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Abstract

Large Eddy Simulation and Direct Numerical Simulation are applied

to study the turbulent flow field in a wavy channel at two Prandtl num-

bers, Pr = 0.71 and Pr = 3.5, and Reynolds number Reb = 10 000. The

characteristics of the separated shear layer and the near wall recirculat-

ing zone are discussed in relation to the turbulent heat transfer. Special

attention is paid to the behavior of the flow and thermal boundary layers

and various turbulent characteristics and their effects on the distribution

of the Nusselt number and friction coefficient in the separation and reat-
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1. Introduction 2

tachment regions. The results indicate that the thickness of the thermal

boundary layer rather than the turbulent fluctuations has a significant

effect on the local variation of the averaged Nusselt number. The results

are compared with Direct Numerical Simulation results of a plane channel

at the same Reynolds number.

Keywords: Wavy channel, Plane channel, Turbulent heat transfer, Bound-

ary layer, LES

1 Introduction

In various heat transfer devices, optimization of wall heat transfer is a key re-

quirement to make the devices more compact or effective. The use of the surface

protuberances is a passive heat transfer augmentation method and is based on

developing boundary layers or streamwise fluctuations, creating swirl or vortices

and flow destabilization or turbulence intensification . One typical technique is

to use corrugations (waves) on the wall. Providing considerable heat transfer

enhancement with a relatively low pressure drop as well as the simplicity of the

manufacture method make these geometries more attractive than other passive

enhancement methods such as ribs or vortex generators. The periodic changes of

pressure gradient and the streamline curvature effects produce turbulence struc-

tures. The corrugated wall enhances heat transfer by destroying or decreasing

the thermal boundary layer thickness and increasing the bulk flow mixing . The

recirculating bubble in the wavy part of the channel and the separated shear

layer formed above the separation point raise the turbulence intensity near the

wall. The corrugated channels can be considered to be fully corrugated (fully-
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wavy or sinusoidal) or half corrugated channels. In a fully corrugated channel,

the corrugation is applied to the entire channel length whereas in a half corru-

gated channel, part of the channel is corrugated and part of it remains smooth

(see figure 1). The half corrugated channel is chosen as the geometry in the

present study (referred to as the wavy channel).

Various studies have been conducted on turbulent flow over the fully cor-

rugated walls [1]-[5]. Hudson et al. (1996) [1], Cherukat et al. (1998) [2] and

Choi et al. (2005) [3] studied the turbulent flow in a fully wavy channel with

experimental, Direct Numerical Simulation (DNS) and Large Eddy Simulation

(LES) methods, respectively. They provided an extensive study of different tur-

bulent flow characteristics such as Reynolds shear stress, turbulent intensities

and turbulence production over a wave with a wave amplitude to wave length

ratio of 0.05. Calhoun et al. (2001) [4], Dellil et al. (2004) [5] and Yoon et al.

(2009) [6] carried out numerical investigations of the effect of the wave ampli-

tude in a fully wavy channel. They used different wave amplitude to wave length

ratios and compared the turbulent flow patterns, the location of the separation

and reattachment points and the mean distributions of heat transfer and pres-

sure drop along the channel. As it has been mentioned in the literature review,

most of the previous studies have been concentrated on the flow in a fully wavy

channels, whereas in the present study a half corrugated channel is considered

as the computational domain (see figure 1). Comparing the results of both

geometries, some similarities and differences can be identified. For the wavy

channels with identical wave amplitudes (fully and half corrugated), a small

bubble appears at the bottom of the wave, where its location is nearly the same
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for both cases. In both cases, the peak values of the averaged Nusselt number

and friction coefficient distributions occur around the separation and reattach-

ment points. However, in half corrugated channel (the present study), due to

the presence of the smooth part of the channel after the wave, the boundary

layer formed after the reattachment point continues downstream of the wave,

while for the fully wavy channel the boundary layer continues only until the

next wave. The available studies concentrated mainly on the investigation of

turbulent flow field whereas the present study pays detailed attention to both

turbulent flow and temperature fields. We aim here to provide insight into the

characteristics of the flow and heat transfer in a wavy channel by using Large

eddy simulation (LES) and Direct Numerical Simulation (DNS). This study

particularly discusses the variation of the temperature and velocity boundary

layers for two different Prandtl numbers and their effects on the heat transfer.

The results are also compared with the plane channel flow.

The paper is organized as follows. A presentation of the numerical method,

boundary conditions, the turbulence modelling, the computational domain and

the grid is given in section 2. Section 3 is devoted to a description of the results

including an analysis of the global, time-averaged and instantaneous results for

both plane and wavy channels. Some conclusions are drawn in the final section.
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2 The modeling methodology

2.1 Governing equations

The Navier-Stokes and energy equations for an incompressible viscous flow read:

∂ūi
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1
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∂
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x1, x2 ,x3 (x, y, z) denote the Cartesian coordinate system, where the x1 axis is

aligned with the flow direction, the x2 axis is the wall-normal direction and the

x3 axis is the spanwise direction. δ1i is the streamwise component of Kronecker

delta.

