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ABSTRACT

The continuous increase in demand for higher data rates due to applications with massive
number of users motivates the design of faster and more spectrum efficient communi-
cation systems. In theory, the current communication systems must be able to operate
close to Shannon capacity bounds. However, the real systems perform below capacity
limits, mainly due to channel estimation error and hardware impairments that have been
neglected by idealistic or simplistic assumptions on the imperfections.

Oscillator phase noise is one of the hardware impairments that is becoming a limiting
factor in high data rate digital communication systems. Phase noise severely limits the
performance of systems that employ dense constellations. Moreover, the level of phase
noise (at a given off-set frequency) increases with carrier frequency which means that the
problem of phase noise may be even more severe in systems with high carrier frequency.

The focus of this thesis is on finding accurate statistical models of phase noise, as
well as the design of efficient algorithms to mitigate the effect of this phenomenon on the
performance of modern communication systems. First we derive the statistics of phase
noise with white and colored noise sources in free-running and phase-locked-loop-stabilized
oscillators. We investigate the relation between real oscillator phase noise measurements
and the performance of communication systems by means of the proposed model. Our
findings can be used by hardware and frequency generator designers to better understand
the effect of phase noise with different sources on the system performance and optimize
their design criteria respectively.

Then, we study the design of algorithms for estimation of phase noise with colored
noise sources. A soft-input maximum a posteriori phase noise estimator and a modified
soft-input extended Kalman smoother are proposed. The performance of the proposed
algorithms is compared against that of those studied in the literature, in terms of mean
square error of phase noise estimation, and symbol error rate of the considered com-
munication system. The comparisons show that considerable performance gains can be
achieved by designing estimators that employ correct knowledge of the phase noise statis-
tics. The performance improvement is more significant in low-SNR or low-pilot density
scenarios.

Keywords: Oscillator Phase Noise, Voltage-controlled Oscillator, Phase-Locked Loop,
Colored Phase Noise, Phase Noise Model, Bayesian Cramér-Rao Bound, Maximum a
Posteriori Estimator, Extended Kalman Filter/Smoother, Mean Square Error.
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CHAPTER 1

OVERVIEW

1 Introduction

Digital communication has become an indispensable part of our personal and professional
lives. Data transmission rates over fixed and wireless networks have been increasing
rapidly due to applications with massive number of users such as smartphones, tablets,
wired and wireless broadband Internet connections, cloud computing, the machine-to-
machine communication services, etc. Demands for higher data rates continue to increase
at about 60% per year [1].

This increasing demand motivates the need for design of faster and more spectrum effi-
cient communication systems. Despite the progress in theoretical aspects of such systems,
the analog front end still fails to deliver what is promised mainly due shortcomings such
as hardware impairments. Hardware impairments in radio-frequency and optical commu-
nications, such as amplifier nonlinearity, IQ imbalance, optical channel nonlinearities, and
oscillator or laser phase noise, can be seen as the bottlenecks of the performance [2].

A promising solution to overcome this problem is to mitigate the effects of hardware
impairments by means of digital signal processing algorithms. A key step in this avenue
is to find mathematical models that can accurately represent the physical impairments.
In many prior studies, simple models have been employed for this purpose. For instance,
using the additive white Gaussian noise has been a normal practice to summarize all un-
wanted effects from communication channel and hardware components on the transmitted
signal. However, to be able to come up with efficient algorithms, better understanding
and modeling of the hardware impairments is needed.

Oscillator phase noise (PN) is one of the hardware imperfections that is becoming a
limiting factor in high data rate digital communication systems. PN severely limits the
performance of systems that employ dense constellations. The negative effect of phase
noise is more pronounced in high carrier frequency systems, e.g., E-band (60-80 GHz),
mainly due to the high level of PN in oscillators designed for such frequencies [3–5].
Moreover, PN severely affects the performance of multiple antenna (MIMO) systems [6,7],
and also destroys the orthogonality of the subcarriers in orthogonal frequency division
multiplexing (OFDM) systems that degrades the performance by producing intercarrier
interference [8, 9].



2 Overview

In many prior studies, PN is modeled as a discrete random walk with uncorrelated
(white) Gaussian increments between each time instant (i.e., the discrete Wiener process).
This model results from using oscillators with white noise sources [10]. However, numerous
studies show that real oscillators also contain colored noise sources [10–15].

In summary, accurate PN models and efficient algorithms to mitigate the effect of this
phenomenon are central to the design of modern communication systems. These aspects
form the core of this thesis.

2 Aim of the Thesis
In this thesis, we focus on three important aspects of dealing with PN in communication
systems:

• We provide an accurate statistical model for PN in practical oscillators. This model
can further be used for accurate simulations of PN-affected communication systems,
as well as design of algorithms for compensation of PN.

• We calculate the performance of a PN-affected communication system from given
oscillator’s PN measurements. Such results can have important effects on design of
hardware for frequency generation.

• We design and implement PN estimation algorithms by employing our proposed
statistical model. We show that considerable performance improvements can be
achieved by using the proposed algorithms, especially in low signal-to-noise ratio
(SNR) and low-pilot-density scenarios.

3 Thesis Outline
We start the Chapter 2 of this thesis by explaining different sources of hardware im-
pairments in practical communication systems. Then we focus on PN and describe its
effects by introducing a mathematical model for a PN-affected communication system.
In Chapter 3, we talk about oscillators, their roles in communication systems, and the
sources of PN in oscillators. Further, we propose a new statistical model for the PN of
real oscillators. In Chapter 5, we focus on design of algorithms for PN compensation. We
describe the basics of Bayesian estimation theory and finish the chapter by describing the
bounds on the performance of such estimators. Finally, we summarize our contributions
in Chapter 6.



CHAPTER 2

COMMUNICATION SYSTEM MODEL

1 Practical Communication Systems

Hardware impairments are an inevitable consequence of using non-ideal components in
communication systems. Any practical communication system consists of several com-
ponents that play a specific role in the transmission of data stream from one point to
another. Fig. 2.1 illustrates a simplified hardware block diagram of a typical wireless
communication system.

PA

LNA

DAC

ADC

Local
Oscillator

Local
Oscillator Antenna

Antenna

Digital
Signal
Processing

Mixer

Mixer

Data (bits)

Data (bits)

Transmitter

Receiver

Unit

Digital
Signal
Processing
Unit

RF

RF

Baseband

Baseband

Figure 2.1: Hardware block diagram of the transmitter and receiver in a typical
communication system.

All the system components are made of electronic devices such as resistors, inductors,
capacitors, diodes, and transistors, which are composed of conductor and semiconductor
materials. These electronic devices are not perfect and can behave differently from what



4 Communication System Model

is predicted for many reasons such as temperature variation, aging, pressure, etc.
One of the major hardware impairments affecting the performance of communication

systems is oscillator PN. Oscillators are one of the main building blocks in a communi-
cation system. Their role is to create stable reference signals for frequency and timing
synchronization. Unfortunately, any real oscillator suffers from hardware imperfections
that introduce PN to the communication system. The fundamental source of the PN is
the inherent noise of the passive and active components (e.g., thermal noise) inside the
oscillator circuitry [11, 16].

2 Model of the Received Signal
Consider a single-carrier single-antenna communication system. The transmitted signal
x(t) is

x(t) =
N∑

n=1
s[n]p(t − nT ), (2.1)

where s[n] denotes the modulated symbol from constellation C with an average sym-
bol energy of Es, n is the transmitted symbol index, p(t) is a bandlimited square-root
Nyquist shaping pulse function with unit-energy, and T is the symbol duration [17]. The
continuous-time complex-valued baseband received signal after down-conversion, affected
by the transmitter and receiver oscillator PN, can be written as

r(t) = x(t)ejφ(t) + w̃(t), (2.2)

where φ(t) denotes the PN process and w̃(t) is zero-mean circularly symmetric complex-
valued additive white Gaussian noise (AWGN), that models the effect of noise from other
components of the system. The received signal (2.2) is passed through a matched filter
p∗(−t) and the output is

y(t) =
∫ ∞

−∞

N∑
n=1

s[n]p(t − nT − τ)p∗(−τ)ejφ(t−τ)dτ

+
∫ ∞

−∞
w̃(t − τ)p∗(−τ)dτ. (2.3)

Assuming PN does not change over the symbol duration, but changes from one symbol
to another so that no intersymbol interference arises, sampling the matched filter output
(2.3) at nT time instants results in

y(nT ) = s[n]ejφ(nT ) + w(nT ). (2.4)

We change the notation as

y[n] = s[n]ejφ[n] + w[n], (2.5)

where φ[n] represents the PN of the nth received symbol in the digital domain that is
bandlimited after the matched filter, and w[n] is the filtered (bandlimited) and sampled
version of w̃(t) that is a zero-mean circularly symmetric complex-valued AWGN with
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variance σ2
w. Note that in this work our focus is on oscillator phase synchronization and

time synchronization is assumed to be perfect.
The slow varying PN assumption and the introduced discrete-time model (2.5), are

well accepted in related literature (e.g., [8,9,18–30]). We also refer the reader to the recent
studies of this model where the PN variations over the symbol period has also been taken
into consideration, and the possible loss due to the slow varying PN approximation has
been investigated [31–33].

3 Effect of Phase Noise on Communication Systems
As we saw in the previous section in Eq. 2.5, PN destroys the transmitted signals. Random
rotation of the received signal constellation [18, 22, 30], and spectrum regrowth [8, 9, 20,
23, 34] are the main effects of this phenomenon on the communication systems.

3.1 Rotation of the Constellation Diagram

PN results in random rotation of the received signal constellation, which in phase modu-
lated transmissions may lead to symbol detection errors [18, 22, 30].

Fig. 2.2a illustrates the received signal constellation of a system employing 16-QAM
modulation format over an AWGN channel. Fig. 2.2b, on the other hand shows the effect
of PN from a free-running oscillator on the received signal constellation. The rotatory
distortions are due to the random variation of the phase of the received signal. The dashed
lines show the Voronoi regions of a coherent detector, designed for the AWGN channel.
PN cause decision errors by moving the received signals to wrong decision regions.

Fig. 2.3 shows the effect of PN before compensation on symbol error rate (SER) of
the system, where it is compared against the SER in case of AWGN.
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Figure 2.2: Received signal constellation of a 16-QAM system. (a) Pure AWGN
channel with SNR=25 dB. (b) AWGN channel affected by PN, SNR=25 dB and
PN increment variance of 10−4 rad2/symbol duration.
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Figure 2.3: Effect of PN before compensation on the SER of a 16-QAM system.

3.2 Spectral Regrowth
PN may result in spectral regrowth, which can further cause adjacent channel interference
in frequency division multiplexing systems [35,36]. Fig. 2.4a shows two systems with the
bandwidth of 22 MHz, and central frequencies of 2.412 and 2.437 GHz. Both systems
use low-PN oscillators which results in no overlapping between the bands. On the other
hand, Fig. 2.4b illustrates a case where the first system employs a noisy oscillator that
cause power leakage to the other band resulting interchannel channel interference.

2.4 2.41 2.42 2.43 2.44 2.45
-30

-25

-20

-15

-10

-5

0

5

Frequency [GHz]

N
o
rm

a
li
z
e
d
 P

o
w

e
r 

[d
B

]

User 1 User 2

(a)

2.4 2.41 2.42 2.43 2.44 2.45
-30

-25

-20

-15

-10

-5

0

5

Frequency [GHz]

N
o
rm

a
li
z
e
d
 P

o
w

e
r 

[d
B

]

User 1 with a

noisy oscillator

User 2

(b)

Figure 2.4: Effect of using ideal or noisy oscillators on the spectrum. (a) Two sys-
tems employing low PN oscillators. (b) Two systems, one using a noisy oscillator,
which interferes with the other channel by spectrum regrowth.



CHAPTER 3

PHASE NOISE IN OSCILLATORS

1 Oscillators
Oscillators are autonomous systems, which provide a reference signal for frequency and
timing synchronization. Harmonic oscillators with sinusoidal output signals are used for
up-conversion of the baseband signal to an intermediate/radio frequency signal at the
transmitters, and down-conversion from radio frequencies to baseband at the receivers
(see Fig. 2.1).

Fig. 3.1 illustrates the block diagram of a feedback oscillator consisting of an amplifier
and a feedback network. Roughly speaking, the oscillation mechanism is based on positive
feedback of a portion of the output signal to the input of the amplifier through the feedback
network [37].

Excitation
Amplifier

Feedback
Network

Figure 3.1: Block diagram of a typical feedback oscillator.

