
Speculative Tag Access for Reduced Energy

Dissipation in Set-Associative L1 Data Caches

Alen Bardizbanyan†, Magnus Själander‡, David Whalley‡, and Per Larsson-Edefors†

†Chalmers University of Technology, Gothenburg, Sweden
‡Florida State University, Tallahassee, USA

alenb@chalmers.se, msjaelander@fsu.edu, whalley@cs.fsu.edu, perla@chalmers.se

Abstract—Due to performance reasons, all ways in set-
associative level-one (L1) data caches are accessed in parallel for
load operations even though the requested data can only reside
in one of the ways. Thus, a significant amount of energy is wasted
when loads are performed. We propose a speculation technique
that performs the tag comparison in parallel with the address
calculation, leading to the access of only one way during the
following cycle on successful speculations. The technique incurs
no execution time penalty, has an insignificant area overhead,
and does not require any customized SRAM implementation.
Assuming a 16kB 4-way set-associative L1 data cache imple-
mented in a 65-nm process technology, our evaluation based
on 20 different MiBench benchmarks shows that the proposed
technique on average leads to a 24% data cache energy reduction.

I. INTRODUCTION

Energy efficiency is a very important metric for all types of

processors. As the executed applications are becoming more

demanding, energy-saving techniques that reduce performance

is however not a viable option. The energy dissipation of the

level-one (L1) data cache (DC) is significant. For example, the

L1 DC energy was shown to be equal to that of the register

file and all pipeline registers of an embedded processor even

though the L1 DC is much less frequently accessed [1].

Store operations to data caches are usually sequential, since

a tag hit signal needs to be generated before modifying

any data. This scheme suits store operations, since these

rarely create any data dependencies in the pipeline. But load

operations, which often have data dependencies with the

following instruction, must be carried out in a fast way for

performance reasons [2].

Due to the poor locality of the data accesses, associativity

is important for data caches in order to achieve a low miss

rate [3]. In a set-associative cache, the fast load operation

is accomplished by accessing all the tag and data arrays in

parallel to ensure synchronous operation with a short critical

path. However, this access scheme is energy inefficient because

the data needed for the load operation can only reside in one

of the ways. Hence, the unnecessary data read operations from

the remaining ways waste energy.

We propose a technique that exploits the address generation

stage in a processor to make a speculative access to the tag

This research was supported in part by the Swedish Research Council grant
2009-4566 and the US National Science Foundation grants CNS-0964413 and
CNS-0915926.

arrays. If the speculation is successful, only a single data array

is enabled for load operations. This way the energy overhead

of accessing the other data arrays is eliminated. The technique

does not incur any execution time penalty and it does not

require any customized SRAM implementation. We evaluate

the energy efficiency of the technique in the context of a

processor with a 16kB 4-way set associative L1 DC, using

a physical implementation in a 65-nm process technology.

II. BACKGROUND

In this section we briefly describe the functionality of a

conventional set-associative data cache and of the address

calculation for load and store operations.

A. Data Cache and Data Translation Lookaside Buffer

Fig. 1 shows a conventional 4-way set-associative data

cache (DC), which is virtually indexed and physically tagged

(VIPT). The figure also shows a data translation lookaside

buffer (DTLB), which is used to convert the virtual page

number (VPN) to the physical page number (PPN). VIPT

caches are preferred because virtually-tagged caches cause

problems related to the use of multiple virtual memory address

spaces, such as synonyms and aliasing. In addition, the virtual

index makes it possible to access the DTLB and the L1 DC in

parallel, which shortens the critical path of the cache access

significantly [2], [4].

The L1 DC load access is accomplished using the memory

address that is usually calculated before the memory access

stage. The memory address, as shown in Fig. 1, has three main

parts: line offset, line index, and tag. The tag part contains the

VPN, which is used to make a fully-associative search in the

DTLB, which in turn outputs the translated PPN on a hit.

The line index is used to read the tags from the tag arrays

and, together with the line offset, it is used to read the data

words from the data arrays. The tags, which contain PPNs, are

compared with the PPN coming from the DTLB output and

if any of them matches, then a hit signal is generated. This

signal drives the final way-select multiplexer that forwards the

correct data.