The periodic boundary condition is employed in the streamwise and spanwise

directions for both the plane and the wavy channel. Using the periodic boundary

condition for the velocity and temperature requires special modifications in the

Navier-Stokes equation in the x direction and in the energy equation. The first

term on the right-hand side of equation 1 represents the streamwise driving

pressure gradient. For the plane channel, the Reynolds number based on the

wall friction velocity (Reτ ) is prescribed, so β is equal to 1. For the wavy

channel (see figure 1), to achieve the desired Reynolds number based on the

bulk velocity (Reb), β is defined on the basis of the flow rate and is modified

in each time step. The last term on the right-hand side of the energy equation

provides the temperature gradient in the streamwise direction. For the constant

heat flux (qw) condition on the wall, γ is obtained based on the inlet and outlet
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energy balance as γ = qw

ρuref Hcp
where uref is the wall friction velocity (uτ ) for

the plane channel and the bulk velocity (ub) for the wavy channel.

For the wavy channel, the symmetry boundary condition is used for the up-

per wall and the no-slip condition and uniform heat flux are employed for the

lower wall. For the plane channel, the no-slip condition and uniform heat flux

are applied at both the upper and lower walls.

2.2 Model description

The present study uses the WALE turbulence model [8] as the subgrid scale

model which reads:

νsgs = (Cs∆)2
(sd
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+

∂ūj
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(4)

where Cs = 0.325, ḡij is the velocity gradient tensor and sd
ij is the traceless

symmetric part of the square of velocity gradient tensor.

2.3 Numerical method

An incompressible finite volume code based on an implicit, fractional step tech-

nique with a multigrid pressure Poisson solver and a non-staggered grid arrange-

ment is employed [9]. The second order Crank-Nicolson scheme is used for time

discretization. The spatial discretization is based on the second-order central

differencing scheme.
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2.4 Computational domain and grid influence

The original domain is introduced as a periodic corrugated channel. To reduce

computational costs, only one pitch of the domain is regarded as the compu-

tational domain. A two-dimensional schematic view (in the x − y plane) of

the three-dimensional computational domain and the corresponding geometri-

cal parameters are displayed in figure 1 and table 1, respectively. The shape

of the lower wall in the wavy part is given by y = −a exp(−((7x− x0)
2)/(2δ2)),

where a = 0.14, x0 = 5.907 and δ = 1.8219. The Reynolds number based on

the bulk flow velocity and channel height is Reb = ubH/ν = 10 000. All the

results presented below are normalized with bulk flow velocity, channel height,

kinematic viscosity and bulk temperature (Tb = qw/(ubρcp)). Simulations are

performed for two Prandtl numbers, Pr = 0.71 and 3.5. The time step is cho-

sen as ∆t = 0.005. It should be mentioned that three different time steps,

∆t = 0.005, ∆t = 0.01 and ∆t = 0.015, have been tested in the present study

and it was observed that the accuracy of the results becomes weaker, when a

larger value of ∆t is employed. Therefore, ∆t = 0.005 is finally chosen as the

proper time step. Based on the selected time step, the maximum local CFL is

less than 0.85 for all the simulations performed.

To find the proper grid, computations were made for four different grids. An

overview of the grid resolutions is given in table 2. For all the grids presented,

the y+ for the near wall nodes is less than 1. Figure 2 displays a two-dimensional

schematic view in the x − y plane for the generated grid in the computational

domain. The grid is displayed for every 4th cell. The global averaged Nusselt

number, 〈Nu〉, and friction coefficient, 〈Cf 〉, for the different grids are compared
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in table 2 and, as can be seen, almost identical results are obtained for all the

grids. The difference of 〈Cf 〉 and 〈Nu〉 are 2.8% between grids 1 and 3 and

4.8% and 1.7% between grids 1 and 4, respectively.

Figure 3 compares the local variation of 〈Nu〉 and 〈Cf 〉 along the lower wall

for four grids at Pr = 0.71. These results also reveal that the effect of using

different grids is small. In grid 4, the grid resolution is the same as in grid

2 but considering two pitches as the computational domain and, as seen, the

results are very close. Hence, one pitch is chosen for the computational domain.