The feedback network is a resonator circuit, e.g., an LC network, and the amplifier is
normally composed of diodes or transistors. One of the main sources of PN in the output
oscillatory signal is the noise of such internal electronic devices.

2 Phase Noise in Oscillators
In an ideal oscillator, the phase transition over a given time interval is constant and
the output signal is perfectly periodic. However in practical oscillators, the amount of
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phase increment is a random variable. This phase variation is called PN increment or
phase jitter, and the instantaneous deviation of the phase from the ideal value is called
PN [11,16, 35].

In time domain, the output of a harmonic oscillator with normalized amplitude can
be expressed as

v(t) = (1 + a(t)) cos (2πf0t + φ(t)) , (3.1)
where f0 is the oscillator’s central frequency, and a(t) and φ(t) denote the amplitude
noise and PN processes, respectively [11]. The amplitude noise and PN are modeled
as two independent random processes. According to [11, 38] the amplitude noise has
insignificant effect on the output signal of the oscillator. Thus hereinafter, the effect of
amplitude noise is neglected and the focus is on the study of the PN process.

Fig. 3.2 compares the output signal of an ideal oscillator with a noisy one. It can be
seen that in the output of the noisy oscillator, the zero crossing time randomly changes
due to PN.

Ideal

Oscillator

Noisy

Oscillator

Figure 3.2: Effect of PN on the output oscillatory signal.

For an ideal oscillator where the whole power is concentrated at the central frequency
f0, the power spectral density would be a Dirac delta function, while in reality, PN results
in spreading the power over frequencies around f0 (Fig. 3.3).
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Figure 3.3: Effect of phase noise on the oscillator’s power spectral density.

In frequency domain, PN is most often characterized in terms of single-side-band (SSB)
PN spectrum [10,11], defined as

L(f) = PSSB(f0 + f)
PTotal

, (3.2)

where PSSB(f0 + f) is the single-side-band power of oscillator within 1 Hz bandwidth
around the offset frequency f from the central frequency f0, and PTotal is the total power
of the oscillator.
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By plotting the experimental measurements of free running oscillators on a logarith-
mic scale, it is possible to see that L(f) usually follows slopes of −30 dB/decade and
−20 dB/decade, until a flat noise floor is reached at higher frequency offsets. Fig. 3.4
shows the measured SSB PN spectrums from a GaN HEMT MMIC oscillator.
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Figure 3.4: The SSB PN spectrum from a GaN HEMT MMIC oscillator. Drain
voltage Vdd = 6 V and drain current Id = 30 mA.

3 Phase Noise Generation

Oscillator PN originates from the noise inside the circuitry. The internal noise sources can
be categorized as white (uncorrelated) and colored (correlated) noise sources [10, 11, 39].
A white noise process has a flat power spectral density (PSD), which is not the case for
colored noise sources. Noise sources such as thermal noise inside the devices are modeled
as white, while substrate and supply-noise sources, as well as low-frequency noise, are
modeled as colored sources. A significant part of the colored noise sources inside the
circuit can be modeled as flicker noise [11]. Fig. 3.5, shows a typical PSD of the noise
sources inside the oscillator circuitry, plotted on a logarithmic scale.
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Figure 3.5: Power spectral density of noise inside the oscillator circuitry, plotted
on a logarithmic scale.
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The PN generation mechanism in the oscillator is usually explained as the integration
of the white and colored noise sources [10, 39]. However, this cannot describe the entire
frequency properties of the practical oscillators. Hence, we consider a more general model
in our analysis, where PN is partially generated from the integration of the circuit noise,
and the rest is a result of amplification/attenuation of the noise inside the circuitry. For
example, PN with −30 and −20 dB/decade slopes originate from integration of flicker
noise (colored noise) and white noise, respectively. The flat noise floor, also known as
white PN originates directly from the thermal noise. Fig. 3.6 illustrates the PN generation
mechanism.
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Figure 3.6: Phase noise generation mechanism.

In our analysis we are interested in the PSD of the PN process denoted as Sφ(f). It
is possible to show that in high offset frequencies, Sφ(f) is well approximated with L(f)
that is the normalized PSD of the oscillator [10, 40, 41],

Sφ(f) ≈ L(f) for large f. (3.3)

The offset frequency range where this approximation is valid depends on the PN perfor-
mance of the studied oscillator [42]. It can be shown that the final system performance
is not sensitive to low frequency offsets. Thus for low frequency offsets, Sφ(f) can be
modeled in such a way that it follows the same slope as that of higher frequencies [15].

4 Phase Noise Modeling
In order to study the effect of PN and design of algorithms for mitigation of its effects,
models that can accurately capture the characteristics of this phenomenon are required.
In most prior studies, the effects of PN are studied using simple models, e.g, the Wiener
process [10, 12, 24, 26, 27, 30–33]. The Wiener process does not take into account colored



4 Phase Noise Modeling 11

noise sources [39] and hence cannot describe frequency and time-domain properties of
PN properly [12, 13, 15, 43]. This motivates use of more realistic PN models in study
and design of communication systems. In this thesis we consider the effect of both white
and colored noise sources. Assuming independent noise sources, PN can be modeled as a
superposition of three independent processes

φ(t) = φ3(t) + φ2(t) + φ0(t), (3.4)

where φ3(t) and φ2(t) model PN with −30 and −20 dB/decade slopes in the PSD that
originate from integration of flicker noise (colored noise) and white noise, denoted as Φ3(t)
and Φ2(t), respectively:

φ3(t) =
∫ t

0
Φ3(τ)dτ, φ2(t) =

∫ t

0
Φ2(τ)dτ. (3.5)

Further, φ0(t) models the flat noise floor, which is the direct effect of white thermal
noise of the circuit.

Due to the integration, processes φ3(t) and φ2(t) have a cumulative nature [10, 40];
PN accumulation over the time delay T is modeled as a random process. This process is
usually called the PN increment process [15], self-referenced PN [44], or the differential
PN process [45] that mathematically defined as

ζ2(t, T ) = φ2(t) − φ2(t − T ) =
∫ t

t−T
Φ2(τ)dτ, (3.6a)

ζ3(t, T ) = φ3(t) − φ3(t − T ) =
∫ t

t−T
Φ3(τ)dτ. (3.6b)

It has been shown in several studies that the PN increment process can be accurately
modeled as a zero-mean Gaussian stationary process [10, 44]. In order to evaluate this
model in practice, we examine the time-domain measurements of a GaN HEMT MMIC
oscillator. Histograms of two time-separated frames of PN increment samples from this
oscillator, are compared in Fig. 3.7. This observation shows that the PN increments can
be reasonably well modeled with a Gaussian distribution. It can also be seen that the
mean and variance of the samples within the frames are almost equal and do not change
over time.
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Figure 3.7: Histograms of two time-separated frames of PN increment samples
from a GaN HEMT MMIC oscillator.
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The statistical correlations of the PN increments depend on the correlation properties
of the noise sources inside the oscillator. The white noise sources result in uncorrelated
PN increments, while the PN increments from the colored noise sources are correlated
[10, 12–15].

In many practical systems, the free running oscillator is stabilized inside a phase-
locked loop (PLL). A PLL architecture that is widely used in frequency synchronization
consists of a free-running oscillator, a reference oscillator, a loop filter, phase-frequency
detectors and frequency dividers [10,44,46,47]. Any of these components may contribute
to the output PN of the PLL. It is reasonable to assume that PN of the free-running
oscillator has the most dominant effect on the output of a PLL [10, 44]. A PLL behaves
as a high-pass filter for the free-running oscillator’s PN. Above a certain frequency, the
PSD of the PLL output is identical to the PN PSD of the free-running oscillator, while
below this frequency it approaches a constant value [10, 44, 46, 47].

Fig. 3.8 shows this spectrum model for a free and a PLL locked oscillator.
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log(Sφ(f)) log(Sφ(f))
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f2
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Figure 3.8: Phase noise PSD of a typical oscillator. (a) shows the PSD of a free
running oscillator. (b) is a model for the PSD of a locked oscillator, where γ is
the PLL loop’s bandwidth. It is considered that the PN of the reference oscillator
is negligible compared to the PN of the free running oscillator in the PLL.

In general for both free-running and PLL-stabilized oscillators, we model the PSD of
φ3(t), φ2(t), and φ0(t) as modified power-law spectrums [40]:

Sφ3(f) =
K3

γ3 + f 3 , Sφ2(f) =
K2

γ2 + f 2 , Sφ0(f) = K0, (3.7)

where K3, K2 and K0 are the PSD levels and γ is a low cut-off frequency.
The performance of a PN-affected communication systems depends on the statistics

of PN. In Paper A, we derive the required PN statistics from the proposed PN spectrum
model (3.7). Some of the preliminaries and results are presented in the following.

4.1 Variance of the White Phase Noise Process
According to (3.7), the PSD of the white phase noise process denoted as φ0(t) is defined
as

Sφ0(f) = K0, (3.8)
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where K0 is the level of the noise floor that can be found from the measurements, and
it is normalized with the oscillator power [48]. The system bandwidth is equal to the
symbol rate 1/T . At the receiver, a low-pass filter with the same bandwidth is applied
to the received signal. According to [49], if K0/T is small (which is generally the case
in practice), low-pass filtering of the received signal results in filtering of φ0(t) with the
same bandwidth. Therefore we are interested in the PN process that is inside the system
bandwidth. The variance of the bandlimited φ0(t) is calculated as

σ2
φ0 =

∫ +1/2T

−1/2T
Sφ0(f)df =

K0

T
. (3.9)

As φ0(t) is bandlimited, we can sample it without any aliasing.

4.2 Statistics of the Cumulative PN Increments
In many prior studies, focus has been on mathematical calculation of the variance of
the PN increments from the spectrum measurements. It has been shown that for a free
running oscillator, variance of ζ3(t, T ) and ζ2(t, T ), defined in (3.6a), over the time delay
T is proportional to T and T 2, respectively [10, 50, 51].

Based on our analysis, PN increments can be correlated in the case of using an os-
cillator with colored noise sources. Moreover, we observe that the PN increments of a
PLL-stabilized oscillator are correlated. Hence, both the variance and correlation of PN
increments are required for accurate study of the cumulative PN.

In Paper A, we have shown that in general, for a PN process with PSD of Sφ(f), the
autocorrelation function of PN increments can be calculated as

Rζ(τ) = 8
∫ +∞

0
Sφ(f) sin(πfT )2 cos(2πfτ)df, (3.10)

where τ is the time lag parameter. In discrete-time domain, samples of ζ3(t, T ) and
ζ2(t, T ) are denoted as ζ3[m] � ζ3(mT, T ) and ζ2[m] � ζ2(mT, T ), respectively, where T
is equal to the sampling time, and m is the discrete-time index.

Employing (3.7) and (3.10), the autocorrelation function of ζ2[m] is computed as

Rζ2 [m] = K2π

γ

(
2e−2γπT |m| − e−2γπT |m−1| − e−2γπT |m+1|) , (3.11)

where K2 is the PSD level and can be found from the measured spectrum. For a PLL-
stabilized oscillator γ can be set to the PLL bandwidth, and for a free-running oscillator,
the autocorrelation function can be found by taking the limit of (3.11) as γ approaches 0
that results in

Rζ2 [m] =
{

4K2π2T if m = 0
0 otherwise

. (3.12)

Results in (3.11) and (3.12) show that for a PLL-stabilized oscillator samples of ζ2[n]
process are correlated over time, while they are uncorrelated for a free-running oscillator.
Fig. 3.9 compares Rζ2 [m] of a free-running and a PLL-stabilized oscillator. The PN PSD
level is K2 = 25 rad2 Hz, sampling time T = 10−6 sec, and the PLL bandwidth γ = 1 MHz.
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Figure 3.9: The autocorrelation function of ζ2[m] for a free-running and PLL-
stabilized oscillator.

Furthermore, by using (3.7) and (3.10), the autocorrelation function of ζ3[m] is com-
puted in Paper A as

Rζ3 [m] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−8K3π2T 2 (Λ + log(2πγT )) , if m = 0

−8K3π2T 2(Λ + log(8πγT )), if m = ±1

−8K3π2T 2
[

− m2(Λ + log(2πγT |m|))

+(m + 1)2

2
(Λ + log(2πγT |m + 1|)) otherwise

+(m − 1)2

2
(Λ + log(2πγT |m − 1|))

]
,

(3.13)

where Λ � Γ − 3/2, and Γ ≈ 0.5772 is the Euler-Mascheroni constant [52], K3 can be
found from the measurements. The cut-off frequency γ must be set to a small value for
a free running oscillator, while for a PLL-stabilized oscillator it can be set to the PLL
bandwidth. Fig. 3.10 shows the evaluated Rζ3 [m] for a free-running oscillator. It can be
observed that the samples of ζ3[m] are highly correlated.