Store operations require the tag comparison to be performed

before the data can be written to the correct data array. Since

SRAM blocks are usually synchronous, store operations take

two cycles: During the first cycle, if there is a tag match,

978-1-4799-2987-0/13/$31.00 ©2013 IEEE

302

Fig. 1. Overview of a virtually-indexed physically-tagged 4-way set-associative data cache.

a hit signal is generated. During the second cycle, the write

operation to the selected data array is accomplished.

In a set-associative cache, in which the tag and data are

accessed in parallel for load operations, the energy dissipation

of load operations is higher as compared to the energy of store

operations. This is due to 1) only one data way being activated

and written during store operations, and 2) store operations

being much less frequent than load operations. For the 20

MiBench applications used in Sec. IV, on average only 29%

of the memory operations are store operations. Consequently,

optimizing the handling of load operations will give higher

overall L1 DC energy savings.

B. Address Generation and Data Cache Accesses

The memory address for load and store operations is

commonly calculated in an address-generator unit (AGU) by

adding an offset to a base address. The AGU is usually located

one stage before the L1 DC access stage [5]. Fig. 2 shows

a segment of a pipeline, in which the AGU is located in

the address generation (ADDR-GEN) stage before the L1 DC

access stage.

Fig. 2. Segment of a pipeline in which address generation and L1 DC access
are in consecutive stages.

Fig. 3 shows the address calculation in a MIPS-like instruc-

tion set. A 16b offset is sign extended and added to a 32b

base address value. This addition generates the virtual address,

which includes tag, line index, and line offset. The tag portion

is translated by the DTLB to a physical address in the L1 DC

access stage for tag comparison (see Fig. 2).

The bitwidth of the tag, the line index, and the line offset

depends on the cache line size and the page size. Throughout

this paper, we will use the common configuration of a 32B

cache line size and a 4kB page size. In this configuration, the

bitwidth of the tag, the line index, and the line offset is 20

bits, 7 bits, and 5 bits, respectively.

Fig. 3. Data memory address calculation.

III. SPECULATIVE TAG ACCESS FOR LOAD OPERATIONS

In this section we give an overview of the speculative tag

access technique in terms of pipeline functionality and imple-

mentation. We provide an implementation-oriented discussion

on the impact of offset bitwidth on the success of speculations

and how speculation successes and failures are detected.

A. Speculative Tag Access in the Pipeline

In order to perform the tag comparison in the L1 DC, the

line index and the tag portions of the memory address are

needed. These are used to index the tag memories and access

the DTLB. For the conventional address calculation scheme

described in Sec. II-B, it has been shown that for most of the

address calculations the line index and the tag portions of the

base address do not change [6]. The reason for this is that

303

most of the address offsets are narrower than or of the same

size as the line offset. Thus, since carries are not frequently

propagated from the line offset to the line index during the

address calculation addition, the line index and the tag often

remain unaffected. This property of the address generation can

be exploited by speculatively comparing tags earlier in the

pipeline. This is possible by using 1) the line index of the

base address to speculatively access the tag memories and 2)

the tag of the base address to speculatively access the DTLB.

An overview of the speculation scheme is shown in Fig. 4.

The address generation and tag access take place in parallel.

Fig. 4. Speculative access of tag arrays and DTLB in the pipeline.

If the speculation is successful, only one way of the L1 DC

data arrays needs to be activated on a hit. In this manner, the

energy dissipation from the other data ways will be eliminated.

On a speculation failure, the L1 DC will be conventionally

accessed on the following cycle. It should be noted that on

a speculation failure there is an additional energy overhead

in accessing the tag memories a second time. However, most

of the speculation failures for tag accesses do not result in

a speculation failure for the DTLB. This is because carry

propagation in the most significant bits (MSBs) is rare. As a

result, when the DTLB speculation is successful while the tag

access is not, the DTLB need not be accessed again, and the

output can be used on the following cycle. Hence, the energy

overhead caused by the DTLB due to speculation failures will

be very low.

Since the speculation is attempted earlier in the pipeline,

speculation failures do not cause any execution time penalty. In

the event of a speculation failure, a subsequent load operation

cannot be speculated because the L1 DC will be busy. Our

evaluations show that this situation occurs rarely and causes

only 0.25% of the successful speculations not to be achieved.

An additional small benefit of this speculation scheme is

related to cache misses. If a speculation is successful on a

load operation that causes a miss in the L1 DC, the miss will

be detected earlier in the pipeline. Hence, no data array will

be enabled and the access to the next level in the memory

hierarchy can be initiated earlier, reducing the execution time

penalty related to cache misses by one cycle.

