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Calculation of the Performance of Communication
Systems From Measured Oscillator Phase Noise

M. Reza Khanzadi, Student Member, IEEE, Dan Kuylenstierna, Member, IEEE,
Ashkan Panahi, Student Member, IEEE, Thomas Eriksson, and Herbert Zirath, Fellow, IEEE

Abstract—Oscillator phase noise (PN) is one of the major prob-
lems that affect the performance of communication systems. In
this paper, a direct connection between oscillator measurements, in
terms of measured single-side band PN spectrum, and the optimal
communication system performance, in terms of the resulting
error vector magnitude (EVM) due to PN, is mathematically de-
rived and analyzed. First, a statistical model of the PN, considering
the effect of white and colored noise sources, is derived. Then, we
utilize this model to derive the modified Bayesian Cramér-Rao
bound on PN estimation, and use it to find an EVM bound for
the system performance. Based on our analysis, it is found that
the influence from different noise regions strongly depends on the
communication bandwidth, i.e., the symbol rate. For high symbol
rate communication systems, cumulative PN that appears near
carrier is of relatively low importance compared to the white PN
far from carrier. Our results also show that 1/f ³ noise is more
predictable compared to 1/f ² noise and in a fair comparison it
affects the performance less.

Index Terms—Bayesian Cramér-Rao bound, colored phase
noise, communication system performance, error vector magni-
tude, phase noise, phase-locked loop, voltage-controlled oscillator.

I. INTRODUCTION

O SCILLATORS are one of the main building blocks in
communication systems. Their role is to create a stable

reference signal for frequency and timing synchronizations. Un-
fortunately, any real oscillator suffers from phase noise (PN)
which under certain circumstances may be the factor limiting
system performance.
In the last decades, plenty of research has been conducted

on better understanding the effects of PN in communication
systems [1]–[30]. The fundamental effect of PN is a random
rotation of the received signal constellation that may result in
detection errors [5], [10]. PN also destroys the orthogonality of
the subcarriers in orthogonal frequency division multiplexing
(OFDM) systems, and degrades the performance by producing
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intercarrier interference [3], [6], [8], [12], [17]. Moreover, the
capacity and performance of multiple-input multiple-output
(MIMO) systems may be severely degraded due to PN in the
local oscillators [13], [18], [23], [24], [30]. Further, perfor-
mance of systems with high carrier frequencies e.g., E-band
(60–80 GHz) is more severely impacted by PN than narrow-
band systems, mainly due to the poor PN performance of
high-frequency oscillators [11], [21].
To handle the effects of PN, most communication systems

include a phase tracker, to track and remove the PN. Perfor-
mance of PN estimators/trackers is investigated in [5], [9], and
[31]. In [32], [33], the performance of a PN-affected communi-
cation system is computed in terms of error vector magnitude
(EVM) and [16], [19], [22], [26] have considered symbol error
probability as the performance criterion to be improved in the
presence of PN. However, in the communication society, effects
of PN are normally studied using quite simple models, e.g, the
Wiener process [16], [22], [23], [26]–[29], [34], [35]. A true
Wiener process does not take into account colored (correlated)
noise sources [36] and cannot describe frequency and time-do-
main properties of PN properly [35], [37], [38]. This shows the
necessity to employ more realistic PN models in study and de-
sign of communication systems.
Finding the ultimate performance of PN-affected communi-

cation systems as a function of oscillator PN measurements is
highly valuable for designers of communication systems when
the goal is to optimize system performance with respect to cost
and performance constraints. From the other perspective, a di-
rect relation between PN figures and system performance is of
a great value for the oscillator designer in order to design the
oscillator so it performs best in its target application.
In order to evaluate the performance of PN-affected commu-

nication systems accurately, models that precisely capture the
characteristics of non-ideal oscillators are required. PN mod-
eling has been investigated extensively in the circuits and sys-
tems community over the past decades [34], [36], [39]–[49].
The authors in [39], [43], [49] have developed models for the
PN based on frequency measurements, where the spectrum is
divided into a set of regions with white (uncorrelated) and col-
ored (correlated) noise sources. Similar models have been em-
ployed in [34] and [47] to derive some statistical properties of
PN in time domain.
Among microwave circuit designers, spectral measurements,