-40 -20 0 20 40

0

2

4

6

8

10

x 10
-4

m

R
ζ 3

[m
]

Figure 3.10: Autocorrelation of ζ3[m], showing the samples are highly correlated.



CHAPTER 4

PHASE NOISE COMPENSATION

1 Overview
Design of communication systems in presence of PN has been an active field of research
during the last decades. The ultimate goal of such studies is to achieve a performance
close to that of the coherent systems. Various system-level architectures for the receiver of
communication systems have been proposed, and many of them are based on estimation
of PN in the digital domain. The estimator provides an estimated value or statistics of
the PN that can further be used for symbol detection. For example, estimation of the
PN and cleaning the received signal, followed by a coherent detector is proposed in [53].
In [30] on the other hand, a joint PN estimation-symbol detection algorithm based on
iterative interactions of PN estimator and symbol detector is suggested. Fig. 4.1 shows
the simplified receiver of a communication system, designed for the PN channel.
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Figure 4.1: Receiver of a communication system designed for the PN channel.

Several algorithms for PN estimation based on deterministic or statistical approaches
have been proposed. In many of the former studies, PN has been modeled as a discrete-
time Wiener process [12, 24, 26, 27, 30–33], while it is only accurate for oscillators with
white noise sources [10, 15, 43].
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In this thesis we focus on estimation of PN with colored and white noise sources.
We propose statistical algorithms for PN estimation based on Bayesian approaches. The
proposed PN estimators employ the received signal and the a priori known statistics of
the PN process to perform the estimation. The estimated PN value, denoted as φ̂[n], is
used to de-rotate and clean the received signal introduced in Chapt. 2, Eq. (2.5). The
de-rotated received signal can be written as

ẏ[n] = s[n]ej(φ[n]−φ̂[n]) + ẇ[n], (4.1)

where ẇ[n] � e−jφ[n]w[n] has the same statistics as w[n]. The main design criterion for
such an estimator is to minimize a function of the PN estimation error (φ[n]− φ̂[n]) which
is called a cost function.

In the following, we start with a brief overview of the Bayesian estimation and present
our methods for estimation of PN with colored noise sources.

2 Bayesian Framework
In the Bayesian framework, unknown parameters are considered as random. The Bayesian
approach perfectly fits the PN estimation problem, because PN is a random phenomenon
by its physical nature. In Bayesian analysis, the knowledge about the random parameter of
interest is mathematically summarized in a prior distribution. In PN inference problems,
the prior distribution can be chosen subjectively by studying the physical characteristics
of this phenomenon. This further motivates the accurate statistical modeling of the PN.

2.1 Bayesian Estimation
The ultimate goal in Bayesian estimation is to find an estimate that minimizes a Bayesian
risk function [54]. The Bayesian risk functions are usually defined as the expectation of a
specific cost functions. In this thesis, we are mainly interested in quadratic and uniform
(hit-or-miss) cost functions [54, 55]. The minimizer of the quadratic risk is called the
Bayesian minimum mean square error (MMSE) estimator, and it is possible to show that
this estimator is equal to the mean of the posteriori distribution. Kalman filter is an
example of MMSE estimators [55]. Further, the minimizer of the uniform risk is equal
to the mode of the posteriori distribution and it is called maximum a posteriori (MAP)
estimator.

In particular, when the linear Gaussian model is adopted, the mean and the mode
of the posterior distribution are identical and the MAP estimator performs similar to
the MMSE estimator. There are other special scenarios where the MAP estimator also
minimizes the quadratic risk function and it is optimal in the MMSE sense.

2.2 Estimation of Phase Noise with Colored Noise Sources
In Paper B, we study the design of algorithms for estimation of PN with colored noise
sources. The proposed algorithms are employed for estimation of PN from realistic oscilla-
tors. The PN samples are modeled by a random-walk with correlated samples. Based on
the results of Paper A, we calculate the autocorrelation function of the PN increments
from the PN spectrum measurements. Two algorithms, a MAP estimator and a modified
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Kalman smoother (Rauch–Tung–Striebel smoother [56]) are proposed for estimation of
PN with colored increments. Because the data symbols are not known to the PN esti-
mators, an iterative PN estimation algorithm is employed, where first the known pilot
symbols are used to find an initial estimate of the PN samples. Then, the estimation is
improved by using the statistics of the soft-detected symbols from the symbol detector.

3 Performance of Bayesian Estimators

3.1 Bayesian Cramér Rao Bound
In order to assess the estimation performance, Cramér-Rao bounds (CRBs) can be uti-
lized, which give a lower bound on the mean square error (MSE) of parameter estima-
tion [55]. In the case of random parameter estimation, e.g., PN estimation, the Bayesian
Cramér-Rao bound (BCRB) gives a tight lower bound on the MSE [54].

Consider the estimation of a vector of PN samples with length N denoted as ϕ =
[φ[1], . . . , φ[N ]]T . The BCRB bounds the covariance matrix of the estimation error by the
following inequality

E

[
(ϕ̂ − ϕ) (ϕ̂ − ϕ)T

]
≥ BCRB, (4.2)

BCRB = B−1, (4.3)

where B is called Bayesian information matrix (BIM). The BIM is calculated in two
parts, B = Ξ + Ψ, where Ξ is derived from the likelihood function and Ψ from the prior
distribution function of ϕ. In Paper A, we have derived the BCRB for estimation of
PN with colored noise sources. The calculated BCRB directly depends on the calculated
statistics of PN from the measurements through the prior distribution of PN vector.



CHAPTER 5

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

1 Conclusions
In this thesis we study different aspects of the problem of PN in communication systems.
First, we derive statistics of PN in real oscillators. Then, we employ those statistics for
design of PN estimation algorithms, as well as calculation of the performance of PN-
affected communication systems.

We are now ready to summarize and conclude our contributions.

2 Contribution
The contribution of the appended papers are shortly described in the following.

Paper A: Calculation of the Performance of Communication Systems from
Measured Oscillator Phase Noise

In this paper, we investigate the relation between real oscillator PN measurements
and the performance of communication systems. To this end, we first derive statistics of
PN with white and colored noise sources in free-running and PLL-stabilized oscillators.
Based on the calculated statistics, analytical BCRB for estimation of phase noise with
white and colored sources is derived. Finally, the system performance in terms of error
vector magnitude of the received constellation is computed from the calculated BCRB.

According to our analysis, the influence from different noise regions strongly depends
on the communication bandwidth, i.e., the symbol rate. For example, in high symbol
rate communication systems, cumulative PN that appears near carrier is of relatively low
importance compared to the white PN far from carrier.

The paper’s findings can be used by hardware and frequency generator designers to
better understand the effect of phase noise with different sources on the system per-
formance and optimize their design criteria respectively. Moreover, the computed PN
statistics can further be used in design of PN estimation algorithms.
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Paper B: Estimation of Phase Noise in Oscillators with Colored Noise Sources

In this work design of algorithms for estimation of PN with colored noise sources
is studied. A soft-input maximum a posteriori PN estimator and a modified soft-input
extended Kalman smoother are proposed.

We show that deriving the soft-input MAP estimator is a concave optimization prob-
lem at moderate and high SNRs. To be able to implement the Kalman algorithm for
filtering/smoothing of PN with colored increments, the state equation is modified by
means of an autoregressive modeling.

The performance of the proposed algorithms is compared against those studied in the
literature, in terms of mean square error of PN estimation, and symbol error rate of the
considered communication system. The comparisons show that considerable performance
gains can be achieved by designing estimators that employ correct knowledge of the PN
statistics. The gain is more significant in low-SNR or low-pilot density scenarios.

3 Future Work
In the following, we have described some of our ongoing studies and possible future re-
search directions.

Currently we are working on calculation of the Shannon capacity of the PN channel
directly from the real oscillator measurements. Such results would be useful to study the
effect of different noise sources on the ultimate number of bits that can be transmitted
through this channel. Further, they can be used by hardware and system designers to
optimize their implementations.

We are also exploring the effects of PN with both white and colored sources on MIMO
communication systems. Another area that we intend to study is the effect of PN on
reciprocal communication systems. It is also of interest to adopt our algorithms for
compensation of PN in multi-carrier communication systems.
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Abstract

Oscillator phase noise (PN) is one of the major problems that affect the performance of
communication systems. In this paper, a direct connection between oscillator measure-
ments, in terms of measured single-side band PN spectrum, and the optimal communica-
tion system performance, in terms of the resulting error vector magnitude (EVM) due to
PN, is mathematically derived and analyzed. First, a statistical model of the PN, consid-
ering the effect of white and colored noise sources, is derived. Then, we utilize this model
to derive the modified Bayesian Cramér-Rao bound on PN estimation, and use it to find
an EVM bound for the system performance. Based on our analysis, it is found that the
influence from different noise regions strongly depends on the communication bandwidth,
i.e., the symbol rate. For high symbol rate communication systems, cumulative PN that
appears near carrier is of relatively low importance compared to the white PN far from
carrier. Our results also show that 1/f 3 noise is more predictable compared to 1/f 2 noise
and in a fair comparison it affects the performance less.

Keywords: Phase Noise, Voltage-controlled Oscillator, Phase-Locked Loop, Colored
Phase Noise, Communication System Performance, Bayesian Cramér-Rao Bound, Error
Vector Magnitude.
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1 Introduction
Oscillators are one of the main building blocks in communication systems. Their role is to
create a stable reference signal for frequency and timing synchronizations. Unfortunately,
any real oscillator suffers from phase noise (PN) which under certain circumstances may
be the factor limiting system performance.

In the last decades, plenty of research has been conducted on better understanding the
effects of PN in communication systems [1–29]. The fundamental effect of PN is a random
rotation of the received signal constellation that may result in detection errors [5, 10].
PN also destroys the orthogonality of the subcarriers in orthogonal frequency division
multiplexing (OFDM) systems, and degrades the performance by producing intercarrier
interference [3, 6, 8, 12, 17]. Moreover, the capacity and performance of multiple-input
multiple-output (MIMO) systems may be severely degraded due to PN in the local oscil-
lators [13, 18, 23, 24]. Further, performance of systems with high carrier frequencies e.g.,
E-band (60-80 GHz) is more severely impacted by PN than narrowband systems, mainly
due to the poor PN performance of high-frequency oscillators [11, 21].

To handle the effects of PN, most communication systems include a phase tracker,
to track and remove the PN. Performance of PN estimators/trackers is investigated in
[5,9,30]. In [31,32], the performance of a PN-affected communication system is computed
in terms of error vector magnitude (EVM) and [16,19,22,26] have considered symbol error
probability as the performance criterion to be improved in the presence of PN. However, in
the communication society, effects of PN are normally studied using quite simple models,
e.g, the Wiener process [16, 22, 23, 26–29, 33, 34]. A true Wiener process does not take
into account colored (correlated) noise sources [35] and cannot describe frequency and
time-domain properties of PN properly [34, 36, 37]. This shows the necessity to employ
more realistic PN models in study and design of communication systems.

Finding the ultimate performance of PN-affected communication systems as a function
of oscillator PN measurements is highly valuable for designers of communication systems
when the goal is to optimize system performance with respect to cost and performance
constraints. From the other perspective, a direct relation between PN figures and system
performance is of a great value for the oscillator designer in order to design the oscillator
so it performs best in its target application.

In order to evaluate the performance of PN-affected communication systems accu-
rately, models that precisely capture the characteristics of non-ideal oscillators are re-
quired. PN modeling has been investigated extensively in the circuits and systems com-
munity over the past decades [33, 35, 38–48]. The authors in [38, 42, 48] have developed
models for the PN based on frequency measurements, where the spectrum is divided into
a set of regions with white (uncorrelated) and colored (correlated) noise sources. Similar
models have been employed in [33,46] to derive some statistical properties of PN in time
domain.

Among microwave circuit designers, spectral measurements, e.g., single-side band
(SSB) PN spectrum is the common figure for characterization of oscillators. Normally
SSB PN is plotted versus offset frequency, and the performance is generally benchmarked
at specific offset frequencies, e.g., 100 kHz or 1 MHz [11,49,50]. In this perspective, oscil-
lators with lower content of colored noise come better out in the comparison, especially
when benchmarking for offset frequencies close to the carrier [49].

