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ABSTRACT 

The elastic critical moment, Mcr, is an important parameter in design with regard to 
lateral torsional buckling. It can be calculated with analytical expressions, or more 
commonly, solved by structural design software. However, the complex nature of the 
lateral torsional buckling phenomenon makes it hard to embrace all the affecting 
factors and assumptions. Different programs use different methods to calculate Mcr, 
which leads to deviations in the results. One aim of this thesis was to study the 
assumptions and limitations of various design software with respect to this problem, 
and to explain the deviations between the results obtained from these programs. The 
programs included in this study are ADINA, COLBEAM, LTBeam and SAP2000. 

A parametric study was carried out where single-spanned IPE500 steel beams were 
investigated. The differences in sectional constants and material properties were 
small. Thus, comparisons could be made directly by studying the C-factors in the 3-
factor formula. In finite element programs equivalent C-factors could be refracted 
from the expression of the critical moment. 

Previous work has presented exact values of C1 for some common load cases. When 
studying C1, these load cases were investigated with the exact values as references. 
When studying C2, two additional points of load application were considered; on the 
top flange, and on the bottom flange.  

The main observation of the study was that C1 not only depends on the moment 
distribution, but also on the lateral restraints and the length of the beam. This was 
expected and is in line with previous research. It was concluded that the deviation 
between the programs depends on to what extent these effects are accounted for. 
Generally, finite element programs gave solutions close to the exact values. 

A general problem using programs based on the 3-factor formula is to find accurate 
C-factors. The approximate expression by Lopez et al. (2006) is used by COLBEAM 
and provides satisfying results in most cases. However, if table values exist for the 
situation at hand, such values give better solutions.  

Furthermore, it was observed that the point of load application has a great influence 
on Mcr, and that this influence is of greater magnitude when the beam is fixed about 
the major axis. 

Key words: Lateral torsional buckling, elastic critical moment, 3-factor formula, C-
factors, warping, lateral boundary conditions, ADINA, COLBEAM, 
LTBeam, SAP2000  
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Vippning av I-balkar 
En parametrisk studie av det kritiska vippningsmomentet i beräkningsprogram 
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SAMMANFATTNING 

Det kritiska vippningsmomentet, Mcr, är en viktig parameter vid dimensionering av 
vippningsbenägna balkar. Det kan beräknas med hjälp av analytiska uttryck eller lösas 
med beräkningsprogram. Vippningsfenomenets komplexa natur gör det dock svårt att 
överblicka alla påverkande faktorer och antaganden. Olika program använder olika 
metoder för att beräkna Mcr, vilket leder till avvikelser i resultaten. Ett av syftena med 
det här examensarbetet var att förklara skillnaderna mellan programmen ADINA, 
COLBEAM, LTBeam och SAP2000. 

En parametrisk studie genomfördes av IPE500-balkar med enkelt spann. Skillnaderna 
i tvärsnittskonstanter och materialdata var små, och därför kunde jämförelser göras 
direkt genom C-faktorerna i 3-faktorsformeln. I finita element-program kunde 
ekvivalenta C-faktorer brytas ut ur uttrycket för det kritiska vippningsmomentet. 

Serna et al. (2005) har presenterat exakta värden på C1 för några vanliga lastfall. 
Dessa värden har använts som referens i undersökningen av C1. När C2 studerades 
varierades lastangreppspunkten mellan överkant och underkant fläns. 

Den viktigaste observationen i studien var att C1 inte enbart beror på 
momentfördelningen, utan också på laterala randvillkor och balklängd. Detta var 
förväntat och stämmer överens med resultat presenterade av Lopez et al. (2006), 
Fruchtengarten (2006) etc. En slutsats som kunde dras var att avvikelserna mellan 
programmen berodde på hur hänsyn tas till dessa förhållanden. I regel gav finita 
element-program i stort sätt exakta lösningar. 

Ett problem med program baserade på 3-faktorsformeln är svårigheten att hitta 
korrekta C-faktorer. Det approximativa uttrycket av Lopez et al. (2006) används i 
COLBEAM och ger goda approximationer i många lastfall. Finns tabellvärden 
tillgängliga för det aktuella lastfallet ger dessa dock bättre lösningar. 

Studien av C2 visade att lastangreppspunkten har en stor inverkan på Mcr och att 
denna är större för balkar fast inspända kring huvudaxeln. 

 

Nyckelord: Vippning, elastiskt kritiskt vippningsmoment, 3-faktorsformeln, C-
faktorer, välvning, laterala randvillkor, ADINA, COLBEAM, LTBeam, 
SAP2000 
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Notations 
Abbreviations 
CTICM Centre Technique Industriel de la Construction Métallique 
ECCS European Convention for Constructional Steelwork 
Eurocode 3 EN-1993-1-1:2005 
FEM Finite Element Method 
GC Centre of Gravity 
LDC Load-Displacement Control 
NCCI Non-Contradictory Complementary Information 
PLA Point of Load Application 
SC Shear Centre 
SBI Stålbyggnadsinstitutet (Swedish Institute of Steel Construction) 
TC Centre of Twist 
 

Roman upper case letters 
C1 Moment gradient factor or equivalent uniform moment factor; 

Correction factor in the 3-factor formula primarily accounting for the 
moment distribution 

C2 Correction factor in the 3-factor formula primarily accounting for the 
point of load application 

C3 Correction factor in the 3-factor formula primarily accounting for 
cross-section asymmetry with respect to y-axis 

E Young’s  modulus  [Pa] 
EI Bending stiffness [Pa·m4] 
F Force [N] 
G Shear modulus [Pa] 
GIt Torsional stiffness [Pa·m4] 
H Potential energy [J] 
He External potential energy of a system [J] 
Hi Internal potential energy of a system [J] 
Hstraight The potential energy in a straight state of equilibrium (before buckling) 

[J] 
It Saint  Venant’s  torsion  constant [m4] 
Iz Second moment of inertia in bending about z-axis [m4] 
Iw The warping constant [m6] 
K  Stiffness matrix 

E
K  Elastic linear part of the stiffness matrix 

GK  Geometric non-linear load dependent part of the stiffness matrix 
0tK  Stiffness matrix before start of the analysis 
1tK  Stiffness matrix at the time of the first load-step 

L Beam length between bracings [m] 
Lb Critical buckling length [m] 
Lcr Critical buckling length [m] 
M Moment [Nm] 
Mcr Elastic critical moment [Nm] 
Mcr,ref Elastic critical reference moment [Nm] 
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Mcr,0 Special case of Mcr,ref  (when k=1.0) [Nm] 
My Bending moment about y-axis [Nm] 
N Normal force [N] 
Ncr Critical normal force [N] 
P  Load vector 
P Force [N] 
Pcr Critical force [N] 
Wy Bending resistance about y-axis [m3] 
 
Roman lower case letters 
hf1 Width of top flange [m] 
hf2 Width of bottom flange [m] 
hw Height of web [m] 
k Effective length factor 
kw Effective length factor in the 3-factor formula accounting for warping 

boundary conditions 
kz Effective length factor in the 3-factor formula accounting for lateral 

bending boundary conditions 
p  Displacement vector 
qcr Critical distributed load [N/m] 
tf1 Thickness of top flange [m] 
tf2 Thickness of bottom flange [m] 
tw Thickness of web [m] 
ut Displacement due to twisting [m] 
uw Displacement due to warping [m] 
ux Displacement in x-direction [m] 
uy Displacement in y-direction [m] 
uz Displacement in z-direction [m] 
zg Distance between the point of load application and the shear centre [m] 
zj Distance related to the effects of asymmetry about y-axis [m] 
zs Distance between the shear centre and the centre of gravity [m] 
 
Greek upper case letters 
  Rotation about x-axis in LTBeam 
   Warping degree of freedom in LTBeam 
 Buckling factor 
LT Buckling factor with regard to lateral torsional buckling 
Ψ End-moment ratio 
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Greek lower case letters 
γM1 Partial safety factor 
dφ Twisting angle of an infinite small beam element subjected to torsion 
λcr Critical load factor (eigenvalue) 
λLT Slenderness parameter with regard to lateral torsional buckling 
μ Ratio that C1 depends on according to Fruchtengarten (2006), Access 

Steel (2005), and ECCS (2006) 
  Lateral deflection in LTBeam 
  Lateral rotation in LTBeam 
φ Twisting angle 

i  Buckling mode 
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1 Introduction 
1.1 Background 
Structural stability is an essential part in the design process for steel structures. In EN-
1993-1-1:2005, hereinafter referred to as Eurocode 3, the capacity of a member with 
regard to buckling and instability is taken into account by a reduction factor . This 
reduction factor is strongly dependent on the member slenderness parameter, , which 
in turn is inversely proportional to the square root of the elastic critical moment, Mcr. 
When considering lateral torsional buckling, the buckling factor can be determined 
according to equations (1.1), (1.2) and (1.3). 

011
22

.χ,
λΦΦ

χ LT

LTLTLT

LT 
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  (1.1) 
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Therefore, evaluation of the design capacity with regard to stability is dependent on 
Mcr, and requires that Mcr can be computed for the actual load case. 

However, there are no guides in Eurocode 3 on how to determine Mcr. It is simply 
stated that the real section properties, moment distribution and possible lateral 
restraints should be taken into account. Early editions of Eurocode included an 
analytical expression of Mcr known as the 3-factor formula. However, the expression 
was later removed without replacement. The formula can still be found in handbooks 
and additional guides for steel construction. In a few standard load cases where the 
parameters included in the 3-factor formula are known, it can provide more or less 
exact solutions of Mcr. For other load cases where the parameters are unknown, they 
can be estimated by closed-form expressions based on curve fitting techniques. In 
these cases the accuracy of Mcr depends on the accuracy of the approximated 
parameters. 

Commonly Mcr is determined with commercial software. If a finite element model 
with shell elements is established carefully, accurate and reliable results can be 
provided. Generally, conducting such analysis on every member in a structure is too 
time consuming and not economically justified, why often task specific software are 
used instead. These programs can either be based on analytical expressions such as 
the 3-factor formula, or based on finite elements. 

At Reinertsen Sweden AB it has been noticed that the magnitude of Mcr in specific 
load cases differs depending on which software is used. The divergence can be seen 
not only in complex load cases but also in simple cases. Sometimes the magnitude is 
big enough to raise questions on the reliability of the results. In design, a most 
important aspect is that approximate results are conservative.  

Some of the programs used at Reinertsen Sweden AB are ADINA, COLBEAM, 
LTBeam and SAP2000. ADINA and LTBeam use finite elements in calculations, 
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while COLBEAM implements analytical expressions. In SAP2000 it is possible to use 
either finite elements or analytical expressions. 

 

1.2 Aim and objectives 
The   aim   of   this   Master’s   thesis   was   to   examine how different design software 
calculate the elastic critical moment and to explain potential differences in the results. 

Two objectives could be formulated. 

(1) The theory behind lateral torsional buckling should be presented, providing 
a thorough understanding of the mechanisms involved, the design 
procedures and the evaluation of Mcr.  
 

(2) Prerequisites, assumptions and calculation methods in different design 
software should be compared and the accuracy of Mcr should be evaluated 
for common load cases. 

 

1.3 Method 
A literature review was carried out where the lateral torsional buckling phenomena 
and the evaluation of elastic critical moments were studied. 

Furthermore, a parametric study was conducted where the evaluation of elastic critical 
moments in ADINA, COLBEAM, LTBeam and SAP2000 was investigated. The 
differences in sectional constants and material properties implemented in the 
programs were small. Thus, comparisons could be made directly by studying the C-
factors in the 3-factor formula. In finite element programs equivalent C-factors could 
be refracted from the expression of the critical moment. 

The study was divided into two parts; one concerning the C1-factor and one 
concerning the C2-factor. Load cases and beam geometry were chosen so that 
comparisons could be made between the programs and with reference values from 
Serna et al. (2005). Therefore, the study was limited to singled-spanned IPE500 
beams. When studying C2, two points of load application were considered; on the top 
flange, and on the bottom flange. 

 

1.3.1 Motivation and discussion of chosen methodology 
The thesis work was conducted during 20 weeks at Reinertsen Sweden AB in 
Gothenburg. Here access was granted to the licenced software ADINA, COLBEAM, 
SAP2000 and the free software LTBeam. Therefore the choice of methodology had to 
be adjusted to fit this time limit and to the restrictions in available tools.  

Generally when a causal relationship is investigated, an experimental strategy is to be 
preferred. Methods like interviews and surveys are good tools in studies where in-
depth or representative views are sought respectively, but when cause and effects of a 
certain phenomenon is investigated these methods are not effective (Biggham 2008, p. 
130 & p. 139). On the basis of this reasoning a parametric study was conducted in 
order to evaluate the differences of the computer programs. A big advantage by using 
parametric studies is also that full control is gained over the affecting parameters of 
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the test. The same beam measurements, loads, material properties and boundary 
conditions can be applied and varied in numerous ways. This result in high validity 
and make sure that the results of the comparison are reliable.  

The sample population used in an experimental research project should be chosen 
carefully, so that a sufficient representation of the population is achieved allowing 
generalizations to be made (Biggham 2008, p. 126). A lot of knowledge regarding 
instability is based on extensive testing of real beams. However, using such methods 
can be time-consuming and also leave room for errors due to poor construction of the 
test samples. The elastic critical moment is a theoretical moment with respect to a 
perfect beam with no imperfections. Modelling such a beam is both easier and faster 
using computer based techniques. In a program it is also easy to test a big sample 
population by changing properties of the same start model between the tests. This is 
however not possible to the same extent when testing real beams, where changes in 
the test set-up are very time-consuming. 

In order to perform a rewarding computer based investigation, a solid foundation of 
knowledge on the theory of lateral torsional buckling was needed. A great many 
research groups have studied the subject, writing numerous books and papers that 
explain the instability phenomena, and the mechanisms involved. Using this already 
existing knowledge by conducting a literature review was an effective way to compile 
the information. In addition to books and reports about lateral torsional buckling, the 
European and American design codes, calculation handbooks and user manuals 
provided information on how computer based software determines the elastic critical 
moment.  

It can be argued that also other methods than the chosen ones are beneficial. General 
information about the software can be gathered through interviews and surveys with 
the program creators and program users. However, since the study had narrow and 
profound aims concerning specific models of beams, not focusing on the software in 
general, such quantitative or qualitative methods were not suitable. An additional 
problem with interviews is guaranteeing the objectivity of the results. Since the 
program developers and users have interests of their own, they may consciously or 
unconsciously avoid highlighting interesting problems concerning the software. 

An observation on how engineers treat instability problems could also provide an 
interesting angel. However, because of the narrow time limit, such studies were left 
out of the scope of this thesis.  

 

1.4 Limitations 
The parametric study was limited to 8- and 16-meter single-spanned IPE500 steel 
beams, using the software ADINA, COLBEAM, LTBeam and SAP2000.  

Since the study was limited to IPE500 beams (with double-symmetric cross-sections), 
the C3∙zj-factor is zero, and C3 was therefore left out of the study. 

In ADINA, warping beam elements are used in a linearized buckling analysis. In 
SAP2000 the elastic critical moments are calculated analytically in   a   “design 
module”. In both these programs more advanced methods could be used. However, 
these methods are not evaluated since they are generally to time-consuming to use in 
design. 
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2 Lateral torsional buckling 
2.1 Definitions and description of concepts 
2.1.1 Orientation of coordinate system 
The beams in this report are orientated according to the coordinate system presented 
in Figure 2.1. The span is directed along the x-axis while the y- and z-axis are in the 
plane of the cross-section. 

 
 
 

x 

y 

z  
Figure 2.1 Orientation of beam coordinates. 
 

When a beam is subjected to major axis bending, i.e. bending about the y-axis, it will 
deflect in the z-direction. This type of bending is sometimes referred to as bending 
about the strong axis. Analogous, minor axis bending is when a beam is bent about 
the z-axis, deflecting in the y-direction. This is sometimes called lateral bending or 
bending about the weak axis. See Figure 2.2. 

 

y 

x 

Major axis bending 

Minor axis bending 

uz 

uy 

x 

z 

 
Figure 2.2 Beams subjected to major and minor axis bending. 
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2.1.2 Degrees of freedom 
A beam element can be considered to have seven degrees of freedom in each node. 
These are translation in x-, y-, and z-direction, rotation about x-, y-, and z-axis and 
warping, see Table 2.1. The warping degree of freedom is explained further in chapter 
2.1.10. 

 

Table 2.1 Degrees of freedom for a beam element. 

Translation in x, y 
and z 

 

z-translation y-translation x-translation 

ux 

uy 

uz 

z 

y 

z 

x 

z 

y 

 

Rotation about x-
axis 

 

φx 

z 

y 

 

Rotation about y-
axis 

(Major axis bending) 

 

φy 

z 

x 

 

Rotation about z-
axis 

(Minor axis bending, 
lateral bending) 

 

y 

φz 
x 

 

Warping 

(see chapter 2.1.10) 

 

φ′x 
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2.1.3 Boundary conditions 
At the boundary, some degrees of freedom must always be restrained in order to have 
equilibrium. When considering ordinary beams on two supports, translation in y- and 
z-direction are always restrained. Translation in x is normally considered free at one 
side and fixed at the other. Rotation about the x-axis must be restrained since the 
beam otherwise would rotate about its own axis. Since these degrees of freedom are 
given, the remaining are of extra interest when studying beams on two supports. 

(1) Rotation about the y-axis (major axis bending)  
(2) Rotation about the z-axis (minor axis bending, lateral bending, kz) 
(3) Warping (kw) 

An important and often mentioned support condition is the fork support, see Figure 
2.3. A fork support is defined to have the following boundary conditions. 

(1) Translation in x, y and z (Fixed) 
(2) Rotation about x-axis (Fixed) 
(3) Rotation about y-axis (Free) 
(4) Rotation about z-axis (Free) 
(5) Warping (Free) 

 

z 

y 

x 

 
Figure 2.3 A principal sketch of a fork support. Translation in x, y, z and 

rotation about the x-axis is fixed. The other degrees of freedom are 
free. 

 

2.1.4 Cross-section geometry 
If nothing else stated, the following labelling of cross-section dimensions are used in 
the thesis.  

 
 

hf2 

hw 

hf1 

tf2 

tw 

tf1 

z 

y 

 
Figure 2.4 Cross-section labelling in the thesis. 
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2.1.5 Centre of gravity, GC 
The centre of gravity, GC, is the point in a body of mass where the total weight of the 
body can be thought to be concentrated for convenience in calculations. The sum of 
the gravitational moment created from the mass of the body, i.e. the static moment, is 
zero in this point (Lundh 2007, p. 78). 

GC coincides with the centroid (geometric centre) if the material is homogenous. In a 
double-symmetric homogenous I-section, GC is located at the intersection of the two 
symmetry lines (see Figure 2.5). 

 
 

= 
GC 

=
 

=
 

= 

 
Figure 2.5 In a double-symmetric I-section of homogenous material the centre 

of gravity is located at the intersection of the two section symmetry 
lines. 

 

2.1.6 Shear centre, SC 
By definition the shear centre, SC, is the point through which the line of action of the 
shear force must act in order to cause pure in-plane bending. For beams with double-
symmetric cross-sections, such as an I-section, the centre of gravity and the shear 
centre coincide (Lundh 2007, p. 322).  

However, considering single-symmetric or non-symmetric sections there are cases 
where GC and SC do not coincide. Figure 2.6 shows a loaded u-section with sectional 
forces and resultants marked out. If the section is loaded in the plane of the web, the 
moment from the forces in the flanges will twist the section. Hence, SC is located to 
the left of the web where moment equilibrium is achieved (ibid.). 