e.g., single-side band (SSB) PN spectrum is the common figure
for characterization of oscillators. Normally SSB PN is plotted
versus offset frequency, and the performance is generally bench-
marked at specific offset frequencies, e.g., 100 kHz or 1 MHz
[11], [50], [51]. In this perspective, oscillators with lower con-
tent of colored noise come better out in the comparison, espe-
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cially when benchmarking for offset frequencies close to the
carrier [50].
In this paper, we employ a realistic PN model taking into

account the effect of white and colored noise sources, and uti-
lize this model to study a typical point to point communication
system in the presence of PN. Note that this is different from
the majority of the prior studies (e.g., [16], [22], [23], [26]–[29],
[34], [35]), where PN is modeled as the Wiener process, which
is a correct model for oscillators with only white PN sources.
Before using the PN model, it is calibrated to fit SSB PN mea-
surements of real oscillators. After assuring that the model de-
scribes statistical properties of measured PN over the communi-
cation bandwidth, an EVM bound for the system performance is
calculated. This is the first time that a direct connection between
oscillator measurements, in terms of measured oscillator spec-
trum, and the optimal communication system performance, in
terms of EVM, is mathematically derived and analyzed. Com-
paring this bound for different PN spectra gives insight into how
real oscillators perform in a communication system as well as
guidelines to improve the design of oscillators.
The organization and contribution of this paper are as follows.

In Section II, we first introduce our PN model. Thereafter, the
system model of the considered communication system is intro-
duced. In Section III, we find the performance of the PN affected
communication system in terms of EVM. To do so, we first drive
the modified Bayesian Cramér-Rao bound (MBCRB) on the
mean square error of the PN estimation. Note that this is the first
time that such a bound is obtained for estimation of PNwith both
white and colored sources. The required PN statistics for calcu-
lation of the bound are identified. Finally, the mathematical rela-
tion between the MBCRB and EVM is computed. In Section IV
we derive the closed-from autocorrelation function of the PN
increments that is required for calculation of the MBCRB. In
prior studies (e.g., [34], [40], [47]) the focus has been on cal-
culation of the variance of PN increments. However, we show
that for calculation of the system performance, the autocorre-
lation function of the PN increments is the required statistics.
The obtained autocorrelation function is valid for free-running
oscillators and also the low-order phase-locked loops (PLLs).
Section V is dedicated to the numerical simulations. First, the
PN sample generation for a given SSB phase spectrummeasure-
ment is discussed in brief. Later, the generated samples are used
in a Monte-Carlo simulation to evaluate the accuracy of the pro-
posed EVM bound in a practical scenario. Then, we study how
the EVM bound is affected by different parts of the PN spec-
trum. To materialize our theoretical results, the proposed EVM
is computed for actual measurements and observations are ana-
lyzed. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we first introduce our PN model in contin-
uous-time domain. Then we present the system model of the
considered communication system.

A. Phase Noise Model

In time domain, the output of a sinusoidal oscillator with nor-
malized amplitude can be expressed as

(1)

TABLE I
NOTATIONS

where is the oscillator’s central frequency, is the ampli-
tude noise and denotes the PN [42]. The amplitude noise
and PN are modeled as two independent random processes. Ac-
cording to [42], [45] the amplitude noise has insignificant effect
on the output signal of the oscillator. Thus, hereinafter in this
paper, the effect of amplitude noise is neglected and the focus
is on the study of the PN process.
In frequency domain, PN is most often characterized in terms

of single-side-band (SSB) PN spectrum [34], [42], defined as

(2)

where is the oscillator power within 1 Hz bandwidth
around offset frequency from the central frequency , and

is the total power of the oscillator. For an ideal oscillator
where the whole power is concentrated at the central frequency,

would be a Dirac delta function at , while, in reality,
PN results in spreading the power over frequencies around .
It is possible to show that at high frequency offsets, i.e., far
from the central frequency, where the amount of PN is small,
the power spectral density (PSD) of PN is well approximated
with found from measurements [34], [44], [49]