Grid 3 is selected as the computational grid at Pr = 0.71. Figure 4 compares

the streamwise variation of 〈Nu〉 along the lower wall for two grids, grid 3 and

grid 5, at Pr = 3.5. In grids 3 and 5, the number of nodes in the x, y and z

directions is identical. Two different stretching factors in the y direction are

considered for grids 3 and 5, where in grid 5, the number of nodes from the wall

to y − ywall = 0.005 is four times more than in grid 3. The sizes of the cells

near the upper boundary of the channel (the coarsest cells) are ∆y = 0.0225

and ∆y = 0.025 for grids 3 and 5, respectively. Good agreement is observed

between the grids 3 and 5 with less than 3% differences in major parts with a

maximum difference of 15% occurring at the location of peak Nu number. Grid

5 is selected as the computational grid for Pr = 3.5.

Figure 5 compares the streamwise distributions of 〈Cf 〉 and 〈Nu〉 for the

LES solution with the DNS results. In figure 5 (a), 〈Cf 〉 obtained by LES

for two grid resolutions 170 × 198 × 64 (grid 3 in table 2) and 170 × 82 × 64,

referred as LES1 and LES2, are compared with the DNS results of the same

grid resolution as grid 3. As can be seen, by increasing the number of nodes in
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the y direction the LES results become closer to the DNS one. For the same

grid resolution (grid 3), the LES predictions are in a good agreement with the

DNS, which implies that the accuracy of the LES calculations is good.

As mentioned above, the flow is assumed to be periodic in both the x and

z directions. Thus, the extent of the domain in the streamwise and spanwise

directions should be chosen to be sufficiently large so that the spatial correlation

of the velocity fluctuations drop to values close to zero. This indicates that

the largest scales of turbulent structures are not affected by the finite domain

size. Figure 6 presents the spanwise two point correlation, which is defined

as Bww(ẑ) = 〈w′(z)w′(z − ẑ)〉/〈w2
rms〉. This figure compares the normalized

two point correlation at three wall normal locations for two channel widths,

zmax = 1 (using twice as many cells in the spanwise direction) and zmax = 0.5

(only half of the channel is plotted). It can be observed that for the channel

with zmax = 1, the velocity correlations are very small before z = 0.25 and drop

to values below 0.1. Figure 7 provides the streamwise distributions of 〈Cf 〉 and

〈Nu〉 for two channel width zmax = 1 and zmax = 0.5. Comparing the results for

two different channel widths, a close agreement can be identified. For both 〈Cf 〉

and 〈Nu〉 the difference of the results are less than 4− 5%. Finally, zmax = 0.5

is chosen as the extent of the computational domain in the z direction.
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3 Results and Discussion

3.1 Plane channel

To verify the accuracy of the computational method, a DNS solution of the

turbulent flow and heat transfer is performed for a plane channel flow. The

size of the domain is chosen as xmax = 3.2, ymax = 2 and zmax = 1.6. The

grid is geometrically stretched in the y direction with a stretching factor of

1.15 from the wall to the symmetry line. The near-wall nodes are located at

y+ ≈ 1. The flow variables are normalized by the channel half height (H), the

friction velocity (uτ ), the kinematic viscosity (ν) and the friction temperature

(Tτ = qw/(uτρcp)). The Prandtl number is chosen as 0.71 and the Reynolds

number based on the friction velocity and channel half height is Reτ = 395.

The present DNS results are compared with the DNS results of Kawamura

et al. [7] for plane channel flow at Reτ = 395. The grid resolution and the

mean flow variables obtained, such as the bulk velocity (ub), the bulk Reynolds

number (Reb), the Nusselt number (〈Nu〉) and friction coefficient (〈Cf 〉) for

both studies, are summarized in table 3.

Figure 8 presents the mean velocity distribution (8 (a)), the root mean

squared velocity fluctuations (8 (b)) and the wall normal turbulent heat flux

(8 (c)). Comparison of the results with the DNS results of Kawamura et al. [7]

shows good agreement.
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3.2 Wavy channel

3.2.1 Global characterizations

Figure 9 presents the time and spanwise averaged streamlines in the wavy part

of the channel, which displays a recirculation region formed at the bottom of

the corrugation. Near the upper boundary of the channel, the streamlines are

almost parallel and similar to those for the plane channel flow. As can be

identified from the streamwise distribution of the averaged pressure in figure

10 (a), the presence of an adverse pressure gradient in the first half of the

corrugation decreases the flow acceleration in the boundary layer near the wall,

which leads to flow separation at x = 0.4. The decreasing pressure accelerates

the flow in the second half of the corrugation, and the flow reattaches to the wall

at x = 1.1. It should be noted that the pressure in Figure 10 (a) is periodic.

The physical pressure, pphys, is obtained as pphys = P − βx, see equation 1.

