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Abstract

Microwave sensing can be implemented to detect objects in material flowing through
a pipe by detecting changes in the signal. In this work simulated data modelling this
scenario is used to examine the possibilities to separate changes caused by air bubbles
from changes caused by plastic or metal objects.

The data used is obtained from numerically solving Maxwell’s equations by FEM for
an intersection of a cylindrical cavity at which four waveguides are placed. The solutions
consists of the values of the scatter parameters at 400 frequencies in the microwave
range. Data, modelling homogeneous background material with and without objects
of the mentioned types, is analyzed and used to evaluate five types of classifiers: k
nearest neighbors (KNN), linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), support vector machine (SVM) and libSVM – a support vector machine
algorithm for multilabel classification. It is also investigated which parts of the frequency
span and what scatter matrix elements are most useful for classification. Furthermore
the effects of adding measurement noise, modelled by white noise, is examined. It is
found that in the case of no noise the lowest part of the frequency span is most useful for
detecting objects, but also that the effects of adding noise is greatest at these frequencies.
Concerning the classifiers, the LDA, QDA and libSVM classifiers all perform well in the
absence of noise. While adding noise greatly reduces the accuracy of the discriminant
analysis classifiers, the libSVM classifier shows promising results at SNR levels above 30
dB. At SNR levels from 20 dB and below non of the classifiers yields an accuracy that
would meet the requirements of att useful detector in practice.

Finally, data modelling inhomogeneous background material is examined. In the
initial analysis some none linear correlations was found, which led to evaluation of the
effects of transforming the data to remove linear or linear and quadratic correlations.
The evaluation method is a simple signal detection algorithm, and the results point to
some improvement, although very small.
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1
Introduction

Radar techniques can be used for detecting objects in the environment. In addition to
the more conventional use to detect objects in the far field, i.e. at distances much greater
than the wavelength of the radio waves used, it can also be used to detect objects in the
near field, that is at a distance smaller than or equal to the wavelength considered. One
use of this is to detect changes in material flowing through a pipe, by placing antennas
used for measurement at some point along it. Such a measuring device is sensitive to
changes in the permittivity and conductivity in the material flowing through the pipe,
and can therefore be used to detect objects that have electrical properties which differs
from the background, i.e. the material that normally flows through the pipe.

Constructing a detector that only uses changes in the signal for detection has an
obvious drawback. Any object different from the background would, to some degree,
result in a change in the signal. But in many cases, for optimal performance, not all
types of objects should result in a detection. A typical scenario is that air bubbles are
commonly appearing but not problematic, and as such should pass undetected. This
work focuses on finding structures that distinguishes the signal changes caused by air
bubbles from those caused by plastic and metal objects, and methods that could capture
such differences. The tools evaluated for this are multivariate methods for classification.
Such techniques allows for making distinctions between measurements resulting from
the different cases when a foreign body is present and when only background material
is in the pipe, rather than just looking for a significant change in the signal. But for a
given problem there is rarely an obvious choice of method, and for every method there
are parameters to tune to achieve good results. This has to be investigated by testing
classifiers using acquired data.

If the background material is inhomogeneous, this is also a cause of changes in the
signal. A simple way to take this into consideration in detection is to use means and
variances to normalize measurement data. It might be the case, however, that there
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1.1. AIM CHAPTER 1. INTRODUCTION

are more structure in these changes than captured by such a simple method. In this
work such structures have been found, and an attempt to use data transformations to
eliminate them is evaluated in terms of the accuracy of a simple detector.

1.1 Aim

The goal of this work is to find ways to improve the accuracy in detecting objects in the
setting at hand. The aims can be formulated as

1. Find the parts of the signal is most useful for separating samples containing back-
ground, or background and air from samples containing background and a plastic
or metal object, at different levels of simulated measurement noise.

2. Examine the signal changes caused by background variability and possible ways to
handle such changes to improve detection performance.

3. Find the most suitable classifier, from a set of classifiers chosen to compare, for
distinguishing samples containing background or background and air from samples
containing background and a plastic or metal object at different levels of simulated
measurement noise.

1.2 Thesis outline

The structure of the thesis is mainly based on the distinction between data analysis
and evaluation of classification methods. In the theory section brief descriptions of the
different classifiers are found, and references to more detailed information on them. The
methods section describes the data used in the project, some important, case specific,
definitions of regularly used terms, and the evaluation methods for comparing classifiers.
In the results the first part describes characteristics in the two types of data, while the
second part contains the results from evaluating different classifiers. The discussion on
the results is presented in connection to the respective findings. Finally, the results are
summarized in a concluding section.
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2
Theory

Throughout this section, as in the rest of the report, K will denote the total number of
classes, N the number of observations and p the number of features.

2.1 Classifiers

2.1.1 KNN

The k-nearest-neighbor algorithm is the simplest method implemented. As the name
suggests it uses the majority vote of the classes of the k data points closest to a sample for
classification. However simple, there are parameters for the algorithm to be chosen, such
as the number of neighbors considered, distance metric, distance weight etc. The distance
metric can be altered to give different weights to distances in different components. The
distance weight is used to give difference weights to neighbors in the majority vote step,
depending on their distance from the sample. In this work, however, only the Euclidean
distance with equal weights to all votes have been used.

2.1.2 Discriminant analysis

The discriminant analysis classifiers are parametric classification algorithms based on
modelling class densities as multivariate Gaussian distributions. The probability density
function of class k in Rp is given by

fk(x) =
1√

(2π)p|Σk|
e−

1
2

(x−µk)TΣ−1
k (x−µk), (2.1)

where µk and Σk are the class specific mean and covariance matrix respectively.
Given that the prior of class k, that is the probability that a random sample belongs to
class k, is πk we can get the posterior probability that a sample X = x belongs to class
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k by applying Bayes theorem. Since G is discrete this posterior probability is given by

P (G = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

. (2.2)

The learning of a classifier of this type consists of estimating the parameters in the
distribution, and the classification is done by maximizing this posterior probability over
class labels, as

Ĝ = arg max
k

P (G = k|X = x) (2.3)

where Ĝ is the predicted class label. Ĝ is piecewise constant on Rp, and the boundaries
between sets where it takes different values are of the form

{x : P (G = k|X = x) = P (G = l|X = x), k,l ∈ {1,...K}, k 6= l}. (2.4)

To understand the shape of these sets it is useful to consider the log ratio of the pdf for
two classes, since the priors only contributes with a constant:

log
fk(x)

fl(x)
=− 1

2
(x− µk)TΣ−1

k (x− µk)−
1

2
log ((2π)p|Σk|) +

1

2
(x− µl)TΣ−1

l (x− µl) +
1

2
log ((2π)p|Σl|)

(2.5)

When the covariance matrices are distinct for each class, this is quadratic in x. This
is exactly the procedure in quadratic discriminant analysis (QDA), which also explains
the name. The assumption when using linear discriminant analysis is that all classes
have the same covariance matrix, ∀k : Σk = Σ, and a pooled estimate is used for all
classes. The only parameter differing between the classes is then the mean. In this case
equation (2.5) simplifies to

log
fk(x)

fl(x)
= −1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl) (2.6)

which, as expected, is linear in x.
An important property of these classifiers is the number of parameters estimated.