(3)

The offset frequency range where this approximation is valid
depends on the PN performance of the studied oscillator [52]. It
can be shown that the final system performance is not sensitive
to low frequency events. Thus, for low frequency offsets, we
model in such a way that it follows the same slope as of
higher frequency offsets.
In experimental data from free running oscillators, nor-

mally follows slopes of 30 dB/decade and 20 dB/decade,
until a flat noise floor is reached at higher frequency offsets.
According to Demir’s model [34], oscillator PN originates

from the white and colored noise sources inside the oscillator
circuitry. We follow the same methodology and model PN as a
superposition of three independent processes

(4)

where and model PN with 30 and 20 dB/decade
slopes that originate from integration of flicker noise (col-
ored noise) andwhite noise, denoted as and , respec-
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Fig. 1. Phase noise PSD of a typical oscillator. (a) PSD of a free running os-
cillator. (b) Model for the PSD of a locked oscillator, where is the PLL loop’s
bandwidth. It is considered that the PN of the reference oscillator is negligible
compared to PN of the free running oscillator.

tively. Further, models the flat noise floor, also known
as white PN, at higher offset frequencies, that originates from
thermal noise and directly results in phase perturbations. In log-
arithmic scale, the PSD of , , and can be repre-
sented as power-law spectrums [49]:

(5)

where , , and are the PN levels that can be found from
the measurements (see Fig. 1(a)).
In many practical systems, the free running oscillator is

stabilized by means of a phase-locked loop (PLL). A PLL
architecture that is widely used in frequency synchronization
consists of a free running oscillator, a reference oscillator, a
loop filter, phase-frequency detectors and frequency dividers
[34], [53]–[55]. Any of these components may contribute to
the output PN of the PLL. However, PN of the free-running
oscillator usually has a dominant effect [53]. A PLL behaves
as a high-pass filter for the free running-oscillator’s PN, which
attenuates the oscillator’s PN below a certain cut-off frequency.
As illustrated in Fig. 1(b), above a certain frequency, PSD of
the PLL output is identical to the PN PSD of the free-running
oscillator, while below this frequency it approaches a constant
value [34], [53]–[55].
Due to the integration, and have an cumulative

nature [34], [49]. PN accumulation over the time delay can
be modeled as the increment phase process

(6a)

(6b)

that has been called self-referenced PN [53], or the differential
PN process [56] in the literature and it is shown that this process
can be accurately modeled as a zero-mean Gaussian process
(Fig. 2).

B. Communication System Model

Consider a single carrier communication system. The trans-
mitted signal is

(7)

Fig. 2. Oscillator’s internal phase noise generation model.

where denotes the modulated symbol from constellation
with average symbol energy of , is the transmitted symbol
index, is a bandlimited square-root Nyquist shaping pulse
function with unit-energy, and is the symbol duration [57].
The continuous-time complex-valued baseband received signal
after downconversion, affected by the oscillator PN, can be
written as

(8)

where is the oscillator PN modeled in Section II-A and
is zero-mean circularly symmetric complex-valued addi-

tive white Gaussian noise (AWGN), that models the effect of
noise from other components of the system. The received signal
(8) is passed through a matched filter and the output is

(9)

Assuming PN does not change over the symbol duration, but
changes from one symbol to another so that no intersymbol in-
terference arises,1 sampling the matched filter output (9) at
time instances results in

(10)

that with a change in notation we have

(11)

where represents the PN of the received symbol in dig-
ital domain that is bandlimitted after the matched filter, and
is the filtered (bandlimitted) and sampled version of that is
a zero-mean circularly symmetric complex-valued AWGNwith
variance . Note that in this work our focus is on oscillator
phase synchronization and other synchronization issues, such
as time synchronization, are assumed perfect.