Figure 10 (b) presents the root mean square of the pressure fluctuations (Prms)

at the wall in the wavy part of the channel. The maximum value is found near

the reattachment point, and it corresponds to the location of the maximum of

the mean pressure distribution (figure 10 (a)). The high pressure fluctuations

around the reattachment point are probably a result of the impingement-like

behavior at the reattachment point.

The streamwise distributions of the local Nusselt number, (〈Nu〉), and fric-

tion coefficient, (〈Cf 〉), for Pr = 0.71 and 3.5 are presented in figures 11 (a) and

(b). Figure 11 (a) compares the maximum and minimum locations of the 〈Nu〉

and 〈Cf 〉 along the channel wall. All the values are scaled by the magnitudes
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at x = 0 (〈Nu0〉 and 〈Cf0〉). The presence of the accelerated flow after the

reattachment point and the flow impingement to the wall increase both 〈Nu〉

and 〈Cf 〉 after the reattachment point. As can be observed from figure 11 (a),

the maximum values of 〈Nu〉 and 〈Cf 〉 are located at nearly the same locations

(downstream of the reattachment point, at x = 1.282 and at x = 1.325, respec-

tively). The minimum value of 〈Nu〉 occurs near the separation point, x = 0.4.

In the smooth part of the channel, x > 1.7, both the 〈Nu〉 and 〈Cf 〉 distri-

butions become almost constant and slightly larger than those for the plane

channel (7% and 13% percent for Pr = 0.71 and 3.5, respectively).

Figure 11 (b) compares the distribution of 〈Nu〉 for Pr = 0.71 and Pr = 3.5.

The results of the plane channel for both Prandtl numbers are also included,

the DNS results are presented for Pr = 0.71 and the analytical results of the

Colburn equation (〈Nu〉 = 0.023Re
4/5

D Pr1/3) are presented for both Pr = 0.71

and 3.5. This figure indicates that the distribution of 〈Nu〉 and also the location

of the maximum and minimum points for both Prandtl numbers are almost the

same (the minimum occurs at x = 0.45 for Pr = 3.5; note that the size of

computational cell is ∆x = 0.022). However, due to a thinner thermal boundary

layer near the wall at Pr = 3.5 (see figure 21), the averaged Nusselt number is

higher in this case than for Pr = 0.71. The local comparison of 〈Nu〉 in both

Prandtl numbers shows that the presence of corrugation in the channel causes

different effects near the separation and reattachment points. For instance, the

reduced magnitude between x = 0 and the separation point (x = 0.4) is almost

the same and about 40% while, between the reattachment point (x = 1.1) and

the end of the pitch (x = L), the increase is 21% and 36% for Pr = 0.71 and
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3.5, respectively.

Beside the variations of the velocity and temperature boundary layers, differ-

ent turbulent characteristics also affect the heat transfer (or 〈Nu〉) and pressure

drop (or 〈Cf 〉). Now the questions arise which of these parameters are more

effective and whether these effects are the same for the two Prandtl numbers.

To respond to these questions, a detailed investigation of the flow and thermal

patterns in different parts of the channel will be described in the next sections.

3.2.2 Flow field characterizations

Figure 12 presents the normal distributions of the averaged velocity before the

separation point, in the recirculation zone and after the reattachment point

in the near wall region (figures 12 (b)-(d)). The cross sections are displayed

in figure 1. The velocity distributions before the separation point, presented

for the entire height of the channel, are also included in figure 12 (a). The

results are compared with the DNS results of the present study for the plane

channel flow. As is seen, before the separation point, 0 < x < 0.3, the velocity

profiles are very similar. The presence of the recirculation zone near the wall

for 0.4 < x < 1, gives negative velocities very close to the wall. For x > 1.1, the

flow entirely moves forward again and the velocity is positive in the entire cross

section. Considering the velocity profiles before the separation point (figure 12

(b)) and after the reattachment point (figure 12 (d)), two distinct regions can be

recognized near the wall for the velocity profiles in each cross section, i.e. a high

wall-normal velocity gradient very close to the wall (y−ywall . 0.02), described

as the inner region, and a low wall-normal velocity gradient (in comparison with
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the inner region), away from the wall that extend to the upper boundary of the

channel, described as the outer region.

Before the separation point, 0 < x < 0.3, the velocity gradient near the wall

and the thickness of the inner regions are nearly independent of the streamwise

direction; hence the boundary layer thickness is almost constant in this region.

After the reattachment point, the velocity distributions are similar to those

for the plane channel but with a different slope near the wall. For x = 1.1,

x = 1.2, x = 1.4 and x = 1.8, the inner regions extend up to y − ywall ≃ 0.01,

y−ywall ≃ 0.02, y−ywall ≃ 0.03 and y−ywall ≃ 0.05, respectively, which implies

that a new boundary layer is formed with increasing thickness downstream of

the reattachment point. It should be noted that the definition of an inner and

outer region of the boundary layer is relevant only to the cross sections before

the separation and after the reattachment points, (figure 12 (b)) and (figure 12

(d)), and does not include the sections inside the recirculation zone (figure 12

(c)).