 
 
 
 
 
 

GC 

F 

SC 

a 

S 

b 

M: Fa-Sb = 0 

 
Figure 2.6 The shear centre and the centre of gravity in an U-section. A force 

acting in the shear centre will not cause any twisting of the section 
(Adapted from Lundh 2007, p. 322). 
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2.1.7 Centre of twist, TC 
The centre of twist, TC, is the point a cross-section will twist about when subjected to 
a twisting moment. Since the definitions of TC and the shear centre, SC, are different, 
they are derived in different ways. However, as seen in Barretta (2012) and Ecsedi 
(2000) they basically always coincide.  

In double-symmetric sections GC, SC and TC all coincide, and are located where the 
two symmetry lines of the cross-section intersect (Lundh 2007, p. 322). 

 

2.1.8 Point of load application, PLA 
The point of load application, PLA, is the point in a cross-section where the acting 
load is applied. It is common to assume that PLA is located in the shear centre. When 
considering lateral torsional buckling, PLA has a considerable effect on the buckling 
capacity. An assumption that the load acts in TC will therefore yield wrong results if it 
in reality acts on the top or the bottom flange. 

 

zg 

F 
SC 

 
Figure 2.7 A force (F) is applied at a distance (zg) from the shear centre. 
 

2.1.9 Saint Venant torsion 
When an infinitesimal beam element is subjected to torsion as in Figure 2.8, the 
element will twist by an angle dφ (Höglund 2006, p. 29).  

 

dφ 

B-B 
A-A 

T(x) T(x+dx) 
0) 

A 

A B 

B 

 
Figure 2.8 Twisting of an infinitesimal beam element (adapted from Höglund 

2006, p. 29). 
 

In I-beams subjected to torsion, the sections will not remain plane. This means that 
both twisting and local warping occur. These effects are resisted by shear forces in the 
sections and depend on the torsional stiffness, GIt. 
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dx
dGIT t


  (2.1) 

Where G = Shear modulus 

It = Saint Venant’s torsion constant 

 

For an I-section the torsion constant can be approximated as (Lundh 2006, p. 339) 

∑
1

3

3

n

i

ii
t

htI


  (2.2) 

Where ti = Thickness of the plates in the cross-section 

hi = Height of the plates in the cross-section 

 
 
 
 

h1 

h2 

h3 

t1 

t2 

t3 

 
Figure 2.9 The section dimensions needed to approximate Saint Venant’s  

torsion constant for an I-section.  
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2.1.10 Warping 
The torsion constant, It, of an I-section depends on both twisting and warping. These 
are local effects that act in each section. Warping also has a global effect that will be 
discussed below. 

Elements in a circular-symmetric section subjected to a torque, will twist to a new 
location within the same plane. Hence, the twisted section will consist of the same 
material as before the torque was applied (Höglund 2006, p. 29).  

T 

 
Figure 2.10 Circular-symmetric cantilever member subjected to a twisting 

moment. Any section in the member remains in-plane after the 
moment is applied. 

 

However, when non-circular-symmetric sections are subjected to torsion, sectional 
elements will not remain in their initial planes. The reason for this is that the twisting 
moment will cause parts of the member to bend, moving elements along the member 
and out of their initial planes. This type of deformation is called warping (Höglund 
2006, p. 29). Figure 2.11 shows a cantilever I-beam subjected to a twisting moment 
resulting in warping due to lateral bending of the flanges. When the flanges deflect in 
different directions, sections are no longer in their initial planes. At the support, the 
flanges are restrained and consequently warping is prevented. 
 

T 

 
Figure 2.11 A cantilever I-beam is subjected to a twisting moment resulting in 

warping. Observing the beam-end it is clear that the section has not 
remained in its initial plane, the material movement along the beam 
can be seen clearly. At the support, the flanges cannot move and 
thus warping is prevented. 

 

Due to the warping, stresses are created in the flanges as shown in Figure 2.12.  

Upper flange 

Lower flange 

T T 

 

Tension 

Compression 

 
Figure 2.12 Tension and compression stresses are created along the flanges as 

a result of lateral bending. (Adapted from Höglund 2006, p. 29). 
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If one of the flanges is studied (see Figure 2.12), it can be observed that the 
deformation resembles the behaviour of a beam in bending. Hence, bending moments 
and shear forces will arise, contributing to the resisting moment.  

Lower flange 

F 

(hw+tf)/2 

y 

z 

y 

x 

 
Figure 2.13 A shear force F is induced by lateral bending of the lower flange, 

contributing to the resisting moment of the section (Adapted from 
Höglund 2006, p. 29). 

 

Sections resistance to warping is described by the warping constant, Iw. For a single-
symmetric I-section, where the contribution from the web is neglected, the warping 
constant can be approximated as (Atsuta & Chen 2008, p. 84) 

12
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For a double-symmetric section, the expression for Iw is reduced to 

 
24

23
fwff

w

thth
I


  (2.4) 

 
4

2
, fwflangesz

w

thI
I


  (2.5) 

A derivation of the warping constant is shown in Appendix C. 
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According to Höglund (2006), it can be distinguished between three different section 
categories with regard to warping; warping free sections where no warping occurs, 
semi warping free sections where warping can be neglected in calculations, and 
warping sections where warping must be taken into account. 

 

Table 2.2 Classification of section shapes with regard to warping sensitivity. 

(1) Warping free sections  

 

(2) Semi warping free sections  

 

(3) Warping sections  
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2.2 Classical theory of instability 
In classical theory of instability, it is possible to distinguish between three different 
equilibrium states; stable, indifferent and instable. These states are often illustrated 
principally as a ball placed on different shaped surfaces (Höglund 2006, p. 2). 

 
a) Stable b) Indifferent c) Instable 

 
Figure 2.14 The states of equilibrium from the left; a) stable, b) indifferent c) 

instable (Höglund 2006, p. 3). 
 

a) A structural system is considered to be in stable equilibrium if it returns to its 
initial state of equilibrium after a small disturbance. This is a fundamental 
principle in the field of structural engineering, which if not satisfied would 
lead to collapse of the system. 
 

b) At an indifferent equilibrium, a disturbance will move the system. After the 
disturbance is removed, the system will stay in the displaced position. 
 

c) When a system in instable equilibrium is disturbed, forces will arise that move 
the system further and further away from the initial condition (Höglund 2006, 
pp. 2-3). 

 

Consider an ideal column with no imperfections fixed at one end and free at the other. 
The column is subjected to a normal force, N, and an eventual lateral deflection is 
denoted δ, see Figure 2.15. 

 

N 

δ 

 
Figure 2.15 Ideal column without imperfections subjected to a normal force N. 
 

The behaviour of such a system under an increasing normal force N can be described 
by small deformation theory or large deformation theory (Höglund 2006, p. 11). 

In small deformation theory the column will be in stable equilibrium until N reaches a 
critical load, Ncr. At Ncr the system becomes instable and the column buckles. With 
this theory, it is not possible to determine the magnitude of the deflection (ibid.). 
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With large deformation theory it is possible to track the whole equilibrium path for 
the ideal elastic column. When Ncr is reached the column deflects rapidly, but the 
deformation will not be infinitely large. It can be shown that for every N > Ncr, there 
exists a deflected state of equilibrium as long as the material is elastic. The magnitude 
of the deflection after buckling is mostly of theoretical interest, since the member has 
failed from a structural point of view. 

 

Ncr 

N 

Stable 

 

Instable 

Small deformation theory 

Ncr 

N 

 

Large deformation theory 

Stable 

Instable 

 
Figure 2.16 Equilibrium paths for a column under increasing normal force. 
 

When considering structural systems it is usually not necessary to differ between 
indifferent and instable states of equilibrium. In the example above the system could 
be considered indifferent when N is exactly Ncr, since almost no disturbance is needed 
to bring the column to a deflected state. 

 

2.2.1 Global buckling and buckling modes of loaded members 
A member can fail in different types of buckling modes. These modes are defined by 
the type of loading and the deformation shape of the member. In a general case, a 
member can be subjected to several types of deformations simultaneously, e.g. 
bending, torsion, warping etc. The resisting forces in the member will be dependent 
on the stiffness coupled to the different deformations. Hence, the flexural, torsional 
and warping stiffness of a cross section are important when evaluating the resistance 
to buckling (Höglund 2006). 

 

It can be distinguished between flexural buckling (1), torsional buckling (2) and 
lateral torsional buckling (3), see Table 2.3. 

(1) When a member in compression buckles in one plane only, it is called flexural 
buckling (Serna et al. 2005). The resisting sectional forces that arise in the 
member are directly dependent on the flexural stiffness EI (Höglund 2006, p. 12).  

E = Young’s  modulus 

I = Second moment of inertia 

 

  



CHALMERS, Civil and Environmental Engineering,  Master’s  Thesis  2013:59 15 

(2) When buckling due to compression only twists the member it is called torsional 
buckling. The sectional resistance is dependent on the torsional stiffness GIt and 
the warping stiffness EIw (Höglund 2006, p. 29).  

G = Shear modulus 

It = Saint-Venant’s  torsion  constant   

E = Young’s  modulus 

Iw = Warping constant 

 

(3) When a member loaded in bending deflects laterally and twists at the same time, 
it is called lateral torsional buckling. The resistance to this buckling mode is 
governed by the flexural, torsional and warping stiffness (Serna et al. 2005). 
Lateral torsional buckling is explained in the next chapter. 

 

Table 2.3 Deformations due to flexural, torsional and lateral torsional 
buckling (Höglund 2006, p. 37). 

(1) Flexural buckling 

 

N 
N 

 

(2) Torsional buckling 

 

N 

 

(3) Lateral torsional buckling 

 

My 
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2.3 Mechanisms behind lateral torsional buckling 
Consider a beam in major axis bending subjected to increasing loading. If the beam is 
slender, it may buckle before the sectional capacity is reached. This kind of buckling 
involves both lateral deflection and twisting, and is called lateral torsional buckling. 
See Figure 2.17 (Serna et al. 2005). 
 

 
Figure 2.17 Lateral torsional buckling of a cantilever beam (N.S Trahair cited 

in Atsuta & Chen 2008, p. 72) 
 

  
Figure 2.18 Lateral torsional buckling of beam with fork supports subjected to a 

concentrated load - test set-up (Adapted from Camotim et al. 2011, 
p. 2058).  

 

Longer beams become instable at smaller loads compared to shorter beams. Also, if 
beams with the same length but different cross-sections are tested, beams with slender 
cross-sections buckle at smaller loads than beams with stubby sections. However, not 
only the length of the beam and the cross-section shape is of importance. Many other 
factors also affect beams sensitivity to lateral torsional buckling, see Table 2.4.  
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Table 2.4 Lateral torsional buckling is affected by material-, cross-section- 
and geometric properties, boundary conditions, and loading (Lopez 
et al. 2006). 

Factors that affect lateral torsional buckling 

Material properties Shear modulus (G) 

Youngs’s  modulus (E) 

Cross-section properties Torsion constant (It) 

Warping constant (Iw)  

Second moment of inertia about 
weak axis (Iz) 

Geometric properties Length of the beam (L) 

Boundary conditions Bending about major axis 

Bending about minor axis 

Warping 

Load Type of loading (distributed, 
concentrated etc.) 

Point of load application (top flange, 
in shear centre, bottom flange etc.) 

 

By considering the factors in Table 2.4 and choosing a beam with the right properties, 
lateral torsional buckling can be avoided. The risk of lateral torsional buckling is high 
for beams with the below listed properties (Höglund 2006, p. 78) 

 Low flexural stiffness about the weak axis (EIz) 
 Low torsional stiffness (GIt) 
 Low warping stiffness (EIw) 
 High point of load application 
 Long unrestrained spans (L) 
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2.4 Measurements against lateral torsional buckling 
To avoid lateral torsional buckling the affecting factors presented in Table 2.4 can be 
manipulated in different ways. Choosing a stable cross-section with high flexural 
stiffness about the weak axis is one method. If the geometric and material properties 
are already determined, a low point of load application or restraints can be used. 

 

2.4.1 Influence of the cross-section 
Lateral torsional buckling is only possible in major axis bending. If the flexural 
stiffness is high enough about the weak axis or if the stiffness is equal about both 
axes, lateral torsional buckling will not occur. Figure 2.19 show sections that are safe 
with regard to lateral torsional buckling (Höglund 2006, p. 54 & p. 78).  

 

w 

h 

h/w<2 

 
Figure 2.19 Sections with little or no risk of lateral torsional buckling (Höglund 

2006, p. 54 & p. 78). 
 

2.4.2 Influence of the point of load application 
A low point of load application reduces the risk of lateral torsional buckling. Hence, a 
load placed on the bottom flange makes a beam considerably more stable than a load 
on the top flange. This is provided that the load does not contribute with any 
restraining effects (Höglund 2006, p. 54 & p. 78).  
 

 
Figure 2.20 A beam loaded by a concentrated load from a secondary girder. If a 

low point of load application is used the load helps to stabilize the 
beam. A high point of load application contributes to twisting 
moments and makes the beam less stable. 
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When a beam deflects due to lateral torsional buckling, loads above the centre of twist 
will contribute with a twisting moment. Loads below the centre of twist counteract 
rotations of the sections and stabilizes the beam (Höglund 2006, p. 54). 
 

F 

uy uy 

φ 

Madd =  F·∙uy Madd = -F·∙uy 

F 

φ 

 
Figure 2.21 A load, F, acting above the centre of twist contributes to the 

rotation of the section with an additional moment. When placed 
under the centre of twist, the load stabilizes the section. 

 

2.4.3 Influence of lateral restraints 
If the flange in compression is restrained from lateral bending, lateral torsional 
buckling can be fully prevented. The spacing of the restraints must be small enough so 
that buckling cannot occur between them. 

 

 
 

Figure 2.22 Provided that the top flange is in compression, the beam can be 
restrained from lateral torsional buckling by secondary girders. 
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2.4.3.1 Restrained flange in compression 
As in Figure 2.22, restraints can often be provided from secondary members in a 
construction. If a simply supported beam is loaded directly by an evenly distributed 
load from a slab, the beam can be fully prevented from lateral torsional buckling 
provided that the slab is part of a stable system. The upper flange of the beam is in 
compression in the whole span, and restrained at all points. A twist of such a beam 
will be counteracted by the slab. See Figure 2.23 (Höglund 2006, p. 78).  

Even if the slab is part of a stable system in the finished structure, other conditions 
may apply during the erection of the building. Hence, commonly the beam is attached 
to the slab by some kind of connection to assure that it is restrained also during 
assembly.  

 

M 

Counteracting force from slab 

 
Figure 2.23 A beam subjected to a twisting moment is restrained on the 

compression flange by a floor slab. A counteracting moment is 
created from the reaction force from the slab, holding the beam in 
place (left). Often the beam is attached to the slab to make sure that 
system is stable (right). 

 

2.4.3.2 Restrained flange in tension 
If the beam instead is made continuous, the top flange will be in tension close to the 
mid-supports. Restraining the tension flange will also increase the stability of the 
beam, but in some cases this is not enough to prevent the compression flange from 
buckling. This type of buckling is called distortional buckling and can be prevented 
by restraining the compression flange, i.e. restraining the bottom-flange, close to the 
mid-supports (Höglund 2006, p. 78). 

 

 
Figure 2.24 If a beam is restrained on the tension flange, the unrestrained 

compression flange may buckle laterally due to distortional 
buckling (to the left). This can be prevented by placing restraints 
onto the compression flange (to the right).  
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2.4.3.3 Unrestrained beams with slender webs and rigid flanges 
Unrestrained beams sometimes buckles in a mix between lateral torsional buckling 
and distortional buckling. This buckling mode is possible for beams with slender 
flexible webs and rigid flanges, and is called lateral distortional buckling, see Figure 
2.25 (Kurniawan & Mahendran 2011). 

 

ub 

ut 

 
Figure 2.25 Lateral distortional buckling is possible for beams with slender 

webs and rigid flanges. 
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2.4.3.4 Buckling modes of restrained and unrestrained beams 
 

Table 2.5 Buckling modes and corresponding restraints (Adapted from 
Höglund 2006, p. 78). 

No restraints 
 

- Free to buckle due to lateral torsional 
buckling 

 

 

Compression flange restrained 
 

- No lateral torsional buckling is possible 

 

 

Flange in tension restrained 
 

- Distortional buckling is possible 

 

 

No restraints 
 

- Lateral distortional buckling is possible 
for beams with slender flexible webs and 

rigid flanges 
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2.5 Behaviour of real beams 
The theory of lateral torsional buckling is valid under ideal elastic conditions for 
beams with perfect geometry and no initial imperfections. In reality however, no 
beams are perfect why real beams will behave different than ideal ones, see Figure 
2.26. 

An ideal beam is laterally un-deformed until the load reaches the elastic critical 
moment. At this point an indifferent state of instability is reached and a large 
instantaneous deflection occurs laterally. Since the material is ideal elastic, infinitely 
large deformations can take place and a new state of equilibrium can be found in the 
deflected position. Each small further increase of the load will result in large 
additional deflection. See Figure 2.26 (Höglund 2006, p. 77). 

A real beam has a decreased capacity compared to an ideal beam due to 
imperfections, residual stresses etc. When a load is applied to a real beam, a lateral 
imperfection already exists. This initial deformation increases when the load 
increases. Close to the critical load the deflection starts to increase more dramatically, 
but the theoretical value of Mcr is never reached. This failure is governed by plastic 
material response, non-linear geometry and by possible local buckling (ibid.) 

 

Mcr 

M 

0 

Beam without imperfections, linear elastic at large deformations 

Real beam 

 
 

Figure 2.26 Increasing moment plotted against lateral deflection. An ideal beam 
shows no deflection until the elastic critical moment is reached, 
where a large instantaneous deflection occurs. A real beam has 
imperfections and residual stresses, and deflects as the load is 
increased. The failure of the real beam is governed by its 
imperfections and non-linear response (Adapted from Höglund 
2006, p. 77). 

 

2.5.1.1 Factors that decrease the capacity of real beams 
 Non-linear material response, i.e. plastic material behaviour. 
 Initial lateral imperfections; the beam is not perfectly strait. 
 Residual stresses from manufacturing. 
 Local buckling of beam sections in section class 4. 
 Piercings, asymmetry and defects (Höglund 2006, p. 79). 

These effects can be taken into account in design through design buckling curves, 
which simulate real beam behaviour, see chapter 3.1. 
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3 Design with regard to lateral torsional buckling 
In Eurocode 3 the general procedure when designing against buckling is to introduce 
a buckling factor,  ≤  1,  that  reduces  the  capacity  of  the  member.  In  the  case  of  lateral  
torsional buckling, this factor is denoted LT and accounts for all the effects that 
decrease the capacity due to buckling. The moment capacity according to Eurocode 3 
can be written as 

1M

yy
LTb.Rd γ

fW
χM   (3.1) 

Where Wy = Bending resistance corresponding to the 
  cross-section classification of the member 

fy = Yield strength of the steel 
γM1 = Partial safety factor 

 

The buckling factor LT is defined as 

011
22

.χ,
λΦΦ

χ LT

LTLTLT

LT 


  (3.2) 

  2
20150 LTLTLTLT λ.λα.Φ   (3.3) 

Where αLT = Imperfection factor 

 

From equation (3.2) and (3.3) it is clear that the buckling behaviour is strongly 
dependent on the slenderness parameter, LTλ . 

cr

yy
LT

M
fW

λ


  (3.4) 

Mcr in equation (3.4) is the elastic critical moment in classical buckling theory, i.e. the 
theoretical critical moment without regard to initial imperfections or residual stresses. 

Eurocode 3 does not provide any information on how to determine Mcr, but simply 
states that it should be based on the gross cross-section, the loading conditions, the 
real moment distribution and the lateral restraints. 
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3.1 Buckling curves 
Even when considering theoretical beams without imperfections, buckling will occur 
before failure in bending if the member is slender. From the definition of the 
slenderness, it can be shown that this reduction in capacity corresponds to a 
theoretical buckling factor, LT = 2/1 LTλ . See equation below. 