B. Implementation

It is straightforward to speculatively calculate the line index

and the tag, if the offset is narrower than or of the same size

as the line index. The corresponding parts of the addresses

are added as usual. However, it has been shown that if the

address offset is wider than the line offset, then it may still

be possible to calculate the line index in a very fast way by

OR’ing the corresponding parts of the address offset and the

base address [6]. If there is no carry propagation in the OR’ed

portion, the result of the addition will be correctly generated

by using the OR operation. This introduces an OR-gate delay

in the critical path. Our energy evaluations (Sec. V-A) show

that if positive offsets wider than four bits are included in

the speculation, the energy dissipation increases due to a

deteriorating ratio of successful and failing speculations. As a

result, the OR-gate based fast address calculation scheme is

not beneficial for reducing energy. It should be noted that for

negative offsets, an additional adder is needed to perform the

addition using two’s complement of the line offset in order to

detect the carry propagation [6].

Our evaluations on the MiBench benchmarks (see Sec. IV)

show that only 3.6% of the load operations use a negative

offset. Negative offsets up to five bits cover almost half of

these cases. Consequently, the speculation scheme is only

applied if the load operation has a negative offset, which is

not wider than five bits, or has a positive offset, which is not

wider than four bits. The sign and bitwidth of the address

offset can be easily detected by applying AND or OR on the

MSB of the immediate in parallel with the sign extension of

the immediate that is commonly performed to achieve 32 bit

wide offsets.

Fig. 5. Speculative address calculation and speculation failure detection.

The line index and tag portion of the base address can

be directly supplied to the tag memories and the DTLB,

without any additional delays. Speculation failures can be

easily detected using only one carry-out from the MSB of the

line offset (for tag memory speculation failures) and one carry-

out from the MSB of the line index (for DTLB speculation

failures). Fig. 5 shows the speculative address generation and

the speculation failure detection. The three add operations are

304

not separate, but the internal carry signals have been exposed

in the figure only to illustrate which signals are used for

speculation failure detection.

Some processors can use register-based offsets for load

operations in addition to immediate-based offsets. A register-

based offset can be either read from the register file or it can

arrive from the forwarding network. Hence, it might not be

possible to detect the offset bitwidths for register-based offsets

without affecting the critical path. Due to the lack of early

offset bitwidth detection for register-based offsets, speculation

should either be attempted for all load operations with register-

based offsets or it should not be attempted at all. In this work

a processor with a MIPS-like instruction set is evaluated, i.e.,

immediate-based offsets for load instructions are used.

IV. EVALUATION FRAMEWORK

In this section, we give an overview of the tools and the

methodology used to evaluate the energy savings. We also

give details about the energy dissipation in a 16kB 4-way set-

associative cache implemented in a 65-nm process technology.

A. Energy Estimation Methodology and Tools

In order to perform an energy evaluation, we use 20 different

benchmarks (see Table I) across six categories in the MiBench

benchmark suite [7]. All benchmarks are compiled with the

VPO compiler [8], using the large dataset option.

TABLE I
MIBENCH BENCHMARKS

Category Applications

Automotive Basicmath, Bitcount, Qsort, Susan

Consumer JPEG, Lame, TIFF

Network Dijkstra, Patricia

Office Ispell, Rsynth, Stringsearch

Security Blowfish, Rijndael, SHA, PGP

Telecomm ADPCM, CRC32, FFT, GSM

We implemented an RTL description of a 5-stage in-order

processor including 16kB 4-way set-associative instruction and

data caches [9] with 32B line size. Although a simple pipeline

is used for the evaluations, our technique can be applied to

more complex pipelines. The RTL implementation is synthe-

sized in Synopsys Design Compiler [10] using a commercial

65-nm low-power process technology with standard cells and

SRAM blocks. A multi-VT design approach is used both in

the SRAM blocks and in the logic cells to ensure reasonable

performance with low leakage power [11]. In addition, clock

gating is used to reduce switching energy when the circuits

are idle. The layout work is done in Cadence Encounter [12].