For QDA they are

Np = (K − 1) +Kp+
p(p+ 1)

2
K (2.7)

where the terms are from the priors, means and covariance matrices (which are symmet-
ric), respectively. For LDA only one covariance matrix is estimated, and thus there is no
factor K in the last term. The number of parameters to estimate does, however, increase
quadratically with the number of features. This means that if the number of parameters
estimated are more than the number of observations used for estimation, the covariance
matrix will be singular. In this work this problem has been resolved by using the pseudo
inverse of the covariance matrices. Another option would be to use regularization, i.e.
to add a prior.

For a more detailed description of the discriminant analysis classifiers, see for example
[1].
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2.1.3 Support vector machines

The support vector machine (SVM) algorithm is based on the idea of finding an optimal
separating hyperplane between two classes. In its original shape it can only be used
for binary classification. The theory behind it is somewhat more involved than for the
classifiers previously described, specifically the use of kernel functions to extend the
feature space. Therefore only a brief introduction of it will be given here. A more
detailed, but still brief, explanation can be found in [2]. An extensive description is
presented in [1].

Consider the case where we have data, xi with i = 1,...N , with labels yi ∈ {±1}.
If the data from different classes can be separated by a hyperplane it is called linearly
separable. A hyperplane can be described by

{x : f(x) = xTβ + β0 = 0} (2.8)

and a hyperplane separating the classes satisfies yif(xi) > 0 for all i. It can be shown
that f(x) gives the signed distance from the hyperplane to x, and hence a new sample,x,
is then classified by letting ŷ = sign(f(x)). Moreover we can find a hyperplane that
maximizes the margin to all points by solving

max
β,β0,||β||=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N.

(2.9)

This can be rewritten, by replacing M by 1
||β|| and dropping the norm constraint, as

min
β,β0

||β||2

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N.

(2.10)

It might of course be the case that our data is not linearly separable. In this case we
introduce nonnegative slacks, ξi i = 1, . . . N , and in this setting we look to solve

min
β,β0,ξ

1

2
||β||2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , N.

(2.11)

The optimization problems (2.9)-(2.11) are all convex problems, guaranteeing that
any optimum found is in fact a global optimum.

From the formulation above it is clear that the parameter C controls the penalization
of the misclassified cases in the training data. It is referred to a s the cost parameter
or box constraint. A larger value of C results in fewer misclassifications of the training
data, while a smaller value of C gives a larger margin for the correctly classified data.

So far only a linear boundary for classification have been considered. The way to
introduce a nonlinear boundary is to use a kernel function to transform the feature space.
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In short this means that the input vectors, x, are mapped into a higher (possibly infinite)
dimensional Hilbert space by the use of a function, φ(x). An optimal hyperplane is then
sought in the new feature space, which translates to a non linear decision boundary in
the original space. Studying the minimization problem in detail, it turns out that the
function φ(·) itself is not needed, but only the associated inner product as

K(xi,xj) = 〈φ(xi),φ(xj)〉 (2.12)

where K(·,·) is the kernel function. In this work a radial basis kernel function was used
when evaluating the SVM classifier. This function has the form of

K(x,z) = e−γ||x−z|| (2.13)

where the γ for the binary SVM is expressed as 1
2σ2 . To fully explain the meaning of

the kernel function and its parameter a more thorough description is needed, and the
interested reader is referred to [1]. The effects on the results for different values of C in
(2.11) is described above. As for the γ parameter it is clear that its value affects how
the distance between two points will impact the value of the kernel function. For a large
value of γ, the value of K(x,z) will decrease faster than for a smaller value. Studying the
optimization problem in more detail, it turns out that only some of the training samples
are relevant for classification. These are called support vectors, and in the classification of
a new sample only the values of the kernel function for the new sample and the support
vectors are used. For a large value of γ the impact of the support vectors close to the new
sample will be much larger than that of the more distant support vectors and decreasing
the value of γ will increase the impact of support vectors far away from the new sample.

Finally the SVM is in its original shape, as mentioned, a binary classifier. There are
a number of techniques to choose from to allow for more than two classes, of varying
popularity and complexity. The two most popular to use seem to be the one-versus-
all (OVA) and one-versus-one methods (OVO). Both of these are based on training a
number of binary SVM classifiers, which are then used for multi class classification.

For K classes in total, the one-versus-all method trains one SVM for each class. In
training these K SVMs, for k = 1, . . .K the training set is divided into two groups,
where one group is the samples from class k and the other group are all other samples.
For a new sample a prediction is made using each one of these K classifiers, and for each
k the predicted label is then “class k” or “not class k”. The prediction for the multi class
SVM is then that k for which the binary SVM predicted “class k” by the largest margin.

Using the one-versus-one method one binary SVM is trained for each pair of labels,
in total K(K−1). Thus, for each of these data from only two classes is used. The results
from using all of these binary SVMs are then used in a voting process, and the majority
vote decides the predicted label of the multi class SVM.

Other methods exist as well, and there are techniques that do not use a number of
binary SVMs. A comparison of some of these methods are presented in [3].
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3
Method

In this work two sets of data were used. Both sets were generated by numerically solving
Maxwell’s equations for the geometry of the problem. The first part of the method section
will in detail describe the geometry, the different data sets and the models behind them.
In the second section some terminology is introduced and described, and the third section
will deal with the methods for testing and evaluating classifiers.

Figure 3.1: Visualization of the geometry of the model. The light green region is the
background, waveguides are colored red and the grey region represents an object.
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3.1. THE DATA CHAPTER 3. METHOD

3.1 The data

The data was generated by modelling part of a hypothetical setup. The part modelled
consists of an intersection of a pipe through which background material passes. At this
intersection four waveguides are placed, equally spaced, around the pipe. The geometry
described is illustrated in Figure 3.1. The geometry is divided into different regions:
the interior of the pipe (background), the pipe itself and the waveguides. The instances
modelling the presence of objects of other material than background also is represented
by a second region in the interior of the pipe. The different regions are described by a
set of electromagnetic parameters. These are the permittivity and the conductivity. The
difference between the two data sets lies in the respective scenarios modelled. For the first
data set the parameters of the background material were constant in the whole interior
region, modelling completely homogeneous background material. For the second set
the parameters varied stochastically, modelling inhomogeneous material. The stochastic
behaviour is further described by two more parameters, explained in the sections below.