 (3.5) 

If the theoretical buckling factor 2/1 LTλ  is plotted for different values of LTλ , the 
relationship between the slenderness and the buckling factor can be described with an 
ideal buckling curve. This curve corresponds to a perfect beam and is plotted as the 
dashed line in Figure 3.1. 

In reality, imperfections and residual stresses decrease the moment capacity even 
more. Eurocode 3 take these effects into account by using design buckling curves, 
determined from extensive testing. These curves correspond to different residual 
stresses and imperfections of the members (see Table 3.1 and Figure 3.1). 

 

Table 3.1 Choice of buckling curves on the basis of cross-section layout, steel 
quality and manufacturing method (EN-1993-1-1:2005, table 6.2). 
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1/λ2 

  
Figure 3.1 Buckling curves (adapted from EN-1993-1-1:2005, Figure 6.4). 
 

If Figure 3.1 is studied, some general conclusions can be drawn about   members’  
behaviour with regard to buckling. When the slenderness is low, most of the sectional 
capacity can be utilized, and the buckling factor is close to, or equal to 1.0. When the 
slenderness is high, the resistance approaches that of a perfect beam, and the influence 
of imperfections and residual stresses are small. At intermediate slenderness, the 
influence of initial imperfections and residual stresses are high and the design 
buckling factors are considerable lower than the ideal buckling factor. 

 

3.2 Comment 
The briefly presented procedures in this chapter are general. Also the buckling curves 
are general. In some situations, other methods and other buckling curves may be used 
instead. For details, see EN-1993-1-1:2005. 
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4 Analytical evaluation of Mcr 
At the critical load, Mcr, the beam will change from a straight state of equilibrium to a 
deflected state of equilibrium. To determine the critical load analytically it is therefore 
necessary to investigate if such a change of equilibrium state is possible. This can be 
done in two ways, either by an equilibrium study of a small element of the deflected 
member, or by a study of the potential energy of the system. The potential of the 
system can be used because of the theorem that states that the potential will have a 
minimum at the equilibrium (Höglund 2006). 

In complex situations, where several types of buckling are present (e.g. lateral 
torsional buckling), it is common to derive the theoretical critical load on the basis of 
energy methods.  

 

4.1 Energy methods 
Mcr can be derived for specific load cases, using the method of potential energy. This 
method is based on two important conditions (Höglund 2006, p. 33) 

(1) The total potential of a system has always a minimum at the state of 
equilibrium. Hence, a loaded beam will adjust itself to a deflected shape 
that corresponds to the lowest potential energy. 
 

(2) At the critical load, no energy is needed to deform a beam into a deflected 
state of equilibrium. Hence, the potential will not change. 

 

If the straight state of equilibrium is considered as the zero-level, e.g. HStraight = 0 the 
total potential in the deflected state must be equal to zero according to (2) and is 
denoted H. 

It can also be concluded that the mechanical work done by the external loads during 
buckling is equal to the internal work done by the sectional forces, i.e. the work done 
by the external loads is stored as elastic energy in the structure. Hence, it is possible to 
divide the total potential H into two parts, internal potential energy which is equal to 
the work done by the sectional forces and external potential energy which is equal to 
the work done by the external loads.  

Consequently, instability can only arise if the following two conditions are satisfied 

(1) 0 ei HHH  (4.1) 

(2) min ei HHH  (4.2) 

The elastic critical moment can be derived by solving these two equations with 
calculus of variations. Exact solutions can only be derived in simple cases. In complex 
cases, an approximate deflective shape is generally assumed that can be varied until 
the potential is sufficiently small (Höglund 2006, p. 38).  

The drawback with this method is that the solution only is valid for the specific load 
case it was derived for. If the load is moved, or the boundary conditions are changed 
in any way, a new expression of Mcr must be derived. These derivations can bring 
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great difficulties in more complicated load cases, involving complex coupled 
differential equations (Höglund 2006, p. 58). 

Clearly the method of potential energy is not practical to use in design. However, it 
has been used successfully multiple times, providing solutions for simple and 
common load cases presented in books such as (Lopez et al. 2006) 

 Theory of Elastic Stability by Timoshenko S.P. and Gere J, 1961 
 Principles of Structural Stability by Chajes A, 1974 
 Flexural-Torsional Buckling of Structures by Trahair N.S, 1993 

 

4.2 The 3-factor formula 
In practical design Mcr can be estimated by task-specific software or from hand 
calculations. Early ENV-editions of Eurocode 3 included an expression of Mcr. 
However, it was later removed without replacement. This expression is known as the 
3-factor formula and is one of the most used analytic formulas to estimate the elastic 
critical moment (Andrade et al. 2006). Today it can be found in NCCI-guides by 
Access Steel (2005) and in other handbooks. 

The 3-factor formula is based on a reference load case, to which correction factors are 
added in order to make the equation fit other cases. The reference case comprises a 
beam on two fork supports with double-symmetric cross-section with constant moment 
distribution. The critical moment related to this reference case is denoted Mcr,0 and is 
derived in Appendix C. See equation (4.3) below. 
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The 3-factor formula expands the expression of Mcr,0 to be valid for single-symmetric 
cross sections with arbitrary moment distributions. This is done by introducing three 
correction factors, C1, C2 and C3 that account for these conditions. The factors can 
either be found in tables and figures, or estimated from approximate closed-form 
expressions. To account for warping degrees of freedom and lateral rotation at the 
supports, the expression is also expanded with the factors, kz and kw. The 3-factor 
formula is presented below in equation (4.4). 

 
     















































 jgg

z

tz

z

w

w

z

z

z
cr zCzCzC

EIπ
GILk

I
I

k
k

Lk
EIπ

CM 32
2

22

2

2

2

1  (4.4) 

Where E = Young’s  modulus 

G = Shear modulus 

Iz = Second moment of inertia about weak axis 

It = Torsion constant 

Iw = Warping constant 

L = Length between lateral restraints 
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kz = Effective length factor which is related to the
 restrain against lateral bending at the boundaries 

kw = Effective length factor which is related to the
 restrain against warping at the boundaries 

zg = Distance between the point of load application
 and the shear centre 

zj = Distance related to the effects of asymmetry
 about y-axis 

C1 = Factor that account for the shape of the moment
 diagram 

C2 = Factor that account for the point of load
 application in relation to the shear centre 

C3 = Factor that account for asymmetry about y-axis 

 

4.2.1 Comment 
The 3-factor formula is only valid under the following conditions. 

 Uniform cross-section with symmetry about weak axis 
 Bending about major axis 

 

4.2.2 The equivalent uniform moment factor, C1 
In literature, the C1–factor is referred to as the equivalent uniform moment factor or 
the moment gradient factor. 

As explained in chapter 4.1, the critical buckling load can be derived for different load 
cases through methods of potential energy. Examples are given below for a double-
symmetric beam on fork supports, subjected to a concentrated load (1) and a 
uniformly distributed load (2) (Yoo & Lee 2011). 

(1) Critical load for a concentrated load in mid-span, fork supports 
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(2) Critical load for a uniformly distributed load, fork supports 
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When equation (4.5) and (4.6) are rewritten as expressions of the elastic critical 
moment, a comparison can be made with Mcr,0 as reference. The influence of the 
different loading conditions can now be studied. 

(1) Critical load for a concentrated load in mid-span, fork supports 
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(2) Critical load for a uniformly distributed load, fork supports 
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If equation (4.7) and (4.8) are compared to the reference equation (4.3), the only 
difference is a factor 1.36 and 1.13 respectively. Hence, it is expected that the elastic 
critical moment for a general load case can be written as 
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Where C1 take the following values 

 A concentrated load in mid-span, fork supports, C1 = 1.36 
 A uniformly distributed load, fork supports, C1 = 1.13 
 Reference load case, Mcr,0, C1 = 1.0 

 

The moment diagrams in the three different load cases above take the shapes of a 
rectangle, a parabola and a triangle respectively. Thus, the factor C1 seems to be 
related to the shape of the moment diagram, where big areas under the curve yield 
small values of C1 (Yoo & Lee 2011). Since the boundary conditions affect the 
moment diagram, it is expected that they also will influence the values of C1 and Mcr. 

 

(1) (2) 

 

(3) 

  
Figure 4.1 The moment diagrams in the different load cases. 
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4.2.2.1 Values from tables and figures 
Values of C1 for standard load cases can be found in tables and figures given in 
handbooks. Two examples are given below. 

 “NCCI: Elastic critical moment for lateral torsional buckling” by Access 
Steel (2005) provides information on how to treat instability of steel members 
and gives tabled values of the C-factors in the 3-factor formula.  
Access Steel is  a  project  with  the  purpose  to  provide  guidance  and  “thorough  
understanding   of   how   the   Eurocodes   should   be   used”   (Access Steel 2013). 
Contributors to the project are some of the leading research institutions in 
Europe (e.g. CTICM, SBI, SCI) and some of the largest steel producers (e.g. 
ArcelorMittal, Ruukki, SSAB) (Access Steel 2013).  
NCCI stands for Non-Contradictory, Complementary Information, and refers 
to guides who give useful information that is not stated in the Eurocodes 
themselves. 

 

 “Rules for Member Stability in EN 1993-1-1”   by   ECCS   (2006) presents 
solutions to Mcr in some common cases. ECCS (European Convention for 
Constructional  Steelwork)  is  an  “organisation  which  brings  together  the  Steel  
Industry, the Fabrication and Contracting specialists, and the Academic world 
through an international network of representatives, steel producers, and 
technical  centres”  (ECCS  2013). 

 

In Appendix B, the table values of ECCS (2006) and Access Steel (2005) are 
compared to reference values from Serna et al. (2005). 

 

4.2.2.2 Closed-form expressions 
In cases where table values are not available, C1 can be calculated with closed-form 
expressions. By using curve fitting-techniques, several researchers have presented 
approximate expressions of C1, generally constructed to give lower-bound solutions. 
Exact expressions are difficult to construct since C1 is dependent on more factors than 
the shape of the moment diagram. See further discussion in chapter 4.2.2.3. 

 

4.2.2.2.1 Closed-form expression by M.G. Salvadori 

One of the first closed-form expressions for estimating C1 was presented by M.G. 
Salvadori in 1955 (Serna et al. 2005). The expression gives reasonable results when 
considering linear moment distributions. 

3.23.005.175.1 2
1  C  (4.10) 

Where Ψ = Ratio of end-moments, M1/M2 
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Figure 4.2 Linear moment distributions. 
 

4.2.2.2.2 Closed-form expression by P.A. Kirby and D.A. Nethercot 

Kirby & Nethercot (1979) formulated an expression of C1 that applies to both linear 
and non-linear moment diagrams. See equation (4.11). 

max

max
1 2343

12
MMMM

MC
CBA 

  (4.11) 

Where Mmax = Maximum moment 

MA, MB, MC = Absolute values of the moments at L/4,  L/2
 and 3L/4 respectively, see Figure 4.3 

 

MA MB MC 

MA MB 

MC 

 
Figure 4.3 The moments MA, MB, MC in equation (4.11) are the absolute values 

of the bending moment along the length of the beam, L, at the 
positions L/4, L/2 and 3L/4 respectively. Mmax is the absolute value 
of the maximum moment (Adapted from Serna et al. 2005). 

 

With a slight modification this expression is used in the design code of the American 
Institute of Steel Construction, AISC LRFD (Serna et al. 2005). Compare with 
equation (4.23). 

 

According to Serna et al. (2005) and Lopez et al. (2006), equation (4.23) from AISC 
LRFD provides good approximations for most of the common load cases. 
Nonetheless, their studies show that C1 is not purely dependent on the moment 
distribution, as was assumed by Kirby & Nethercot (1979), but also coupled to the 
lateral boundary conditions of warping and lateral bending. Serna et al. (2005) points 
out that for some moment distributions equation (4.11) gives highly conservative 
results. In the cases of beams prevented from lateral bending and warping, the results 
are sometimes non-conservative (Serna et al. 2005). 
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4.2.2.2.3 Closed form expression by Serna et al. (2005) and Lopez et al. (2006) 

As mentioned above Serna et al. (2005) showed that C1 is coupled to the warping and 
lateral bending conditions at the supports. This means that it is not possible to derive 
an exact closed-form expression for C1 that does not contain a factor related to these 
boundary conditions. A new proposition of a closed-form expression of C1 was 
presented in their report where two factors, kz and kw, were added to account for 
lateral bending and warping at the boundaries. In 2006 the expression was improved 
by Lopez et al. (2006) and is presented below in equations (4.12)-(4.15). 
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kz = Effective length factor related to lateral bending at the
 boundaries 

kw = Effective length factor related to warping at the
 boundaries 
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Figure 4.4 The moments M1, M2, M3, M4 and M5 are the absolute values of the 

bending moment along the length of the beam, L, at the positions 0, 
L/4, L/2 3L/4 and L respectively. Mmax is the absolute value of the 
maximum moment (Serna et al. 2005). 

 

4.2.2.3 The μ-ratio and its effect on C1 
As seen in chapter 0, Serna et al. (2005) and Lopez et al. (2006) showed that the C1-
factor is not only dependent on the moment diagram but also coupled to the effective 
length factors kz and kw. According to Fruchtengarten (2006), Access Steel (2005), 
and ECCS (2006) C1 is also dependent on the ratio 

w

t

EI
LGI 2

  (4.16) 

This means that in addition to moment distribution and lateral boundary conditions, 
also section parameters, material parameters and beam-length affect the C1-factor. An 
interesting consequence is that it is not possible to give an exact value of C1 without 
knowing the length of the beam.  

In Figure 4.5 C1-values for two different lateral support conditions are plotted against 
the ratio μ. The results are valid for beams simply supported about major axis, 
subjected to concentrated loads in the mid-span. In the plot, k = 1.0 implies that both 
kz and kw are equal to 1.0. 
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Figure 4.5 C1-values for a beam subjected to a concentrated load in the mid-

span (Fruchtengarten 2006). 
 

It can be concluded from the figure, that smaller values of μ yield lower values of C1 
for k = 0.5. According to Fruchtengarten (2006) this is mainly due to the influence of 
shear effects. In situations where k = 1.0, the influence of μ is very small. Graphs for 
distributed loads and end-moments show the same characteristics as Figure 4.5. 

Assuming μ  =  ∞  is  generally  a  conservative  assumption  and  the  values  of  C1 given in 
Access Steel (2005) and ECCS (2006) are based on this assumption. 

In chapter 7, IPE500-beams with lengths 8 and 16 meters are studied. The lengths 
correspond to μ-values of 17.6 and 70.4 respectively. As seen in Figure 4.5, small 
deviations in C1 between these two beams are expected. 
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4.2.3 Correction factor for the point of load application, C2 
Equation (4.9), with the C1-factor added, is only valid when the load acts in the shear 
centre. In reality, beams are often loaded on the top or bottom flange, and not in the 
shear centre. Thus a second correction factor, C2, has been added to account for the 
effects of the point of load application, PLA.  

When PLA is separated from SC, the load contributes with an additional twisting 
moment that is added to the potential energy of the system. Therefore, a load applied 
under SC helps to stabilize the beam and a load above SC destabilize the beam (See 
Figure 4.6). 
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φ 

 
Figure 4.6 The additional moment due to the point of load application 

contributes to the potential energy of the system. 
 

With the C2-factor added to the formula, equation (4.17) below is obtained.  
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Where C2 = Correction factor for the point of load application 

zg = Distance between the point of load application
 and the shear centre, measured positive above
 SC. See Figure 4.7 

 

zg 

F 
SC 

 
Figure 4.7 The distance zg, is the distance between the point of load 

application and the shear centre measured positive above SC. 
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4.2.3.1 Values from tables and figures 
As for C1, values of the C2-factor for standard load cases can be found in tables and 
figures given in handbooks such as Access Steel (2005) and ECCS (2006). See 
chapter 4.2.2.1. 

 

4.2.4 Correction factor for cross-section asymmetry, C3 
With the C1- and C2-factors, the 3-factor formula can be used for calculation of Mcr 
for double-symmetric beams with various loads and points of load application. Still, 
the equation is only valid for double-symmetric sections, i.e. sections where both the 
major and minor axis are symmetry lines of the section. In order to analytically 
estimate Mcr for sections with symmetry only about the minor axis, a third correction 
factor C3 must be introduced. 

 

GC 

GC 

Double-symmetric section  Single-symmetric section  
 

Figure 4.8 Examples of a double- and a single-symmetric cross-section. 
 

With C3 added, the expression takes the following form. 
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Where C3 = Correction factor for asymmetry about y-axis 

zj = Distance related to the effects of asymmetry
 about y-axis. See equation (4.19) below 
 

 

y

A
sj I

dAzzy
zz

 


225.0
 

(4.19) 

Where zs = Distance between the shear centre and the centre
  of gravity. For a more detailed definition, see 
  ECCS (2006) 

 

4.2.4.1 Comment 
The C3-factor is not studied further since the thesis is limited to double-symmetric 
sections. 
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4.2.5 Effective length factors kz and kw 
With the three C-factors implemented, Mcr can be evaluated for different load cases, 
sections and points of load application. However, different boundary conditions 
cannot be considered without some further expansion of the expression. Research by 
Salvadori, Lee and Vlasov in the 1950s and 60s showed that such an expansion can be 
done by introducing effective length-factors analogues with those of column-buckling 
(Yoo & Lee 2011, p. 364). 

The effective length-factors relate the length between lateral restraints, L, to the 
buckling length corresponding to the boundary conditions, Lb. 

kLLb   (4.20) 
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Figure 4.9 The effective length factor, k, relates the length of the member, L, to 

the buckling length corresponding to the boundary conditions, Lb. 
 

Since both the warping and the lateral bending resistance of the boundary are of 
interest, two effective length factors can be defined; kz (lateral bending) and kw 
(warping). 
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Where kz = Effective length factor which is related to the 
  restraint against lateral bending at the boundaries 

kw = Effective length factor which is related to the
 restraint against warping at the boundaries 

 

The effective length factors are equal to 1.0 if the boundaries are free, 0.5 if the 
boundaries are fixed and 0.7 if the boundaries are free at one side and fixed at the 
other. See Table 4.1 below. 
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Table 4.1 Effective length factors for lateral torsional buckling 

Boundary conditions kz and kw 

Free at both sides 1.0 

One end fixed, one end free 0.7 

Fixed at both sides 0.5 

 

In situations where kz = kw, the effective length factors are often just denoted k. The 
values of kz and kw are analogues to case 2, 3 and 4 of classical Euler buckling. See 
Figure 4.10. 

 

Ncr Ncr Ncr Ncr 

Case 1 
Lb=2L 

Case 2 
Lb=L 
 

Case 3 
Lb=0.7L 
 

Case 4 
Lb=0.5L 
 

L 

 
Figure 4.10 Euler buckling cases showing the effective buckling length, Lb, for 

axially loaded columns with different boundary conditions. 
 
In Appendix A, choices of boundary conditions (kz and kw) are discussed for common 
beam connections.  
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4.3 American Institute of Steel Construction, AISC LRFD 
In papers on lateral torsional buckling and the elastic critical moment, many 
references are given to the design code of the American Institute of Steel 
Construction, AISC LRFD. This chapter gives a short presentation on how this code 
treats calculations of the elastic critical moment. 

 

4.3.1 Evaluation of Mcr  
The formula for elastic critical moment presented in AISC LRFD is a variation of the 
3-factor formula. For double-symmetric sections with the point of load application in 
the shear centre, Mcr can be calculated with the expression below (AISC LRFD 1999, 
p. 34). 
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Where Lb = k·∙L 

Equation (4.22) is analogus with the 3-factor formula (4.4) if the following 
assumptions and changes in notations are made. 

