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We describe a circuit model for a flux-driven Superconducting QUantum Interference Device

(SQUID). This is useful for developing insight into how these devices perform as active elements

in parametric amplifiers. The key concept is that frequency mixing in a flux-pumped SQUID

allows for the appearance of an effective negative resistance. In the three-wave, degenerate case

treated here, a negative resistance appears only over a certain range of allowed input signal

phase. This model readily lends itself to testable predictions of more complicated circuits. VC 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819881]

Parametric amplifiers based on superconducting circuits,

though not new,1,2 have recently become the subject of

renewed interest3–8 as it is now possible to readily fabricate

superconducting circuits which may sustain and amplify

coherent states of microwaves close to the quantum limit.

Such amplifiers have recently been used for qubit readout,9

vacuum squeezing,10 quantum feedback,11 and entanglement

of propagating microwave photons.12 Systems closely

related to these amplifiers are also providing new physics,

such as photon measurements of fast-tunable resonators13

and the observation of the dynamical Casimir effect.14

Since topics related to the manipulation of coherent

states of light have traditionally been associated with quan-

tum optics, a quantum-optics formalism dominates the com-

monly encountered explanations of these systems. However,

under suitably small-signal limits, a truly nonlinear reactance

may be modeled simply as a time-varying reactance. Under

this approximation, the principle of superposition holds, and

we have the standard lexicon of linear analytical techniques,

such as Fourier analysis. In fact, “classical” parametric

amplifiers were often treated in this linearized manner in the

literature15–17 generated during the 1960s and 1970s. While

this literature was primarily concerned with circuits utilizing

varactor diodes as active elements, it remains a general pre-

mise that a parametrically driven nonlinear reactance leads

to frequency mixing.

To produce a useful understanding of a three-wave

degenerate parametric amplifier based on a dc SQUID, a lin-

earized method of analysis allows us to treat the effects of

amplification using simple, intuitive models of equivalent

electrical circuit elements. The parametric interaction is sup-

plied by the SQUID, acting as a tunable, nonlinear induct-

ance. By way of a mutual inductance to a control line, a

time-varying magnetic flux, Uac, is applied to the SQUID

and acts as our pump.

We will show how the application of a dc and an ac

pump flux allows us to treat the SQUID electrically as the

well-known Josephson inductance, in parallel to a special

circuit element which we introduce as “the pumpistor.” We

find that the pumpistor defined under these conditions leads

to a phase sensitive impedance, where the phase angle

between the pump and signal tones becomes important. In

particular the pumpistor can act as a negative resistance, pro-

ducing gain. Thus, our treatment presents a simple, analyti-

cal, albeit classical understanding of the phase sensitivity

associated with degenerate parametric amplification.

Our circuit model of a flux-pumped SQUID allows us to

analyze much more complicated circuits in a straightforward

way. We use this circuit model to analyze actual experiments

performed with a reflection amplifier consisting of a flux-

pumped SQUID terminating a k=4 transmission-line cavity.

We find expressions for the phase-dependent gain, showing

how this system operates quite intuitively when analyzed as

a negative resistance amplifier. For the quantum engineer,

our analysis should prove useful when considering the inter-

face of a flux-pumped SQUID to other RF circuit compo-

nents, in any number of future circuit topologies.

We start by reviewing the relations of external magnetic

flux, effective junction phase, and the current through an

ideal SQUID. We consider this SQUID to be composed of

two identical, parallel Josephson junctions, forming a loop

which is pumped by an external magnetic flux, Up. We

neglect capacitive effects in the SQUID, as we assume that

all frequencies of interest are well below the Josephson

plasma frequency. The net supercurrent through the SQUID

can be expressed as

I ¼ Icjcos½p UpðtÞ=U0�j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
“flux” term

sin½/ðtÞ�|fflfflfflffl{zfflfflfflffl}
“phase” term

; (1)

where U0 ¼ h=ð2eÞ is the flux quantum and Ic=2 is the criti-

cal current of each of the two Josephson junctions. Wea)Electronic mail: kyle.sundqvist@gmail.com
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identify the current as the product of what we call the “flux”

term and the “phase” term. The phase term contains /ðtÞ, the

superconducting phase difference related to the voltage drop

across the SQUID, VðtÞ ¼ U0

2p

� �
d/ðtÞ

dt .