In this paper, we employ a realistic PN model taking into account the effect of white
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and colored noise sources, and utilize this model to study a typical point to point commu-
nication system in the presence of PN. Note that this is different from the majority of the
prior studies (e.g., [16,22,23,26–29,33,34]), where PN is modeled as the Wiener process,
which is a correct model for oscillators with only white PN sources. Before using the
PN model, it is calibrated to fit SSB PN measurements of real oscillators. After assuring
that the model describes statistical properties of measured PN over the communication
bandwidth, an EVM bound for the system performance is calculated. This is the first
time that a direct connection between oscillator measurements, in terms of measured os-
cillator spectrum, and the optimal communication system performance, in terms of EVM,
is mathematically derived and analyzed. Comparing this bound for different PN spec-
tra gives insight into how real oscillators perform in a communication system as well as
guidelines to improve the design of oscillators.

The organization and contribution of this paper are as follow:

• In Sec. 2, we first introduce our PN model. Thereafter, the system model of the
considered communication system is introduced.

• In Sec. 3, we find the performance of the PN affected communication system in
terms of EVM. To do so, we first drive the modified Bayesian Cramér-Rao bound
(MBCRB) on the mean square error of the PN estimation. Note that this is the
first time that such a bound is obtained for estimation of PN with both white
and colored sources. The required PN statistics for calculation of the bound are
identified. Finally, the mathematical relation between the MBCRB and EVM is
computed.

• In Sec. 4 we derive the closed-from autocorrelation function of the PN increments
that is required for calculation of the MBCRB. In prior studies (e.g., [33,39,46]) the
focus has been on calculation of the variance of PN increments. However, we show
that for calculation of the system performance, the autocorrelation function of the
PN increments is the required statistics. The obtained autocorrelation function is
valid for free-running oscillators and also the low-order phase-locked loops (PLLs).

• Sec. 5 is dedicated to the numerical simulations. First, the PN sample generation
for a given SSB phase spectrum measurement is discussed in brief. Later, the
generated samples are used in a Monte-Carlo simulation to evaluate the accuracy
of the proposed EVM bound in a practical scenario. Then, we study how the
EVM bound is affected by different parts of the PN spectrum. To materialize our
theoretical results, the proposed EVM is computed for actual measurements and
observations are analyzed. Finally, Sec. 6 concludes the paper.

2 System Model

In this section, we first introduce our PN model in continuous-time domain. Then we
present the system model of the considered communication system.
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Table 1: Notations

scalar variable x

vector x

matrix X

(a, b)th entry of matrix [·]a,b

continuous-time signal x(t)

discrete-time signal x[n]

statistical expectation E[·]
real part of complex values �(·)
imaginary part of complex values �(·)
angle of complex values arg(·)
natural logarithm log(·)
conjugate of complex values (·)∗

vector or matrix transpose (·)T

probability density function (pdf) f(·)
Normal distribution with mean μ and variance σ2 N (x; μ, σ2)

second derivative with respect to vector x ∇2
x

2.1 Phase Noise Model
In time domain, the output of a sinusoidal oscillator with normalized amplitude can be
expressed as

V (t) = (1 + a(t)) cos (2πf0t + φ(t)) , (1)

where f0 is the oscillator’s central frequency, a(t) is the amplitude noise and φ(t) denotes
the PN [41]. The amplitude noise and PN are modeled as two independent random
processes. According to [41,44] the amplitude noise has insignificant effect on the output
signal of the oscillator. Thus, hereinafter in this paper, the effect of amplitude noise is
neglected and the focus is on the study of the PN process.

In frequency domain, PN is most often characterized in terms of single-side-band (SSB)
PN spectrum [33,41], defined as

L(f) = P (f0 + f)
PTotal

, (2)

where P (f0 + f) is the oscillator power within 1 Hz bandwidth around offset frequency f
from the central frequency f0, and PTotal is the total power of the oscillator. For an ideal
oscillator where the whole power is concentrated at the central frequency, L(f) would be
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Figure 1: Phase noise PSD of a typical oscillator. (a) shows the PSD of a free
running oscillator. (b) is a model for the PSD of a locked oscillator, where γ is
the PLL loop’s bandwidth. It is considered that the PN of the reference oscillator
is negligible compared to PN of the free running oscillator.

a Dirac delta function at f = 0, while, in reality, PN results in spreading the power over
frequencies around f0. It is possible to show that at high frequency offsets, i.e., far from
the central frequency, where the amount of PN is small, the power spectral density (PSD)
of PN is well approximated with L(f) found from measurements [33, 43, 48],

L(f) ≈ Sφ(f) for large f. (3)

The offset frequency range where this approximation is valid depends on the PN perfor-
mance of the studied oscillator [51]. It can be shown that the final system performance is
not sensitive to low frequency events. Thus, for low frequency offsets, we model Sφ(f) in
such a way that it follows the same slope as of higher frequency offsets. In experimental
data from free running oscillators, L(f) normally follows slopes of −30 dB/decade and
−20 dB/decade, until a flat noise floor is reached at higher frequency offsets.

According to Demir’s model [33], oscillator PN originates from the white and colored
noise sources inside the oscillator circuitry. We follow the same methodology and model
PN as a superposition of three independent processes

φ(t) = φ3(t) + φ2(t) + φ0(t), (4)

where φ3(t) and φ2(t) model PN with −30 and −20 dB/decade slopes that originate from
integration of flicker noise (1/f) (colored noise) and white noise, denoted as Φ3(t) and
Φ2(t), respectively. Further, φ0(t) models the flat noise floor, also known as white PN, at
higher offset frequencies, that originates from thermal noise and directly results in phase
perturbations. In logarithmic scale, the PSD of φ3(t), φ2(t), and φ0(t) can be represented
as power-law spectrums [48]:

Sφ3(f) = K3

f 3 , Sφ2(f) = K2

f 2 , Sφ0(f) = K0, (5)
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Oscillator

Delay T

ζ3(t) + ζ2(t)

φ0(t)

φ2(t)

φ3(t)

φ(t)
ej(·) OutputCircuit

Noise ∫

Probe

Figure 2: Oscillator’s internal phase noise generation model.

where K3, K2 and K0 are the PN levels that can be found from the measurements (see
Fig. 1-a).

In many practical systems, the free running oscillator is stabilized by means of a phase-
locked loop (PLL). A PLL architecture that is widely used in frequency synchronization
consists of a free running oscillator, a reference oscillator, a loop filter, phase-frequency
detectors and frequency dividers [33, 52–54]. Any of these components may contribute
to the output PN of the PLL. However, PN of the free-running oscillator usually has a
dominant effect [52]. A PLL behaves as a high-pass filter for the free running-oscillator’s
PN, which attenuates the oscillator’s PN below a certain cut-off frequency. As illustrated
in Fig 1-b, above a certain frequency, PSD of the PLL output is identical to the PN
PSD of the free-running oscillator, while below this frequency it approaches a constant
value [33, 52–54].

Due to the integration, φ3(t) and φ2(t) have an cumulative nature [33, 48]. PN accu-
mulation over the time delay T can be modeled as the increment phase process

ζ2(t, T ) = φ2(t) − φ2(t − T ) =
∫ t

t−T
Φ2(τ)dτ, (6a)

ζ3(t, T ) = φ3(t) − φ3(t − T ) =
∫ t

t−T
Φ3(τ)dτ, (6b)

that has been called self-referenced PN [52], or the differential PN process [55] in the
literature and it is shown that this process can be accurately modeled as a zero-mean
Gaussian process (Fig. 2).

2.2 Communication System Model
Consider a single carrier communication system. The transmitted signal x(t) is

x(t) =
N∑

n=1
s[n]p(t − nT ), (7)

where s[n] denotes the modulated symbol from constellation C with average symbol energy
of Es, n is the transmitted symbol index, p(t) is a bandlimited square-root Nyquist shaping
pulse function with unit-energy, and T is the symbol duration [56]. The continuous-time
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ejφ[n]

e−jφ̂[n]

AWGN

Modulator Demodulator

Oscillator

w[n]

ESTIMATOR

s[n] y[n]

Figure 3: Communication system model with a feedforward carrier phase syn-
chronizer [5].

complex-valued baseband received signal after down-conversion, affected by the oscillator
PN, can be written as

r(t) = x(t)ejφ(t) + w̃(t), (8)

where φ(t) is the oscillator PN modeled in Sec. 2.1 and w̃(t) is zero-mean circularly
symmetric complex-valued additive white Gaussian noise (AWGN), that models the effect
of noise from other components of the system. The received signal (8) is passed through
a matched filter p∗(−t) and the output is

y(t) =
∫ ∞

−∞

N∑
n=1

s[n]p(t − nT − τ)p∗(−τ)ejφ(t−τ)dτ

+
∫ ∞

−∞
w̃(t − τ)p∗(−τ)dτ. (9)

Assuming PN does not change over the symbol duration, but changes from one symbol
to another so that no intersymbol interference arises1, sampling the matched filter output
(9) at nT time instances results in

y(nT ) = s[n]ejφ(nT ) + w(nT ), (10)

that with a change in notation we have

y[n] = s[n]ejφ[n] + w[n], (11)

where φ[n] represents the PN of the nth received symbol in digital domain that is ban-
dlimitted after the matched filter, and w[n] is the filtered (bandlimitted) and sampled
version of w̃(t) that is a zero-mean circularly symmetric complex-valued AWGN with
variance σ2

w. Note that in this work our focus is on oscillator phase synchronization and
other synchronization issues, such as time synchronization, are assumed perfect.

1The discrete Wiener PN model, which is well studied in the literature is motivated by this assumption
(e.g., [5–10, 12, 16, 17, 19, 22–26]). We also refer the reader to the recent studies of this model where the
PN variations over the symbol period has also been taken into consideration, and the loss due to the
slowly varying PN approximation has been investigated [27–29].



A8 Calculation of the Performance of Communication Systems from Measured Oscillator Phase Noise

3 System Performance
In this section, we find the performance of the introduced communication system from
the PN spectrum measurements. Our final result is in terms of error vector magnitude
(EVM), which is a commonly used metric for quantifying the accuracy of the received
signal [57,58]. As shown in Fig. 3, PN is estimated at the receiver by passing the received
signal through a PN estimator. The estimated PN, denoted as φ̂[n], is used to de-rotate
the received signal before demodulation. The final EVM depends on the accuracy of the
PN estimation. In the sequel, we present a bound on the performance of PN estimation,
based on the statistics of the PN.

3.1 Background: Cramér-Rao bounds
In order to assess the estimation performance, Cramér-Rao bounds (CRBs) can be utilized
to give a lower bound on mean square error (MSE) of estimation [59]. In case of random
parameter estimation, e.g., PN estimation, the Bayesian Cramér-Rao bound (BCRB)
gives a tight lower bound on the MSE [60]. Consider a burst-transmission system, where
a sequence of N symbols s = [s[1], . . . , s[N ]]T is transmitted in each burst. According to
our system model (11), a frame of signals y = [y[1], . . . , y[N ]]T is received at the receiver
with the phase distorted by a vector of oscillator PN denoted as ϕ = [φ[1], . . . , φ[N ]]T ,
with the probability density function f(ϕ). The BCRB satisfies the following inequality
over the MSE of PN estimation:

Ey,ϕ

[
(ϕ̂ − ϕ) (ϕ̂ − ϕ)T

]
≥ B−1,

B = Eϕ [F(ϕ)] + Eϕ

[
−∇2

ϕ log f(ϕ)
]

, (12)

where ϕ̂ denotes an estimator of ϕ, B is the Bayesian information matrix (BIM) and
“≥" should be interpreted as meaning that Ey,ϕ

[
(ϕ̂ − ϕ) (ϕ̂ − ϕ)T

]
− B−1 is positive

semi-definite. Here, F(ϕ) is defined as

F(ϕ) = Es
[
Ey|ϕ,s

[
−∇2

ϕ log f(y|ϕ, s)
]]

, (13)

and it is called modified Fisher information matrix (FIM) in the literature, and bound
calculated from (12) is equivalently called the modified Bayesian Cramér-Rao bound
(MBCRB) [61]. Based on the definition of the bound in (12), the diagonal elements
of B−1 bound the variance of estimation error of the elements of vector ϕ

σ2
ε [n] �E

[
(φ[n] − φ̂[n]︸ ︷︷ ︸

�ε[n]

)2
]

≥
[
B−1

]
n,n

. (14)

From (12)-(14), we note that the estimation error variance is entirely determined by
the prior probability density function (pdf) of the PN f(ϕ) and the conditional pdf of
the received signal y given the PN and transmitted signal f(y|ϕ, s) (usually denoted as
the likelihood of ϕ). In the following, we derive those pdfs based on our models in Sec. 2
and use them in our calculations.
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3.2 Calculation of the bound
Calculation of Eϕ