Figures 13 (a), (b) and (c) present the contours of wall-normal velocity

fluctuation (〈v′2〉), the Reynolds shear stress (〈u′v′〉) and the production of

Reynolds shear stress (〈P12〉), respectively, in the wavy part of the channel.

From figure 13, a large region with high negative local values in 〈u′v′〉 and 〈P12〉

is observed in the separated shear layer. This region is located above the recir-

culation zone; it begins close to the wall near x = 0.4 and develops downstream

until almost the end of the domain. Considering the 〈v′2〉 and 〈u′v′〉 contours,

one can see that the minimum absolute values appear near the separation zone

while the maximum absolute values occur around the reattachment zone.
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To further clarify the location of the high turbulent content regions in figure

13, figure 14 presents the wall-normal distributions of 〈v′2〉, 〈u′v′〉 and 〈P12〉 for

both halves of the corrugation. The cross sections are displayed in figure 1. The

results are also compared with those of the plane channel flow. A maximum

point (absolute values) can be recognized in normal distributions of 〈v′2〉 and

〈u′v′〉. These peaks correspond to the shear layer created above the recirculation

bubble (see figure 13 (c)). The high wall-normal gradient of the streamwise

velocity, ∂〈u〉/∂y, increases the magnitude of the production term in this region,

which leads to an increase of the magnitude of the Reynolds shear stress in this

region. Around the separation point (14 (a) and (c)), the values of both 〈v′2〉

and 〈u′v′〉 are small and close to those in the plane channel, whereas in the

second half and close to the reattachment point (14 (b) and (d)), the near wall

values increase and become about five times higher than in the plane channel.

Considering figures 13 and 14, a small positive region can be recognized near

the wall for both 〈u′v′〉 and 〈P12〉, where for 〈u′v′〉 the thickness of the region

is almost constant in the streamwise direction, whereas for 〈P12〉 the thickness

depends on the streamwise location. These positive regions are more clearly

shown in figure 15. Regions of positive shear stresses have also been reported in

Hudson et al. [1] for the fully wavy channel. They noted that the positive values

of 〈u′v′〉 disappear if 〈u′v′〉 is calculated in a s−n coordinate system aligned with

the wall [1]. In the present study, the shear stresses were transformed to the s−n

coordinate system but no significant difference was observed. Since the positive

values of 〈u′v′〉 and 〈P12〉 appear in different locations (see figure 15 (a) and (b)),

the positive values of 〈u′v′〉 must be produced by another source term. Figure
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16 presents the averaged wall-normal distributions of the convection (〈C12〉),

production (〈P12〉), diffusion (〈D12〉) and pressure-strain (〈Π12〉) terms of the

shear stress equation at the reattachment point (x = 1.1). The distributions are

plotted for both the entire cross-section (figure 16 (a)) and close to the wall (16

(b)). According to these figures, a positive region is created close to the wall

both for the pressure-strain and the convection terms, but the pressure-strain

is much larger than the convection. Hence it can be concluded that the positive

shear stress is created by the pressure-strain term. This is further confirmed in

figure 17 which presents contours of the pressure-strain and the convection terms

in the wavy part of the channel. As can be seen, a large positive region of the

pressure strain term appears around the reattachment point, which corresponds

to the region of positive 〈u′v′〉.

Figure 18 presents the streamwise distributions of maximum cross sectional

values for the normal Reynolds stresses (〈u′2〉, 〈v′2〉 and 〈w′2〉) and, as can be

seen, in all cases the maximum values appear around the reattachment point.

Comparison of these maximum values with the corresponding values of the plane

channel, displayed as three symbols on the right edge in figure 18, indicates that

the predicted values of 〈v′2〉 and 〈w′2〉 in the smooth part of the wavy channel

are close to those for the plane channel while, for 〈u′2〉, the values in the smooth

part the wavy channel are smaller than those in the plane channel.