The two data sets have a common form. It consists of scatter matrix elements for a
set of frequencies considered. Since there are four waveguides the full scatter matrix is
4×4, but since it is symmetric only the lower triangular part of it is needed. Thus there
are 10 elements for each frequency. Element (i,j) in the scatter matrix is the quotient of
the output signal from port i and the input signal at port j. These are complex valued.
The number of frequencies considered was 400, equally spaced between 0.1 and 3 GHz.

3.1.1 Modelling homogeneous background and objects

This data is obtained by numerically solving Maxwell’s equations using the finite ele-
ment method (FEM), and the results models real world measurements using a network
analyzer. The region modelling the background material is described by its relative
permittivity, εbg,r and conductivity, σr. Both these parameters are constant over the
interior region, modelling perfectly homogeneous material. Data was generated for all
combinations of five levels of εbg,r (40, 50, 60, 70 and 80) and for levels of conductivity
corresponding to δ/d = 1/2,1/4,1/8 and 1/16, where δ is the skin depth at 2.5 Ghz
and d is the diameter of the pipe. The skin depth is a measure of the loss in current
density when the field propagates through the material. The current density decreases
exponentially with the distance from the surface, a relation that can be formulated as

J(l) = JSe
− l
δ (3.1)

where J is the current density at distance l from the surface and JS the current density
at the surface. The values of εbg,r and σbg is a complete description of the scenario
modelled in the case where no object or air bubble is present.

The air bubbles and objects are modelled by smaller circular regions in the intersec-
tion with different parameter values than the background. Air bubbles are represented
by εr = 1, three types of plastics by εr = 2, 3 and 4, respectively, and metal as a perfect
electrical conductor, i.e. a region with infinite conductivity. Simulations are carried
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out for objects with radii spanning from 0.5 mm to 6 mm in 23 steps, equally spaced.
The different positions modelled are about 3000 (somewhat fewer for larger objects),
distributed over the interior region by altering radius and angle of in fixed steps. At
most one object is included in every simulation and only one realization is produced for
every class-position-size-backgruond combination, since the result would be identical if
more were generated.

3.1.2 Modelling stochastically varying background and objects

In this data set the background parameters εr,bg and σbg are not constant, but varies
stochastically over the region. The objects are modelled in the same way as for the
data with homogeneous background. The values of the background parameters are set
by generating a sample of a autocorrelated normal distribution. The means are 60 for
εr,bg and σbg such that δ

d = 1, for all cases. The root mean square (RMS) determines
the mean amplitude in deviations from the mean. This value is varied in terms of the
mean, and simulations are carried out for RMS = 1,2 and 4 % of the mean value. The
autocorrelation between two points in the interior region is given by

e
− 2d2

ξ2 , (3.2)

where d is the distance between points considered and ξ the correlation length. Thus
the value of the correlation length determines how quickly the value of the parameters
varies in space – larger correlation lengths results in larger areas with similar values,
since they are more correlated.

The actual generation of the backgrounds with varying parameter values is done by
first generating a sample of an uncorrelated, 2D, Gaussian distribution. The desired
autocorrelation is then achieved by computing the convolution of this with this sample
and the correlation function (3.2), using the Fourier transform.

For every scenario including at most one object, 5000 simulations were made with
randomly generated background material as described above.

3.2 Definitions

Some definitions are introduced to simplify the description of different cases in what
follows. Firstly the following short definitions are made:

• An empty measurement is a simulated measurement carried out on only background
material.

• A foreign body is a region in the simulations representing air, plastics or metal.

• An object is a region representing plastics or metal, i.e. a foreign body that is not
air.
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3.2.1 The notion of signal

The data from all classes does of course consist of (simulated) signals. It is, however,
useful to make another definition of what a signal is in this case. In terms of whether
there is only background present or there is background and a foreign object, the normal
case is only background. Therefore the data when only background is measured can be
considered as no signal, and the results of something more than background signal. We
write this as

S = Sbody + ∆S (3.3)

where S is the total signal, Sbody is the part of the signal resulting from a foreign body
interacting with the field and ∆S is the noise in the signal. The noise part can be further
divided into two parts as ∆S = ∆Sbg + ∆Smeas. Here the ∆Sbg is the noise generated
by variability in the background and ∆Smeas is the noise from measurement equipment.

3.2.2 Adding noise to the simulated data

The simulation of measurement noise in this work is based on the assumption that
the power of the noise is equal for all channels, by using the mean signal power over all
channels to define the signal to noise ratio (SNR). Another choice would be add noise with
different variance for different channels, to get a constant SNR when considered channel
by channel. Both choices are equally reasonable, and models different measurement
equipment, but might lead to different effects of the noise added.

For a given signal, x = [x1,x2,...,xp], the power of the signal is given by

Ps = ||x||2 =

p∑
i=1

|xi|2, (3.4)

which can be used to estimate the mean signal power from a given data set. The noise
is modelled by generating complex random Gaussian vectors, of length p, and adding
such a vector to each sample in the data used. The power of the noise is then given
by the expectation of the norm squared of a noise vector. Denoting a noise vector
χ = [χ1,χ2,...χp], every element of this has the form

χi = Xi,1 + iXi,2 (3.5)

where both Xi,1 and Xi,2 follows a normal distribution with zero mean and variance
σn. All components of χ are independent, as are the real and imaginary parts of the
individual elements. Thus the expectation of the norm, and the noise power, is given by

Pn = E
[
||χ||2

]
= E

[
p∑
i=1

|χi|2
]

=

p∑
i=1

(
E
[
|Xi,1|2

]
+ E

[
|Xi,2|2

])
= 2pσ2

n (3.6)

To obtain a given SNR when generating noise, the σn must be set so that Ps/Pn = SNR.

This gives that σn =
√

Ps
2pSNR is the proper choice.
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3.3 Classifiers and feature selection

A large part of the work is to evaluate the performance of different classifiers. In con-
nection to this the results of using different subsets of features were also investigated. In
general the work flow has been to first evaluate the classifiers using simulated data free
from noise. This gives information on how well different classifiers perform in an ideal
setting. This information has then been used to investigate the effect of noise in the
signals for the most promising candidate classifiers chosen from the test round without
noise. The procedures for manual feature selection are explained in the section that
follows.

The measure to compare classifiers was in most cases the correct classification rates
in terms of object - no object. This is motivated by the task at hand. It is of no greater
interest so distinguish between objects of different classes, or air and empty measure-
ments. The objective is to optimize performance with respect to detecting objects. For
classifiers allowing for multiple classification this was done by using all classes as labels
in training and testing, and sorting the predictions and true labels into binary classes
after classification. For the classifiers allowing for only two classes (e.g. standard SVM)
the measurements were divided into object/no object classes before training and testing.