[
−∇2

ϕ log f(ϕ)
]

Based on our PN model (4) and the phase increment process defined in (6), the sampled
PN after the matched filter can be written as

φ[n] = φ3[n] + φ2[n] + φ0[n]

= φ3[1] +
n∑

i=2
ζ3[i] + φ2[1] +

n∑
i=2

ζ2[i] + φ0[n], (15)

where ζ3[n] � ζ3(nT, T ) and ζ2[n] � ζ2(nT, T ) are the discrete-time phase increment pro-
cesses, and φ3[1] and φ2[1] are the cumulative PN of the first symbol in the block, which
are modeled as zero-mean Gaussian random variables with a high variance2, denoted as
σ2

φ3[1] and σ2
φ2[1], respectively. According to (15) and due to the fact that ζ3[n] and ζ2[n]

are samples from zero-mean Gaussian random processes, ϕ has a zero-mean multivari-
ate Gaussian prior f(ϕ) = N (ϕ; 0, C), where C denotes the covariance matrix whose
elements are computed in Appendix A as

[C]l,k = σ2
φ3[1] +

l∑
m=2

k∑
m′=2

Rζ3 [m − m′]
︸ ︷︷ ︸

from φ3[n]

+ σ2
φ2[1] +

l∑
m=2

k∑
m′=2

Rζ2 [m − m′]
︸ ︷︷ ︸

from φ2[n]

+ δ[l − k]σ2
φ0︸ ︷︷ ︸

from φ0[n]

,

l, k = {1 . . . N}, (16)

where Rζ3 [m] and Rζ2 [m] are the autocorrelation functions of ζ3[n] and ζ2[n], and σ2
φ0

is the variance of φ0[n]. The required statistics, i.e., Rζ3 [m], Rζ2 [m] and σ2
φ0 can be

computed from the oscillator PN measurements. To keep the flow of this section, we
derive these statistics in Sec. 4, where the final results are presented in (31), (38), (39)
and (42). Finally, based on the definition of f(ϕ), it is straightforward to show that
∇2

ϕ log f(ϕ) = −C−1, and consequently due to the independence of C from ϕ

Eϕ

[
−∇2

ϕ log f(ϕ)
]

= C−1. (17)

Calculation of Eϕ [F(ϕ)]

According to the system model in (11), the likelihood function is written as

f(y|ϕ, s) =
N∏

n=1
f (y[n]|φ[n], s[n])

=
(

1
σ2

wπ

)N N∏
n=1

e
− |y[n]|2+|s[n]|2

σ2
w × e

2
σ2

w
�{y[n]s∗[n]e−jφ[n]}

, (18)

2We consider a flat non-informative prior [30,59] for the initial PN values. To simplify the derivations,
it is modeled by a Gaussian distribution with a high variance that is wrapped to a flat prior over [0, 2π].
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where the first equality is due to independence of the AWGN samples. We can easily
show that ∇2

ϕ log f(y|ϕ, s) is a diagonal matrix where its diagonal elements are

[
∇2

ϕ log f(y|ϕ, s)
]

n,n
= ∂2 log f(y[n]|φ[n], s[n])

∂φ2[n]

= − 2
σ2

w

�{y[n]s∗[n]e−jφ[n]}. (19)

Following (13) and (19), diagonal elements of FIM are computed as

[F(ϕ)]n,n = 2Es

σ2
w

, (20)

where Es is the average energy of the signal constellation. This implies that

F(ϕ) =
2Es

σ2
w

I, (21)

where I is the identity matrix. Finally, from (12), (17), and (21)

B = 2Es

σ2
w

I + C−1. (22)

The minimum MSE of PN estimation (14) depends on SSB PN spectrum measurements
through B and C−1. We will use this result in the following subsection to calculate a
more practical performance measure that is called EVM.

3.3 Calculation of Error Vector Magnitude
The modulation accuracy can be quantified by the EVM, defined as the root-mean square
error between the transmitted and received symbols [57, 58]

EVM[n] =

√√√√ 1
M

∑M
k=1 |sk[n] − s′

k[n]|2
Es

, (23)

where sk[n], k ∈ {1, . . . , M}, is the transmitted symbol from the constellation C with
order M , at the nth time instance, and s′

k[n] is the distorted signal at the receiver. Even
with optimal PN estimators, we have residual phase errors. Hence, cancellation of PN by
de-rotation of the received signal with the estimated PN results in a distorted signal

s′
k[n] = sk[n]ej(φ[n]−φ̂[n])

= sk[n]ejε[n], (24)

where ε[n] is the residual phase error. Before going further, assume we have used an PN
estimator [59] that reaches the computed MBCRB, and estimation error ε[n] is a zero-
mean Gaussian random variable. Our numerical evaluations in the result section support
the existence of such estimators (Fig. 6). This implies that f(ε[n]) = N (ε[n]; 0, σ2

ε [n]),
where σ2

ε [n] is defined in (14) and can be computed from the derived MBCRB. The
variance obtained from the MBCRB results from averaging over all possible transmitted
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symbols. Note that to calculate the EVM accurately, we need to use the conditional PDF
of the residual PN variance f(ε[n]|s). However, in order to keep our analysis less complex
we approximate the conditional PDF with the unconditional one: f(ε[n]|s) ≈ f(ε[n]).
Our numerical simulations show the validity of this approximation in several scenarios of
interest (Fig. 7). For the sake of notational simplicity, we drop the time index n in the
following calculations. Averaging over all possible values of ε[n], (23) is rewritten as

EVM[n] =

√√√√√ 1
M

∑M
k=1 Eε

[
|sk − skejε|2

]
Es

. (25)

The magnitude square of the error vector for a given ε[n], and sk[n] is determined as

|sk − skejε|2 = 2|sk|2(1 − cos(ε))

= 4|sk|2 sin2(ε

2
), (26)

and consequently

1
M

M∑
k=1

Eε

[
|sk − skejε|2

]
= 4

1
M

M∑
k=1

|sk|2Eε

[
sin2(

ε

2
)
]
. (27)

The expectation in (27) can be computed as

Eε

[
sin2(ε

2
)
]

=
∫ ∞

−∞
sin2(ε

2
)f(ε)dε

= (1 − e−σ2
ε /2)/2, (28)

where f(ε) is the Gaussian pdf of ε[n] as defined before.
Finally, EVM can be computed from (25), (27), and (28) as

EVM[n] =
√

2(1 − e−σ2
ε [n]/2)

=
√

2(1 − exp ([−0.5B−1]n,n)

=

√√√√√√2 − 2 exp

⎛
⎜⎝−0.5

⎡
⎣(2Es

σ2
w

I + C−1

)−1
⎤
⎦

n,n

⎞
⎟⎠, (29)

where C is calculated in (16) and it is a function of PN model parameters K3, K2, and
K0 through Rζ3 [m], Rζ2 [m] and σ2

φ0 , computed in Sec. 4.

4 Phase Noise Statistics
As we can see in Sec. 3, the final system performance computed in terms of EVM (29)
depends on the minimum MSE of the PN estimation defined in (14). According to (16),
in order to find the minimum PN variance, we have to compute the required PN statistics;
i.e., Rζ3 [m], Rζ2 [m] and σ2

φ0 . To find these statistics we need to start from our continuous-
time PN model described in Sec. 2.1. Based on (6), φ3(t) and φ2(t) result from integration
of noise sources inside the oscillator. On the other hand, φ0(t) has external sources.
Therefore, we separately study the statistics of these two parts of the PN.



A12 Calculation of the Performance of Communication Systems from Measured Oscillator Phase Noise

4.1 Calculation of σ2
φ0

The PSD of φ0(t) is defined as

Sφ0(f) = K0, (30)

where K0 is the level of the noise floor that can be found from the measurements, and
according to (2), it is normalized with the oscillator power [38]. The system bandwidth
is equal to the symbol rate3 1/T , and at the receiver, a low-pass filter with the same
bandwidth is applied to the received signal x(t)ejφ0(t). According to [62], if K0/T is small
(which is generally the case in practice), low-pass filtering of the received signal results
in filtering of φ0(t) with the same bandwidth. Therefore we are interested in the part of
the PN process inside the system bandwidth. The variance of the bandlimited φ0(t) is
calculated as

σ2
φ0 =

∫ +1/2T

−1/2T
Sφ0(f)df = K0

T
. (31)

As φ0(t) is bandlimited, we can sample it without any aliasing.

4.2 Calculation of Rζ3[m] and Rζ2[m]
It is possible to show that ζ3(t, T ) and ζ2(t, T ) defined in (6) are stationary processes and
their variance over the time delay T , is proportional to T and T 2, respectively [33,39,46].
However, as shown in this work, their variance is not enough to judge the effect of us-
ing a noisy oscillator on the performance of a communication system, and hence their
autocorrelation functions must be also taken into consideration. Samples of ζ3(t, T ) and
ζ2(t, T ) can be found by applying a delay-difference operator on φ3(t) and φ2(t), respec-
tively [33, 46], which is a linear time invariant sampling system with impulse response
of

h(t) = δ(t) − δ(t − T ). (32)

Starting from φ2(t), the PSD of ζ2(t, T ) can be computed as

Sζ2(f) = Sφ2(f)|H(j2πf)|2, (33)

where H(j2πf) = 1 − e−j2πfT is the frequency response of the delay-difference operator
introduced in (32). The autocorrelation function of ζ2(t, T ) can be computed by taking
the inverse Fourier transform of its PSD

Rζ2(τ) =
∫ +∞

−∞
Sζ2(f)ej2πfτ df, (34)

where τ is the time lag parameter. Using (33) and (34) the continuous-time auto corre-
lation function can be found as

Rζ2(τ) = 8
∫ +∞

0
Sφ2(f) sin(πfT )2 cos(2πfτ)df. (35)

3This bandwidth corresponds to using a raised-cosine pulse shaping filter p(t) defined in (7) with zero
excess bandwidth. For the general case, the bandwidth becomes (1 + α)/T where α denotes the excess
bandwidth [56].
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φ2[n] φ[n]

H0(z) = 1

H2(z) = 1
(1−z−1)

H3(z) = 1
(1−z−1)3/2

Figure 4: Phase noise sample generator.

As can be seen in (35), in order to find the closed-form autocorrelation functions, we do
not confine our calculations inside the system bandwidth 1/T . However, we see from the
measurements that parts of φ3(t) and φ2(t) outside bandwidth are almost negligible and
do not have any significant effect on the calculated autocorrelation functions.

The PSD of φ2(t) has the form of

Sφ2(f) = K2

f 2 + γ2 , (36)

where K2 and can be found from the measurements and γ is a low cut-off frequency that
is considered to be very small for a free running oscillator, while it is set to the PLL’s
loop bandwidth in case of using a locked oscillator (Fig. 1-b). According to (35) and (36),
autocorrelation function of ζ2(t, T ) can be determined as

Rζ2(τ) = 8
∫ +∞

0

K2

f 2 + γ2 sin(πfT )2 cos(2πfτ)df

= K2π

γ

(
2e−2γπ|τ | − e−2γπ|τ−T | − e−2γπ|τ+T |) . (37)

Sampling (37) results in

Rζ2 [m] = K2π

γ

(
2e−2γπT |m| − e−2γπT |m−1| − e−2γπT |m+1|) , (38)

where Rζ2 [m] � Rζ2(mT ). For a free running oscillator, the autocorrelation function can
be found by taking the limit of (38) as γ approaches 0, that results in

Rζ2 [m] =
{

4K2π
2T if m = 0

0 otherwise
. (39)

Results in (38) and (39) show that for a locked oscillator ζ2[n] is a colored process (its
samples are correlated with each other), while it is white for a free running oscillator. To
find Rζ3 [m] for a free running oscillator, one can consider the PSD of φ3(t) to be Sφ3(f) ∝
1/f 3. However, by doing so, Sζ3(f) defined in (33) diverges to infinity at zero offset
frequency and hence makes it impossible to find the autocorrelation function in this case.
To resolve the divergence problem, we follow a similar approach to [33,46] and introduce
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a low cutoff frequency γ below which Sφ3(f) flattens. Our numerical studies show that as
long as γ is chosen reasonably small, its value does not have any significant effect on the
final result. Similar to our analysis for φ2, the autocorrelation of PN increments at the
output of a first order PLL can be found by setting γ equal to the PLL’s loop bandwidth.
Hence, we define the PSD of φ3(t) as

Sφ3(f) = K3

|f |3 + γ3 , (40)

where K3 can be found from the measurements (Fig. 3). Following the same procedure
of calculating Rζ2(τ) in (33-35) and using (40), the autocorrelation function of ζ3(t) can
be computed by solving the following integral

Rζ3(τ) = 8
∫ +∞

0

K3

f 3 + γ3 sin(πfT )2 cos(2πfτ)df. (41)

This integral is solved in the Appendix B. Finally, the closed-form sampled autocorrelation
function of ζ3[n] is derived as

Rζ3 [0] = −8K3π2T 2 (Λ + log(2πγT )) , (42a)
Rζ3 [±1] = −8K3π

2T 2(Λ + log(8πγT )), (42b)

otherwise

Rζ3 [m] = −8K3π2T 2
[

− m2(Λ + log(2πγT |m|))

+ (m + 1)2

2
(Λ + log(2πγT |m + 1|))

+ (m − 1)2

2
(Λ + log(2πγT |m − 1|))

]
, (42c)

where Λ � Γ−3/2, and Γ ≈ 0.5772 is the Euler-Mascheroni constant [63]. The calculated
variance Rζ3 [0] is almost proportional to T 2 which is similar to the results of [33, 46]. As
it can be seen from (42), samples of ζ3[n] are correlated in this case which is in contrast
to ζ2[n]. Consequently, in presence of φ3(t), variance of ζ3[n] is not adequate to judge
the behavior of the oscillator in a system; it is necessary to incorporate the correlation
properties of ζ3[n] samples.