3.2.3 Thermal field characterization

Figures 19 and 20 present the normal distributions of the averaged tempera-

ture for different cross sections in the streamwise direction at Pr = 0.71 and
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Pr = 3.5, respectively. The results are compared with the DNS results of the

present study for the plane channel flow. Similar to what was described for

the averaged velocity distributions, two distinct thermal regions appear in the

temperature distributions: one high gradient region close to the wall, as the

thermal inner region, and one almost constant gradient region, as the thermal

outer region. At Pr = 0.71 (figure 19), the maximum thickness of the thermal

inner region appears near the separation point (x = 0.4), which means that the

maximum thermal boundary layer thickness (or the minimum Nusselt number,

see figure 11) occurs near the separation point and that the thickness is also

greater than that for the plane channel flow, see figure 19 (a). The thickness

of the inner region starts to decrease when approaching the center of the cor-

rugation, which indicates the thinning of the thermal boundary layer in this

region and the minimum thickness (or maximum Nusselt number, see figure 11)

occurs near the reattachment point, see figure 19 (b). By a comparison of the

temperature profiles in both halves of the corrugation in figure 19, it is observed

that the decreasing rate of the thermal boundary layer thickness in the first half

of the corrugation (19 (a)) is higher than the second one (19 (b)). For instance,

the thicknesses of the inner region at x = 0.6 and x = 0.8 in the first half of

the corrugation are 0.05 and 0.025, respectively, while at x = 1 and x = 1.2

in the second half, they are almost the same and about 0.02. The averaged

Nusselt number distribution in figure 11 also reveals that the variation of the

Nusselt number between x = 0.6 and x = 0.8 is higher than between x = 1

and x = 1.2. Comparison of the results with the plane channel shows that the

thermal boundary layer near the reattachment point is about three times thin-
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ner than that for the plane channel. After the reattachment point, the thermal

boundary layer thickness increases again and, at x = 1.8, in the smooth part of

the wavy channel, the temperature gradient is very close to that for the plane

channel. At Pr = 3.5 (figure 20), the temperature distributions in the whole

channel and the behavior in the inner region for the cross sections between the

separation and reattachment points are the same as for Pr = 0.71. However,

the thermal boundary layer thickness is thinner (or the Nusselt number larger)

in all cross sections, see figures 20 and 11. It should also be mentioned here that

the definition of an inner and outer thermal layer is only relevant for the cross

sections before the separation and after the reattachment points and does not

include the sections inside the recirculation zone.

A detailed study of the thermal boundary layer behavior in various parts

of the wavy channel at Pr = 0.71 and Pr = 3.5 is presented in figures 21 (a)

and (b). According to the available definitions for the thermal boundary layer

over a flat plate, the location of the thermal boundary layer edge is defined by

δT = (〈T 〉 − 〈Tw〉)/(〈Tinf 〉 − 〈Tw〉), where 〈Tw〉 and 〈Tinf 〉 represent the wall

and farfield temperatures, respectively. According to this definition, δT = 0 and

δT = 1 represent the locations of wall and boundary layer edge, respectively.

The same definition is applied in the present study, but instead of 〈Tinf 〉, the

bulk temperature, 〈Tb〉, is used. Figures 21 (a) and (b) present the contours of δT

in the near wall region for the two Prandtl numbers Pr = 0.71 and Pr = 3.5,

respectively. The results predicted in this part confirm that the maximum

thickness of the thermal boundary layer appears around the separation point

and the minimum thickness occurs close to the reattachment point. These points
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are attributed to the locations of the maximum and minimum of the Nusselt

number, respectively (see figure 11). A comparison of the contours indicates

that, for both Prandtl numbers, the minimum and maximum thicknesses of

the thermal boundary layer appear at the same place near the separation and

reattachment zones. Thus, an increase in the Prandtl number decreases the

thermal boundary layer thickness in the whole channel. However, the effect of

the Prandtl number around the reattachment point is more significant than its

effect near the separation point.

Figures 22 (a) and (b) present contours of the wall normal turbulent heat

transfer and the corresponding heat transfer production (〈P2T 〉) at Pr = 3.5,

respectively. The wall normal heat transfer production is calculated as:

P2T = −〈u′

2u
′

i〉
∂〈T 〉

∂xi
− 〈u′

iT
′〉

∂〈u2〉

∂xi
(5)

As can be seen in figure 22, a high turbulent heat transfer region is identified

around the separation point, which is related to the detached shear layer at this

point. For both the wall normal heat transfer and its production, the maximum

values appear at the same locations and extend downstream nearly to the center

of the corrugation. More detailed features of the temperature fluctuations can

be found in figures 23 and 24. Figure 23 compares the root mean square of

temperature fluctuations (〈Trms〉) at four positions located at the separation,

the center of the recirculating zone, the reattachment and the smooth part of

the channel. It is observed that the temperature fluctuations are largest at the

separation point.