In the analysis of the data with non homogeneous background different data transfor-
mations were tested in terms of their impact on signal detection, using a simple detection
algorithm based on featurewise deviations from the normal case (when only background
is measured). Here the area under the receiver operating characteristic (ROC) curve was
used.

3.3.1 Implementation of classifiers

The majority of the evaluation of classifiers was carried out using Matlab, where a
variety of built in methods for classification is available. They do not, however, handle
complex data. Therefore the data was split up into real and imaginary parts, thus
doubling the number of features. The amount of data used for training and testing
varied somewhat, depending mostly on computational times for different methods. In
general cross-validation of some sort was used to evaluate the results.

The classifiers for which built in functions in Matlab was used was KNN (Clas-
sificationKNN class was used), LDA and QDA (ClassificationDiscriminant) and SVM
(svmtrain for training and svmclassify for classification).

The implementation used for the multi class SVM was the libSVM package [4], avail-
able online. This software uses a one-versus-one approach to perform classification into
more than two classes. This is motivated by the fact that the results compared to us-
ing one-versus-all are comparable, but the one-versus-one algorithm is usually faster. It
should be mentioned that OVA has often proven to be slightly better than OVO (see for
example [5]), but with much longer computational times.
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3.4 Manual feature selection

Given the properties of the data in its original form (8000 features, when separated
into real and complex parts) it is in most cases necessary to perform some kind of
feature selection manually before using the data. This simply because the computational
times for different automated feature selection methods are too long if initially using all
features. Therefore three types of manual feature selection is often used as an initial
step. These three procedures are explained and motivated below.

3.4.1 Choosing scattering matrix elements

The different matrix elements corresponds to different kinds of mechanisms in the mea-
suring process. A common way to describe the elements are as reflection and transmis-
sion elements, which is partly self explanatory. The reflection elements are the elements
on the diagonal of the scattering matrix. These are the ratio of the output from one port
and the input from the same port. The output signal is hence the part of the signal that
has entered the cavity and then reaches the same port via reflection. A transmission
elements is the ratio of the output from one port divided by the input from another,
i.e. element Sij is the ratio of output at port i and input at port j. Hence the signal is
transmitted from one port to another (possibly partly due to reflection processes).

3.4.2 Using only a frequency span of fixed length

The data from different parts of the frequency span might contain more or less useful
information and one way to evaluate this is to fix the length of the frequency span and
move a span of this length along the full span, evaluating the accuracy of the classifier
in every point.

3.4.3 Using equally spaced frequencies

In the data studied a high correlation between neighboring frequencies is expected.
Therefore a decrease in the resolution in terms of frequencies might be a means to
improve results. A simple way to investigate this is to use only a subset of all available
frequencies (or a subset of all frequencies in an interval of choice). The most apparent
way to do this is to use equally spaced frequencies from the full set of frequencies, and
vary the number of frequencies used. Again this is evaluated by studying the accuracy
of a given classifier for different numbers of frequencies used.

3.4.4 Using a part of the frequency span of varying length

The number of features used will, for mathematical reasons described in the theory
section, have an impact on how well a classifier performs. Therefore it might be of
interest to use only a part of the frequency span and varying the length of this part. As
an example if it is found that the lowermost part of the frequency span is most useful
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the limiting highest frequency to use can be evaluated roughly by using a span starting
from the lowest available frequency and varying the highest used frequency.

13



4
Results

The results part will mainly be divided into two sections. The first part will be deal with
the results on analyzing the data, both the data with constant background parameters
and the data with stochastically varying parameters. The second part will treat the
different classification methods and the feature selection involved in these.

4.1 Data analysis

The analysis of the data aims to find characteristics in the data that might reveal and
motivate methods for manual feature selection and/or transformations that could help
in the classification of measurements. The methods are for the most part straightfor-
ward, comparing means and variances for different classes and graphically examining the
distribution of data points.

4.1.1 Data with fixed background parameters

To begin the study data for fixed background parameters, set to εbg,r = 40 and σbg

corresponding to
δbg
d = 1

2 , is examined. From each class 1000 instances are loaded,
all of which with object radius of 4 mm. The positions of the objects are chosen at
random. The features studied are all frequencies from S11, S21 and S31. The reason
for this is that these correspond to reflection, diagonal transmission and diametrical
transmission respectively. When the positions are distributed in a circular symmetrical
fashion parameters estimated by aggregating results from all samples will be equal for
two elements within one of these three groups, and hence only one of them needs to be
studied.

For the aim in this work the interest in studying the data is to investigate how
different classes are separated by different features. By the definition of signal in this
context, the absolute value of a feature for a given sample represents the separation

14
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Figure 4.1: Mean of the absolute value of the signal for objects of size 4 mm. For metal
objects the signal is strongest for the reflection element for all frequencies, while the S31

element gives a stronger signal for some frequencies for plastic objects.
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(b) Plastic εr = 2

Figure 4.2: Ratio of the mean of the absolute value and the standard deviation for each
feature for objects of size 4 mm. For metal objects the lowest part of the frequency span and
the transmission elements are clearly giving the largest separation-standard deviation ratio
from empty measurements. For the plastic class the picture is not as clear. The S31 element
gives the largest values, again at the lowest frequencies. But for the other two elements
frequency dependence it not as simple as before, and their values compared to each other
varies more along the frequency span.

from an empty measurement at that feature. Thus an indication of how well a feature
separate measurements with an object from empty measurements is given by the mean
of the absolute value. Figure 4.1 shows plots of this. From these plots alone it seems
that the reflection element (S11) separates the objects the best. Also the absolute value
shows an increasing trend with frequency. But the absolute value should be compared
to the variability in the signal. Therefore plots of the ratio of the mean absolute value
and the standard deviation of each feature, are presented in Figure 4.2.

Finally it is of interest not only to separate the object classes from the empty mea-
surements but also from the instances containing air bubbles. Therefore a similar analysis
is made now comparing, for each feature, the distance for a given realization contain-
ing an object to the corresponding mean of the air measurements. Furthermore the
standard deviation used in this case is (again for each feature) the pooled standard de-
viation of the air measurements and the object class studied. The results are presented
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(b) Plastic εr = 2

Figure 4.3: Mean of the deviation (in absolute value) from the mean of the air samples for
two object classes. The increase with frequency is similar to the earlier results.
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(b) Plastic εr = 2

Figure 4.4: Most notable is the fact that all values for the plastic class are below 1, that
is the separation from the air samples is for all features smaller than the pooled sample
standard deviation. For metal the behaviour is somewhat similar to when considering the
distance to the mean of the empty measurements.

in Figures 4.3 and 4.4. Similarly to when comparing to empty measurements separation
seems to increase with frequency. When considering the ratio of this deviation with the
corresponding pooled sample standard sample deviation, the behaviour is very different
between the two classes compared here. For metal the lowest part of the frequency span
for S31 yields the highest ratio, with around 6 as the highest value. In general there
seems to be quite a few features giving a separation of at least 2 times the standard
deviation. For the plastics with εr = 2 none of the values are above 1, which indicates
that the classes might be difficult to separate. Compared to earlier results the ratios are
also quite stable over the frequency span.