The product of these two terms leads to frequency mix-

ing. We analyze this by small-signal series expansions for

the flux term and the phase term of Eq. (1) which depend on

the pump and signal frequencies, respectively. We multiply

these expansions to approximate the supercurrent of Eq. (1)

and can then define a circuit impedance appropriate for con-

sideration at the angular signal frequency, xs.

We consider the external magnetic flux to be applied

with a dc bias and a small ac contribution, as

UpðtÞ ¼ Udc þ Uac cosðxptþ hpÞ; (2)

where xp is the angular pump frequency and hp its phase

angle. We substitute Eq. (2) into the “flux” term of Eq. (1)

and series expand about Udc. Defining the normalized flux

quantities F ¼ p Udc=U0 and df ¼ p Uac=U0 gives

Iccos½pUpðtÞ=U0� � IccosðFÞ � IcsinðFÞ df cosðxptþ hpÞ:
(3)

We assume the Josephson phase takes the form

/ðtÞ ¼ /scosðxstþ hsÞ. To treat the full phase term of Eq.

(1), we take a Fourier-Bessel expansion where Jn is the n-th

order Bessel function of the first kind

sin½/ðtÞ� ¼
X1

n¼�1
Jnð/sÞsin n xstþ hs þ

p
2

� �� �
: (4)

We now approximate Eq. (1) by multiplying Eqs. (3)

and (4). We find that the resulting supercurrent contains

frequency-mixed terms between the pump and signal fre-

quencies. We recall that xp ¼ 2xs for the three-wave degen-

erate case. To describe the system as a linear circuit element,

we retain only terms at the signal frequency and neglect the

other mixing products. This signal current we call Ixs
ðtÞ, and

the corresponding voltage is Vxs
ðtÞ. We can now define an

electrical input impedance at the signal frequency

ZSQ ¼
Vxs
ðtÞ

Ixs
ðtÞ ¼ jxsLSQ; (5)

where L�1
SQ ¼ L�1

J þ L�1
P , using

LJ ¼
LJ0

cosðFÞ
/s

2J1ð/sÞ

� �
; (6)

LP ¼
�2 ejDh

df

LJ0

sinðFÞ
/s

2J1ð/sÞ � 2ej2DhJ3ð/sÞ

� �
; (7)

with LJ0 ¼ �h=ð2eIcÞ and Dh ¼ 2hs � hp.

Thus, we have an equivalent circuit for the driven

SQUID (Fig. 1(a)) appearing as the Josephson inductance,

LJ, in parallel to an effective element which we call the

“pumpistor,” LP. The pumpistor is defined as an inductance

as its impedance is proportional to jxs.

We now examine Eq. (7) to understand the behavior of

the pumpistor. We see that the pumpistor has a dependence on

the applied ac flux amplitude such that if the flux is turned off

the pumpistor impedance becomes infinite (“an open”), and

the SQUID impedance appears as the standard Josephson in-

ductance. Most importantly, the pumpistor inductance also

depends on the phase angle, Dh. This introduces the phase sen-
sitivity into the circuit (Fig. 1(b)). When Dh ¼ 0, the pumpistor

acts as a negative inductance.18 Since the two inductances are

in parallel, a typically large (jLPj � jLJj) and negative pum-

pistor inductance results in a net inductance slightly larger than

the Josephson inductance. At Dh ¼ p=2, the pumpistor induct-

ance becomes imaginary so that its impedance acts as a posi-

tive, real resistance adding dissipation. At Dh ¼ p, the

pumpistor has the impedance of a positive inductance. Finally,

at Dh ¼ �p=2, we find that we have a circuit element that pro-

vides a negative resistance. In this state, power is extracted

from the pump such that the pumpistor can actively inject

power into the external circuit at the signal frequency, provid-

ing gain. We note that the general behavior of a negative resist-

ance used as a reflection amplifier was recently revisited.19,20

Regarding saturation of the ac flux, if we had expanded

Eq. (3) to higher powers of df we would have found an

equivalent impedance represented by LSQ in parallel to more

inductive elements. These extra elements would represent

higher-order corrections due to a large ac flux, which

account for saturation limitations. For the specific amplifier

discussed later, the ac flux amplitude is small ðdf � 1Þ, and

these terms are not necessary.