Cb = C1 
Cw = Iw 

J = It 

Iy = Iz 

k = kz = kw 

C2 = C3 = 0 

 

No distinction is made between lateral bending and warping in AISC (2005), i.e. kz 
and kw must take the same value. Also, it is not possible to use equation (4.22) for 
other than double-symmetric sections with the load applied in the shear centre. 

 

4.3.2 Equivalent Uniform Moment Factor, Cb 
Between 1961 and 1993 equation (4.10) by Salvadori was used in AISC LRFD to 
calculate Cb. In 1993 it was replaced by equation (4.23) below (Yoo & Lee 2011). 

max

max

5.2343
5.12

MMMM
MC

CBA
b 
  (4.23) 

 

Where Mmax = Maximum moment 

MA, MB, MC = Absolute values of the moments at L/4,
 L/2 and 3L/4 respectively (Figure 4.11) 
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MA MB MC 

MA MB 

MC 

 
 
Figure 4.11 The moments MA, MB, MC in equation (4.23) are the absolute values 

of the bending moment along the length of the beam, L, at the 
positions L/4, L/2 and 3L/4 respectively. Mmax is the absolute value 
of the maximum moment (Adapted from Serna et al. 2005). 

 

Equation (4.23) is  very  similar  to  Kirby’s  and  Nethercot’s  expression  (4.11). The only 
difference is the weighting of the moments along the beam. Compared to the 
previously used equation by Salvadori, it provides similar results for linear moment 
distributions between bracings, but better solutions for beams with fixed ends (AISC 
2005).  
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5 Evaluation of Mcr with finite element methods 
With computer-based techniques such as finite element and finite difference methods, 
it is possible to determine Mcr in complex situations. In this chapter, two techniques of 
determining Mcr in finite element software are presented briefly; linearized buckling 
analysis and buckling analysis by load-displacement control, LDC. 

 

5.1 Linearized buckling analysis 
Finite element software often provide the possibility of stability analysis by the 
implementation of an eigenvalue-problem to the global stiffness matrix of the system. 
Such analyses can be referred to as eigenvalue buckling, linearized buckling or just 
buckling analysis (Earls 2006). 

Linearized buckling analysis is a powerful tool for determining approximate critical 
loads since it is relatively fast. The solution corresponds to the theoretical critical load 
of an ideal-elastic structure without imperfections. If a structure's pre- or post-
buckling behaviour is of interest, more detailed incremental analyses are often 
necessary, see chapter 5.2 (Earls 2006). 

 

5.1.1 Eigenvectors and eigenvalues 
An eigenvector of a matrix is a nonzero vector that only undergoes a scalar 
transformation when multiplied with the matrix. The corresponding scalar to the 
eigenvector is called an eigenvalue, if a nontrivial solution exists. 

xxA   (5.1) 

  0 xA   (5.2) 

Where x  = Eigenvector 

λ  =  Eigenvalue 

 

According to the Invertible Matrix Theorem solving λ in equation (5.2) is equivalent 
of finding λ such that the matrix  A  is singular (not invertible). When a matrix is 
singular, its determinant is equal to zero. Hence, the eigenvalues of a matrix A can be 
solved from the following equation. 

  0det A  (5.3) 
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5.1.2 Eigenvalue problems applied on structural stability 
The stiffness matrix of a beam relates the applied load to the resulting deformation, 
and can be divided into an elastic part and a load-dependent geometric part. In a 
situation where the stiffness matrix, K , is singular, no load is needed to move the 
structure into a displaced configuration, i.e. buckling occurs. 

PpK   (5.4) 

GE
KKK   (5.5) 

Where K  = Stiffness matrix 

p  = Displacement vector 

P  = Load vector 

E
K  = Elastic, linear part of the stiffness matrix 

G
K  = Geometric, nonlinear, load-dependent part of the

  stiffness matrix 

 

Since the geometric part of the stiffness matrix, 
G

K , is nonlinear dependent on the 
applied load, it is necessary to linearize the problem. This is done differently 
depending on how the stability problem is implemented in the finite element software. 
Commonly, the classical and the secant formulation can be chosen. 

 

5.1.2.1 The classical formulation 

In the classical formulation, the load dependent part of the stiffness matrix, 
G

K , is 
assumed to be linearly dependent on the load factor, λ. 

GE
KKK   (5.6) 

Now critical load factors are sought, so that K  becomes singular. As mentioned in 
chapter 5.1.1, a matrix is singular when its determinant is zero. Thus, the load factors, 
λcr, can be found by solving 

  0det  GcrE KK   (5.7) 

Where λcr = Critical load factor (eigenvalue) 
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5.1.2.2 The secant formulation 
In the secant formulation the stiffness matrix is formulated according to equation 
(5.8). Here, t0 represents   the   “time”   before   the   start   of   the   current   analysis,   and   t1 
represents the “time”  of  the  first  load  step. 

 010 ttt KKKK    
(5.8) 

By solving the determinant of the stiffness matrix, tK , the critical load factors, cr , 
can be found. 

   0det 010  tt
cr

t KKK   (5.9) 

Where λcr = Critical load factor (eigenvalue) 

 

5.1.3 The influence of the base load 
The base load is the load that is applied to the structure before running the linearized 
buckling analysis. In the finite element program ABAQUS the base load do not 
influence the buckling load, while in ADINA it can have a significant impact. The 
reason is how the classical and the secant formulation are implemented in the 
software, or in other words how the geometric stiffness matrix is approximated. In 
ADINA, the stiffness matrix is an approximate tangent matrix with an accuracy 
influenced by the load level (Earls 2006). 

Figure 5.1 shows an eigenvalue plot of how the base load affects the buckling load for 
a given load case. The load calculated in LTBeam is used as reference, and both axes 
are normalized against it. 
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ADINA (CLASSICAL)

ADINA (SECANT)

LTBeam

Base load

 

λ∙Pbase 

Pcr 

 
Figure 5.1 Eigenvalue plot of how the base load influences Pcr for a fixed 8 

meter IPE500 beam. The lateral boundary condition is k=1.0 and 
the beam is subjected to a concentrated load in the mid-span on the 
top-flange. 
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It can be seen that the base load has a big impact on the solution and that the accuracy 
improve when the base load is increased, independent on which formulation that is 
used. The reason for this can be seen in the problem implementation. The eigenvalue 
problem solved by ADINA using the classical formulation is 

  iGii KKK    (5.10) 

Where 
cr

cr
i 




1
  

 i  = Buckling mode 

 

This means that if the base-load is chosen so that the critical load factor, λcr ≈  1,  then  
γi ≈   0, which implies that det(K)   ≈   0.   This in turn means that the load level 
corresponds to buckling. 

 

5.2 Load-displacement control, LDC 
LDC is a static analysis where the load is applied in increments and the response of 
the system is calculated for each load-step. In order to capture the buckling behaviour 
of a beam, an initial imperfection must be given. A common approach is to first run a 
linearized buckling analysis to find the shape of the buckling mode and then use this 
shape as an initial imperfection in the LDC analysis. LDC gives more detailed 
information about the behaviour of a structure compared to a linearized buckling 
analysis, since it also describes pre- and post-buckling behaviour. 
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6 Presentation of software 
This chapter provides some background information on how the commercial software 
ADINA, COLBEAM, LTBeam and SAP2000 conducts buckling analyses and 
estimates Mcr. 

 

6.1 ADINA Solids & Structures, 900 Nodes Version 8.8 
ADINA (Automatic Dynamic Incremental Nonlinear Analysis) is a finite element 
software with a wide range of applications. Buckling analysis can be conducted either 
by a linearized buckling analysis or by an incremental static analysis, LDC. 

 
 

Figure 6.1 Visualisation of the lateral torsional buckling mode of a beam in 
ADINA. 

 

It is important to consider warping effects in lateral torsional buckling analysis. 
ADINA distinguishes between beam elements and warping beam elements, where the 
latter has an additional warping degree of freedom. The ADINA user manual does not 
recommend the use of warping beam elements in large displacement analysis, since 
they for some cases yield incorrect results. Therefore, the warping beam element 
cannot be used in linearized buckling analysis in version 8.8 of ADINA. However, it 
is possible to override this obstruction and access the 8.7 version of the element 
formulation from the 8.8 version (ADINA 2011). 

Shell elements can be used instead of beam elements in buckling analysis. A model 
with shell elements is more time consuming to establish, but will take more effects 
into account than a beam model (e.g. arch action). The boundary conditions must be 
set very carefully when working with shell elements since they have a significant 
impact on the results.  

When using shell elements, an I-beam is often modelled as three plates neglecting the 
radiuses of the rolled section. Such a simplification may not be justified in all 
situations, since it yields a deviation in the results. Before evaluating Mcr in chapter 7, 
a pre-study was carried out in ADINA to determine the magnitude of this deviation. It 
was found to be about 4% in the studied cases, which was considered non-neglectable. 

  



CHALMERS, Civil and Environmental Engineering,  Master’s  Thesis  2013:59 47 

6.2 COLBEAM, EC3 v1.0.6 
COLBEAM is a steel beam/column calculation software developed by StruProg AB, 
Sweden. The program conducts static analysis for single spanned beams and makes 
section and buckling controls according to Eurocode 3. 

In buckling analysis COLBEAM implements the 3-factor formula presented in 
chapter 4.2. 
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The  elastic  critical  moment   is   found  under   the   tab  “More  Results”  on  COLBEAM’s  
main screen. 

  
Figure 6.2 Main screen of COLBEAM. The results of the static analysis are 

displayed in the bottom of the screen. The elastic critical moment 
can be found under the tab “More  Results”. 

 

6.2.1 Implementation of C-factors 
By default COLBEAM uses table values to determine the C-factors, see Figure 6.3. 
In cases of a beams simply supported about the major axis, the values come from 
ECCS (2006). For beams with fixed supports about the major axis, COLBEAM refers 
to a table in ENV-1993-1-1:1992, which is a pre-edition of Eurocode 3. In cases of 
multiple loading, the dominating load determines what table value to be used. 

By  marking  the  box  “Advanced  calculation  of  C1”,  COLBEAM  uses  the closed-form 
expression by Lopez et al. (2006) to calculate C1 (see chapter 0.). This option is not 
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available for linear moment distributions. In these cases there are no references to the 
C1-values used by COLBEAM, but it can be concluded through comparison that these 
values are collected from ECCS (2006).  

The point of load application controls the term C2∙zg in the 3-factor formula. The load 
can be applied on the top, centre or bottom of the section by clicking on the 
corresponding icon. A custom distance from the applied load to the gravity centre can 
also be set, see Figure 6.3. 

 

6.2.2 Implementation of lateral restraints 
Lateral boundary conditions are accounted for by the k-factor, which can take the 
values 0.5 (fixed at both ends), 0.7 (fixed at one end and free at the other) or 1.0 (free 
at both ends). Note that no distinction can be made between the warping restraint, kw, 
and the end rotation restraint, kz, which implies that the same value of k must be 
assigned to both these restraints.  

Table values of C1, C2 and C3 are only available for k=0.5 and k=1.0. When k is 
chosen as 0.7, COLBEAM makes a linear interpolation between the C-values of k=0.5 
and k=1.0. 

In addition to the k-factor, lateral restraints along the compression flange can be added 
in order to control lateral fixation. 

   
Figure 6.3  Input screen for lateral torsional buckling in COLBEAM. To the 

right; table values of C1, C2 and C3 are displayed for standard 
cases of loading and support conditions. To the left; settings for the 
point of load application can be adjusted under the heading 
“Loadlevel”.   In   the   left   upper   corner,   the   lateral   boundary  
conditions can be chosen to 1.0, 0.7 or 0.5.  
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6.3 LTBeam, version 1.0.11 
LTBeam is a free software developed by CTICM (Centre Technique Industriel de la 
Construction Métallique) in France solely for calculation of elastic critical moments. 
The program performs a buckling analysis with finite elements, treating both single 
spanned beams and cantilevers.  

LTBeam consists of four tabs/windows. In the first three, information can be added 
about the section, lateral restraints and loading  conditions.  In  the  fourth  tab,  “Critical  
Moment”,  the  analysis  is  performed  and  the  results  can  be  viewed.  Figure 6.4 below 
show the lateral restraints tab. 

  
Figure 6.4 The “Lateral  Restraints”  tab in LTBeam.  
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6.3.1 Implementation of lateral restraints 
In LTBeam it is possible to set end-restraints independently for lateral bending, 
warping, lateral deflection and rotation about the x-axis. If the restraints are set as free 
at one side and fixed at the other, the model will represent a cantilever (provided that 
also the major axis restraints correspond to a cantilever). 

  = Lateral rotation about the y-axis, if set to free  the beam
 can bend out laterally at the end. This  boundary
 condition corresponds to kz in the 3-factor formula 

 
   = Warping degree of freedom. This boundary condition

 corresponds to kw in the 3-factor formula. 
 
  = Lateral deflection, if set to free the beam can deflect

 laterally at the end 
 
  = Rotation about the x-axis, if set to free the beam can

 rotate around its own axis 
 

Figure 6.5 below shows these boundary conditions and their notations in LTBeam. In 
addition to the end-restraints, lateral bracings along the beam can also be added to the 
model. 

 

  
Figure 6.5 Lateral boundary conditions in LTBeam. 
 

According to CTICM, LTBeam is only intended for those with enough knowledge to 
assess the accuracy of the result. The use of the program is entirely under the 
responsibility of the user. There is little background documentation on LTBeam, 
which makes it hard to interpret the results (as required by CTICM). However, several 
trusted sources (e.g. Access Steel (2005) and ECCS (2006)) make references to 
LTBeam as a useful program.  

LTBeam can be downloaded from <http://www.steelbizfrance.com>.  
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6.4 SAP2000, Ultimate 15.1.0, “design module” 
SAP2000 is a 3D-object based modelling program often used to analyse multi-
element structures. It can also be used to analyse separate members and beams. The 
elastic critical moment can be calculated in SAP2000 from finite element analysis 
with shell elements, or from a   “design module”   that implements analytical 
expressions.  In  the  “design module”,  several  design  codes  can  be  chosen. This thesis 
focuses  on  the  “design module”  with  section  analysis  according  to  Eurocode 3. 

A  structure  can  be  modelled   in  SAP2000  by  using   the  “drawing   tool”, but there are 
also many templates of beams and plates etc. Figure 6.6 shows the main window in 
SAP2000. Load patterns, load cases and load combinations are created under the 
“Define”  tab.  Boundary  conditions  and  loads  are  applied  under  the  “Assign”  tab. 

  
Figure 6.6 The main window in SAP2000. Loads are defined under the 

“Define”   tab and boundary conditions are applied under the 
“Assign”  tab. 

 

When designing according to Eurocode 3, SAP2000 implements equation (6.2) in the 
“design module”. This expression is analogues with the expression used in AISC 
LRFD (CSI 2011). See equation (4.22). 
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Where Lcr = k·∙L 
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This form of the 3-factor formula is valid when 

 C2·∙zg = 0 
 C3·∙zj = 0 
 k  = kz = kw 

 

This means that this expression does not take the point of load application into 
account and can only be used for double-symmetric sections. Both lateral bending and 
warping restraints must be assigned the same value. 

 

6.4.1 Implementation of C-factors  
According to CSI (2011), SAP2000 calculates C1 with equation (6.3) when using the 
Eurocode 3 setting. 

2
1 52.040.188.1  C  (6.3) 

Where   = Ratio of the end-moments 

 

However, it is obvious that SAP2000 actually uses equation (6.4) from AISC LRFD 
(see Table 6.1). 

max

max
1 5.2343

5.12
MMMM

MC
CBA 

  (6.4) 

 

Table 6.1 Comparison of C1-values from SAP2000 with equations (6.3) and 
(6.4) for an 8 meter IPE500 beam (k=1.0). 

 

6.4.2 Implementation of lateral restraints 
When evaluating the elastic critical moment, lateral boundary conditions can be 
applied in three different ways. 

(1) As boundary conditions in the model 
(2) As lateral bracings in the model 
(3) By overwriting values on the effective length factor, k, in the “design module” 

  

 SAP2000, 
Eurocode 3 

AISC LRFD, 
equation (6.4) 

CSI (2011), 
equation (6.3) 

End-moments 1.000 1.000 1.000 
Simply supported 
(major axis) 

Concentrated load 1.316 1.316 1.000 
Distributed load 1.136 1.136 1.000 

Fixed 
(major axis) 

Concentrated load 1.923 1.923 1.000 
Distributed load 2.381 2.381 1.000 
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6.5 Summary of software properties 
 
Table 6.2 Summary of the properties in ADINA, COLBEAM, LTBeam and 

SAP2000. 

 ADINA 
“Warping beam 

elements” 

COLBEAM LTBEAM SAP2000 
“Design module”  

Eurocode 3 

* FE-analysis  

Linearized buckling 
analysis, or LDC 

Analytical expression, 
see equation (6.1) 

FE-analysis 

 

Analytical expression, 
see equation (6.2) 

C1 Implicitly implemented in 
FE-analysis 

Table values from ECCS 
(2006) & ENV-1993-1-1 

If “Advanced calculation 
of  C1”  is  used,  C1 is 

estimated by the closed-
form expression by 

Lopez et al. (2006), see 
chapter 0 

Implicitly implemented 
in FE-analysis max432

max
1 5.2343

5.12
MMMM

MC




 

This expression does not 
take lateral boundary 

conditions into account in 
calculation of C1 

C2 Implicitly implemented in 
FE-analysis 

The point of load 
application can be varied 
between the top, centre 

and bottom of the 
section, or set manually 

Implicitly implemented 
in FE-analysis 

Does not implement C2 

C3 Implicitly implemented in 
FE-analysis 

Implemented when 
single-symmetric 

sections are analysed 

Implicitly implemented 
in FE-analysis 

Does not implement C3 

kz, kw Implicitly implemented in 
FE-analysis 

The lateral boundary 
conditions can be set to 

1.0, 0.7 or 0.5 

No distinction can be 
made between lateral 
bending and warping 
conditions, kz and kw 

Warping, θ´, and lateral 
bending, ʋ´, are 

controlled with separate 
degrees of freedom and 
can be chosen as free or 

fixed individually 

Lateral deflection, ʋ, 
and rotations about the 
x-axis, θ, can also be set 
to free or fixed 

 

Lateral boundary 
conditions can be applied 
as boundary conditions, 
lateral restraints or by 

overwriting the effective 
buckling length factor, k, 
in  the  “design  module” 

No distinction can be 
made between lateral 
bending and warping 
conditions, kz and kw 

* Calculation method 
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7 Parametric study 
7.1 Background 
The   main   aim   of   this   Master’s   thesis   was   to   examine   how   ADINA,   COLBEAM,  
LTBeam and SAP2000 calculate the elastic critical moment, and to explain potential 
differences in the results. In order to achieve this, a parametric study was carried out 
where Mcr was calculated for selected situations in the programs.  

There are small differences in the sectional data implemented by the programs, see 
Table 7.1. It was therefore expected that the differences in computed critical moments 
should be primarily dependent on the C-factors of the 3-factor formula. This was also 
confirmed in a pre-study where the biggest deviation in Mcr due to sectional data was 
about 6  ‰. 

The study was divided into two parts, one concerning C1, and the other concerning C2. 
Serna et al. (2005) have presented exact finite difference values of the C1-factor for 8 
and 16 meter IPE500 beams subjected to different loading conditions. Since exact 
reference values are needed to make evaluations of the accuracy, the same beams and 
loading conditions have been used as in the research by Serna et al. (2005). No 
reference values were available for C2. The study of C2 should therefore be seen as a 
comparison between the programs, rather than an evaluation of the accuracy. 