4.1.2 Data with stochastically varying background parameters

In practical terms the second dataset is very different from the first one. In the first set,
for a given object (with a given size in a given position) and a given set of background
parameters there was only one realization. In the second dataset, since the background
parameters are varying, multiple simulations were made for each given object and given
background parameters, but with different realizations of the background material. The
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Figure 4.5: The behaviour of the variance is very similar for the three scatter parameters,
with peaks appearing at the same frequencies. These arise from resonance modes in the
circular cavity.

initial part of the analysis is carried out on data from background measurements.

Characteristics of background measurements

Firstly the variance for different frequencies was studied. As before we consider the
scatter matrix elements S11, S21 and S31, as seen in Figure 4.5. Two features are im-
mediately evident from this plot. The first one is that the variance generally increases
with frequency. This is explained by the fact that the effect on variations in the back-
ground media will depend on the correlation length-to-wavelength relation. The second
feature are the clear peaks that appear. The frequencies at which these are found seem
to match quite well with the frequencies of the TE modes of the circular cavity, i.e. the
resonant frequencies of the electric field (see Appendix B). What is more interesting for
the application is what form the variations take for a single feature.

It turns out that the data for a single feature from several realizations in many
cases takes a type of “banana”-shape in the complex plane. As an example, Figure 4.6
shows the data from two of the peak frequencies in the variance plot for a correlation
length of 1.9 mm and RMS of 2%, from the S31 element. This shape appears with
different curvatures and spread along and orthogonally to the curvature. At this point
the question was posed whether the data could be transformed in a way that would
ideally eliminate the correlation, both linear and non linear, between real and imaginary
parts and standardize the variance. The reason for this is that some of the simpler
algorithms for classification (e.g. discriminant analysis) are based on an assumption
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Figure 4.6: Data from two peak frequencies for the S31 element. The shape appears over
the whole frequency span, and not only at variance peaks. The curvature and spread along
the curve, and orthogonally to it, varies with frequency, scatter element, correlation length
and RMS value.

that Gaussian distributions approximate the data well. Moreover, the perhaps simplest
way to distinguish between the signal/no signal cases in the setting at hand would be
to compare the featurewise deviation from the case when only background material is
measured. It is likely that such a procedure would yield better results for data in which
the parameters are uncorrelated and circular symmetrically distributed. The next section
describes the transforms tested and the methods for evaluating them.
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Transformations of data and evaluation of these

Three transforms will be evaluated, and the choices are perhaps most easily explained
from the method to evaluate them. In the general setting in this work two distinctions
of measurements are made in terms of signal/no signal, and object/no object. The
transformations will be evaluated in terms of the first of these distinctions. That means
that the interest is whether a transformation can improve the results in distinguishing
between measurements made on only background, or background and air or object.
A simple detector uses a number of measurements known (or assumed) to measure
background material, to build statistics for each feature of the data. These statistics can
then be used to set thresholds for each one of the features, used to determine when to
classify a measurement as “signal”.

A way to simplify this, is to use the statistics computed from the background mea-
surements and use this to normalize the data for all features, so that a single threshold
can be used for all features in testing. The idea is that if the data from the background
measurements is distributed circularly symmetric with unit standard deviations in both
directions (real and imaginary parts), a large enough deviation in one of the features
is indication that something else than background material is passing the waveguides.
The transformations can be seen as three such normalizations, taking different types of
correlations into consideration.

For describing the transformations some notation will be convenient. Measurement
k is denoted xk = xkr + ixki , and the corresponding normalized measurement is denoted
zk = T (xk), where T is the transformation used. Every measurement is a vector of
length p, where p is the number of features. Letting xk,l denote entry l the value of this
entry can itself be represented as a vector as

xk,l =

[
xk,lr

xk,li

]
(4.1)

The normalizations considered are meant to take into account the following types of
correlations:

1. Different variances in real and imaginary parts, no correlation

2. Different variances in real and imaginary parts, linear correlation

3. Different variances in real and imaginary parts, linear and quadratic correlation

For the first two of these the normalization of a measurement is straightforward. The
procedures are to estimate the diagonal and full covariance matrix and normalizing by
this respectively. Formally this is expressed as

zk,l =

[
zk,lr

zk,li

]
= Σ−1/2(xk,l − x̄lbg) (4.2)
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Type Radius (mm) Position (mm)

Air 6 (13.8; 7.4)

0.67 (3; 0.78)

εr = 2 6 (13.8; 7.4)

0.67 (3; 0.78)

PEC 6 (13.8; 7.4)
Table 4.1: The positions are expressed in a coordinate system where (0,0) is the center of
the cavity.

where x̄lbg is the mean of feature l from the background measurements, Σ is the esti-
mated covariance matrix, which in the first case is diagonal with the variances of the
real part, (σlr)

2, and imaginary part, (σli)
2 on the diagonal. For the second type the pro-

cedure is identical, with the exception that the full covariance matrix is now estimated.
This implies that for the normalized background data real and imaginary parts will be
uncorrelated with expected value zero and unit variance for all features. Again, the
parameters are estimated using only background measurements, since scenario is that
only this type of measurements are available for training, and the goal is the separate
measurements of background material from measurements of background material and
a foreign body of some type.

The third transformation involves another step, based on the assumption that the
nonlinear correlation in the variables could be approximated by a second order poly-
nomial. The first step is to normalize the data as in the second transformation. Two
second order polynomials are then fitted to the data. One where the imaginary part is
considered a function of the real part, and vice versa. The coefficients of the quadratic
term from the fits are then compared, to examine along which axis the data is curved.
From the data used it is found that the radius of curvature is almost exclusively along
the real axis, that is the largest coefficient for the quadratic term is obtained when fitting
a polynomial to the real parts as a function of the imaginary parts. In normalizing the
data the value of the polynomial taken to describe the curvature is then subtracted from
each point.

With the three transformations explained, the results of the evaluation will now be
presented. There are three parameters affecting the variance in the data. These are
the correlation length and RMS value of the background parameter, and the variance
in normal distributed variables added to simulate measurement noise. The variance of
the latter is expressed as a signal to noise ratio. The evaluation is carried out for a
number of measurements noise levels with the parameters describing the variations in
the background material are kept fixed. Moreover an AUC value is obtained for each
object separately, which allows the study of both mean AUC values over all objects and
the same value object by object, for all objects in Table 4.1.