1The discrete Wiener PN model, which is well studied in the literature is mo-
tivated by this assumption (e.g., [5]–[10], [12], [16], [17], [19], [22]–[26], [30]).
We also refer the reader to the recent studies of this model where the PN varia-
tions over the symbol period has also been taken into consideration, and the loss
due to the slowly varying PN approximation has been investigated [27]–[29].
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Fig. 3. Communication system model with a feedforward carrier phase syn-
chronizer [5].

III. SYSTEM PERFORMANCE

In this section, we find the performance of the introduced
communication system from the PN spectrum measurements.
Our final result is in terms of error vector magnitude (EVM),
which is a commonly used metric for quantifying the accuracy
of the received signal [58], [59]. As shown in Fig. 3, PN is es-
timated at the receiver by passing the received signal through
a PN estimator. The estimated PN, denoted as , is used
to de-rotate the received signal before demodulation. The final
EVM depends on the accuracy of the PN estimation. In the se-
quel, we present a bound on the performance of PN estimation,
based on the statistics of the PN.

A. Background: Cramér-Rao Bounds

In order to assess the estimation performance, Cramér-Rao
bounds (CRBs) can be utilized to give a lower bound on mean
square error (MSE) of estimation [60]. In case of random
parameter estimation, e.g., PN estimation, the Bayesian
Cramér-Rao bound (BCRB) gives a tight lower bound on the
MSE [61]. Consider a burst-transmission system, where a
sequence of symbols is transmitted
in each burst. According to our system model (11), a frame
of signals is received at the receiver
with the phase distorted by a vector of oscillator PN denoted as

, with the probability density function
. The BCRB satisfies the following inequality over the

MSE of PN estimation:

E

E E (12)

where denotes an estimator of , is the Bayesian informa-
tion matrix (BIM) and “ ” should be interpreted as meaning
that E is positive semi-definite.

Here, is defined as

E E (13)

and it is called modified Fisher information matrix (FIM) in
the literature, and bound calculated from (12) is equivalently
called the modified Bayesian Cramér-Rao bound (MBCRB)
[62]. Based on the definition of the bound in (12), the diagonal
elements of bound the variance of estimation error of the
elements of vector

E (14)

From (12)–(14), we note that the estimation error variance is
entirelydeterminedbythepriorprobabilitydensity function(pdf)

of the PN and the conditional pdf of the received signal
given thePNand transmittedsignal (usuallydenotedas
the likelihood of ). In the following, we derive those pdfs based
on our models in Section II and use them in our calculations.

B. Calculation of the Bound

1) Calculation of E : Based on our PN
model (4) and the phase increment process defined in (6), the
sampled PN after the matched filter can be written as

(15)

where and are the dis-
crete-time phase increment processes, and and are
the cumulative PN of the first symbol in the block, which are
modeled as zero-mean Gaussian random variables with a high
variance,2 denoted as and , respectively. According
to (15) and due to the fact that and are samples
from zero-mean Gaussian random processes, has a zero-mean
multivariate Gaussian prior , where de-
notes the covariance matrix whose elements are computed in
Appendix A as

(16)

where and are the autocorrelation functions of
and , and is the variance of . The required

statistics, i.e., , and can be computed from
the oscillator PN measurements. To keep the flow of this sec-
tion, we derive these statistics in Section IV, where the final re-
sults are presented in (31), (38), (39) and (42). Finally, based
on the definition of , it is straightforward to show that

, and consequently due to the indepen-
dence of from

E (17)

2) Calculation of E : According to the system model
in (11), the likelihood function is written as

(18)

2We consider a flat non-informative prior [31], [60] for the initial PN values.
To simplify the derivations, it is modeled by a Gaussian distribution with a high
variance that is wrapped to a flat prior over .
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where the first equality is due to independence of the AWGN
samples. We can easily show that is a diagonal
matrix where its diagonal elements are

(19)

Following (13) and (19), diagonal elements of FIM are com-
puted as

(20)

where is the average energy of the signal constellation. This
implies that

(21)

where is the identity matrix. Finally, from (12), (17), and (21)

(22)

The minimum MSE of PN estimation (14) depends on SSB PN
spectrum measurements through and . We will use this
result in the following subsection to calculate a more practical
performance measure that is called EVM.