 

7.2 Prerequisites and assumptions 
7.2.1 Software 
The following programs are investigated in the study. 

 ADINA Solids & Structures, 900 nodes version 8.8 
 COLBEAM, EC3 v1.0.6 
 LTBEAM version 1.0.11 
 SAP2000,  Ultimate  15.1.0,  “design module” for Eurocode 3 

ADINA and LTBEAM are FEM-software. COLBEAM and SAP2000 implement 
analytical expressions. See chapter 6. 

 

7.2.2 Material 
The modelled steel beams are assumed to be isotropic with a linear elastic material 
response. Pure elastic material behaviour is a reasonable assumption since the elastic 
moment is of interest. 

 Steel S355 
 Young’s  modulus, E = 210 [GPa] 
 Poisson’s ratio, ʋ = 0.3 
 Shear modulus, G = E / 2(1+ ʋ) [GPa] 
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7.2.3 Geometry 
Two IPE-beams with different lengths are investigated. 

 IPE500, 8 meter 
 IPE500, 16 meter 

 

In COLBEAM, LTBeam and SAP2000 the sectional properties are accessed from 
databases in the programs. In ADINA the section is defined manually by the  “general 
cross-section” command, and the properties   are   taken   from  ArcelorMittal’s product 
catalogue (ArcelorMittal 2013). 

 

Table 7.1 Section properties of studied IPE500 beams. 

 ADINA  

(general section) 

COLBEAM LTBeam SAP2000 

hw [mm] - 468 468 468 

hf [mm] - 200 200 200 

tf [mm] - 16.0 16.0 16.0 

tw [mm] - 10.2 10.2 10.2 

r [mm] - 21 21 - 

A [mm2] 11600 11550 11552 11600 

Iy [mm4] 4.82e8 4.82e8 4.819855e8 4.82e8 

Iz [mm4] 2.142e7 2.142e7 2.14169e7 2.142e7 

It [mm4] 8.93e5 * 8.901e5 8.91e5 

Iw [mm6] 1.249e12 1.25e12 1.254258e12 * 

* Calculated implicitly by the program 
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7.2.4 Point of load application, PLA 
In the study concerning the C1-factor, all loads are assumed to act in the shear centre. 
When studying C2, the loads are applied either on top of the upper flange or under the 
lower flange. All three points are located on the symmetry line along the z-axis. 

 

SC SC SC 

 
Figure 7.1 Three different PLA used in the study; on top of the upper flange, in 

the shear centre and under the lower flange. 
 

7.2.5 Lateral boundary conditions 
In the 3-factor formula, the lateral boundary conditions are controlled by the factors kz 
(lateral bending) and kw (warping). Since COLBEAM and SAP2000 cannot treat these 
degrees of freedom separately, the studies are limited to situations where kz=kw. In 
such situations, the factors are just denoted k. 

Three different cases of lateral boundary conditions are investigated. 

(1) Both ends free, k=1.0 
(2) One end free and one end fixed, k=0.7 
(3) Both ends fixed, k=0.5 

 

7.2.6 Studied load cases 
7.2.6.1 Load Case I - End-moments 

 

M M 

 
Figure 7.2 Load Case I; The beam is subjected to end-moment loading. 
 

7.2.6.2 Load Case II - Simply supported, concentrated load  

F 

0.5L 0.5L 
 

Figure 7.3 Load Case II; The beam is simply supported about major axis and 
subjected to a concentrated load in the mid-span. 
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7.2.6.3 Load Case III - Simply supported, distributed load  

q 

 
Figure 7.4 Load Case III; The beam is simply supported about major axis and 

subjected to an evenly distributed load. 
 

7.2.6.4 Load Case IV – Fixed, concentrated load  

F 

0.5L 0.5L 
 

Figure 7.5 Load Case IV; The beam is fixed about major axis and subjected to 
a concentrated load in the mid-span. 

 

7.2.6.5 Load Case V – Fixed, distributed load  

q 

 
Figure 7.6 Load Case V; The beam is fixed about major axis and subjected to 

an evenly distributed load. 
 

7.3 Procedure 
7.3.1 The reference moment, Mcr,ref 
In finite element software, the critical moment is evaluated directly, without the use of 
the 3-factor formula. As described below, it is possible to extract equivalent C1- and 
C2-factors in such programs when Mcr is known. 

Consider the 3-factor formula when C2=0 and C3=0 
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Define a reference moment Mcr,ref 
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In cases where C2=0, C3=0 and Mcr is known, C1 can be calculated from 

refcr

cr

M
MC

,
1   (7.3) 

 

In cases where C3=0 and Mcr and C1 are known, C2 can be refracted from 
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7.3.2 Parametric study of the C1-factor 
The procedure for the parametric study of the C1-factor is outlined below. 

(1) Establish 8 and 16 meter beam models valid for the given load cases 
with points of load application in the centre of gravity. 

 
(2) Calculate Mcr in the 5 load cases for the 3 lateral boundary conditions 

and the 2 beam lengths. 
 
(3) Extract C1-factors corresponding to the calculated values of Mcr. 

 

The procedure is followed for all 4 programs  considered,  making  5∙3∙2∙4=120 the total 
number of calculated critical moments. 

 

7.3.2.1 ADINA - Comments 
 Models are established using warping beam elements. 

 
 In all load cases, including the fixed load cases IV and V, the x-

translation is assumed free at one side of the beam. 
 

 Mcr is calculated by running a linearized buckling analysis under 
increasing base load until λ≈1. 
 

 The classical formulation of the eigenvalue problem is used in the 
buckling analysis. 
 

 Version 8.7 of the element formulation is used. 
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 The C1-factor is extracted by dividing the critical moment calculated in 

ADINA with the reference moment Mcr,ref. 
 

 Details on how the modelling is made in ADINA can be seen in 
Appendix D. 

 

7.3.2.2 LTBeam - Comments 
 LTBeam is a finite element program and calculates Mcr directly. Thus, 

the C1-factor is extracted by dividing the critical moment by the 
reference moment, Mcr,ref, in the same way as for ADINA. 

 

7.3.2.3 COLBEAM - Comments 
 COLBEAM uses analytical expressions to calculate Mcr. The C1-factor 

can be found directly in the program. 

 

7.3.2.4 SAP2000 - Comments 
 Models are established using beam elements. 

 
 A static analysis is conducted to obtain sectional forces. 

 
 In  the  “design module”,   the  effective  length  factors  are  overwritten in 

order to match the different boundary conditions. 
 

 The Eurocode 3 setting  is  used  in  the  “design  module”. 
 

 Similar   to   COLBEAM,   the   “design module”   in   SAP2000   uses  
analytical expressions to calculate Mcr. The C1-factor can be found 
directly in the results tab. 

 

7.3.3 Parametric study of the C2-factor 
The study concerning C2 follows a procedure similar to that of C1. 

(1) Establish 8 meter beam models with points of load application on top 
of the upper flange and under the bottom flange. 

 
(2) Calculate Mcr in load cases II-V for the 3 lateral boundary conditions 

and the 2 points of load application. 
 
(3) Extract C2-factors corresponding to the calculated values of Mcr. 
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7.3.3.1 Comments 
In ADINA and LTBeam, the critical moments are given directly. C1-factors are 
known for all cases, and thus, the C2-factor can be solved from the 3-factor formula. 
In COLBEAM, the C2-factor is given directly. SAP2000 does not implement C2 and is 
left out of the study.  

 Only 8-meter beams are considered.  
 

 Load Case I is left out since it would make no sense to try to vary the point of 
load application for end-moments. 
 

 No reference values are available. 
 

 In ADINA the point of load application is modelled as a rigid link from the 
beam node to the applied load. 

 

Details on how the modelling is made in ADINA can be seen in Appendix D. 
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8 Results 
All results from the parametric study can be found in Appendix E. 

 

8.1 The C1-factor 
In this chapter values of C1 from ADINA, COLBEAM, LTBeam and SAP2000 are 
compared to reference values from Serna et al. (2005). The results are presented in 
graphs showing how C1 depend on the lateral boundary conditions k. Column charts 
are also presented where the deviation in C1 with regard to the reference values is 
shown. Reference values are only available for k=1.0 and k=0.5. 

 

8.1.1 Comments 
 When comparing the results of the two beam lengths 8 and 16 meters, it 

could be seen that the maximum deviation in C1 was  about  5  ‰.  Since  other  
effects than the beam length have much greater impact on the C1-factor, 
results are only presented for the 8 meter beam. The results of the 16 meter 
beam are presented in Appendix E. 

 

 COLBEAM  values  using  the  option  “Advanced  calculation  of  C1”  are  
denoted  “COLBEAM  ‘Advanced’”  in  the  figures. 
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8.1.2 Load Case I 
Figure 8.1 presents the C1-values of Load Case I. Figure 8.2 shows the deviation of 
the C1-values in relation to the reference values of Serna et al. (2005). The option 
“Advanced   calculation   of   C1”   is   not   available   in   COLBEAM   for   linear   moment  
distributions. 

 
Figure 8.1 Load Case I; The C1-factor of software ADINA, COLBEAM, 

LTBeam and SAP2000 plotted for the lateral boundary conditions 
k=0.5, k=0.7 and k=1.0. 

 

 
Figure 8.2 Deviation of the C1-factor for each program in Load Case I. The 

results are compared to reference values obtained by Serna et al. 
(2005) for the lateral boundary conditions k=0.5 and k=1.0. The 
values are presented so that conservative values are negative.  
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8.1.3 Load Case II 
Figure 8.3 presents the C1-values of Load Case II. Figure 8.4 shows the deviation of 
the C1-values in relation to the reference values of Serna et al. (2005).  

 
Figure 8.3 Load Case II; The C1-factor of software ADINA, COLBEAM, 

LTBeam and SAP2000 plotted for the lateral boundary conditions 
k=0.5, k=0.7 and k=1.0. 

 

 
Figure 8.4 Deviation of the C1-factor for each program in Load Case II. The 

results are compared to reference values obtained by Serna et al. 
(2005) for the lateral boundary conditions k=0.5 and k=1.0. The 
values are presented so that conservative values are negative.  
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8.1.4 Load Case III 
Figure 8.5 presents the C1-values of Load Case III. Figure 8.6 shows the deviation of 
the C1-values in relation to the reference values of Serna et al. (2005). 

 
Figure 8.5 Case III; The C1-factor of software ADINA, COLBEAM, LTBeam 

and SAP2000 plotted for the lateral boundary conditions k=0.5, 
k=0.7 and k=1.0. 

 

 
Figure 8.6 Deviation of the C1-factor for each program in Case III. The results 

are compared to reference values obtained by Serna et al. (2005) 
for the lateral boundary conditions k=0.5 and k=1.0. The values 
are presented so that conservative values are negative.  
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8.1.5 Load Case IV 
Figure 8.7 presents the C1-values of Load Case IV. Figure 8.8 shows the deviation of 
the C1-values in relation to the reference values of Serna et al. (2005). 

 
Figure 8.7 Load Case VI; The C1-factor of software ADINA, COLBEAM, 

LTBeam and SAP2000 plotted for the lateral boundary conditions 
k=0.5, k=0.7 and k=1.0. 

 

 
Figure 8.8 Deviation of the C1-factor for each program in Load Case VI. The 

results are compared to reference values obtained by Serna et al. 
(2005) for the lateral boundary conditions k=0.5 and k=1.0. The 
values are presented so that conservative values are negative.  
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8.1.6 Load Case V 
Figure 8.9 presents the C1-values of Load Case V. Figure 8.10 shows the deviation of 
the C1-values in relation to the reference values of Serna et al. (2005). 

 
Figure 8.9 Load Case V; The C1-factor of software ADINA, COLBEAM, 

LTBeam and SAP2000 plotted for the lateral boundary conditions 
k=0.5, k=0.7 and k=1.0. 

 

 
Figure 8.10 Deviation of the C1-factor for each program in Load Case V. The 

results are compared to reference values obtained by Serna et al. 
(2005) for the lateral boundary conditions k=0.5 and k=1.0. The 
values are presented so that conservative values are negative.  
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8.2 The C2-factor 
In this chapter, values of C2 from ADINA, COLBEAM and LTBeam are presented in 
four load cases with two points of load application. 

 Loading on top of the upper flange 
 Loading under the lower flange 

In addition to the C2-plots, normalized graphs of Mcr are shown. These graphs are 
needed since it is hard to draw conclusions on how the point of load application 
affects Mcr just by studing C2. 

 

8.2.1 Comments 
 When a low point of load application is investigated, the load is placed 

“hanging”  under   to  bottom  flange  since   this  yields   the  same  distance,  zg, to 
the shear centre, as for a load placed on the top-flange. With regard to the 3-
factor formula, this means that zg will take the values of 0.25 and -0.25 for an 
IPE500 beam. 

 
 The graphs of Mcr are normalized after the program giving the highest values 

of Mcr. 
 

 SAP2000 is left out of this study since it does not implement the C2-factor. 
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8.2.2 Load Case II 
Figure 8.11 presents the C2-values of Load Case II. Figure 8.12 shows the elastic 
critical moment in a graph normalized after the program giving the highest value on 
Mcr. 

 
Figure 8.11 Load Case II; The C2-factor of software ADINA, COLBEAM, 

LTBeam and SAP2000 plotted for the lateral boundary conditions 
of k=0.5, k=0.7 and k=1.0. 

 

 
Figure 8.12 Normalized values of the elastic critical moment in Load Case II, 

plotted for the lateral boundary conditions of k=0.5, k=0.7 and 
k=1.0. The Mcr-values are normalized to bottom loading in 
COLBEAM.  
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8.2.3 Load Case III 
Figure 8.13 presents the C2-values of Load Case III. Figure 8.14 shows the elastic 
critical moment in a graph normalized after the program giving the highest value on 
Mcr. 

 
Figure 8.13 Load Case III; The C2-factor of software ADINA, COLBEAM, 

LTBeam and SAP2000 plotted for the lateral boundary conditions 
of k=0.5, k=0.7 and k=1.0. 

 

 
Figure 8.14 Normalized values of the elastic critical moment in Load Case III, 

plotted for the lateral boundary conditions of k=0.5, k=0.7 and 
k=1.0. The Mcr-values are normalized to bottom loading in 
COLBEAM.  
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8.2.4 Load Case IV 
Figure 8.15 presents the C2-values of Load Case IV. Figure 8.16 shows the elastic 
critical moment in a graph normalized after the program giving the highest value on 
Mcr. 

 
Figure 8.15 Load Case VI; The C2-factor of software ADINA, COLBEAM, 

LTBeam and SAP2000 plotted for the lateral boundary conditions 
of k=0.5, k=0.7 and k=1.0. 

 

 
Figure 8.16 Normalized values of the elastic critical moment in Load Case VI, 

plotted for the lateral boundary conditions of k=0.5, k=0.7 and 
k=1.0. The Mcr-values are normalized to bottom loading in 
COLBEAM.  
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8.2.5 Load Case V 
Figure 8.17 presents the C2-values of Load Case V. Figure 8.18 shows the elastic 
critical moment in a graph normalized after the program giving the highest value on 
Mcr. 

 
Figure 8.17 Load Case V; The C2-factor of software ADINA, COLBEAM, 

LTBeam and SAP2000 plotted for the lateral boundary conditions 
of k=0.5, k=0.7 and k=1.0. 

 

 
Figure 8.18 Normalized values of the elastic critical moment in Load Case V, 

plotted for the lateral boundary conditions of k=0.5, k=0.7 and 
k=1.0. The Mcr-values are normalized to bottom loading in 
LTBeam.  
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9 Analysis of results 
If the figures presented in chapter 8 are studied, some main observations can be 
pointed out regarding C1 and C2. These observations are presented and analysed 
below in chapter 9.1 and 9.2. 

 

9.1 Observations concerning C1 
9.1.1 The influence of lateral boundary conditions 
One main observation that can be seen in the graphs is that the relation between C1 
and the lateral boundary conditions, k, differs depending on the programs. The 
relationship is non-linear in ADINA and LTBeam, linear in COLBEAM and in 
SAP2000 k does not affect C1 at all.  

Generally, SAP2000 gives close and conservative approximations of C1 when the 
lateral boundary conditions are free, k=1.0. When including lateral fixations (k=0.7 
and k=0.5) C1 is unaffected, which yields un-conservative overestimations of C1. 
SAP2000  “design module”  implements  an  expression of C1 from the American design 
code, AISC LRFD, see equation (6.4). This expression does not take the effects of 
lateral boundary conditions into account.  

The finite element programs ADINA and LTBeam gives a higher C1-value for k=0.7 
compared to the linear interpolated values of COLBEAM. There are no reference 
values for k=0.7, why it is hard to draw sharp conclusions about the accuracy of these 
values. However, both finite element programs provide close to exact results in the 
cases with known reference values. They also give almost the same C1-values for 
k=0.7. Hence it could be argued that the reliability of their results for k=0.7 are 
relatively high. This would mean that COLBEAM makes a conservative 
approximation when assuming a linear relationship when k=0.7. 

 

9.1.1.1 Deviations of SAP2000 results in Load Case IV 
In Load Case IV, the C1-value in SAP2000 is about 84% too high compared to the 
reference value when k=0.5. This is the highest deviation of C1 in SAP2000. In this 
load case C1 is not only overestimated for k=0.5 and k=0.7, but also for k=1.0 where it 
is about 12% to high.  

The overestimation in this particular load case depends on the implemented 
expression of C1 (see chapter 4.3). The expression is based solely on the shape of the 
moment diagram, weighting the moments in three positions along the beam (MA, MB, 
MC) together with the maximum moment (Mmax). The weighting has been chosen to 
give reasonable results in many different situations, but evidently it does not fit this 
particular load case that well. 

By weighting the moments differently, a correct C1-value could be achieved also in 
Load Case IV. However, this would be to the cost of less precision in C1 for other 
load cases. 
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9.1.2 COLBEAM tables and  “Advanced  calculation  of  C1” 
A general conclusion that can be drawn from the parametric study is that the table 
values in COLBEAM provide better approximations of C1 than the closed-form 
expression used  in  the  setting  “Advanced calculation of C1”.  This  could be expected, 
since the closed-form expression is approximate, while table values are evaluated with 
greater precision for specific load cases. However, when a load case is not included in 
the tables, COLBEAM interpolates between known values, and in cases with multiple 
loads the table value of the dominant load is used. For these more complex load cases 
the  option  “Advanced calculation of C1”  could  be  more  suitable  to  use. Hence, when 
known table values are available they are to be preferred. For cases where C1 is 
unknown, the  “Advanced  calculation  of  C1”  option can provide a reasonable and in 
most cases conservative approximations of C1. All load cases tested in the parametric 
study are available in COLBEAM tables.  

Load Case V is an exception from the argument above. In this load case the table 
value of COLBEAM is very conservative (less than 50% of the reference value). In 
this   case   the   option   “Advanced calculation of C1”   yields   a   much  more   reasonable  
result. The reason for this is that COLBEAM in cases of beams fixed about major axis 
uses table values from Table F.1.2 in ENV-1993-1-1:1992 (see Figure 9.1). These 
table values are valid for maximum span-moments only. Since COLBEAM performs 
the section analysis for the maximum moment along the whole beam and the 
maximum moment in Load Case V is located at the support, this table value is not 
valid. 

This can be illuminated further by comparing the ENV-table with a table from Access 
Steel (2005), see Figure 9.1 and Figure 9.2. The table values from Access Steel 
(2005) considers the maximum moment along the whole beam and gives C1=2.578 
for Load Case V. The corresponding value in the ENV-table is C1=1.285. 

The ratio between the support moment and the field moment in Load Case V is 2.0, 
and as seen below this agrees well with the ratio of the C1-factors. 

006.2
285.1
578.2

,1

,1 
ENV

lAccessStee

C
C

 (9.1) 
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. 
 