Testing was carried out at all combinations of the two lower levels of correlations
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Figure 4.7: AUC values using the simplest transform for an object with εr = 2, of radius
0.67 mm, for a correlation length of 1 mm RMS value of 1 %. At SNR levels above 20 dB
detection is perfect.

length and RMS value, and at the highest RMS value and second highest correlation
length. The SNR levels considered ranged from 0 to 30 dB in steps of 2.5 dB, and infinite
SNR (no noise). For all combinations of background parameters the detection of the 6
mm objects of all classed yielded AUC values of 1, with one exception. This was for
SNR of 0 dB and the highest RMS, and second highest correlation length. The values
were then between 0.9992 - 0.9993 for the air bubble and 0.9987-0.9989 for the plastic
object, with the simplest transformation scoring the highest in both cases. The smaller
objects studied rendered some more interesting results.

The differences between the transformations used are in general small. To present
them in a form which makes the differences clear, the difference in AUC value using the
simplest transformation and the to others are considered, respectively. The first scenario
considered is the setting where signal detection is easiest, that is for the lowest values of
correlation length and RMS.

The AUC values using the simplest transformation at different SNR levels, for the
smaller plastic object in Table 4.1, is seen in Figure 4.7. The differences from this for the
other two transforms are seen in Figure 4.8. In this setting the simplest transformation
gave the best detection rate at high SNR levels, while the other two worked better when
there was more noise added. It should be noted that the AUC values at these noise
levels are little above 0.5, which indicates that the detection is poor. The behaviour of
the AUC values for the simplest transformation when instead considering an air bubble
is very similar.

When increasing the RMS value and/or the correlation length, detection of the larger
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Figure 4.8: Differences in AUC values using the first transformation, or one of the other
two, respectively, at correlation length of 1 mm and RMS of 1 %. The values are for a
plastic object of radius 0.67 mm. The simplest transformation seems to be the better choice
at lower noise levels. This plot is for the lowest amount of background variability considered.
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Figure 4.9: Differences in AUC values using the first transformation, or one of the other
two, respectively, for an air bubble of radius 0.67 mm. Here the correlation length was 1
mm and RMS value 1 %.
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Figure 4.10: AUC values using the simplest transform for an object with εr = 2, of radius
0.67 mm, for a correlation length of 1.9 mm RMS value of 1 %. The AUC does not reach 1
as at lower variability in the background material.

objects considered is still perfect, but changes the results for the smaller plastic object
and air bubbles. In Figure 4.10 the results for the simplest transform at a correlation
length of 1.9 mm and RMS value of 1 % is shown. Clearly detection is now more
difficult, for example the AUC value in the noise free setting is now clearly below 1.
Again comparing the differences between the transformations, as in Figures 4.11 and
4.12, we see that the results using the second and third transformation is now better at
some noise levels, and worse at others. Most notably the results are better at higher
SNR values. This might be because the curvature in the data clouds is more prominent
at these noise levels, since the noise added is circularly symmetric.

If instead considering a RMS value of 2 % and correlation length of 1 mm the results
are very similar, as seen in Figure A.1, A.2 and A.3. When considering higher values
for both the correlation length and RMS the results for the smaller objects are generally
poor, while the AUC values for the larger objects remain at 1 for all but the lowest SNR
value, where it is still above 0.999 for all transformations. For a correlation length of 3.9
mm and RMS of 4 % the AUC values for all transformations are between 0.5 and 0.53
at all noise levels. This indicates that the classification of a sample as object/no object
is more or less a coin toss. However, at this amount of background variability the results
using the third transformation is uniformly better than using the second transformation,
which is in turn better than using the first transform at all noise levels as seen in Figure
4.13. Thus it seems that the detection is slightly improved with the second and third
transformation, but still very poor. It should be noted that the object size tested for
must be considered very small, so the difficulties of detection is not surprising.
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Figure 4.11: Differences in AUC values using the first transformation, or one of the other
two, respectively. This plot is for a correlation length of 1.9 mm and RMS value of 1 %.
The values are for a plastic object of radius 0.67 mm. The simplest transformation seems to
be the better choice at lower SNR values. This plot is for the lowest amount of background
variability considered.
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Figure 4.12: Differences in AUC values using different transformation, for an air bubble
of radius 0.67 mm. The correlation length was 1.9 mm and RMS value 1 %.
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Figure 4.13: AUC values for the three different transformations at correlation length of
3.9 mm and RMS value of 4 %. The result is poor for all transformations, but the ordering
of the transformations is the same at all noise levels, with the third transformation giving
the best results and the first transformation the worst.

4.2 Evaluation of classifiers

This section describes the results found when testing different methods for classification,
which also includes parameter tuning and feature selection. The aim has been to present
the results in such a way that they make it easy to follow the effects both of choosing
different classification methods and what features to use. The classifiers compared using
manual feature selection are: QDA, LDA, KNN, SVM and libSVM. For the description
of these refer to Chapter 2.

The performance measure used is the accuracy in terms of object/no object classes,
and for the SVM classifier this is also how samples used for training and testing are
labelled. The data, however, is originally divided into six different classes as described
in section 3.1. Each of these six classes is a subclass to either the object or the no
object class. For all classifiers but the SVM, training and testing is carried out using
all six labels, but the accuracy is then computed only in terms of the object/no object
distinction.

4.2.1 Parameter tuning for SVMs

For both the binary SVM and the libSVM that handles multiple classes there are pa-
rameters that need to be tuned. In both cases the cost parameter, C in (2.11), has to
be tuned. Moreover a radial basis function (rbf) kernel was used for both types. This
choice introduces a second parameter to tune. For the binary SVM the kernel function
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Binary

First gridsearch C = 10−2,10−1.2,...109.2,1010

σ = 10−5,10−4,...,104,105

First min MCR = 0.19 at C = 104.4, σ = 102

Second gridsearch C = 103.5,103.6,...105.5

σ = 10,101.1...103

Second min MCR = 0.1462 at C = 103.6, σ = 101.8

fminsearch min C = 102.83, σ = 101.60

libSVM

First gridsearch C = 10−5,10−4...,1014,1015

γ = 10−5,10−4.5,...,104.5,105

First min MCR = 0.1462 at C = 106, γ = 10−3

Second gridsearch C = 105,105.1...108

γ = 10−3.5,10−2.5,10−1.5

Second min MCR = 0.09 at C = 105.9, γ = 10−2.5

Table 4.2: The results of the parameter tuning for the SVMs. They are generally not
optimal when altering what features to use, but will still perform better than default values.
The tuning is meant to make the comparison between the SVMs and other classifiers fair.

is expressed as

K(x,y) = e−
‖x−y‖
2σ2 (4.3)

while for the multi class SVM the 1
2σ2 is instead expressed by a parameter γ, as

K(x,y) = e−γ‖x−y‖. (4.4)

For the two types two consecutive gridsearches was performed to find good parameter
values. For the binary SVM these parameters was further refined by using MATLABs
fminsearch on the misclassification rate (MCR). The data used was 1000 samples from
each of the six classes, and in every point of the grid a five fold cross validation was used to
obtain a mean MCR. The background parameters was εbg,r = 40 and σbg corresponding
to δ

d = 1
2 .The results of the gridsearch and minimization are presented in Table 4.2.