The SRAM blocks and the processor core are placed in a

similar manner (see Fig. 6) to a trial layout of a commercial

processor [13]. The placed and routed implementation meets

the timing constraint for a 400-MHz clock rate, assuming the

worst-case process corner, a supply voltage of 1.1 V, and

125◦C. The layout is verified using small benchmarks from

the EEMBC benchmark suite [14]. We then use the power

analysis of Synopsys PrimeTime PX [15] to extract energy

values of the L1 DC operations and the static energy from the

Fig. 6. Layout of a 5-stage in-order processor with 16kB 4-way set-
associative instruction and data caches.

RC-extracted netlist. The energy values, which are obtained

using the nominal process corner, a supply voltage of 1.2 V,

and 25◦C, are then used in the SimpleScalar simulator [16],

which is modified to simulate a 5-stage in-order processor

with the same cache parameters as the implemented ones. The

access time in terms of cycles assumed for each memory in the

hierarchy is 1, 12, 120 for the L1 cache, L2 cache, and main

memory, respectively. The simulator calculates the activities

(loads, stores, cycles etc.) for the MiBench benchmark suite

until completion. The final energy values are calculated from

these activities.

B. L1 DC Energy Values

The L1 DC consists of four 1024x32b-mux8 4kB SRAM

blocks for the data arrays and three 128x32b-mux4 512B

SRAM blocks for the tag arrays. The reason for using three

SRAM blocks for the tag memories is that each tag array

consists of 20 bits and one additional bit for valid. As a

result, four tag arrays together represent 84 bits, which can

be accommodated in three 32b SRAM blocks. The remaining

logic is built with standard cells. Table II shows the energy

dissipated for reading and writing a single data (Table IIa)

and tag (Table IIb) memory. Read and write internal energy

is the fixed energy that is dissipated during read and write

operations, respectively. Each SRAM block has four main

peripheral pin types: Address (A), Output (Q), Data in (D),

and Mask (M). Logic transitions that occur on any of the A,

D, and M pins cause some internal energy to be dissipated

in the SRAM blocks. As far as Q, energy is dissipated when

driving an output load. The energy due to switching on the A

pins is higher compared to the other peripheral pins. Hence,

we simulated the switching using SimpleScalar on the 20

MiBench applications. The A pins on average switch for 34%

of all load operations. For the other pins, we assume all of

them switch on an operation.

305

TABLE II
SRAM BLOCK READ AND WRITE ENERGY

1024x32b-mux8 Energy

Read internal 23.20 pJ

A[11:0] 2.05 pJ

Q[31:0] 1.10 pJ

Clock 0.15 pJ

Read total 26.50 pJ

Write internal 22.00 pJ

A[11:0] 2.05 pJ

D[31:0] 2.00 pJ

M[31:0] 1.00 pJ

Clock 0.15 pJ

Write total 27.20 pJ

(a) Single data memory

128x32b-mux4 Energy

Read internal 17.30 pJ

A[6:0] 0.92 pJ

Q[31:0] 0.75 pJ

Clock 0.13 pJ

Read total 19.10 pJ

Write internal 14.00 pJ

A[6:0] 0.92 pJ

D[31:0] 2.00 pJ

M[31:0] 0.60 pJ

Clock 0.13 pJ

Write total 17.60 pJ

(b) Single tag memory

The energy estimation has been done in such a way that

the overall energy savings due to the speculation technique are

somewhat pessimistic. While the speculation technique mainly

saves data array energy, there is also energy dissipated in other

parts during a load operation, e.g., in the peripheral circuits.

For the peripheral circuits, we assumed each combinatorial

node switches during a read or write operation. As a result,

the ratio of the data array energy compared to read energy

becomes less. The peripheral circuits consist of the least

recently used (LRU) replacement unit, the cache controller,

and the remaining multiplexers. An arbiter is used during

misses to control whether the instruction or the data cache can

access the next level in the memory hierarchy. For the DTLB,

we used a 16-entry fully-associative translation structure; again

we pessimistically calculated the energy, assuming that all

combinatorial nodes switch. These energy values are shown

in Table III. Using the four equations below we obtain the

final energy values, see Table IV.