5 Numerical and Measurement Results
In this section, first the analytical results obtained in the previous sections are evaluated
by performing Monte-Carlo simulations. Then, the proposed EVM bound is used to
quantify the system performance for a given SSB PN measurement.

5.1 Phase Noise Simulation
To evaluate our proposed EVM bound, we first study the generation of time-domain
samples of PN that match a given PN SSB measurement in the frequency domain. As
shown in (4), we model PN as a summation of three independent noise processes φ3(t),
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φ2(t), and φ0(t). The same model is followed to generate time-domain samples of the
total PN process (Fig. 4). Generating the samples of power-law noise with PSD of 1/fα

has been vastly studied in the literature [34,64,65]. One suggested approach in [64] is to
pass independent identically distributed (iid) samples of a discrete-time Gaussian noise
process through a linear filter with the impulse response of

H(z) = 1
(1 − z−1)α/2 . (43)

The PSD of the generated noise can be computed as

Sd(f) = σ2
wα

H(z)H(z−1)T, (44)

where T is the sampling time equal to the symbol duration, and σ2
wα

is the variance of
input iid Gaussian noise [64]. Fig. 4 illustrates the block diagram used for generating the
total PN process. Tab. 2 shows variance of the input iid Gaussian noise in each branch
calculated based on (44).

Table 2: PN generation: Input iid Noise Variance

PN Process PSD Input Noise Variance

φ0[n] K0 σ2
w0 = K0/T

φ2[n] K2/f 2 σ2
w2 = 4K2Tπ2

φ3[n] K3/f 3 σ2
w3 = 8K3T

2π3

Fig. 5 shows the total one-sided PSD of the generated PN samples for a particular
example. The frequency figures of merits are set to be K0 = −110 dB, K3 = 104, and
K2 = 10. According to Tab. 2, the variance of input white Gaussian noises to the PN
generation system in Fig. 4 for a system with symbol rate 106 symbol/sec are calculated
to be σ2

w0 = 5 × 10−6, σ2
w2 = 1.97 × 10−4, and σ2

w3 = 1.26 × 10−6. This figure shows that
generated time-domain samples match to the PSD of PN.

5.2 Monte-Carlo Simulation
Consider a communication system like that of Fig. 3. Two modulation schemes i.e., 16-
QAM and 64-QAM are used and length of the communication block is set to 200 symbols.
A local oscillator with the PN PSD of Fig. 5 is used. For the Monte-Carlo simulation,
we first generate the PN samples following the routine proposed in Sec. 5.1. Then, we
design the maximum a posteriori (MAP) estimator of the PN vector ϕ at the receiver.
The MAP estimator is a Bayesian estimator that can be used for estimation of random
parameters [59, 60]. This estimator finds ϕ̂ that maximizes the posteriori distribution of
ϕ:

ϕ̂MAP = arg max
ϕ

f(ϕ|y, s)

= arg max
ϕ

f(y|ϕ, s)f(ϕ). (45)



A16 Calculation of the Performance of Communication Systems from Measured Oscillator Phase Noise

10
2

10
4

10
6

-120

-100

-80

-60

-40

-20

0

Offset Frequency [Hz]

L
(f

) 
[d

B
c
/H

z
]

PSD of generated noise samples

K3/f
3
, K3=10

4

K2/f
2
, K2=10

K0=-110 dB

−110 dBc/Hz

10
f2

104

f3

Figure 5: PSD of the generated PN samples vs. the theoretical PSD. The gener-
ated phase noise PSD is matched to the desired PSD with the given values of K0,
K1 and K3.

The needed likelihood and prior functions for designing this estimator are calculated in
Sec. 3. However, the detailed implementation of this estimator is not in the focus of this
paper and we focus only on the final results. We refer the interested reader to [9, 59, 60]
for more information on implementation of the MAP and other Bayesian estimators such
as Kalman or particle filters, that can be used for estimation of random parameters. The
estimated phase values from the MAP estimator are used to eliminate the effect of PN
by de-rotation of the received signals. Finally, the EVM is computed by comparing the
transmitted symbols with the signal after PN compensation. Fig. 6 shows the density of
the residual phase errors for two of the symbols in the frame (n = 2 and n = 100). It
can be seen that phase errors are almost zero mean and have Gaussian distribution. PN
in the middle of the block can be estimated better has a lower residual variance. Fig. 7
compares the proposed theoretical EVM bound (average EVM over the block) against
the resulted EVM calculated from the Monte-Carlo simulation of a practical system. In
this simulation, 16-QAM and 64-QAM modulations are used, where 10% of the symbols
are known (pilot symbols) at the receiver. For the unknown symbols, decision-feedback
from a symbol detector is used at the estimator. It can be seen that the calculated EVM
from the empirical simulation matches the proposed theoretical bound at moderate and
high SNRs. It can also be seen that at low SNR, the bound is more accurate for 16-QAM
modulation format. This is mainly due to the fact that 16-QAM has a lower symbol error
probability than 64-QAM for a given SNR, thus the decision-feedback is more accurate
in this case.

5.3 Analysis of the Results

Now, when the EVM bound is evaluated, the system performance for a given oscillator
spectrum may be quantified. In this section we study how the EVM is affected by white
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Figure 6: The phase error distribution of the second symbol (n = 2) and mid
symbol of the block (n = 100) estimated from 10000 simulation trials. It can
be seen that the phase error distribution is almost zero-mean Gaussian for both
symbols. PN of the symbol in the middle of the block can be estimated better
and has a lower residual variance.

PN (PN floor) and cumulative PN, respectively. The effect from cumulative PN is fur-
ther divided into origins from white and colored noise sources, i.e., SSB PN slopes of
−30 dB/decade and −20 dB/decade, respectively. It is found that the influence from the
different noise regions strongly depends on the communication bandwidth, i.e., the sym-
bol rate. For high symbol rates, white PN is more important compared to the cumulative
PN that appears near carrier.

Fig. 8 compares the performance sensitivity of two communication systems with dif-
ferent bandwidths, namely System A and System B against a set of different noise floor
levels. System A operates with the symbol rate of 0.1 MSymbols/s that leads to 10 μs
symbol duration. In contrast, System B has 5 MSymbols/s symbol rate results in 0.2 μs
symbol time that is almost 50 times shorter than that of System A. It is seen in Fig. 8
that an increase in the level of white PN affects the System B with high symbol rate
much more than the more narrowband System A system. This result can be intuitively
understood, since in a system with a higher symbol rate, symbols are transmitted over
a shorter period of time and thus experience smaller amount of cumulative PN. On the
other hand, the amount of phase perturbation introduced by the white PN is a function
of the system bandwidth and a wideband system integrates a larger amount of white PN
(31). Therefore, in contrast to the cumulative PN, white PN affects a system with high
bandwidth more compared to a system with a narrower bandwidth.

The next step is to identify the different effects from cumulative PN originating in
white noise sources (slope −20 dB/decade) and cumulative PN originating in colored
noise sources (slope −30 dB/decade). Fig. 9 shows the effect of changing the corner
frequency on the performance of the introduced systems by increasing the level of 1/f 3

noise, K3. Other parameters such as K2 and K0 are kept constant in this simulation to just
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106 [Symbol/sec]. Note that in pure AWGN case, the symbol error probability of
16-QAM at SNR= 20 dB is 10−5 and for 64-QAM it is 10−4 at SNR=25 dB.

capture the effect of different values of K3. Intuitively the performance degrades when the
noise level is increased. However, as seen in Fig. 9, the EVM is not significantly affected
below certain corner frequencies (fcorner < 10 kHz for System A and fcorner < 1 MHz for
System B). This constant EVM is due to the dominant effect of 1/f 2 on the performance.
By increasing the corner frequency, after a certain point 1/f 3 becomes more dominant
which results in a continuous increase in EVM. It can also be seen that System A is more
sensitive to increase of the 1/f 3 noise level. Because of the higher bandwidth, System B
contains more of the 1/f 2 noise which is constant and dominates the 1/f 3 effect, and its
EVM stays unchanged for a larger range of corner frequencies.

Fig. 10 illustrates the effect of increasing the low cut-off frequency γ on the EVM
bound. As mentioned before, the PN spectrum after a PLL can be modeled similar to a
free running oscillator with a flat region below a certain frequency. In our analysis, γ is
the low cut-off frequency below which the spectrum flatten. It can be seen that changes
of γ below certain frequencies (γ < 1 kHz) does not have any significant effect on the
calculated EVM. However, by increasing γ more, the effect of the flat region becomes
significant and the final EVM decreases.

Finally, we compare the individual effect of 1/f 2 PN and 1/f 3 PN on the performance.
Consider two SSB PN spectrums as illustrated in Fig. 11. One of the spectrums contains
pure 1/f 2 PN while 1/f 3 PN is dominant in another. In a system with the symbol rate of
3.84 MSymbols/s (bandwidth of 3.84 MHz), the variance of phase increment process for
both spectrums is equal to Rζ(τ = 0) = 6.2 × 10−7 [rad2]. However, comparing the EVM
values shows that the spectrum with pure 1/f 3 PN results in 2.36 dB lower EVM. This
is due to the correlated samples of phase increment process for 1/f 3 noise which results
in lower PN estimation errors compared to 1/f 2 noise.
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Figure 8: The proposed theoretical EVM bound against different noise floor levels.
K2 = 1 and K3 = 104 are kept constant. The low cut-off frequency γ is considered
to be 1 Hz and SNR= 30 dB and block-length is set to 10. In the hatched regime,
the white PN (noise floor) dominates over the cumulative part of the PN.

5.4 Measurements
To materialize the analytical discussion above, Fig. 12 and Fig. 13 show the measured SSB
PN spectrums from a GaN HEMT MMIC oscillator under two different bias conditions
with drastically different characteristics for the cumulative PN. Fig. 12 shows the spectrum
for the oscillator biased at a drain voltage of Vdd = 6 V and drain current of Id = 30 mA.
At this bias condition, the 1/f noise (flicker noise) from the transistor is fairly low. The
corner frequency between the −30 dB/decade and −20 dB/decade regions can be clearly
detected at 83.3 kHz. In contrast, Fig. 13 shows a spectrum from the same oscillator
biased at Vdd = 30 V and Id = 180 mA. Under this bias condition the noise from colored
noise sources is increased significantly and the cumulative PN has −30 dB/decade slope
until it reaches the white PN floor. Further, the power of the oscillator is higher in
Fig 12, resulting in a lower level for the white PN. Fig. 14 compares EVM for the SSB PN
spectrums in Figs. 12 and 13, respectively, versus the symbol rate. As expected based on
the results in Sec. 5.3, the spectrum in Fig 12 gives the best EVM for low symbol rates,
while the spectrum in Fig 13 gives the best EVM for higher symbol rates as a result of
the lower level of white PN.