The streamwise variations of 〈Trms〉 at the wall for Pr = 0.71 and Pr = 3.5



3.2. Wavy channel 20

in the wavy part of the channel are compared in figure 24 (a). For both Prandtl

numbers, the maximum fluctuations appear around the separation point and the

Prandtl number has a strong impact on the maximum values of the fluctuations,

especially close to the separation point. Comparison of the values with the

corresponding RMS value of the plane channel, displayed as a symbol on the

right edge in figure 24 (a), indicates that employing the corrugations on the wall

significantly increases the temperature fluctuations near the wall. It should be

noted that, for a better comparison, all the values for Pr = 0.71 are multiplied

by a factor of five. According to the probability density function (PDF ) plot

(see figure 24 (b)), around the separation point, x = 0.4, the fluctuations are

stronger and have a wider range than those around the reattachment point,

x = 1.2. The values obtained for skewness and flatness at x = 0.4, x = 0.8,

x = 1.2 and x = 2 are −0.3697, 0.4425, −0.1897, −0.3951 and 4.1038, 2.4976,

2.6973, 2.6284, respectively. The flatness at x = 0.4 is about two times higher

than that at the other three points, which means that the fluctuations at x = 0.4

include some large values, whereas the fluctuations at x = 0.8, x = 1.2 and x = 2

are nearly in the same ranges (see figure 24 (b)).

Comparing the locations of the minimum and maximum Nusselt number

with the corresponding regions for the thermal turbulent parameters indicates

that, in spite of having a high content thermal fluctuation region around the

separation point, the minimum Nusselt number appears in this region. As

can be seen in figure 11, the maximum Nusselt number appears around the

reattachment point where the thermal boundary layer has its minimum thickness

while the thermal fluctuations have their minimum in this region. Thus, it can
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be concluded that the magnitude of the thermal turbulent fluctuations at the

wall are not correlated with the Nusselt number.

4 Conclusion

Numerical results of turbulent flow and heat transfer enhancement in a three-

dimensional periodic, fully developed wavy channel with the constant heat flux

boundary condition and Reb = 10 000 are presented. Large Eddy Simulation

(LES) and Direct Numerical Simulation (DNS) have been applied to solve the

flow and energy equations. The predicted results are compared with the DNS

results of the present study for the plane channel at Reτ = 395. In the present

study, the following conclusions are drawn:

1. The predicted results show that the maximum value of 〈Nu〉 and 〈Cf 〉

are located at nearly the same locations (downstream of the reattachment

point). The minimum value of 〈Nu〉 occur near the separation point.

2. Regions of large thermal turbulence fluctuations at the wall do not coincide

with large heat transfer.

3. The local comparison of 〈Nu〉 for Prandtl numbers 0.71 and Pr = 3.5

indicates that the presence of corrugation in the channel causes different

effects near the separation and reattachment points. The reduced magni-

tudes for both Prandtl numbers around the separation point are almost

the same and about 40%. For the reattachment point, there is an increase

of 21% and 36% for Pr = 0.71 and 3.5, respectively.
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4. Comparison of the effect of the thermal boundary layer and thermal tur-

bulent production on the local distribution of 〈Nu〉 shows that the maxi-

mum value of the Nusselt number appears around the reattachment point,

where the thermal boundary layer has its minimum thickness; the thermal

turbulent production is very small at this streamwise location.

5. The resolved shear stress, 〈u′v′〉, is – as expected – negative in the major

part of the domain. However, small regions of positive resolved shear

stress are found. In the literature it is argued that also in these regions

it stays negative when transformed to a s − n coordinate system aligned

with the corrugated wall. In the present work it is shown that also in this

coordinate system the resolved shear stress is positive.

6. It is found that the positive resolved shear stress is created by the pressure-

strain term in the transport equation for 〈u′v′〉.
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5 Tables

H height of channel 1

L channel pitch 3.68H

H1 corrugation height 0.2H

W width of channel 0.5H

Table 1: Geometrical parameters of the computational domain

Grid Grid1 Grid2 Grid3 Grid4 (two-pitch)

Node numbers 170 × 130 × 34 338 × 130 × 34 170 × 198 × 66 338× 130 × 34

∆x+
max 11 5.5 11 11

∆y+

min 0.25 0.25 0.25 0.25

∆z+
max 7.5 7.5 3.75 7.5

〈Cf 〉 4.17 × 10−3 4.23 × 10−3 4.29 × 10−3 4.38 × 10−3

〈Nu〉 53.6 48.8 52.1 52.7

Table 2: Comparison of different grid resolutions and the effect on the averaged

results. ∆x+
max, ∆y+

max and ∆z+
max are computed using uτ at x = 0.