Regarding saturation of the Josephson phase, we note

that the final, bracketed terms of both Eq. (6) and Eq. (7)

depict phenomena that would be explained by the “Duffing

nonlinearity”21,22 within the formalism of nonlinear differen-

tial equations. These bracketed terms tend to unity for suffi-

ciently small values of /s. Conversely, larger values of /s

will affect the gain and bandwidth response expected from

the amplifier. Although these effects are typically associated

with saturation due to /s, bifurcation may also arise where

multiple solutions of /s are allowed in the amplifier circuit.

In this work, we present a treatment of our amplifier consid-

ering only the limit of a small /s.

Consider, generally, that the pumpistor should act as the

active element in some amplifier topology. As the pumpistor

FIG. 1. (a) The flux-pumped SQUID in the small-signal limit can be treated

as the quiescent Josephson inductance in parallel to this special element,

“the pumpistor.” (b) As a function of phase angle Dh the pumpistor induct-

ance changes in the complex plane, thereby taking on characteristics of other

impedances which introduce a phase sensitivity into the system.
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is always found in parallel to the smaller, passive inductance

LJ, it is heavily shunted and its effect suppressed. In a useful

device, the impedance of LJ should therefore be nulled by

implementing a system containing other reactances.

A parametric amplifier topology commonly used by

multiple groups, including our own, is a flux-pumped

SQUID terminating a superconducting quarter-wave trans-

mission line resonator which is coupled to a transmission

line via a capacitor. As shown in Fig. 2(a), a signal incident

at the input enters a circulator and is reflected by the ampli-

fier with reflection coefficient C to the output port. The out-

put power is Pout ¼ jCj2Pin, allowing us to define the power

gain as G ¼ Pout=Pin ¼ jCj2. The negative resistance of the

pumpistor allows jCj to become greater than unity, thus

achieving gain.

To find the expression for gain, we solve the system for

the reflection coefficient. We use S-parameters for two-port

networks as in Fig. 2(b) to find the system’s reflection coeffi-

cient. We consider the coupling capacitor, Cc, to have the

S-matrix SA. This is connected to a matched (Z0 ¼ 50 X)

transmission line cavity represented by SB

SA ¼

1

1þ j2xCcZ0

1� 1

1þ j2xCcZ0

1� 1

1þ j2xCcZ0

1

1þ j2xCcZ0

0
BB@

1
CCA; (8)

SB ¼ 0 e�cl

e�cl 0

� �
: (9)

We consider the propagation constant to be cl
¼ jx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLlÞðClÞ

p
þ al. L and C are the inductance and capaci-

tance per unit length, respectively, while a specifies the

attenuation constant, and l is the length of the transmission

line. The load reflection is of the standard form

CSQ ¼ ðZSQ � Z0Þ=ðZSQ þ Z0Þ, where ZSQ is from Eq. (5).

We find the total reflection coefficient becomes

C ¼ SA;11 þ
SA;21SA;12CSQe�2cl

1� SA;22CSQe�2cl
; (10)

which, upon taking its squared amplitude, provides the

expression for gain.

