 shows.
In the general case, beyond the tunneling limit, the induced
magnetization points opposite to an effective magnetization
that has contributions from both the interface and the bulk,
depending on the transmission. In terms of the scattering
matrix discussed in appendix C, the spin rotation matrix
U enters both U and V in the expression SR = U−1V . In
the tunneling limit, the effective magnetization is determined
almost entirely by the interface magnetic moment, whereas
in the limit of high transmission it is dominated by the bulk
magnetization.
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