6 Conclusions
In this paper, a direct connection between oscillator measurements, in terms of measured
single-side band PN spectrum, and the optimal communication system performance, in
terms of EVM, is mathematically derived and analyzed. First, we found the statistical
model of the PN which considers the effect of white and colored noise sources. Then, we
utilized this model to derive the modified Bayesian Cramér-Rao bound on PN estimation
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Figure 9: The proposed theoretical EVM bound against different values of corner
frequency fcorner for two systems with different bandwidth. K2 = 0.1 and K0 =
−160 dBc/Hz are kept constant and fcorner is increased by adding to K3. The low
cut-off frequency γ is considered to be 1 Hz and SNR= 30 dB and block-length is
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that is used to find an EVM bound for the system performance.
The paper demonstrates that for high symbol rate communication systems, the near

carrier cumulative PN is of relatively low importance compared to white PN far from
carrier. Our results also show that 1/f 3 noise is more predictable compared to 1/f 2

noise, and in a fair comparison it affects the system performance less. These findings
will have important effects on design of hardware for frequency generation as well as the
requirements on voltage controlled oscillator design, choice of reference oscillators and
loop bandwidth in the phase-locked loops.

Although in several empirical measurements of oscillators 1/f 3, 1/f 2, and f 0-shaped
noise dominate the PN spectrum, there has been studies where other slopes (1/f 4, 1/f 1)
have been observed in the measurements. Our PN model can be extended in future studies
to include the effect of various noise statistics. Our current analysis can be used in order
to study free running oscillators, and it is valid for study of phase-locked loops up to
some extent. Further, our theoretical results can be extended for a more thorough study
of phase-locked loops. In our analysis, the transition from continuous to discrete-time
domain was based on a slow-varying PN assumption. A more sophisticated study can
be conducted to analyze the effect of relaxing this assumption. Finally, we analyzed a
single carrier communication system. It is interesting to extend this work to the case of
multi-carrier communication systems.
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7 Appendix A

In this appendix, elements of the covariance matrix C are calculated. According to (15),
and stationarity of the PN increments

[C]l,k = E

[(
φ[l] − E[φ[l]]

)(
φ[k] − E[φ[k]]

)]

= E

[(
φ0[l] + φ3[1] + φ2[1] +

l∑
m=2

(ζ3[m] + ζ2[m])
)

×
(

φ0[k] + φ3[1] + φ2[1] +
k∑

m′=2
(ζ3[m′] + ζ2[m′])

)]

= E

[
φ3[1]φ3[1]

]
+ E

[
φ2[1]φ2[1]

]
+ E

[
φ0[l]φ0[k]

]

+
l∑

m=2

k∑
m′=2

E

[
ζ3[m]ζ3[m′]

]
+ E

[
ζ2[m]ζ2[m′]

]

+ E

[
φ3[1] ×

l∑
m=2

ζ3[m]
]

+ E

[
φ3[1] ×

k∑
m′=2

ζ3[m′]
]

+ E

[
φ2[1] ×

l∑
m=2

ζ2[m]
]

+ E

[
φ2[1] ×

k∑
m′=2

ζ2[m′]
]
, l, k = {1 . . . N}. (46)

Note that in calculation of the MBCRB, we need to compute the inverse of the covariance
matrix C. It is possible to mathematically show that the correlations between the initial
PN of the block and future PN increments (the four last terms in (46)) do not have
any effect on C−1. Therefore, we omit those terms in our calculations and finally the
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covariance matrix can be written as

[C]l,k =σ2
φ3[1] + σ2

φ2[1] + δ[l − k]σ2
φ0

+
l∑

m=2

k∑
m′=2

Rζ3 [m − m′] + Rζ2 [m − m′], l, k = {1 . . . N}. (47)

8 Appendix B

Steps taken to solve the integral in (41) are described here. We can write (41) as

Rζ3(τ) = 8
∫ +∞

0

K3

f 3 + γ3 sin(πfT )2 cos(2πfτ)df

= 4
∫ +∞

0

K3

f 3 + γ3 cos(2πfτ)df

− 2
∫ +∞

0

K3

f 3 + γ3 cos(2πf(|τ + T |)df

− 2
∫ +∞

0

K3

f 3 + γ3 cos(2πf(|τ − T |)df. (48)

It is clear that solving the integral in the form of
∫+∞

0 K3/(f 3 + γ3) cos(2πfτ)df is enough
to compute the total integral of (48). This integral is complicated enough that powerful
software such as Mathematica are not able to converge to the final answer. Consequently,
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first, a partial-fraction decomposition of 1/(f 3 + γ3) is done:
1

f 3 + γ3 = A

f − (−γ)
+ B

f − γejπ/3 + C

f − γe−jπ/3 ,

A = 1
3γ2 , B = e−j2π/3

3γ2 , C = ej2π/3

3γ2 . (49)

Note that, γ is a real positive number. Using Mathematica (Version 7.0), the following
integral can be evaluated∫ +∞

0

1
f + β

cos(2πfτ)df =

− cos(2βπτ)cosint(−2βπ|τ |) − 1
2

sin(2βπ|τ |)(π + 2 sinint(2βπ|τ |)), (50)

where β must be a complex or a negative real number, and sinint(·) and cosint(·) are sine
and cosine integrals define as

sinint(x) =
∫ r

0

sin(t)
t

dt,

cosint(x) = Γ + log(x) +
∫ x

0

cos(t) − 1
t

dt, (51)

where Γ ≈ 0.5772 is the Euler-Mascheroni’s constant.
Consider the case where time lag τ is small. By Taylor expansion of the functions in

(50) around zero

sin(x) = x − x3

6
+ . . . cos(x) = 1 − x2

2
+ . . .

sinint(x) = x − x3

18
+ . . . cosint(x) = Γ + log(x) − x2

4
+ . . . ,
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Figure 13: SSB PN spectrum from a GaN HEMT MMIC oscillator. Drain voltage
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and neglecting the terms after second order, the integral can be approximated as
∫ +∞

0

1
f + β

cos(2πfτ)df ≈
− Γ − log(−2βπ|τ |) − 2βπ2|τ |
+

(2βπ|τ |)2

2
(Λ + log(−2βπ|τ |)), (52)

where Λ � Γ − 3
2 . Employing this approximation and the fraction decomposition in (49),

followed by a series of simplifications
∫ +∞

0

K3

f 3 + γ3 cos(2πfτ)df ≈ K3

3γ2

(
2π√

3
+ 6γ2π2τ 2(Λ + log(2γπ|τ |))

)
. (53)

Now the first term in (48) is calculated. By changing the variable τ to τ + T and τ − T ,
second and third terms can also be computed, respectively. Finally, Rζ3 is approximated
by

Rζ3(τ) ≈ − 8K3π
2
[

− τ 2(Λ + log(2πγ|τ |))

+ (τ + T )2

2
(Λ + log(2πγ|τ + T |))

+ (τ − T )2

2
(Λ + log(2πγ|τ − T |))

]
. (54)
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To calculate the ACF for τ = 0, and τ = |T |, we need to take the limits of (54) as τ
approaches 0, and |T |, respectively that results in

lim
τ→0

Rζ3(τ) = −8K3π2T 2(Λ + log(2πγT )), (55)

lim
τ→|T |

Rζ3(τ) = −8K3π2T 2(Λ + log(8πγT )). (56)
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Abstract

In this letter we study the design of algorithms for estimation of phase noise (PN) with
colored noise sources. A soft-input maximum a posteriori PN estimator and a modified
soft-input extended Kalman smoother are proposed. The performance of the proposed
algorithms are compared against those studied in the literature, in terms of mean square
error of PN estimation, and symbol error rate of the considered communication system.
The comparisons show that considerable performance gains can be achieved by designing
estimators that employ correct knowledge of the PN statistics.

Keywords: Oscillator Phase Noise, Colored Phase Noise, Maximum a Posteriori Es-
timator, Extended Kalman Filter/Smoother, Mean Square Error.



B2 Estimation of Phase Noise in Oscillators with Colored Noise Sources

1 Introduction
Oscillator phase noise (PN) results in challenging synchronization issues which degrade
the performance of communication systems [1, 2]. Demands for high data rates motivate
the use of high-order modulation schemes in such systems. Nevertheless, PN severely
limits the performance of systems that employ dense constellations.

The problem of PN estimation has been widely studied during the last decades (see
[1,3,4] and the references therein). In [4], a feedforward PN estimation-symbol detection
algorithm is presented, while iterative methods for joint phase estimation and symbol
detection are studied in [1].

In prior studies, PN is modeled as a discrete random walk with uncorrelated (white)
Gaussian increments between each time instant (i.e., the discrete Wiener process). This
model results from using oscillators with white noise sources [5]. However, numerous
studies show that real oscillators also contain colored noise sources, and PN is accurately
modeled as a random walk with correlated (colored) Gaussian increments [5–7].

In this letter, we propose techniques to estimate PN from real oscillators with white
and colored noise sources, in a single antenna-single carrier communication system. We
first derive a general soft-input maximum a posteriori (MAP) PN estimator that is optimal
in terms of the mean square error (MSE). Then, a modified soft-input extended Kalman
smoother is proposed that can be used for estimation of PN with colored increments.
The proposed Kalman smoother is observed to perform close to the MAP estimator in
several interesting scenarios, with a significantly reduced complexity. Further, we compare
the proposed methods with state of the art techniques. The proposed estimators jointly
estimate the PN samples of a block of received signals, which improves the estimation
performance compared to sequential PN estimation algorithms previously studied (e.g.,
[3]). Our estimators can be used in feedforward or iterative designs for the estimation of
PN with white and colored increments.

2 System Model
Consider the transmission of a block of K data symbols over an additive white Gaussian
noise (AWGN) channel, affected by random PN. The channel coefficient from the trans-
mitter to receiver antenna is assumed to be constant over the transmitted block, and it is
estimated and compensated by employing a known training sequence that is transmitted
prior to the data symbols [2]. In the case of perfect timing synchronization, the received
signal after sampling the output of matched filter can be modeled as in [1]

yk = skejθk + wk, k ∈ {1, . . . , K}, (1)

where θk represents the PN affecting the kth received signal due to noisy transmitter
and receiver local oscillators, and wk is a realization of the independent and identically
distributed (i.i.d.) zero-mean complex circularly symmetric AWGN with variance σ2.
In this model, y = {yk}K

k=1 is the sequence of received signals and s = {sk}K
k=1 is the

transmitted symbol sequence divided in two sets of symbols, Kp known pilot symbols,
and K − Kp unknown data symbols. We model the pilot and data symbols in general as

sk = ŝk + εk, (2)
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where ŝk is the soft detected symbol and εk models the uncertainty of sk as an i.i.d zero-
mean circularly symmetric AWGN with variance σ2

εk
. Such a modeling choice is commonly

used in the literature [8]. For the pilot symbols, σ2
εk

= 0 since they are known. Using (1)
and (2), the received signal can be rewritten as

yk = ŝkejθk + εkejθk + wk︸ ︷︷ ︸
�w̃k

, k ∈ {1, . . . , K}, (3)

where w̃k is the new observation noise. As εk is modeled circularly symmetric, w̃k ∼
CN (0, σ2

k � σ2 + σ2
εk

).
The PN samples are modeled by a random-walk as

θk = θk−1 + ζk−1, (4)

where the phase increment process ζk is a zero-mean Gaussian random process. Recent
studies of the PN in oscillators with colored noise sources show that the PN increments can
be correlated over time [5–7]. Hence, we consider a general case where the autocorrelation
function of ζk, denoted as Rζ(l), is known a priori. Note that the Wiener PN model
extensively used in the literature is a special case of the proposed model, with uncorrelated
(white) phase increments [5].

3 Phase Noise Estimation
In the sequel, we propose two methods for joint estimation of K-dimensional PN vector
θ = {θk}K

k=1, that further would be used for data detection. First, we derive a MAP esti-
mator. Thereafter, we propose an approach for modification of (4), such that smoothing
algorithms (e.g., Kalman smoother) with a lower complexity than MAP can be used for
estimation.