We can also use Eq. (10) to define an input impedance

into this entire chain. We use the relation Zin ¼ Z0ð1þ
CÞ=ð1� CÞ to define an input impedance. The transmission

line is designed for operation close to its k=4 resonance so

that xs � p=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLlÞðClÞ

p
Þ � 2p� 5 GHz. Using a series

expansion in x of the cavity admittance ½Zin � ðjxCcÞ��1

near the k=4 resonance and assuming Cc � Cl, we can find

an equivalent lumped circuit (Fig. 2(c)) using the following

relations:

Leff ¼
8 Ll

p2 þ p4

4ðLlÞ2
ðRe½LSQ�2 � Im½LSQ�2Þ

; (11)

Ceff ¼ Cl

2
þ Cl Re½LSQ�

Ll
þ p2ClðRe½LSQ�2 � Im½LSQ�2Þ

8ðLlÞ2
;

(12)

Reff ¼ �
2Z0ðLlÞ
pIm½LSQ�

: (13)

The series resonance frequency is given by

x0 ¼ ½LeffðCc þ CeffÞ��1=2
. Approximating the response near

this resonance as harmonic, we find the following internal

and external quality factors:

Qint � ReffðCeff þ CcÞx0; (14)

Qext � ðZ0x0C2
cÞ
�1ðCeff þ CcÞ: (15)

An approximation for the extremum value of the reflec-

tion coefficient at resonance is given by Cm ¼ ðQext � QintÞ=
ðQext þ QintÞ: For conditions with no pumping and where in-

ternal dissipation is present, we have Qint > 0, and jCmj has

a value somewhere between zero and unity. For the case

where the flux pump is on and the pumpistor creates a net

negative load resistance, we find Qint < 0. This case repre-

sents a net injection of power and jCmj > 1. The condition

for jCmj ¼ 1 is where Qint ¼ �Qext and depicts the thresh-

old for the amplifier to become a parametric oscillator.5,23–25

All values of reasonable amplifier gain must occur quite near

this threshold, but with Qint < �Qext. In this linear model,

the region for parametric oscillation (�Qext < Qint < 0) rep-

resents instability.

To construct and bias this device for operation as an am-

plifier, Qint must be only slightly more negative than �Qext.

Evaluating the threshold condition Qint ¼ �Qext using Eqs.

(14) and (15), with both Cc � Cl and jLSQj � Ll, we find

the following:

jIm½LSQ�j �
pC2

c

2ðClÞ2
Ll: (16)

So external flux and design parameters should be adjusted to

approximately meet this criterion.

As an interesting comparison to data, we examine the

response of this amplifier as a function of relative pump phase.

Consider the signal phase angle Dh. This was defined relative

to the signal angle, hs, of the Josephson phase, /ðtÞ. We relate

this to the angle of the SQUID voltage, hV
s � hs þ p=2.

Furthermore, we reference hV
s to the angle hin of the input’s

source voltage, Vs, through the use of a transfer function

derived by scattering matrices. We then map the gain

of the amplifier as a function of changing the relative

pump phase, 2hin � hp. This is demonstrated in Fig. 3 and
FIG. 2. (a) The pumped cavity reflectometry amplifier showing physical

ports, (b) as a two-port network, (c) equivalent lumped circuit.
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compared to data. Experimentally, the physical device was

operated at T � 20 mK and consisted of an Al coplanar

waveguide lithographed on a Si substrate, with junctions

fabricated using standard two-angle evaporation. The

model parameters were found to be Cc ¼ 5:4 fF; Cl ¼
0:8 pF; Ll ¼ 2:3 nH; Ic ¼ 1:7 lA; Udc ¼ 0:38 U0; Uac ¼ 7:8
� 10�4 U0, and al ¼ 3:0� 10�4.

In conclusion, we have determined the effective imped-

ance for the parametrically flux-pumped SQUID in the three-

wave, degenerate case. The impedance we have determined

appears as the standard Josephson inductance in parallel to a

phase-dependent element, which we call the pumpistor. In

addition to a dependence on the ac flux amplitude, the pum-

pistor has a dependence on the signal-pump phase angle.

This results in phase sensitive amplification. When the phase

angle is such that the pumpistor has an impedance compo-

nent which is both real and negative, it is possible to achieve

gain. Within this circuit framework we have analyzed our

experimental three-wave degenerate amplifier, thereby vali-

dating our phase-dependent model against physical data.

While outside the scope of this work, it is also possible to

consider a similar treatment for the phase-preserving, nonde-
generate case where an idler tone is introduced.

We acknowledge support from the Swedish Research

Council, the Wallenberg Foundation, and the EU through
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