Eread = 4×Edata read + 3×Etag read + Eperipheral (1)

Ewrite = 1×Edata write + 3×Etag read + Eperipheral (2)

Emiss no wb = Etag write + 8×Edata write + 8×Earbiter (3)

Emiss wb = Emiss no wb + 8×Edata read + 8×Earbiter (4)

TABLE III
L1 DC PERIPHERAL AND DTLB ENERGY

Unit Energy

LRU 12.1 pJ

Other peripherals 6.7 pJ

Arbiter 2.0 pJ

DTLB 17.5 pJ

TABLE IV
L1 DC ENERGY VALUES FOR MAIN OPERATIONS

Operations Energy

Read 182.10 pJ

Write 103.30 pJ

Idle (per 2.5-ns cycle) 0.75 pJ
(leakage+clock network)

Miss without writeback (miss no wb) 251.20 pJ

Miss with writeback (miss wb) 479.10 pJ

V. RESULTS

Since the proposed technique is speculative, it is essential to

keep the speculation success ratio high, otherwise the energy

savings can be very limited. On a speculation success, we

eliminate the read energy in three data arrays, that is, 79.5 pJ.

On a speculation failure for the tag, there is an extra energy

cost of 57.3 pJ; this is the energy required to access all the tag

arrays. In addition, a speculation failure for the DTLB costs

an extra 17.5 pJ.

A. Address Offset Bitwidth and Energy Savings

Given the energy values for speculation outcomes, it is

possible to analyze the energy savings for different address

offset bitwidths. We would expect that for larger address offset

bitwidths there is a higher chance of carry-out propagation,

hence the energy savings will be limited or even nonexistent.

Note that in order to speculate using address offsets that are

wider than the line offset, which is five bits for our cache

design, the OR-based fast address calculation is needed as

explained in Sec. III. We found that the OR-based speculation

usually has a very low success ratio improvement over just

using the speculative line index.

n
e
g

z
e
ro

1
−

b
it

2
−

b
it

3
−

b
it

4
−

b
it

5
−

b
it

6
−

b
it

7
−

b
it

8
−

b
it

9
−

b
it

1
0
−

b
it

1
1
−

b
it

1
2
−

b
it

1
3
−

b
it

1
4
−

b
it

1
5
−

b
it

L
1
 D

C
 l
o
a
d
 e

n
e
rg

y
 s

a
v
in

g
s
 (

%
)

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

2626

Energy saved in data arrays

Energy lost in tag arrays Energy lost in DTLB

Overall energy savings

Fig. 7. The impact of address offset bitwidth on L1 DC load energy.

Fig. 7 shows, for different address offset bitwidths, how

much L1 DC load energy is saved on speculation successes

and how much energy is lost on failures. The figure also shows

the overall L1 DC load energy reduction. The energy values

are normalized to the total energy dissipated by load operations

in the L1 DC, since the speculation scheme is only applied

for the load operations. neg denotes the negative offsets up to

five bits, and zero denotes the offsets that are zero. For the

positive offsets that are wider than four bits, it is not possible

to achieve any overall energy savings, so speculation should

not be attempted under these circumstances. This is expected

306

as a 32B cache line size results in a 5b line offset and address

offsets wider than four bits will therefore have a high chance

of causing carries to propagate to the line index. The greatest

energy reduction is associated with the zero offsets (26%)

because they cannot cause speculation failures and because

zero-offset load operations are common. For the selected offset

range (negative 5b to positive 4b offsets), the total load energy

is reduced by 30.7% as shown in Fig. 8.

n
e

g
&

z
e

ro

1
−

b
it

2
−

b
it

3
−

b
it

4
−

b
it

A
g

g
re

g
a

te
 L

1
 D

C
 l
o

a
d

 e

n
e

rg
y
 s

a
v
in

g
s
 (

%
)

25

26

27

28

29

30

31

Fig. 8. Aggregate energy savings for different ranges of address offset
bitwidths used for speculation. For example, “neg&zero” represents all
negative offsets and the zero offset, while “1-bit” represents the aggregate
of “neg&zero” and the positive 1b offset.

Fig. 9 shows the proportion of load operations that cor-

respond to speculation success and failure, for the selected

offset range of negative five bits to positive four bits. On

average, speculation is used for 73.8% of the total number

of load operations, since 26.2% of the loads have an offset

outside the selected range. The speculation has a 97% success

ratio, which translates into having 71.9% of all load operations

accessing the tags early. Only 1.9% of the load operations

cause speculation failures in the tag memories, and 0.2%

cause speculation failures in the DTLB. Due to the carry

propagation in the address calculation, a DTLB access failure

always occurs together with a tag access speculation failure.