 

Figure 9.1 Table F.1.2, ENV-1993-1-1:1992. The C1-factor for Load Case V is 
marked in the table. 

 

  
Figure 9.2 Table from Access Steel (2005). The C1-factor for Load Case V is 

marked in the table.  
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9.1.3 Accuracy of finite element software 
The finite element software ADINA and LTBeam yield close approximations of C1 in 
all tested load cases. ADINA tend to give a small un-conservative deviation when 
k=1.0. This deviation is 2.8% in Load Case III. LTBeam has almost no deviation from 
the reference values; the biggest is about 0.5% in Load Case IV when k=0.5. 

It can be noted that the deviation from the reference values in ADINA is slightly 
larger when the ends are fixed about the major axis. This was true for all the tested 
load cases for k=0.5 and k=1.0, and coincide with the information in the ADINA 
(2011) user manual. According to the manual, analysis with warping beam elements 
sometimes yields in-correct answers, particularly when clamped boundary conditions 
are used (ADINA 2011). 

 

9.2 Observations concerning C2 
COLBEAM uses the same C2-values for both top and bottom loading. In ADINA and 
LTBeam however, there are differences in the equivalent C2-values between top and 
bottom loading. These differences are small in LTBeam, but bigger in ADINA for 
load cases with distributed loads (Load Case III and V). The reason is that the 
modelling of distributed loads with rigid links and warping beam elements in ADINA 
proved to be difficult. Due to convergence problems, it was not possible to run the 
analysis  until  λ≈1.0.  

The point of load application has a big impact on Mcr. For simply supported beams the 
elastic critical moment is about twice as high in loading on the bottom flange 
compared to the top flange. For fixed beams about major axis, Mcr is about three times 
larger for the beams loaded on the bottom flange. Hence, the point of load application 
has greater influence for beams with fixed ends compared to simply supported beams. 
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10 Discussion 
10.1 Evaluation of elastic critical moments 
The mechanisms behind lateral torsional buckling are complex, which makes the 
evaluation of the elastic critical moment difficult. The 3-factor formula contains so 
many variables that the influence of each variable can be hard to grasp. Since the 
formula is analytical, solutions of Mcr are sometimes incorrectly interpreted as exact 
solutions. Critical moments calculated by the 3-factor formula can be exact, but this is 
definitely not certain. One major reason is that no exact closed-form expression of the 
C1-factor exists.  

In general, structural engineers know that the C1-factor depends on the moment 
diagram. It is true that the shape of the moment diagram plays the major role, but the 
results of the parametric study show that the influence of lateral boundary conditions 
also are of great importance. This is in line with previous studies and reports 
concerning the C1-factor.  

Besides lateral boundary conditions, the C-factors also depend on the ratio μ as stated 
in Access Steel (2005), ECCS (2006), and Fruchtengarten (2006). 

w

t

EI
LGI 2

  (10.1) 

Thus, if an exact closed-form expression of C1 was to be constructed, it must include 
the factors in the ratio μ. An attempt to construct such an expression would lead to a 
complex and complicated formula.  

 

Today, the best approximate expression of C1 seems to be the equation by Lopez et al. 
(2006), see equations (4.12) - (4.15). This expression takes both the shape of the 
moment diagram and the lateral boundary conditions into account. It therefore 
contains many parameters and can be difficult to handle in hand calculations. On the 
other hand, closed-form expressions can easily be implemented in the solve-routine of 
calculation software, such as COLBEAM. In cases where the errors introduced in 
closed-form expressions are not acceptable, more advanced analyses can be provided 
by finite element software.  

As seen in chapter 5, finite element methods can also be associated with some 
problematic issues. Linearized buckling analysis is a powerful tool that can provide 
almost exact solutions when studying lateral torsional buckling. However, it is 
important to remember that this kind of analysis is approximate and that the accuracy 
is dependent on the situation and on how the problem is implemented in the software. 
As shown in chapter 5.1, the base load can affect the solution drastically. In ADINA, 
the analysis should be run with increasing base load until λ≈1.  If  the  prerequisites  for  
the linearized buckling analysis in a FE-software are unknown, careful validation of 
the results must be undertaken, for example by more detailed incremental analysis 
(LDC). See chapter 5.2. 
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10.2 The parametric study 
One of the reasons for the initiation of this project was that it had been noticed at 
Reinertsen Sweden AB that the magnitude of Mcr varied depending on which software 
was used in calculation. To illuminate the reasons for these deviations, a parametric 
study was conducted with the aim to explain the methods of calculation used in 
ADINA, COLBEAM, LTBeam and SAP2000. As seen in chapter 9.1.1, these 
deviations mainly depend on the closed-form expressions and tables that are 
implemented in the programs.  

SAP2000 and COLBEAM uses different analytical expressions for C1, and in 
COLBEAM values from tables can also be used. Both programs give strongly 
deviating results for some of the load cases.  

The reason for this is that the expressions and table values are not valid under those 
conditions. This illuminates the importance of knowing the prerequisites of the chosen 
method of analysis. As an example, the closed-form expression used to calculate C1 in 
SAP2000 does not include the effects from lateral restraints. This is the same thing as 
assuming k=1.0. Hence, if the lateral boundary conditions are assumed to be k=0.7 
and k=0.5, SAP2000 will yield un-conservative results. 

In some cases it can be reasonable to use coarse approximations and in other cases 
more accuracy are needed. Accordingly, the assumptions and methods implemented 
in a program decide if it can be used in a certain situation or not. Unfortunately, it has 
been noticed that the studied software sometimes lack  “easy  access”   information  on  
how and under what assumptions calculations are made. 

ADINA has extensive modelling and theory guides that could serve as role models for 
other software. However, questions are still raised. In the ADINA theory manual it is 
clearly written that the large displacement option together with the warping beam 
element can yield wrong results. Because of this, the element formulation using the 
large displacement option has been removed in version 8.8, which means that it is not 
possible to run a linearized buckling analysis with a warping beam element. On the 
other hand, in an example given in ADINA primer the old element formulation is used 
without further explanation. In this thesis it was decided to use the old element 
formulation despite these circumstances, since the results agreed well with the 
reference values. 

COLBEAM has references to the closed-form-expression and table values that are 
used to calculate C1, but more information could be added in order to make an 
assessment of the results easier. The name of the option “Advanced  calculation  of  C1”  
can   be   misleading,   since   the   word   “advanced”   incorrectly   could   be   interpreted as 
“accurate”,   or   “precise”.   If   a   table   value   exists   for   the   situation   at   hand,   it   is  more  
accurate to use. Also, as described in chapter 9.1.2, the C1-value from the ENV-table 
seems to be wrong for fixed beams with distributed loads. Even  without  this  “error”, it 
could be reasonable to change the reference since ENV-1993-1-1 is a pre-edition of 
Eurocode that is no longer used. Finally, it would be convenient with a reference 
explaining that the table of C-factors used for linear moment distributions comes from 
ECCS (2006). 

The free software LTBeam provide very accurate solutions in the cases studied in this 
thesis. However, almost no background information could be found on the program. 
When invoking the program, the developer CTICM warns that LTBeam is only 
intended for those with enough knowledge to assess the accuracy of the results. The 
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question is how one could assess the accuracy of the results without access to any 
background information. 

In SAP2000, boundary conditions can be applied in different ways as described 
briefly in chapter 6.4.2. When conducting the parametric study of C1, the general 
perception was that different results was obtained when the program calculated C1 
directly from the model, compared to when the effective length factor was set 
manually.  This  may  depend  on  the  authors’  limited  knowledge  on  how  to  apply  lateral  
boundary conditions in the program. From the information given in the program, it 
can be hard to grasp exactly how the lateral boundary conditions should be applied, 
especially concerning the effective length factor. Moreover, the SAP2000 Eurocode 
manual refers to an expression of C1 that is not actually used, as shown in chapter 
6.4.1. Because of the limited knowledge on how the  “design  module” calculates Mcr 
and the questions concerning the manual of the program, the results from the 
parametric study concerning SAP2000 have less substance compared to the other 
programs. 

A general conclusion from the C2-study is that the point of load application has a great 
influence on Mcr for all tested load cases, and omitting these effects will yield large 
errors in the estimation of Mcr. Hence, an assumption that the load acts in the shear 
centre will yield wrong results on Mcr when the load acts on one of the flanges. 
Especially for beams with fixed ends about major axis.  

 

10.2.1 Validity and reliability of the results 
The study of C1 is based on reference values for k=1.0 and k=0.5 from Serna et al. 
82005). These values are given high reliability and were also used to construct the 
closed-form expression by Lopez et el. (2006). For k=0.7 no reference values are 
known and the accuracy of the results for this case is therefore harder to assess. As 
discussed in chapter 9.1.1, the finite element programs gave results so close to the 
reference values for k=1.0 ad k=0.5 that they could be considered reliable also for 
k=0.7. The C2-study has no reference values, but shows the effect of the point of load 
application. It should be seen as a comparison between the programs rather than an 
evaluation of the actual accuracy. 

Considering that the μ-ratio has a relatively low impact on the C1-factor as explained 
in chapter 4.2.2.3, it is expected that the C1-results are valid for other I-sections than 
IPE500. They should also be valid for other beam lengths, especially for beams with 
high values of μ.  

The parametric study covers several common load cases. However, combined loading 
is not investigated and only three idealised lateral boundary conditions are considered. 
The tested load cases and lateral boundary conditions were chosen so that they could 
be treated by all the programs. COLBEAM and SAP2000 use one combined effective 
length factor, k. The individual effects of kz and kw could therefore not be investigated 
in the study.  

It is hard to draw conclusions on how well the different methods will approximate C1 
and Mcr in other load cases than the tested. However, since the studied cases describe 
basic ideal situations often used as examples in literature, it could be argued that the 
accuracy would be poorer in other situations. 
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The parametric study presented deviations in Mcr. It is important to point out that an 
error in the critical moment does not cause the same error in the member capacity. 
The buckling factor, LT, is dependent on the slenderness and determines how much 
the capacity is reduced. As seen in equation (10.2), an error in Mcr is reduced by the 
square root when calculating the slenderness parameter. 

cr

yy
LT

M
fW

λ


  (10.2) 

Since the buckling factor is calculated from the slenderness parameter through 
buckling curves, the accuracy of the buckling curves is also important. This thesis 
does not cover the buckling curves or their accuracy. However, Höglund (2006, p. 75) 
mentions that a division into five different curves could be regarded as too fine. The 
argument for this is the high divergences of the test results on which the buckling 
curves are based on. Accordingly, the importance of an error in Mcr must be put into a 
bigger context, where many factors affect the accuracy of the capacity.  
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11 Concluding remarks 
The major conclusion drawn in this thesis is that all investigated programs give more 
or less reasonable results when no lateral restraints are present. For cases with lateral 
restraints, it is crucial that the designer is well aware of the limitations of the used 
method. One reason for this is that some common closed-form expressions for C1, e.g. 
the expression by Kirby & Nethercot, do not take lateral restraints into account. 

The finite element programs ADINA and LTBeam have proven to give results with 
high accuracy. However, this is not achieved without careful modelling. As an 
example, the base load affects the buckling analysis in ADINA, which can lead to 
wrong results if not considered.  

It has been pointed out that COLBEAM uses C1-values from an ENV-table in cases of 
fixed beams. The value for distributed loads in this table is only valid when the 
section analysis is made in the mid-span. Since COLBEAM performs the section 
analysis along the whole beam, this table value will yield very conservative results. 
This will be checked and if necessary updated by COLBEAM. 

The point of load application has a great impact on Mcr, especially when the beam is 
fixed about the major axis. To simplify calculations and modelling, it is sometimes 
assumed that the load acts in the shear centre instead of on the flanges. This 
assumption can lead to large errors in the estimation of Mcr that are un-conservative if 
the load in reality acts above the shear centre.  

 

11.1 Further studies 
Before the start of this project, the idea was to compare the different programs by 
establishing a finite element model that could be used as reference. The project would 
also include a part where lateral boundary conditions of real beam connections were 
modelled and evaluated. However, since the implementation of different analytical 
expressions was one of the key reasons for deviations in the critical moment, a lot of 
focus in this thesis had to be given to the theory behind the 3-factor formula. 
Therefore, because of the time limit, the study of real beam connections was left out. 
Hence, a continuation of the thesis could be to investigate this with a finite element 
model. The modelling could preferably be done with shell elements and detailed 
incremental analysis, LDC. An example of a research question could be 

 When can warping be assumed prevented in beam connections? 

 

Another angle for continuation could be to focus on the design procedures with regard 
to lateral torsional buckling. Since the error in Mcr is not the same as an error in the 
capacity, the magnitude of errors introduced by buckling curves could be investigated. 
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Appendix A 
In this appendix, the choices of boundary conditions for common beam connections 
are discussed. 

 

A1 Boundary conditions for common beam connections 
In general, the boundary conditions of a beam can be described by a spring for each 
degree   of   freedom.   The   stiffness’s   of   the   springs   depends   on   the   stiffness   of   the  
connection   itself   but   also   on   the   stiffness’s   and   the   lengths   of   the   acting   structural  
members. Thus, even if a certain beam-column connection is very stiff, the beam is 
close to simply supported if the beam is much stiffer than the column (see Figure 1). 
The same reasoning holds for lateral boundary conditions. 
 

EIbeam >> EIcolumn EIcolumn >> EIbeam 

~ Simply supported ~ Fixed 

 
Figure 1 Deformation of frames with rigid connections but different member 

stiffness’s.  The  beam   in   the   left   frame   is  close   to   simply   supported 
while the beam in the right frame is close to fixed. 

 

The complexity of the boundary response makes the choice of a suitable boundary 
model a challenging task. In order to determine the correct degree of fixation, the 
whole structural system with connections must be modelled and analysed. Since this 
can be both time consuming and demanding, structural engineers often simplify the 
boundary to either ideally free or ideally fixed (See Figure 2). 
 

S S 

 
Figure 2 Example of how the major axis boundary of a beam in a frame is 

simplified in two steps, first to springs, and then to ideally free 
(simply supported). 

 

If only ideal conditions are considered, the problem is reduced to determining if a 
certain connection under given conditions can be regarded as free or fixed. A fixed 
boundary condition is favourable in preventing lateral torsional buckling. Thus, a 
boundary must be assumed free if fixation cannot be properly justified. 
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When studying lateral torsional buckling of beams on two supports, 3 degrees of 
freedom are of interest (see chapter 2.1.3 in the thesis). 

(1) Rotation about the y-axis (major axis bending)  
(2) Rotation about the z-axis (minor axis bending, kz) 
(3) Warping (kw) 

kz and kw are of particular interest since they occur explicitly in the 3-factor formula.  

Below follows a discussion on how these degrees of freedoms are affected in some 
common beam-beam and beam-column connections. Remember however that the 
connection itself does not determine the total boundary response, and hence, a rigid 
connection does not automatically implicate a rigid response. 

 

A1.1 General comments 
 Warping can be assumed prevented if the beam end is sufficiently stiffened 

by the connecting structure, by rigid end plates etc. 
 

 Open steel-sections have low torsional stiffness that seldom can provide 
fixation. This implicates that major axis bending of beam-beam connections 
and minor axis bending of beam-column connections often can be assumed 
free (see Figure 3 and Figure 4) (Treiberg 1987). 

 

A1.2 Beam-beam connections 

 
BB1 BB2 BB3 BB4 

 
Figure 3 Four common beam-beam connections. BB1-BB3 are considered 

simply supported. BB4 is an example of how a connection can be 
made continuous (Adapted from Treiberg 1987). 

 

Beam-beam connections are used in systems of crossing beams. The secondary beam 
should, if possible, be placed above the main girder since this makes the connection 
simple. BB1-BB4 are however examples where the secondary beam is connected 
within the height of the main girder. For connections where the secondary beam is 
placed above the main girder, see publications by the Swedish Institute of Steel 
Construction, SBI (Treiberg 1987). 
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BB1-BB3 
Single-sided beam-beam connections (BB1-BB3) are generally considered free in 
major axis bending since the main girder rarely has torsional stiffness enough to 
provide fixation (ibid.). BB1-BB3 do not have rigid end plates that can prevent 
warping and are not rigid enough to withstand minor axis bending. 

 

BB4 
BB4 can transfer moment about the major axis with help of the splice plate welded to 
the beams top-flanges. If the welds are strong enough, the splice plates can be design 
to give the connection a desired moment capacity. Horizontal bracing is achieved by 
welds between the splice plate and the flange of the main girder (ibid). The bottom 
flanges of the secondary beams are not fixed to the main girder. The resistance to 
lateral bending is therefore limited and a conservative assumption of a free minor axis 
boundary may be reasonable. 

For details on the design of the connections, see Treiberg (1987). 

 
Table 1 Rigidity of common beam-beam connections. 

Boundary conditions BB1-BB3 BB4 

Major axis bending Free Fixed 

Minor axis bending (kz) Free Free 

Warping (kw) Free Free/Fixed1 

1Dependent on the rigidity of the connecting structure and the end plates 

 

A1.3 Beam-column connections 

 
 BC1 BC2 BC3 BC4 BC5 BC6 BC7  

Figure 4 Seven common beam-column connections (adapted from Treiberg 
1988). 

 

The beam-column connections presented in this section have columns that continue 
above the beam. Other types of beam-column connections can be found in 
publications of the Swedish Institute of Steel Construction, SBI (Treiberg 1988).  
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Beam-column connections can be divided into moment free, rigid and continuous. 
BC1 & BC2 are examples of moment free connections, BC3 & BC4 are rigid and 
BC5-BC7 are continuous (ibid.). 

Generally, moment free beam connections are simpler to design and easier to 
assemble, which makes them cheaper compared to rigid and continuous connections. 
Rigid and continuous connections allow smaller beams and/or longer spans, but often 
the reduced material cost does not make up for the more expensive design. Longer 
spans can however have other economic benefits that justify the use of these 
connections. Rigid and continuous connections can also be used to stabilize low 
buildings (ibid). 

The difference in structural behaviour between rigid and continuous connections is 
that continuous connections do not transfer moments to the column (ibid). 

 

BC1 
BC1 is a connection between an I-section beam and a column. The connection is 
moment free in both major and minor axis bending. During assembly the beam rests 
on a console welded to the column. The end plate of the beam is attached to the flange 
of the column (ibid). 

 

BC2 
BC2 is a connection between a beam and a column with I-sections. The connection is 
moment free in both major and minor axis bending. The beam is resting on a console 
welded to the column and attached with two bolts. If the beam is placed close to the 
web of the column, the moment due to the eccentricity of the support force will be 
small. On the other hand, the capacity of the beam will be smaller if the support is 
close to the end section of the beam (ibid.). Since only the bottom flange is prevented, 
it is reasonable to assume free warping and free bending about minor axis. 

 

BC3 & BC4 
BC3 & BC4 are bolted, rigid connections that can transfer moment because of the 
stiffeners of the column. The difference between the connections is that the stiffeners 
of the column are placed between the flanges in BC3 and on the outside of the flanges 
in BC4 (see Figure 4) (ibid.). Both major and minor axis bending plus warping may be 
assumed prevented in these connections. BC3 can also be made single-sided. 

 

BC5 
BC5 is a continuous connection often used in multi-storey buildings when erection of 
short columns (floor-by-floor) is preferred. The beam is placed on top of the column 
and fillet welded in the column circumference. The load from the column is 
transferred through the transversal stiffeners in the beam (ibid.). 
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BC6 
BC6 is a double-sided connection of two separate beams. The beams are attached by 
bolts through beam endplates on both sides of the column web. The connection can be 
considered continuous if the connecting bolts have enough capacity and pierce 
through the endplates of both beams. Whether minor axis bending is free or not 
depends on the detailing of the bolts. If the bolts are placed in one aligned vertical 
column, the resistance to lateral bending is small and should be assumed free. 