4.2.2 Moving a frequency span of fixed width

In this round of testing the classifiers were tested using a frequency span of 60 frequencies
altering the position of this subset of frequencies. For every position of the frequency
span, the classifiers were tested using three different sets of scatter parameters: trans-
mission only, reflection only and all parameters. The SNR level was also altered in 7
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Figure 4.14: Highest obtained detection accuracy at different noise levels for the different
classifiers. The value on the x-axis is 1/SNR and the leftmost point is for no noise. It is
very clear that the impact of the noise on the performance differs between the classifiers,
and that the best classifier using noise free data is not necessarily the best even at high but
finite SNR levels. The KNN-data is for using one neighbor.

steps. The background parameters were chosen as εbg,r = 40 and σbg corresponding to
δ
d = 1

2 . Position and size of foreign bodies was randomized. For KNN, LDA, QDA
and the binary SVM the testing was done by using 1000 training samples and 1000
testing samples from each of the six subclasses. The classifiers were then evaluated at
all element choices, subspan positions and noise levels using this data. This was then
repeated five times reloading data in each iteration. For each of the foreign body classes
data for 23 sizes in 2000-3000 positions was available (depending on the size), resulting
in about 47500 samples from each class. In each iteration the subsets used for train-
ing and testing were randomly selected from all of the available data. For the libSVM
classifier the computational times using that much data was too long, and hence a set
of 500 measurements from each subclass was used in a 5 fold cross validation in each
evaluation.

The results from this testing round was firstly meant to get indications on what
classifiers to test further, but also on which parts of the frequency span and scatter
matrix elements are most informative at different noise levels. To compare the classifiers
at different noise levels the best achieved accuracy at each noise level is compared, as in
Figure 4.14. The KNN-classifier was tested using 1,2,5 and 10 neighbors and the highest
obtained accuracy was at all noise levels obtained using 1 neighbor. The only general
conclusion on the results comparing classifiers is that LDA seems the performs the worst
in all cases where noise is added to the data. This despite a high detection accuracy
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Figure 4.15: In general the frequency span yielding the highest accuracy moves to higher
frequencies as the noise increases. Note that the graphs are all at the lowest possible fre-
quency for the upper limit of the span, about 0.4 Ghz, when there is no noise. At the lowest
SNR level considered, 5 dB, the highest possible position of the frequency span yields the
best accuracy for all classifiers. The span was moved in steps of 20 frequencies, that is about
0.4 Ghz.

(about 0.95) for noise free data. The behaviour is similar for the QDA classifier, although
the decrease is not as severe. The KNN gives the lowest accuracy at no noise, but the
performance is rather robust to noise and at SNR = 20 it yields the best results. At this
and lower SNR levels the performance of the SVM, libSVM, QDA and KNN are very
similar. It is also clear that for the lower SNR values none of the classifiers perform very
well. Since an equal number of samples is used from each of the six classes, two thirds
of all the samples are measurements containing objects and one third containing only
background material or background material and an air bubble. Thus classifying every
sample as object would yield an accuracy of 2/3. The accuracies for SNR values below
20 dB are little above this value.

The other interest in this part was to investigate which frequencies and scatter el-
ements renders the best accuracy. Figure 4.15 shows the upper limit of the frequency
span giving the highest detection accuracy for all classifiers and noise levels. As the noise
increases, so does the frequencies which are most useful for classification. This reflects
the results in the Data Analysis section: at low frequencies the distances between the
means of the object/no object classes are small, but so is the variance. This makes
these frequencies very useful when there is no noise present. When noise with the same
variance is added over the whole frequency span, however, the information at the low
frequencies is more easily lost than at high frequencies.
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Table 4.3: The matrix elements used for best accuracy. No pattern is evident. The
reason for the many uses of reflection elements could very well be because of the information
contained in that part of the data, but it could also be that they are fewer (4) than the
transmission elements (6). The large number of parameters estimated for QDA, which
grows quadratically with the number of features, is a possible explanation.

SNR KNN LDA QDA SVM libSVM

∞ Transmission All All All All

40 All All Reflection All All

30 All All Reflection All All

20 Reflection All Reflection All All

15 Reflection Reflection Reflection Transmission All

10 Reflection All Reflection Transmission Transmission

5 All Reflection Reflection Transmission All

Finally the scatter matrix elements are studied. The results are not easily interpreted
at this point. The reflection elements appear in total 11 times, compared to 5 for
transmission. This could be indication that the reflection elements are more informative.
On the other hand the KNN classifier is generally considered a poor choice when using
high dimensional data, and the fact that QDA estimates a full covariance matrix for each
class, could explain why it tends to benefit from using reflection elements only at this
stage. The number of features when using reflection, transmission or all elements are
480, 720 and 1200 respectively, and the enhanced performance could be a consequence
of the smaller set of features. It does not seem that any one set of scattering elements
is generally preferable at this point.

4.2.3 Using equally spaced frequencies

In this section the results of using subsets of the frequency span consisting of equally
spaced frequencies is presented. Again, the interest is both to compare classifiers and
the effects of varying the subsets of frequencies and scattering matrix elements to use.
The noise levels considered were the same as in the previous section. The number of
frequencies considered were 10, 30, 60, 100, 150 and 200. Again the best obtained
detection accuracy was for each noise level is compared between the classifiers, as seen
in Figure 4.16.

In Figure 4.17 the number of frequencies used for the obtained accuracies are plotted.
The general picture is that the SVMs perform well using many frequencies, while the DA
classifiers benefit from reducing the dimension. This is especially clear when considering
Table 4.4, since QDA uses reflection elements only except at the lowest SNR, while the
libSVM uses all elements up to SNR = 10 dB, and transmission thereafter.

When comparing using 60 frequencies together or spread out, the results are better
in the former case for the SVMs and KNN at all noise levels. The DA classifiers perform
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Figure 4.16: The best detection accuracies obtained using equally spaced frequencies over
the whole available range. At the highest noise level the accuracies range from 0.67 to .70,
which should be compared to classifying everything as object which would yield a detection
accuracy of 2/3.
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Figure 4.17: The benefits from dimension reduction when using QDA is quite clear. Both
SVMs seems to gain from using many features, at least when noise is added.
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Table 4.4: The matrix elements used for best accuracy. The result is very similar to that
in Table 4.3.