B. Overall L1 DC Energy Savings

Fig. 10 shows the overall L1 DC energy savings, which

depend on the ratio of load energy to the total L1 DC energy,

i.e., the sum of idle, load, store, and miss energy. It should be

noted that the relation between idle, store, and miss energy in

the L1 DC that uses our speculation technique is the same as

in a conventional L1 DC. The presented load energy accounts

for the total energy reduction resulting from our speculation

technique, including the energy saved in data arrays and the

energy lost in tag arrays and DTLB. On average, the L1 DC

energy is reduced by 24%.

Detecting cache misses earlier, thanks to speculation suc-

cesses on L1 DC misses, improves execution time by 0.1%.

This is expected considering that only one cycle of a 12-cycle

miss penalty is saved. Thus, this performance improvement has

a negligible impact on the idle energy. Nevertheless, this is an

optimization that the speculative tag access approach enables.

a
d
p
c
m

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

la
m

e

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

rs
y
n
th

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
v
e
ra

g
e

A
tt

e
m

p
te

d
 S

p
e

c
u

la
ti
o

n
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Successful speculations Speculation fails

Fig. 9. Speculation successes and failures as compared to the total number
of load operations.

a
d

p
c
m

b
a

s
ic

m
a

th

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

la
m

e

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

rs
y
n

th

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
v
e

ra
g

e

L
1

 D
C

 E
n

e
rg

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Idle energy Miss energy Store energy Load energy

Fig. 10. Total energy of an L1 DC using the new speculation technique. The
energy shown is normalized to a conventional L1 DC.

VI. RELATED WORK

Inoue et al. propose a way-prediction technique to access

only one tag and data array of a set-associative cache [17].

Using a table, which is addressed with the line index, this

technique accesses the last way that was a hit for a given

line index. This technique also depends on the possibility of

calculating the line index earlier in the pipeline. Since the

cache access happens in the L1 DC access stage, there is a one-

cycle execution time penalty for each prediction failure. Even

though this technique works relatively well with instruction

caches, it increases the data cache access time by 12.5%. Our

technique does not incur any execution time penalty.

307

Nicolaescu et al. propose to use a 16-entry fully-associative

table to store way information of the last accessed lines [18].

The table is accessed in the stage before the data cache access,

with a fast address calculation scheme based on Alpha 21264.

If there is a match in the table, only one data cache way is

accessed. The addition of the 16-entry fully-associative circuit,

which has a complexity similar to a DTLB, incurs a significant

area and power overhead. This additional hardware will cancel

out some of the energy benefits. Our technique is less invasive

as it only requires a few additional logic gates.

Fang et al. propose to exploit software semantics to elim-

inate unnecessary accesses to data ways [19]. The MSB of

the virtual address is stored together with the physical address

for each cache line. This bit is compared with the MSB of

the virtual address in parallel with the address translation

during a load operation. If there is a mismatch, the discharge

of the SRAM cells and the sense-amplifier operations of the

corresponding data arrays are disabled. The disadvantages are

that the technique requires a customized SRAM implementa-

tion and that the table read and MSB bit comparison must

be done in parallel with the precharge and decode of the

SRAM arrays, making the technique dependent on technology

and implementation style. In addition, handling of the virtual

memory system gets complex. Our technique does not require

any customized SRAM implementation and does not affect the

handling of the virtual memory system.

Zhang et al. propose storing the least significant four bits

of each tag for all the ways in the cache, in a so-called

halt tag [20]. During a cache access, for each way a fully-

associative search is done in the halt tag arrays. If there

is no match, the discharge of the bitlines and the sense-

amplifier operation are halted. This technique also requires a

customized SRAM implementation. Furthermore, the critical

path of the halt signal goes through a relatively big fully-

associative memory that should complete its operation before

the line index decoding, making the technique impractical.

Austin et al. propose to use fast address calculation to access

the entire L1 DC earlier in the pipeline, to reduce execution

time by resolving the data dependencies earlier [6]. They use

OR-gates to speculatively compute the tag and line index. Data

arrays are accessed assuming that the column multiplexing

of the SRAM blocks are not on the critical path. Hence,

the addition operations for the line offset can be done in

parallel with the set index decoding and applied to the column

multiplexers. While this technique improves performance, it

increases the L1 DC energy since the whole cache needs

to be accessed again on speculation failures. Furthermore, it

requires a customized SRAM implementation to apply column

multiplexing asynchronously. The column multiplexing factor

is determined by speed and area requirements, hence it might

not be as wide as the line offset, which will reduce the

proportion of successful speculations.