 

BC7 
BC7 is a continuous connection where the web of the beam is attached with bolts to 
the flange of the column. The support reaction from the beam can be transferred to the 
column by the bolts or by a welded console on the column (ibid). The beam is fixed to 
the column with regard to minor axis bending by the bolts. Since the flanges are not 
attached to the column, the connection does not prevent warping. 

For details on the design of the connections, see Treiberg (1988). 

 
Table 2 Rigidity of common beam-column connections. 

Boundary 
conditions 

BC1 BC2 BC3 & BC4 BC5 BC6 BC7 

Major axis 
bending 

Free Free Fixed Fixed Fixed Fixe
d 

Minor axis 
bending (kz) 

Free Free Fixed Fixed Free Fixe
d 

Warping (kw) Free/Fixed1 Free Free/Fixed1 Fixed Free/Fixed1 Free 

1Dependent on the rigidity of the connecting structure and the end plates 
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Appendix B 
In this appendix, the research by Serna et al. (2005) is briefly presented. This research 
has been used as reference in the parametric study of C1 in chapter 7 of the thesis. In 
B2, C1-values from the handbooks Access Steel (2005) and ECCS (2006) are 
compared to reference values of Serna et al. (2005). 

 

B1 Serna et al (2005) 
In the paper “Equivalent   uniform   moment   factors   for   lateral   torsional   buckling   of  
steel  members” by Serna et al. (2005), a new closed-form expression for the uniform 
moment factor, C1, is presented. Not only moment distribution is taken into account 
by this expression, but also the lateral boundary conditions. It was derived with curve-
fitting techniques based on C1-values from finite difference analysis. These values are 
also presented in the paper. Later, the expression was refined by Lopez et al. (2006). 

The analysis was conducted for rolled IPE500 and HEB500 section beams, with 8 
meter and 16 meter spans. 4 combinations of lateral boundary conditions were 
considered: lateral bending free (kz=1.0) or prevented (kz=0.5) and warping free 
(kw=1.0) or prevented (kw=0.5). 

 

B1.1 Conclusions made in the paper 
Results from earlier studies showing that C1 varies with the length of the beam were 
confirmed through finite element analysis. It was also concluded that C1 is coupled to 
the lateral boundary conditions.  

Through finite difference analysis it could be seen that 

 Design codes give a poor approximation of C1, either conservative or non-
conservative, when warping and lateral bending is prevented. 
 

 Prevention of lateral bending leads generally to lower C1-values. 
 

 Prevention of warping significantly increases C1. 

 

In design codes where C1 is based on the moment distribution only, the approximation 
of C1 is poor when lateral bending and warping is prevented. In these cases the 
proposed expression of Serna et al. (2005) gives better approximations. 

 

B1.2 Reference values 
The finite difference results used for the derivation of the proposed closed-form 
expression by Serna et al. (2005) are used as reference values in the parametric study 
of C1 in chapter 7 of the thesis. 
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B2 Table values from Access Steel (2005) and ECCS 
(2006) 

In the tables below, table values of C1 from Access Steel (2005) and ECCS (2006) are 
compared with reference values from Serna et al. (2005). 

 

Table 1 End moments. 

End 
moments 

ECCS (2006), 
IPE 500, 8m 

ECCS (2006), 
IPE 500, 16m 

Access Steel 
(2005) 

Reference 
values 

k C1 C1 C1 C1 

1.0 1.0 1.0 1.0 1.0 

0.5 1.050 1.0 - 1.0 

 

 

Table 2 Simply supported about major axis. 

Concentrated load ECCS (2006) Access Steel 
(2005) 

Reference values, 
IPE 500, 8m 

k C1 C1 C1 

1.0 1.35 1.348 1.359 

0.5 1.05 - 1.061 

Distributed load ECCS (2006) Access Steel 
(2005) 

Reference values, 
IPE 500, 8m 

k C1 C1 C1 

1.0 1.12 1.127 1.131 

0.5 0.97 - 0.967 
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Table 3 Fixed about major axis. 

Concentrated load ECCS (2006) Access Steel 
(2005) 

Reference values, 
IPE 500, 8m 

k C1 C1 C1 

1.0 - 1.683 1.713 

0.5 - - 1.044 

Distributed load ECCS (2006) Access Steel 
(2005) 

Reference values, 
IPE 500, 8m 

k C1 C1 C1 

1.0 - 2.578 2.605 

0.5 - - 1.733 
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Appendix C 
In this appendix, an expression for the elastic critical moment is derived for the 
reference case, Mcr,0, with methods of potential energy. 

 

(1) 

The reference case is defined as a double-symmetric I-beam on two fork-supports 
subjected to end moment loading. 

The derivation follows the procedures outlined by Höglund (2006, pp. 42-58). For 
more information about methods of potential energy, see chapter 4.1 in the thesis. 

 

C1 Derivation of the elastic critical moment 
C1.1 Definition of deformations  

 

φ 
uy 

  
Figure 1 Definition of deformations in lateral torsional buckling. 

 

C1.2 Identification of internal potential energy, Hi 
C1.2.1 Bending about minor axis 
The internal potential energy of a small beam element with area dA and length dx 
subjected to bending about the minor axis can be visualized as the area under the 
stress-strain curve. 

 

εy 

σ 

σ=E εy 

εy 

z 

y 

dA 
dx 

Mz Mz 

 
Figure 2 The area under the stress-strain curve represents the potential 

internal energy of a small beam element subjected to bending. 
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dxEdAdH yybi  
2
1

,  

(2) 

If 

y
I

M
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1
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  

(3) 

The potential energy can be written as 

dx
EI
MdAy

IE
MdxdH

A

z

z

z

z
bi  
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2
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2

2
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(4) 

Integration along the beam yields 

dx
EI

MH
L

z

z
bi  


0

2

, 2
 

(5) 

Express the potential energy in terms of the lateral translation uy instead of an applied 
moment. The equation of the elastic line for beams yields 

dx
EI
Mu

z

z
y   

(6) 

Equation (5) and (6) yields 

 
dx

uEI
H

L
yz

bi 



0

2

, 2
 

(7) 

Equation (7) describes the internal potential energy stored in a beam when subjected 
to bending about the minor axis 

 

C1.2.2 Torsion 
The internal potential energy of a small beam element subjected to torsion is equal to 
the work done by the torque T over the element length dx. Since the twisting angel 
increases with dφ over dx, the work can be written as the torque times the mean 
twisting angle, dφ/2. 

dxTdTdH ti  ´
2
1

2
1

,   

(8) 

A twisting moment that acts on a double-symmetric I-section is resisted by both Saint 
Venant shear stresses (as for a circular-symmetric section) and warping effects. 

warpingVenantSa TTT  int  

(9) 



CHALMERS, Civil and Environmental Engineering,  Master’s  Thesis  2013:59 
C3 

In cases of circular-symmetric sections 

VenantSaTT int  

(10) 

 

Saint Venant torsion 
The change in twisting angle over a small element subjected to a torque T is 
dependent on the torsional stiffness GIt. The equation for Saint Venant torsion can be 
written 

  ttVenantSa GI
dx
dGIT int  

(11) 

For Saint Venant torsion the torsional shear stresses is only dependent on the angle φ. 

 

Warping 
When a double-symmetric I-section rotates, shear forces will arise due to lateral 
deflection of the flanges (see chapter 2.1.10 in the thesis). These warping effects can 
be accounted for by calculating the resulting moment from the shear forces in the 
flanges.  
 

F 

F 
ht = hw+tf 

φ 

uw 
 

Figure 3 Shear forces induced by lateral bending of the flanges (warping). 

 

The lateral deflection of one of the flanges due to warping, uw, can approximately be 
expressed in terms of the rotation, φ. See Figure 3. 


2

t
w

hu   

(12) 

This lateral deflection creates a bending moment M and a shear force F in the flange. 
The equation of the elastic line for beams yields 

 
2,

t
flangewflangez

hEIuEIM  

(13) 

 
2,

t
flangez

hEI
dx

dMF  

(14) 
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 The contribution from the web to the second moment of inertia is very small 
and can be omitted in calculations. 
 

 Since double-symmetric sections are considered the second moment of inertia 
is equal for both flanges. 

 

Thus 

flangezz II ,2   

(15) 

This yields 

 
22

tz hIEF  

(16) 

The two shear forces F creates the torque Twarping, see Figure 3. 

 


422

2
tz

t
tz

twarping
hEIhhIEhFT  

(17) 

 
 




4

2
fwz

warping

thEI
T  

(18) 

Introduce the warping constant Iw 

 
4

2
fwz

w

thI
I


  

(19) 

  wwarping EIT  

(20) 

With the expressions of TSaint Venant and Twarping known, the total twisting moment can 
be written as 

  wtwarpingVenantSa EIGITTT int  

(21) 

Combining equation (21) and (8) 

  dxEIGIdH wtti  ´
2
1

,   

(22) 

Integration along the beam length 

 
dxEIdxGIH

L
w

L
t

ti 






00

2
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

 

(23) 
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Integration by parts of the second term 

   
dxEIEIdxEI L

wL
w

L
w 






0

2

0
0 22

1
2





 

(24) 

   in the boundary term represents the warping degree of freedom. If 0 , no 
resistance to lateral deflection of the flanges exist, e.g. warping is free. See equation 
(13). Since warping is free for fork supports ( 0 ), the boundary term vanishes. 

The internal potential energy for torsion and warping can now be written 

   
dxEIdxGIH

L
w

L
t

ti 






0

2

0

2

, 22


 

(25) 

 

C1.3 Identification of external potential energy, He 
When the beam twists during buckling a component My∙φ of the bending moment is 
created about the weak z-axis.  

 

φ 

My 

uy 

My∙cos(φ) ≈ My 

My∙sin(φ) ≈ My∙φ 

 
Figure 4 A component from the bending moment is created about the weak z-

axis when the beam twists. 

 

With the same reasoning as for the change in internal potential energy during 
bending,  the change in external potential energy because of this additional moment 
about the weak axis can, be written 

dxuMH
L

yyMe y  
0

,   

(26) 
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C1.4 Total potential energy 
With the internal and external potential energies known, an expression for the total 
potential energy can be established 

yMetibiei HHHHHH ,,,   

(27) 
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(28) 

 

C1.5 Conditions for instability 
The task is to find deflected shapes of uy and φ so that the potential of the system has 
a minimum value. 

Define a function W 

       
yy

wtyz
y uMEIGIuEI

uW 
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





 
222

,,,
222

 

(29) 

An equation for the minimum of the potential energy H can be written symbolically 

  min,,,
0

  dxuWH
L

y   (30) 

 

C1.6 Solution 
The condition in equation (30) can be solved from Euler´s equations 
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W  (31) 
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
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 (32) 

The derivatives of W with respect to uy and φ in equation (31) and (32) can be 
identified as 

0



yu
W  (33) 

0




yu
W  (34) 
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
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1  (37) 
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ww EIEIW 2

2
1  (38) 

The first of Euler´s equations (31) can now be written 

  02

2

 yyz MuEI
dx
d  (39) 

Derivation yields (My is constant with respect to x) 

0 y
iv

z MuEI y  (40) 

The second of Euler´s equations (32) can be written 

    02

2

  wtyy EI
dx
dGI

dx
duM  (41) 

Derivation yields 

0 iv
wtyy EIGIuM   (42) 

The two Euler equations (40) and (42) are coupled differential equations that describe 
the deflected state of equilibrium after buckling 

If equation (40) is integrated twice with respect to x, the following expression is 
obtained 

21 kxkMuEI yyz    (43) 

Where k1, k2 = Constants that can be determined from the boundary 
conditions 

For fork supports at both ends 

    00  Luu yy  (44) 

    00  L  (45) 

Hence, the constants k1 and k2 are equal to zero and equation (43) is reduced to 
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0 yyz MuEI  (46) 
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M
u


  (47) 

If equation (47) is inserted in equation (42) (the second Euler equation), the following 
fourth order ordinary differential equation is obtained 
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To solve this equation, the deflected shape must be assumed. Let the solution be on 
form of a sine curve 
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
L

zjA  sin  (50) 

Derivation gives 







 







 


L

xj
L

jA  sin
2

 (51) 







 







 


L

xj
L

jAiv  sin
4

 (52) 

With the solutions inserted, equation (49) can be written as 

0sin
224


















 







 





z

y
tw EI

M
L

jGI
L

jEI
L

xjA 
 (53) 

Since 

0sin 



L

xjA   (54) 

The equation is reduced to 

0
224







 







 


z

y
tw EI

M
L

jGI
L

jEI   (55) 
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





 







 


L
jGIEI

L
jEIEIM tzwzy

  (56) 

 
22

2







 





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L
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jM tz
wzy


  (57) 
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 (58) 
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
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
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 







L
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EI
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z
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z
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
  (59) 

 
  z

t

z

wz
y EIj

GIL
I
I

L
EIjM







 2

2

2

2




 (60) 

 

The lowest value of My is given by j = 1 and hence, an expression for the elastic 
critical moment for a double-symmetric I-beam on two fork-supports subjected to end 
moment loading can be established 

z

t

z

wz
cr EI

GIL
I
I

L
EIM







 2

2

2

2

0, 
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(61) 
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Appendix D 
In this appendix, two examples of in.-files are presented that was used for the 
parametric study in ADINA. 

 

D1 IPE 500, 8m, Fork supports, k=1.0 - Concentrated 
load in mid-span 

********************************************************************* 

*            IPE 500, 8m, Fork supports - Concentrated load in mid-span            * 

********************************************************************* 

 

****************************KINEMATICS**************************** 

KINEMATICS DISPLACE=LARGE STRAINS=SMALL 

KINEMATICS BEAM-ALGORITHM=V87 

****************************GEOMETRY****************************** 

*---------------------------Define points------------------------- 

COORDINATES POINT SYSTEM=0 

@CLEAR 

1 0 0 0 

2 4 0 0 

3 8 0 0 

*---------------------------Define lines--------------------------- 

LINE STRAIGHT NAME=1 P1=1 P2=2 

LINE STRAIGHT NAME=2 P1=2 P2=3 

*---------------------------General Cross-section--------------- 

CROSS-SECTIO PROPERTIES NAME=1 RINERTIA=8.93E-07, 

SINERTIA=0.000482 TINERTIA=2.142E-05, 

AREA=0.0116 SAREA=0, 

TAREA=0 CTOFFSET=0, 

CSOFFSET=0 STINERTI=0, 

SRINERTI=0 TRINERTI=0, 

WINERTIA=1.249E-06 WRINERTI=0, 

DRINERTI=0 
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****************************MATERIAL***************************** 

MATERIAL ELASTIC NAME=1 E=210e9 NU=0.3 MDESCRIP='STEEL' 

 

****************************BOUNDARY CONDITIONS***************** 

*---------------------------Define boundaries-------------- 

FIXITY NAME=FORK1 

@CLEAR 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'OVALIZATION' 

 

FIXITY NAME=FORK2 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'X-ROTATION' 

 'OVALIZATION' 

 

*---------------------------Apply boundaries----------------- 

FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

1  'FORK1' 

3  'FORK2' 

 

****************************CONCENTRATED LOAD******************* 

*---------------------------Define load-------------------------- 

LOAD FORCE NAME=1 MAGNITUD=100000 FX=0 FY=0 FZ=-1 

 

*---------------------------Apply load--------------------------- 

APPLY-LOAD BODY=0 

@CLEAR 

1  'FORCE' 1  'POINT' 2 0 1 0 0 -1 0 0 0  'NO' 0 0 1 0  'MID' 
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****************************MESH********************************* 

*---------------------------Element definition---------------------- 

EGROUP BEAM NAME=1 SUBTYPE=THREE-D DISPLACE=LARGE 
MATERIAL=1 RINT=5 WARP=YES 

 

*---------------------------Subdivide line--------------------------- 

SUBDIVIDE LINE NAME=1 MODE=DIVISIONS NDIV=50 RATIO=1 

@CLEAR 

1 

2 

 

*---------------------------Assign cross-section to mesh--------- 

GLINE NODES=2 AUXPOINT=0 NCOINCID=ALL NCENDS=12, 

NCTOLERA=1E-05 SUBSTRUC=0 GROUP=1 MIDNODES=CURVED, 

XO=0 YO=1 ZO=0 XYZOSYST=SKEW 

@CLEAR 

1 

2 

 

****************************DEFINE ANALYSIS********************** 

MASTER ANALYSIS=BUCKLING-LOADS MODEX=EXECUTE TSTART=0, 
IDOF=0 OVALIZAT=NONE FLUIDPOT=AUTOMATIC CYCLICPA=1 
IPOSIT=STOP REACTION=YES INITIALS=NO FSINTERA=NO 
IRINT=DEFAULT CMASS=NO SHELLNDO=AUTOMATIC AUTOMATI=OFF 
SOLVER=SPARSE CONTACT=CONSTRAINT-FUNCTION TRELEASE=0, 
RESTART=NO FRACTURE=NO LOAD-CAS=NO LOAD-PEN=NO 
SINGULAR=YES STIFFNES=0.0001 MAP-OUTP=NONE MAP-FORM=NO 
NODAL-DE='' POROUS-C=NO ADAPTIVE=0 ZOOM-LAB=1 AXIS-CYC=0 
PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO STABILIZ=NO 
STABFACT=10E-10 RESULTS=PORTHOLE FEFCORR=NO BOLTSTEP=1 
EXTEND-S=YES CONVERT-=NO DEGEN=YES TMC-MODE=NO ENSIGHT-
=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO ESINTERA=NO 
OP2GEOM=NO 

BUCKLING-LOA NEIGEN=1 NMODE=0 IPRINT=NO NITEMM=40 
NVECTOR=DEFAULT TOLERANC=DEFAULT STARTTYP=LANCZOS 
NSTVECTO=0 METHOD=CLASSICAL 
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D2 IPE 500, 8m, Fixed about major axis, k=0.5 - 
Concentrated load applied on the top flange in mid-
span 

********************************************************************* 

*       IPE 500, 8 m, Fixed, k=0.5 - Concentrated load on top flange in mid-span         * 

********************************************************************* 

 

****************************KINEMATICS**************************** 

KINEMATICS DISPLACE=LARGE STRAINS=SMALL 

KINEMATICS BEAM-ALGORITHM=V87 

 

****************************GEOMETRY***************************** 

*---------------------------Define points------------------------ 

COORDINATES POINT SYSTEM=0 

@CLEAR 

1 0 0 0 

2 4 0 0 

3 8 0 0 

4 4 0 0.25 

 

*---------------------------Define lines------------------------- 

LINE STRAIGHT NAME=1 P1=1 P2=2 

LINE STRAIGHT NAME=2 P1=2 P2=3 

 

*---------------------------Define rigid link-------------------- 

RIGIDLINK NAME=1 SLAVETYP=POINT SLAVENAM=2 MASTERTY=POINT 
MASTERNA=4, DISPLACE=LARGE OPTION=0 SLAVEBOD=0 MASTERBO=0 
DOF=ALL DOFSI=123456 
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*---------------------------General Cross-section--------------- 

CROSS-SECTIO PROPERTIES NAME=1 RINERTIA=8.93E-07, 

SINERTIA=0.000482 TINERTIA=2.142E-05, 

AREA=0.0116 SAREA=0, 

TAREA=0 CTOFFSET=0, 

CSOFFSET=0 STINERTI=0, 

SRINERTI=0 TRINERTI=0, 

WINERTIA=1.249E-06 WRINERTI=0, 

DRINERTI=0 

 

****************************MATERIAL***************************** 

MATERIAL ELASTIC NAME=1 E=210e9 NU=0.30 MDESCRIP='STEEL' 

 