SNR KNN LDA QDA SVM libSVM

∞ Transmission Transmission All Transmission Transmission

40 All All Reflection Reflection Transmission

30 Reflection All Reflection Reflection All

20 All All Reflection All All

15 All All Reflection All All

10 Transmission Reflection Reflection All All

5 Transmission Transmission Reflection All All

better or at least as well using the latter option at the intermediate noise levels (SNR
between 10 and 40 dB).
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5
Conclusions

The data analysis shows that in the absence of noise the lowest parts of the frequency
span gives the largest separation between signals from objects and background mea-
surements, in relation to the corresponding standard deviations. The behaviour of this
measure differs somewhat between object classes and scatter parameters, however. For
metal objects the transmission elements at the very lowest part of the frequency span
clearly yields the largest mean absolute value - standard deviation ratio for objects with
a radius of 4 mm. For plastic objects with εr = 2, the largest ratio for each scatter pa-
rameter is found below 1 GHz, even if not at the very lowest available frequency. In total
this indicates that in the case of homogeneous background material and no measurement
noise, the lowest part of the frequency span is most useful for detecting objects.

When using the same measure of separation, but considering the separation from
signals from air bubbles, the picture is very similar for the metal objects, with even
larger separation values obtained for the diametrical transmission elements. For the
plastic objects however, the ratio varies around 0.85 over the whole frequency span,
which only points to that distinction between these classes is bound to be difficult.

The plots of the separations also shows that information in the lowest frequencies
is easily lost in the presence of noise. The absolute values of the separation at these
frequencies are very small. It should be stressed again, however, that the assumption
that the noise level is equal for all channels is not a proper model for all measuring
devices.

The signal changes caused by variability in the background material was studied
featurewise, and some non linear correlations were found between the real and imaginary
parts. As for the use of different data transformations together with the simple classifier
for this data, the differences in performance in terms of AUC values are in general
small. Firstly, the results using the third transformation, taking linear and quadratic
correlations into account, is uniformly better than using the second one, where only linear
correlation is considered. Which of the first and the third transformation gives the best
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detection, however, depends on the variability parameters of the background material
and the amount of noise added. The third transformation consistently yields the best
results at the lowest SNR value considered (0 dB). At higher SNR values, it also gives
the best performance for the cases when at least one of correlation length and RMS is at
the second lowest value considered (1.9 mm and 2 % respectively). The second part of
this might be explained by the fact that the correlations are more prominent with little
or no noise, while the circular symmetric noise tends to dominate at lower SNR values.
The results at the lowest noise levels, however, is not in line with this explanation. There
is another pattern appearing, when also considering the results for when the correlation
length is 3.9 mm and the RMS 4 %, and that is that the third transformation performs
the best when the AUC values are low (little above 0.5) for all transformation, though
this has not been found helpful for finding an explanation for the behaviour.

Concerning the classifiers, the libSVM together with the discriminant analysis clas-
sifiers perform well when no noise is added. When adding noise, however, the libSVM is
the only one showing some promising results. The fact that the kNN-classifier yields the
best results at SNR levels below 30 dB should be interpreted as none of the classifiers are
doing well at these noise levels, and the accuracy levels at these noise levels are well below
what would be the requirements of a useful detector. The results also gives an indication
that better accuracy is obtained using tightly spaced frequencies from a small part of the
frequency span than widely spread frequencies from the whole span. The results from
the data analysis are also reflected in the performance of the classifiers at different noise
levels. When there is little or no noise, the lowest part of the frequency span clearly
separates the object/no object classes and this is successfully used for classification. But
at lower SNR values this information drowns in the noise added.
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Figure A.1: AUC values using the simplest transformation for an object with εr = 2, of
radius 0.67 mm, for a correlation length of 1 mm RMS value of 2 %.
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APPENDIX A. ADDITIONAL FIGURES

0 10 20 30 Inf
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

 SNR

 A
U

C

 

 

AUC2 − AUC1

AUC3 − AUC1

Figure A.2: Differences in AUC values using different transformation, for an plastic object
of radius 0.67 mm. The correlation length is 1 mm and RMS value 2 %.
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Figure A.3: Differences in AUC values using different transformation, for an air bubble of
radius 0.67 mm. The correlation length is 1 mm and RMS value 2 %.
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B
Resonance frequencies of a

cylindrical cavity

An electromagnetic signal that propagates in a cylindrical cavity will at some frequencies
give rise to resonances. The resonance frequencies are different for the electric and
magnetic parts of the signal. Such resonances is the probable explanation of the peaks
in standard deviation in the signal for the model with varying background material used
in this work. In this section the formulas for calculating these frequencies are presented
along with a comparison of the positions of the peaks in the standard deviation in the
simulated signal response.

For the data used the only resonance frequencies for the electric signal are relevant,
and the field patterns at these frequencies are called the TE modes of the cavity. The
frequencies at which these modes occur are given by the following formula, as found in
[6]:

fnmq =
c

2π
√
εr

√(
p′nm
a

)2

+
(qπ
d

)2
(B.1)

where c is the speed of light in vacuum, εr the relative permittivity of the material in the
pipe, p′nm the m-th zero of the n-th Bessel function and a the radius of the cavity and d
the length of the cavity. The cavity modelled can be considered to be of infinite length,
and hence the second term under the square root is zero for all values of the index q.
This then simplifies to

fnm =
c

2π
√
εr

(
p′nm
a

)
(B.2)

Using the mean value of εr (60 F/m) and the value of a (3 cm), the frequencies for
the TE modes can be computed and compared to the peaks in the standard deviation of
the signal for the cavity modelled. In Table B.1 the computed resonance frequencies and
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Resonance frequencies (GHz) Standard deviation peaks (GHz)

0.3783 0.3907

0.6275 0.6015

0.7873 0.8050

0.8632 0.9068

1.0926 1.1103

1.0954

1.3182

1.3779 1.4083

1.4415 1.5536

1.6469 1.6627

1.7539 1.7571

1.8371

1.9072 1.9243

2.0484

2.0903 2.0769

2.1615 2.1714

2.2877

2.3312 2.3604

2.4052 2.4040

2.4185

2.6057 2.6511

2.7061

2.7376 2.7456

2.8739 2.8837

2.9969

Table B.1: The resonance frequencies and the standard deviation peaks approximately
matched. The matches are not perfect, and in some cases a resonance frequency does not
have a corresponding standard deviation peak or vice versa. The correspondence is, despite
this, clear.

obtained standard deviation peaks are listed sorted by frequency. The matches are far
from perfect, but the pattern is still clear. The figure B.1 is gives a graphical comparison.
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Figure B.1: Plot of the standard deviation with resonance frequencies and peaks indicated
by vertical lines.
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