VII. CONCLUSION

We have proposed a low-overhead speculation technique

that significantly reduces the energy dissipated in set-

associative L1 data caches. Our speculative tag access scheme

enables a processor to serially access a set-associative L1 DC

for improved energy efficiency, without causing any execution

time penalty. The technique can be applied to any type of

L1 DC; either custom designed or synchronous SRAM block

based. The technique on average reduces the L1 DC energy

by 24%, at almost no additional hardware cost.

The benefit of the speculative tag access proportionally

increases with increasing cache line size, since the relative

size of the tag arrays compared to the data arrays will become

smaller. In addition, the line offset will become wider so there

will be less carry-out propagation to the line index portion,

which leads to a higher proportion of successful speculations.

REFERENCES

[1] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield, “Efficient embedded computing,”
IEEE Computer, vol. 41, no. 7, pp. 27–32, Jul. 2008.

[2] C. McNairy and D. Soltis, “Itanium 2 processor microarchitecture,”
IEEE Micro, vol. 23, no. 2, pp. 44–55, 2003.

[3] A. Milenkovic, M. Milenkovic, and N. Barnes, “A performance eval-
uation of memory hierarchy in embedded systems,” in Proc. 35th

Southeastern Symp. on System Theory, Mar. 2003, pp. 427–431.
[4] M. Cekleov and M. Dubois, “Virtual-address caches. Part 1: problems

and solutions in uniprocessors,” IEEE Micro, vol. 17, no. 5, pp. 64–71,
1997.

[5] Enabling Mobile Innovation with the CortexTM-A7 Processor, TechCon,
White Paper, ARM, Oct. 2011.

[6] T. Austin, D. Pnevmatikatos, and G. Sohi, “Streamlining data cache
access with fast address calculation,” in Proc. 22nd Annual Int. Symp.

on Computer Architecture, Jun. 1995, pp. 369–380.
[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and

R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. Int. Workshop on Workload Characterization,
Dec. 2001, pp. 3–14.

[8] M. E. Benitez and J. W. Davidson, “A portable global optimizer and
linker,” in ACM SIGPLAN Conf. on Programming Language Design

and Implementation, Jun. 1988, pp. 329–338.
[9] V. Saljooghi, A. Bardizbanyan, M. Själander, and P. Larsson-Edefors,

“Configurable RTL model for level-1 caches,” in Proc. IEEE NORCHIP

Conf., Nov. 2012.
[10] Design Compiler R©, v. 2010.03, Synopsys, Inc., Mar. 2010.
[11] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design and

optimization of low voltage high performance dual threshold CMOS
circuits,” in Proc. Design Automation Conf., Jun. 1998, pp. 489–494.

[12] Encounter R© Digital Implementation (EDI), v. 10.1.2, Cadence Design
Systems, Inc., Jul. 2011.

[13] T. R. Halfhill, “ARM’s midsize multiprocessor,” Microprocessor, Oct.
2009.

[14] Embedded Microprocessor Benchmark Consortium. [Online]. Available:
http://www.eembc.org

[15] PrimeTime R© PX, v. 2011.06, Synopsys, Inc., Jun. 2011.
[16] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for

computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, Feb.
2002.

[17] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative
cache for high performance and low energy consumption,” in Proc. Int.

Symp. on Low Power Electronics and Design, Aug. 1999, pp. 273–275.
[18] D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero, “Fast

speculative address generation and way caching for reducing L1 data
cache energy,” in Proc. Int. Conf. on Computer Design, Oct. 2006, pp.
101–107.

[19] Z. Fang, L. Zhao, X. Jiang, S.-l. Lu, R. Iyer, T. Li, and S. E. Lee,
“Reducing L1 caches power by exploiting software semantics,” in Proc.

ACM/IEEE Int. Symp. on Low Power Electronics and Design, Jul. 2012,
pp. 391–396.

[20] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache
for low-energy high-performance systems,” ACM Trans. Archit. Code

Optim., vol. 2, no. 1, Mar. 2005.

308