****************************BOUNDARY CONDITIONS***************** 

*---------------------------Define boundaries-------------------- 

FIXITY NAME=FIX1 

@CLEAR 

'X-TRANSLATION' 

'Y-TRANSLATION' 

'Z-TRANSLATION' 

'X-ROTATION' 

'X-ROTATION' 

'Y-ROTATION' 

'Z-ROTATION' 

'BEAM-WARP' 

 'OVALIZATION' 
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FIXITY NAME=FIX2 

@CLEAR 

'Y-TRANSLATION' 

'Z-TRANSLATION' 

'X-ROTATION' 

'X-ROTATION' 

'Y-ROTATION' 

'Z-ROTATION' 

'BEAM-WARP' 

'OVALIZATION' 

  

*---------------------------Apply boundaries----------------- 

FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

1  'FIX1' 

3  'FIX2' 

 

****************************CONCENTRATED LOAD******************* 

*---------------------------Define load-------------------------- 

LOAD FORCE NAME=1 MAGNITUD=100000 FX=0 FY=0 FZ=-1 

 

*---------------------------Apply load--------------------------- 

APPLY-LOAD BODY=0 

@CLEAR 

1  'FORCE' 1  'POINT' 4 0 1 0 0 -1 0 0 0  'NO' 0 0 1 0  'MID' 

 

****************************MESH********************************* 

*---------------------------Element definition------------------- 

EGROUP BEAM NAME=1 SUBTYPE=THREE-D DISPLACE=LARGE 
MATERIAL=1 RINT=5 WARP=YES SECTION=1 
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*---------------------------Subdivide line------------------------- 

SUBDIVIDE LINE NAME=1 MODE=DIVISIONS NDIV=50 RATIO=1 

@CLEAR 

1 

2 

 

*---------------------------Assign cross-section to mesh--------- 

GLINE NODES=2 AUXPOINT=0 NCOINCID=ALL NCENDS=12 
NCTOLERA=1E-05 SUBSTRUC=0 GROUP=1 MIDNODES=CURVED XO=0 
YO=1 ZO=0 XYZOSYST=SKEW 

@CLEAR 

1 

2 

 

*---------------------------Add node of rigid link--------------- 

GPOINT NODE=102 NCOINCID=ALL NCTOLERA=1E-05 SUBSTRUC=0 

@CLEAR 

4 

@ 

 

****************************DEFINE ANALYSIS********************** 

MASTER ANALYSIS=BUCKLING-LOADS MODEX=EXECUTE TSTART=0, 
IDOF=0 OVALIZAT=NONE FLUIDPOT=AUTOMATIC CYCLICPA=1 
IPOSIT=STOP REACTION=YES INITIALS=NO FSINTERA=NO 
IRINT=DEFAULT CMASS=NO SHELLNDO=AUTOMATIC AUTOMATI=OFF 
SOLVER=SPARSE CONTACT=CONSTRAINT-FUNCTION TRELEASE=0, 
RESTART=NO FRACTURE=NO LOAD-CAS=NO LOAD-PEN=NO 
SINGULAR=YES STIFFNES=0.0001 MAP-OUTP=NONE MAP-FORM=NO 
NODAL-DE='' POROUS-C=NO ADAPTIVE=0 ZOOM-LAB=1 AXIS-CYC=0 
PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO STABILIZ=NO 
STABFACT=10E-10 RESULTS=PORTHOLE FEFCORR=NO BOLTSTEP=1 
EXTEND-S=YES CONVERT-=NO DEGEN=YES TMC-MODE=NO ENSIGHT-
=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO ESINTERA=NO 
OP2GEOM=NO 

BUCKLING-LOA NEIGEN=1 NMODE=0 IPRINT=NO NITEMM=40 
NVECTOR=DEFAULT TOLERANC=DEFAULT STARTTYP=LANCZOS 
NSTVECTO=0 METHOD=CLASSICAL 
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Appendix E 
In appendix E, results from the parametric study are presented. 

 

E1 Parametric study of C1 

E1.1 Simply supported about major axis 
E1.1.1 Serna et al. (2005) 

 

 
  

End moments
(Section properties from ArcelorMittal)

Length [m] k C_1 M_cr_ref  [kNm] M_cr  [kNm]
8 1 1,000 279,448 279,448
8 0,7
8 0,5 1,000 805,645 805,645

16 1 1,000 119,423 119,423
16 0,7
16 0,5 1,000 279,448 279,448

Concentrated load in mid-span
(Section properties from ArcelorMittal)

Length [m] k C_1 M_cr_ref  [kNm] M_cr  [kNm]
8 1 1,359 279,448 379,770
8 0,7
8 0,5 1,061 805,645 854,789

16 1 1,355 119,423 161,818
16 0,7
16 0,5 1,059 279,448 295,935

Distributed load
(Section properties from ArcelorMittal)

Length [m] k C_1 M_cr_ref  [kNm] M_cr  [kNm]
8 1 1,131 279,448 316,056
8 0,7
8 0,5 0,967 805,645 779,058

16 1 1,130 119,423 134,948
16 0,7
16 0,5 0,966 279,448 269,947
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E1.1.2 ADINA 
 

 
  

End moments

Length [m] k M_cr/M_cr_ref M_cr_ref [kNm] M_cr [kNm]
8 1 1,023 279,448 285,848
8 0,7 1,011 467,941 472,937
8 0,5 0,983 805,645 791,797

16 1 1,023 119,423 122,176
16 0,7 1,010 181,193 183,043
16 0,5 0,982 279,448 274,415

Concentrated load in mid-span

Length [m] k M_cr/M_cr_ref M_cr_ref [kNm] P_cr [kN] M_cr [kNm]
8 1 1,393 279,448 194,576 389,152
8 0,7 1,308 467,941 305,928 611,856
8 0,5 1,066 805,645 429,444 858,888

16 1 1,388 119,423 41,444 165,776
16 0,7 1,293 181,193 58,548 234,192
16 0,5 1,063 279,448 74,235 296,940

Distributed load

Length [m] k M_cr/M_cr_ref M_cr_ref [kNm] q_cr [kN/m] M_cr [kNm]
8 1 1,157 279,448 40,423 323,384
8 0,7 1,117 467,941 65,316 522,528
8 0,5 0,965 805,645 97,131 777,048

16 1 1,156 119,423 4,313 138,016
16 0,7 1,110 181,193 6,285 201,120
16 0,5 0,962 279,448 8,399 268,768
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E1.1.3 COLBEAM 
 

 
  

End moments

Length [m] k C_1 M_cr_ref M_cr  [kNm]
8 1 1,000 279,890 279,890
8 0,7 1,030 468,534 482,590
8 0,5 1,050 806,429 846,750

16 1 1,000 119,660 119,660
16 0,7 1,030 181,524 186,970
16 0,5 1,050 279,886 293,880

Concentrated load in mid-span

Length [m] k C_1 M_cr_ref M_cr  [kNm]
8 1 1,350 279,889 377,85
8 0,7 1,170 468,530 548,18
8 0,5 1,050 806,429 846,75

16 1 1,350 119,667 161,55
16 0,7 1,170 181,521 212,38
16 0,5 1,050 279,886 293,88

Distributed load

Length [m] k C_1 M_cr_ref M_cr  [kNm]
8 1 1,120 279,893 313,48
8 0,7 1,030 468,825 482,89
8 0,5 0,970 806,423 782,23

16 1 1,120 119,661 134,02
16 0,7 1,030 181,524 186,97
16 0,5 0,970 279,887 271,49
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E1.1.4 COLBEAM with the option “advanced calculation  of  C1” 
 

 
 

  

End moments

Length [m] k C1_"advanced" M_cr_ref  [Nm] M_cr  [kNm]
8 1 - -
8 0,7 - -
8 0,5 - -

16 1 - -
16 0,7 - -
16 0,5 - -

Concentrated load in mid-span

Length [m] k C1_"advanced" M_cr_ref  [Nm] M_cr  [kNm]
8 1 1,256 279,976 351,650
8 0,7 1,127 468,385 527,870
8 0,5 1,031 806,469 831,470

16 1 1,256 119,697 150,340
16 0,7 1,127 181,464 204,510
16 0,5 1,031 279,903 288,580

Distributed load

Length [m] k C1_"advanced" M_cr_ref  [Nm] M_cr  [kNm]
8 1 1,134 279,947 317,460
8 0,7 1,07 468,654 501,460
8 0,5 1,015 806,305 818,400

16 1 1,134 119,691 135,730
16 0,7 1,07 181,570 194,280
16 0,5 1,015 279,852 284,050
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E1.1.5 LTBeam 
 

 
  

End moments

Length [m] k M_cr/M_cr_ref M_cr_ref [kNm] M_cr [kNm]
8 1 1,000 279,348 279,340
8 0,7 1,002 468,078 468,930
8 0,5 1,000 806,355 806,340

16 1 1,000 119,275 119,270
16 0,7 1,001 181,036 181,290
16 0,5 1,000 279,348 279,340

Concentrated load in mid-span

Length [m] k M_cr/M_cr_ref M_cr_ref [kNm] M_cr [kNm]
8 1 1,362 279,348 380,400
8 0,7 1,295 468,078 605,960
8 0,5 1,067 806,355 860,040

16 1 1,357 119,275 161,900
16 0,7 1,281 181,036 231,840
16 0,5 1,064 279,348 297,290

Distributed load

Length [m] k M_cr/M_cr_ref M_cr_ref [kNm] M_cr [kNm]
8 1 1,131 279,348 316,020
8 0,7 1,106 468,078 517,820
8 0,5 0,970 806,355 782,230

16 1 1,130 119,275 134,760
16 0,7 1,101 181,036 199,240
16 0,5 0,969 279,348 270,630
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E1.1.6 SAP2000 
 

 

  

End moments

Length [m] k C_1 M_cr_ref  [kNm] M_cr  [kNm]
8 1 1,000 279,466 279,466
8 0,7 1,000 468,240 468,240
8 0,5 1,000 806,580 806,580

16 1 1,000 119,338 119,338
16 0,7 1,000 118,123 118,123
16 0,5 1,000 279,466 279,466

Concentrated load in mid-span

Length [m] k C_1 M_cr_ref  [kNm] M_cr  [kNm]
8 1 1,316 279,422 367,719
8 0,7 1,316 468,166 616,106
8 0,5 1,316 806,451 1061,289

16 1 1,316 119,318 157,023
16 0,7 1,316 181,093 238,319
16 0,5 1,316 279,422 367,719

Distributed load

Length [m] k C_1 M_cr_ref  [kNm] M_cr  [kNm]
8 1 1,137 279,370 317,644
8 0,7 1,137 468,080 532,207
8 0,5 1,137 806,304 916,768

16 1 1,136 119,376 135,611
16 0,7 1,136 181,180 205,821
16 0,5 1,136 279,555 317,575
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E1.2 Fixed about major axis 
E1.2.1 Serna et al. (2005) 

 

 
 

E1.2.2 ADINA 
 

 
  

Concentrated load in mid-span
(Section properties from ArcelorMittal)

Length [m] k C_1 M_cr_0  [kNm] M_cr  [kNm]
8 1 1,713 279,448 478,694
8 0,7
8 0,5 1,044 805,645 841,093

16 1 1,702 119,423 203,258
16 0,7
16 0,5 1,033 279,448 288,670

Distributed load
(Section properties from ArcelorMittal)

Length [m] k C_1 M_cr_0  [kNm] M_cr  [kNm]
8 1 2,605 279,448 727,962
8 0,7
8 0,5 1,733 805,645 1396,182

16 1 2,596 119,423 310,022
16 0,7
16 0,5 1,711 279,448 478,135

Concentrated load in mid-span

Length [m] k M_cr/M_cr_0 M_cr_0 [kNm] P_cr [kN] M_cr [kNm]
8 1 1,761 279,448 492,210 492,210
8 0,7 1,446 467,941 676,606 676,606
8 0,5 1,070 805,645 862,437 862,437

16 1 1,750 119,423 104,503 209,006
16 0,7 1,413 181,193 128,039 256,078
16 0,5 1,060 279,448 148,100 296,200

Distributed load

Length [m] k M_cr/M_cr_0 M_cr_0 [kNm] q_cr [kN/m] M_cr [kNm]
8 1 2,667 279,448 139,740 745,280
8 0,7 2,286 467,941 200,572 1069,717
8 0,5 1,762 805,645 266,095 1419,173

16 1 2,658 119,423 14,880 317,440
16 0,7 2,243 181,193 19,053 406,464
16 0,5 1,740 279,448 22,795 486,293
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E1.2.3 COLBEAM 
 

 
 

E1.2.4 COLBEAM with the option ”advanced calculation  of  C1” 
 

 
  

Concentrated load in mid-span

Length [m] k C_1 M_cr_0  [kNm] M_cr  [kNm]
8 1 1,565 279,891 438,030
8 0,7 1,189 468,452 556,990
8 0,5 0,938 806,429 756,430

16 1 1,565 119,661 187,270
16 0,7 1,189 181,497 215,800
16 0,5 0,938 279,889 262,536

Distributed load

Length [m] k C_1 M_cr_0  [kNm] M_cr  [kNm]
8 1 1,285 279,891 359,660
8 0,7 0,841 524,352 440,980
8 0,5 0,712 806,419 574,170

16 1 1,285 119,665 153,770
16 0,7 0,841 203,151 170,850
16 0,5 0,712 279,888 199,280

Concentrated load in mid-span

Length [m] k C_1_"advanced" M_cr_0  [kNm] M_cr  [kNm]
8 1 1,381 279,826 386,440
8 0,7 1,109 468,323 519,370
8 0,5 0,948 806,688 764,740

16 1 1,381 119,638 165,220
16 0,7 1,109 181,443 201,220
16 0,5 0,948 279,979 265,420

Distributed load

Length [m] k C_1_"advanced" M_cr_0  [kNm] M_cr  [kNm]
8 1 2,419 279,876 677,020
8 0,7 1,918 468,425 898,440
8 0,5 1,654 806,378 1333,750

16 1 2,419 119,657 289,450
16 0,7 1,918 181,486 348,090
16 0,5 1,654 279,873 462,910

0,941

0,941 
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E1.2.5 SAP2000 
 

 
 

E2 Parametric study of C2 

E2.1 Simply supported about major axis 
E2.1.1 ADINA 

 

 
  

Concentrated load in mid-span

Length [m] k C_1 M_cr_0  [kNm] M_cr  [kNm]
8 1 1,923 279,477 537,435
8 0,7 1,923 468,259 900,462
8 0,5 1,923 806,612 1551,115

16 1 1,923 119,343 229,496
16 0,7 1,923 181,130 348,313
16 0,5 1,923 279,477 537,435

Distributed load

Length [m] k C_1 M_cr_0  [kNm] M_cr  [kNm]
8 1 2,383 279,418 665,852
8 0,7 2,383 468,159 1115,623
8 0,5 2,383 806,439 1921,745

16 1 2,381 119,335 284,137
16 0,7 2,381 181,119 431,245
16 0,5 2,381 279,461 665,396

Concentrated load in mid-span

Length [m] k C_1 M_cr  [kNm] C_2
Top 8 1 1,393 273,460 0,574

Bottom 8 1 1,393 550,326 0,573

Top 8 0,7 1,308 424,208 0,491
Bottom 8 0,7 1,308 868,056 0,474

Top 8 0,5 1,066 593,376 0,437
Bottom 8 0,5 1,066 1238,722 0,436

Distributed load

Length [m] k C_1 M_cr  [kNm] C_2
Top 8 1 1,157 214,326 0,674

Bottom 8 1 1,157 381,829 0,273

Top 8 0,7 1,117 346,745 0,554
Bottom 8 0,7 1,117 610,211 0,208

Top 8 0,5 0,965 529,228 0,455
Bottom 8 0,5 0,965 876,554 0,141
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E2.1.2 COLBEAM 
 

 
 

E2.1.3 LTBeam 
 

 

  

Concentrated load in mid-span

Length [m] k M_cr  [kNm] C_2
Top 8 1 194,500 0,590

Bottom 8 1 399,100 0,590

Top 8 0,7 316,900 0,524
Bottom 8 0,7 687,800 0,524

Top 8 0,5 537,700 0,480
Bottom 8 0,5 1204,000 0,480

Distributed load

Length [m] k M_cr  [kNm] C_2
Top 8 1 211,300 0,450

Bottom 8 1 367,400 0,450

Top 8 0,7 347,300 0,396
Bottom 8 0,7 627,600 0,396

Top 8 0,5 592,600 0,360
Bottom 8 0,5 1092,000 0,360

Concentrated load in mid-span

Length [m] k C_1 M_cr  [kNm] C_2
Top 8 1 1,362 269,300 0,561

Bottom 8 1 1,362 534,090 0,560

Top 8 0,7 1,295 421,720 0,486
Bottom 8 0,7 1,295 856,020 0,468

Top 8 0,5 1,067 594,210 0,438
Bottom 8 0,5 1,067 1240,500 0,436

Distributed load

Length [m] k C_1 M_cr  [kNm] C_2
Top 8 1 1,131 238,720 0,451

Bottom 8 1 1,131 417,990 0,461

Top 8 0,7 1,106 390,650 0,374
Bottom 8 0,7 1,106 682,620 0,373

Top 8 0,5 0,970 603,910 0,302
Bottom 8 0,5 0,970 1005,000 0,296
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E2.2 Fixed about major axis 
E2.2.1 ADINA 

 

 
 

E2.2.2 COLBEAM 
 

 
  

Concentrated load in mid-span

Length [m] k C_1 M_cr  [kNm] C_2
Top 8 1 1,761 216,726 1,463
Bottom 8 1 1,761 1095,447 1,434

Top 8 0,7 1,446 316,138 1,100
Bottom 8 0,7 1,446 1399,695 1,049

Top 8 0,5 1,070 427,761 0,879
Bottom 8 0,5 1,070 1698,676 0,850

Distributed load

Length [m] k C_1 M_cr  [kNm] C_2
Top 8 1 2,667 269,626 1,922
Bottom 8 1 2,667 1539,071 1,276

Top 8 0,7 2,286 421,064 1,412
Bottom 8 0,7 2,286 2032,786 0,91

Top 8 0,5 1,762 633,710 1,038
Bottom 8 0,5 1,762 2375,161 0,626

Concentrated load in mid-span

Length [m] k M_cr  [kNm] C_2
Top 8 1 117,500 1,565
Bottom 8 1 660,300 1,565

Top 8 0,7 207,700 1,189
Bottom 8 0,7 1049,000 1,189

Top 8 0,5 384,000 0,938
Bottom 8 0,5 1685,000 0,938

Distributed load

Length [m] k M_cr  [kNm] C_2
Top 8 1 117,700 1,562
Bottom 8 1 659,500 1,562

Top 8 0,7 229,700 1,016
Bottom 8 0,7 948,900 1,016

Top 8 0,5 470,600 0,652
Bottom 8 0,5 1375,000 0,652
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E2.2.3 LTBeam 
 

 

Concentrated load in mid-span

Length [m] k C_1 M_cr  [kNm] C_2
Top 8 1 1,722 214,980 1,431

Bottom 8 1 1,722 1055,800 1,403

Top 8 0,7 1,420 314,300 1,080
Bottom 8 0,7 1,420 1359,800 1,031

Top 8 0,5 1,054 425,720 0,866
Bottom 8 0,5 1,054 1657,100 0,836

Distributed load

Length [m] k C_1 M_cr  [kNm] C_2
Top 8 1 2,607 305,370 1,572

Bottom 8 1 2,607 1698,900 1,536

Top 8 0,7 2,249 476,530 1,155
Bottom 8 0,7 2,249 2279,400 1,128

Top 8 0,5 1,741 721,510 0,829
Bottom 8 0,5 1,741 2687,200 0,810