C. Calculation of Error Vector Magnitude

The modulation accuracy can be quantified by the EVM, de-
fined as the root-mean square error between the transmitted and
received symbols [58], [59]

(23)

where , , is the transmitted symbol from
the constellation with order , at the time instance, and

is the distorted signal at the receiver. Even with optimal
PN estimators, we have residual phase errors. Hence, cancella-
tion of PN by de-rotation of the received signal with the esti-
mated PN results in a distorted signal

(24)

where is the residual phase error. Before going further,
assume we have used an PN estimator [60] that reaches the
computed MBCRB, and estimation error is a zero-mean
Gaussian random variable. Our numerical evaluations in the re-
sult section support the existence of such estimators (Fig. 6).
This implies that , where is
defined in (14) and can be computed from the derived MBCRB.
The variance obtained from the MBCRB results from averaging
over all possible transmitted symbols. Note that to calculate the
EVM accurately, we need to use the conditional PDF of the
residual PN variance . However, in order to keep our
analysis less complex we approximate the conditional PDF with

Fig. 4. Phase noise sample generator.

the unconditional one: . Our numerical sim-
ulations show the validity of this approximation in several sce-
narios of interest (Fig. 7). For the sake of notational simplicity,
we drop the time index in the following calculations. Aver-
aging over all possible values of , (23) is rewritten as

E
(25)

The magnitude square of the error vector for a given , and
is determined as

(26)

and consequently

E E (27)

The expectation in (27) can be computed as

E

(28)

where is the Gaussian pdf of as defined before.
Finally, EVM can be computed from (25), (27), and (28) as

(29)

where is calculated in (16) and it is a function of PN model
parameters , , and through , and ,
computed in Section IV.

IV. PHASE NOISE STATISTICS

As we can see in Section III, the final system performance
computed in terms of EVM (29) depends on the minimumMSE
of the PN estimation defined in (14). According to (16), in order
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Fig. 5. PSD of the generated PN samples vs. the theoretical PSD. The generated
phase noise PSD is matched to the desired PSD with the given values of ,

and .

Fig. 6. The phase error distribution of the second symbol and mid
symbol of the block estimated from 10000 simulation trials. It can
be seen that the phase error distribution is almost zero-mean Gaussian for both
symbols. PN of the symbol in the middle of the block can be estimated better
and has a lower residual variance.

to find the minimum PN variance, we have to compute the re-
quired PN statistics; i.e., , and . To find these
statistics we need to start from our continuous-time PN model
described in Section II-A. Based on (6), and result
from integration of noise sources inside the oscillator. On the
other hand, has external sources. Therefore, we separately
study the statistics of these two parts of the PN.

A. Calculation of

The PSD of is defined as

(30)

where is the level of the noise floor that can be found from
the measurements, and according to (2), it is normalized with
the oscillator power [39]. The system bandwidth is equal to the

Fig. 7. Proposed theoretical EVM bound vs. the EVM from the Monte-Carlo
simulation. The PSD in Fig. 5 is considered as the PN PSD. 16 and 64-QAM
modulations are used, pilot density is , and the symbol rate is set to

. Note that in pure AWGN case, the symbol error proba-
bility of 16-QAM at is and for 64-QAM it is at

dB.

symbol rate3 , and at the receiver, a low-pass filter with the
same bandwidth is applied to the received signal .
According to [63], if is small (which is generally the case
in practice), low-pass filtering of the received signal results in
filtering of with the same bandwidth. Therefore we are
interested in the part of the PN process inside the system band-
width. The variance of the bandlimited is calculated as

(31)

As is bandlimited, we can sample it without any aliasing.