Case Grid number 〈ub〉 Reb 〈Cf 〉 〈Nu〉

Present study 66 × 130 × 66 18.1 14200 6.1 × 10−3 35.9

Kawamura et al.[7] 258 × 130 × 258 17.7 14000 6.39 × 10−3 37.5

Table 3: DNS results of mean flow variables for the present study and Kawamura

et al. [7] at Reτ = 395
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L

H

H1

x

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.8

Figure 1: Schematic view of the computational domain indicating different cross

sections in the streamwise direction
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Figure 2: A schematic view of the grid resolution in the domain; every 4th

gridline is shown
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Figure 3: Comparison of the averaged (a) friction coefficient (〈Cf 〉) and (b)

Nusselt number (〈Nu〉) distributions in the streamwise direction for different

grids. The thick line in the lower part of the figures shows the contour of the

bottom wall. : grid 1; : grid2; : grid3; : grid4
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Figure 4: Comparison of 〈Nu〉 for different grids at Pr = 3.5. The thick line in

the lower part of the figure shows the contour of the bottom wall. : grid3;

2: grid5
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Figure 5: Comparison of the streamwise distributions of (a) 〈Cf 〉 and (b) 〈Nu〉

with the corresponding DNS results. The thick line in the lower part of the

figures shows the contour of the bottom wall. : DNS; : LES1; :

LES2
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Figure 7: Comparison of the streamwise distributions of (a) 〈Cf 〉 and (b) 〈Nu〉

for two different channel width zmax = 0.5 and zmax = 1. The thick line in the

lower part of the figures shows the contour of the bottom wall. : zmax = 0.5;

: zmax = 1
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Figure 8: Comparison of the DNS results of the present study with the DNS

results of Kawamura et al. [7] at Reτ = 395
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Figure 10: The streamwise distributions of the averaged pressure (〈P 〉) and

pressure fluctuations (〈Prms〉) at the wall. The thick line in the lower part of

the figures shows the contour of the bottom wall.
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Figure 11: The streamwise distributions of the averaged Nusselt number and

friction coefficient
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wall. For legend, see Fig. 12(a)
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(c) In the recirculation zone. : x = 0.4;
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Figure 12: Averaged wall-normal velocity distribution (〈u〉) for different cross

sections in the streamwise direction. 2: 〈u/ub〉DNS of the present DNS of the

plane channel.
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Figure 13: Contours of the averaged normal Reynolds stress (〈v′2〉), shear stress

(〈u′v′〉) and shear stress production (〈P12〉) in the wavy part of the channel
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(b) Second half of corrugation. : x = 1;

: x = 1.2; : x = 1.4; : x = 1.8
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(f) Second half of corrugation

Figure 14: Comparison of the wall-normal distributions of normal Reynolds

stress(〈v′2〉), shear stress (〈u′v′〉) and shear stress production (〈P12〉) for the

first and second halves of the corrugation. 2: DNS results of the present study

for plane channel (scaled with u2
b or u3

b)
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Figure 15: Positive-value regions of the averaged shear stress (〈u′v′〉) and shear

stress production (〈P12〉)
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Figure 16: Various terms of shear stress equation at x = 1.1, : production

(〈P12〉); : pressure-strain (〈Π12〉); : convection (〈C12〉); : diffusion
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Figure 17: Contours of the averaged pressure strain (〈Π12〉) and convection

(〈C12〉) in the wavy part of the channel
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the contour of the bottom wall. : 〈u′2〉; : 〈v′2〉; : 〈w′2〉. The markers

(at the far right) show the corresponding values for DNS of plane channel.
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(a) First half of the corrugation. : x = 0.2;

: x = 0.4; : x = 0.6; : x = 0.8
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(b) Second half of the corrugation. : x = 1;
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Figure 19: Averaged wall-normal temperature distribution (〈T 〉 − 〈Tw〉) in the

streamwise direction at Pr = 0.71. 2 :DNS results of the present study for the

plane channel (scaled with ub)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

〈T 〉 − 〈Tw〉

y
−

y w
a
ll

(a) First half of the corrugation

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

〈T 〉 − 〈Tw〉

y
−

y w
a
ll

(b) Second half of the corrugation

Figure 20: Averaged wall-normal temperature distribution (〈T 〉 − 〈Tw〉) in the

streamwise direction at Pr = 3.5; figure labels are presented in figure 19
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Figure 21: Contours of δT in the wavy part of channel for Pr = 0.7 and Pr = 3.5
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Figure 22: Contours of turbulent wall-normal heat transfer (〈v′T ′〉) and heat

transfer production (〈P2T 〉) at Pr = 3.5
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Figure 23: Wall-normal distribution of temperature fluctuations (〈Trms〉) at

Pr = 3.5. : x = 0.4; : x = 0.8; : x = 1.2; : x = 2
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(a) : Pr = 0.71 (multiplied by 5); :

Pr = 3.5; •: fully developed channel flow ob-

tained by DNS (multiplied by 5). The thick line

in the lower part of the figure shows the contour

of the bottom wall.
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Figure 24: (a) Comparison of the streamwise variation of the wall temperature

fluctuations (〈Trms〉) in the wavy part of the channel at Pr = 0.71 and 3.5. (b)

Probability density function (PDF ) at Pr = 3.5
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