3.1 Proposed MAP Estimator
Let f(θ|y) denote the a posteriori distribution of PN vector θ, given the observation
vector y. The MAP estimator of θ is determined as

θ̂ = arg max
θ

log(f(θ|y)) = arg max
θ

log(f(y|θ)f(θ)), (5)

where we define �(θ) � log(f(y|θ)f(θ)). To solve this optimization, we first need to find
the likelihood, f(y|θ), and prior distribution of θ, f(θ). As both wk and εk are i.i.d, and
yk only depends on θk according to (3), the likelihood function can be written as

f(y|θ) =
K∏

k=1
f(yk|θ) =

K∏
k=1

f(yk|θk), (6)

Notations: Italic letters (x) are scalar variables, boldface letters (x) are vectors, uppercase boldface
letters (X) are matrices, ([X]a,b) denotes the (a, b)th entry of matrix X, diag(X) denotes the diagonal
elements of matrix (X), E[·] denotes the statistical expectation operation, CN (x; μ, σ2) denotes the
complex proper Gaussian distribution function, where x is the variable, μ is the mean and σ2 is the
variance, log(·) denotes the natural logarithm, �{·}, �{·}, and arg{·} are the real part, imaginary part,
and angle of complex-valued numbers, and (·)∗ and (·)T denote the conjugate and transpose, respectively.
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where

f(yk|θk) = CN (yk; ŝkejθk , σ2
k) = 1

σ2
kπ

exp
(

−|yk − ŝkejθk |2
σ2

k

)
. (7)

In order to find the prior distribution f(θ) of the PN vector, we use the random walk
model in (4) that results in a general PN incremental form of

θk = θ1 +
k−1∑
i=1

ζi, (8)

where θ1 (PN of the first symbol in the block) is modeled as a zero-mean Gaussian random
variable with a high variance1, denoted as σ2

θ1 . Based on (8), we can show that θ has a
multivariate Gaussian distribution f(θ) = N (θ; 0, C) where elements of the covariance
matrix C can be computed as

[C]m,m′ = E

[
(θm − E[θm])(θm′ − E[θm′ ])

]
(9)

= σ2
θ1 +

m−1∑
l=1

m′−1∑
l′=1

Rζ(l − l′), m, m′ ∈ {1, . . . , K}.

From (7) and the multivariate Gaussian prior of θ we obtain

�(θ) =
K∑

k=1

2
σ2

k

�{ykŝ∗
ke−jθk} − 1

2
(θT C−1θ) + const. (10)

To find the maximizer of (10), an exhaustive grid-search over all possible values of θ can
be used. However, the complexity of this method increases exponentially with the length
of θ. The stationary point of this optimization can analytically be found as the root of
the gradient of �(θ) with respect to θ,

g(θ) � 2
[{�{ykŝ∗

ke−jθk}
σ2

k

}K

k=1

]T

− C−1θ = 0. (11)

In order to solve g(θ) = 0, which is a non-linear system of equations, we use the Newton–
Raphson method whose nth iteration is given by

θ̂
(n+1)

= θ̂
(n) − H−1(θ̂

(n)
)g(θ̂

(n)
), (12)

where H(θ) denotes the Hessian matrix,

H(θ) � −
(
2 diag

([{�{ykŝ∗
ke−jθk}

σ2
k

}K

k=1

])
+ C−1

)
. (13)

We iterate till an accurate value of the root is reached.
1We consider a flat non-informative prior [9] for the initial PN value, modeled by a Gaussian distri-

bution with a high variance that behaves similar to a flat prior over a certain interval.
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To show that this algorithm reaches a global maximum, we first prove that �(θ) is
a concave function in moderate and high signal to noise ratio (SNR) regimes. In (13),
C−1 is the inverse of a covariance matrix, thus it is a positive-definite matrix. If the first
term of the sum in (13) is also positive-definite (or positive-semidefinite), the Hessian
becomes negative-definite, thus implying that �(θ) is a concave function. For the first
term of (13) to be positive-semidefinite, �{ykŝ∗

ke−jθk} must be greater than or equal to
zero. Exploiting Eq. (3) we get

�{ykŝ∗
ke−jθk} = |ŝk|2 + �{ŝ∗

kw̌k} ≥ 0, (14)

where w̌k � e−jθkw̃k with the same statistics as w̃k. It is clear that for moderate and high
SNR, (14) is satisfied with a high probability, and consequently �(θ) is a concave function.

In the low-SNR regime, �(θ) is not necessarily concave. Therefore, we propose an
approach to initiate the iterations with a guess which is fairly close to the optimal point.
This ensures that the method does not get trapped in a local maxima, far from the global
maximum. Moreover, employing a good initial guess speeds up the convergence of the
algorithm at any SNR. In this respect, we first find the maximum likelihood (ML) estimate
of the PN samples for the pilot symbols. For any sk in the pilot set, the ML estimator
of the kth PN sample can be computed as θ̂ML

k = arg{yks∗
k}. Then, we form our initial

estimate of the PN vector, θ̂
(0)

, as the linear interpolation of the ML estimated PN values.
The MAP estimator is an optimal minimum mean square estimator if its MSE attains

the Bayesian Cramér-Rao bound (BCRB) [9]. In the Appendix, we analytically derive
the MSE of the MAP, and show that it is approximately equal to the BCRB of the PN
estimation. Our simulation results in Sec. IV also confirms this (Fig. 2).

Although, the proposed MAP estimator gives an optimal estimate of θ, as we can see
in (12), it involves inversion of K × K matrices that may raise some complexity issues.
In the next section, we propose an approach to modify the PN model and reduce the
complexity.

3.2 Auto Regressive Model of Colored Phase Noise Increments

In general, the PN increment process can be modeled with a pth-order auto regressive
(AR) process as follows

ζk =
p∑

i=1
αiζk−i + Δk, (15)

where αi are the coefficients of the AR model and Δk is modeled as a zero-mean white noise
process with variance σ2

Δ. For a given autocorrelation Rζ(l) and AR order p, the optimal
αi and σ2

Δ can be computed using algorithms such as the Levinson-Durbin recursion. We
modify the state equation (4) with the AR model (15), which results in an augmented
state equation,
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Figure 1: MSE comparison of different PN estimation methods for different pilot
densities over a block of K = 101 symbols. Phase increment is colored with
variance Rζ(0) = 10−3[rad2]. (a) Data-aided case, where all symbols are pilots.
(b) Pilot density of 21%. (c) Pilot density of 6%.
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ζk−p

⎤
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⎡
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θk−1

ζk−1
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�xk−1

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Δk

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�Δk−1

, (16)

where xk is the new state vector that has a higher dimension compared to our original
state variable θk, and Δk denotes the new process noise that is white, with covariance

E[ΔkΔT
k ] = diag

(
[0, σ2

Δ, 0, . . . , 0]
)

. (17)
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We can use the new state equation (16) along with the observation model (3) to estimate
θ by Kalman filtering/smoothing [9]. For the colored PN increments with a long memory,
normally a high-order AR model is needed that results in a high dimensional state equation
(16). In order to reduce complexity, we approximate the colored PN increments with a
low-order AR process. Numerical simulations in Sec. 4 show that even with such an
approximation, the modified extended Kalman smoother (EKS) perform close to the
proposed MAP estimator, in several scenarios of interest.

4 Numerical Results
We now study the performance of our proposed estimators and compare with that of those
available in the literature (e.g., [1,3,4]). We consider transmission of a block of K = 101
16-QAM modulated symbols, with uniformly distributed pilots. For simulation of the
PN with colored noise increments, we use the results of [6, 7], where the autocorrelation
function of the PN increments for oscillators with a colored noise source (flicker noise)
has been derived. We set the parameters such that the variance of the PN increments
becomes Rζ(l = 0) = 10−3[rad2].

It can be seen in Fig. 1-(a) that the MSE of the proposed MAP estimator reaches the
BCRB [7] in the data-aided case, where all symbols are pilots. We stop the optimization
algorithm when the gradient is sufficiently small (here |g(θ)| < 10−6). We observe that
the number of required iterations for satisfying any level of accuracy depends on various
parameters such as the block length, the PN statistics, the pilot density and the SNR.
In general, for most practical scenarios less that 5 iterations suffice. For instance, for
simulations of Fig. 1 with 6% pilot density, at SNRs 0 and 30 dB, on average 4.3 and 2.95
iterations are required, respectively.

The MSE of the PN estimator proposed in [4], based on interpolation of the PN
estimates of the pilot symbols using discrete cosine transform (DCT), is close to the
MAP estimator in the data-aided case. However, decreasing the pilot density in Fig. 1-
(b) and (c) to 21% and 6%, shows that the DCT-based estimator performs poorly in
low-pilot density scenarios. The reason is that this estimator is blind to the statistics of
the PN process that limits its performance when the received signals are not reliable.

Using an EKS designed for white PN increments in the colored case results in large
MSEs in low-SNR and low-pilot density cases. In high-pilot density scenarios, the ob-
servations are reliable and the EKS performs close to the MAP. When the pilot density
is low, the tested EKS relies on PN statistics that are not matched to the real process,
which results in large MSEs. Now consider the modified EKS designed with the low-order
AR approximation. Using a first-order AR model, the modified EKS reaches the MSE of
the MAP in the data-aided and 21% pilot density cases. With 6% pilot density, where
the modified EKS relies more on the PN statistics, a higher order AR model is needed
to improve the performance (p > 5). Fig. 1-(a) also shows the data-aided MSE of the
second-order phase tracking loop [3].

Fig. 2 shows that the simulated MSE of the MAP estimator reaches the BCRB. Fig. 3
and 4 compare the effect of using the discussed estimators on symbol error rate (SER) of
the system, after three iterations between the PN estimators and a Euclidian-distance-
based symbol detector. Mean and variance of the soft symbols are calculated as the mean
and variance of the symbols’ a posteriori probabilities. In both scenarios, the MAP esti-
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Figure 2: Simulated variance of MAP vs. BCRB. Pilot density 21%, Rζ(0) =
10−3[rad2], SNR = 20[dB].

mator outperforms other estimators. It can also be seen that in the 6% density compared
to 21% scenario, a higher order AR model is needed for more accurate approximation of
the colored PN increments. In addition to the estimators in Fig. 1, we also study the
performance of an iterative receiver that is designed based on the sum-product algorithm
(SPA) [1]. This SPA-based receiver performs extremely well in presence of the Wiener
PN, but it is not designed for PN with colored increments.
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Figure 3: SER comparison of different PN estimation methods after three
estimation-detection iterations. Pilot density 6% and Rζ(0) = 10−3[rad2].
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estimation-detection iterations. Pilot density 21% and Rζ(0) = 10−3[rad2].
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5 Conclusions
In this letter, we showed that deriving the soft-input maximum a posteriori (MAP) es-
timator for estimation of phase noise (PN) in oscillators with colored noise sources is a
concave optimization problem at moderate and high SNRs. Further, we showed that the
modified soft-input extended Kalman smoother with low-order AR approximation of the
colored PN increments performs close to the MAP in several scenarios. From simulations,
we observed that considerable performance gain can be achieved by using the proposed
estimators compared to estimators that lack correct statistic of the PN. The gain is more
significant in low-SNR or low-pilot density scenarios.

6 Appendix
Here, we find the mean and covariance of the MAP estimation error, defined as ψ �
(θ† − θ̂), where θ† denotes the true value of θ. We first write the Taylor expansion of
g(θ) around θ† and evaluate it at θ̂. Assuming that θ̂ is close to θ†, we can neglect the
higher order terms and obtain

g(θ̂) ≈ g(θ†) + H(θ†)(θ̂ − θ†). (18)

Note that θ̂ is the root of g(θ) = 0. Therefore,

θ† = θ̂ + H−1(θ†)g(θ†), (19)

where ψ � (θ†−θ̂) = H−1(θ†)g(θ†) is the estimation error term whose mean is calculated
as

E[ψ] = E[H−1(θ†)g(θ†)]. (20)

Setting the value of yk from (3) in (11) and (13) gives

g(θ†) = 2
[{�{ŝ∗

kw̌k}
σ2

k

}K

k=1

]T

− C−1θ†, (21a)

H(θ†) = −2 diag
([{ |ŝk|2 + �{ŝ∗

kw̌k}
σ2

k

}K

k=1

])
− C−1, (21b)

where w̌k � e−jθkw̃k with the same statistics as w̃k. It is clear that H(θ†) and g(θ†) are
independent. Therefore,

E[ψ] = E[H−1(θ†)]E[g(θ†)] = 0, (22)

where the second equality is true because E[g(θ†)] = 0.
The covariance matrix of ψ is determined as

Σ = E[ψψT ] = E[H−1(θ†)g(θ†)gT (θ†)H−1(θ†)]. (23)
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In (21b), it is possible to neglect �{ŝ∗
kw̃k} compared to |ŝk|2 for moderate and high SNRs.

Therefore, H(θ†) is approximated as

H(θ†) ≈ H̃(θ†) = −2 diag
([{ |ŝk|2

σ2
k

}K

k=1

])
− C−1, (24)

which is a deterministic matrix. Thus, the expectation in (23) is only over g(θ†)gT (θ†).
Based on (21a) and after straightforward mathematical manipulation,

E[g(θ†)gT (θ†)] = −H̃(θ†), (25)

and hence, Σ ≈ −H̃−1(θ†). Employing the data-aided BCRB for estimation of colored PN
derived in [7], and using the system model (3), it is straightforward to find the soft-input
BCRB, and show that it is identical to the covariance of estimation error Σ.
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