B. Calculation of and

It is possible to show that and defined in (6)
are stationary processes and their variance over the time delay
, is proportional to and , respectively [34], [40], [47].
However, as shown in this work, their variance is not enough to
judge the effect of using a noisy oscillator on the performance of
a communication system, and hence their autocorrelation func-
tions must be also taken into consideration.
Samples of and can be found by applying a

delay-difference operator on and , respectively [34],
[47], which is a linear time invariant sampling system with im-
pulse response of

(32)

Starting from , the PSD of can be computed as

(33)

where is the frequency response of
the delay-difference operator introduced in (32). The autocor-
relation function of can be computed by taking the in-
verse Fourier transform of its PSD

(34)

3This bandwidth corresponds to using a raised-cosine pulse shaping filter
defined in (7) with zero excess bandwidth. For the general case, the bandwidth
becomes where denotes the excess bandwidth [57].
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where is the time lag parameter. Using (33) and (34) the con-
tinuous-time auto correlation function can be found as

(35)

As can be seen in (35), in order to find the closed-form auto-
correlation functions, we do not confine our calculations inside
the system bandwidth . However, we see from the measure-
ments that parts of and outside bandwidth are almost
negligible and do not have any significant effect on the calcu-
lated autocorrelation functions.
The PSD of has the form of

(36)

where and can be found from the measurements and is a
low cut-off frequency that is considered to be very small for a
free running oscillator, while it is set to the PLL’s loop band-
width in case of using a locked oscillator (Fig. 1(b)). According
to (35) and (36), autocorrelation function of can be de-
termined as

(37)

Sampling (37) results in

(38)
where . For a free running oscillator, the
autocorrelation function can be found by taking the limit of (38)
as approaches 0, that results in

if
otherwise.

(39)

Results in (38) and (39) show that for a locked oscillator
is a colored process (its samples are correlated with each other),
while it is white for a free running oscillator.
To find for a free running oscillator, one can consider

the PSD of to be . However, by doing
so, defined in (33) diverges to infinity at zero offset fre-
quency and hence makes it impossible to find the autocorrela-
tion function in this case. To resolve the divergence problem,
we follow a similar approach to [34], [47] and introduce a low
cutoff frequency below which flattens. Our numer-
ical studies show that as long as is chosen reasonably small,
its value does not have any significant effect on the final result.
Similar to our analysis for , the autocorrelation of PN incre-
ments at the output of a first order PLL can be found by setting
equal to the PLL’s loop bandwidth. Hence, we define the PSD

of as

(40)

where can be found from the measurements (Fig. 3). Fol-
lowing the same procedure of calculating in (33)–(35)

and using (40), the autocorrelation function of can be com-
puted by solving the following integral:

(41)

This integral is solved in the Appendix A. Finally, the closed-
form sampled autocorrelation function of is approximated
as

(42a)

(42b)

otherwise

(42c)

where , and is the Euler-Mascheroni’s
constant [64]. The calculated variance is almost propor-
tional to which is similar to the results of [34], [47]. As it
can be seen from (42), samples of are correlated in this
case which is in contrast to . Consequently, in presence of

, variance of is not adequate to judge the behavior
of the oscillator in a system; it is necessary to incorporate the
correlation properties of samples.

V. NUMERICAL AND MEASUREMENT RESULTS

In this section, first the analytical results obtained in the pre-
vious sections are evaluated by performing Monte-Carlo simu-
lations. Then, the proposed EVM bound is used to quantify the
system performance for a given SSB PN measurement.

A. Phase Noise Simulation

To evaluate our proposed EVM bound, we first study the gen-
eration of time-domain samples of PN that match a given PN
SSB measurement in the frequency domain. As shown in (4),
we model PN as a summation of three independent noise pro-
cesses , , and . The same model is followed to
generate time-domain samples of the total PN process (Fig. 4).
Generating the samples of power-law noise with PSD of
has been vastly studied in the literature [35], [65], [66]. One sug-
gested approach in [65] is to pass independent identically dis-
tributed (iid) samples of a discrete-time Gaussian noise process
through a linear filter with the impulse response of

(43)

The PSD of the generated noise can be computed as

(44)

where is the sampling time equal to the symbol duration,
and is the variance of input iid Gaussian noise [65]. Fig. 4
illustrates the block diagram used for generating the total PN
process. Table II shows variance of the input iid Gaussian noise
in each branch calculated based on (44).
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TABLE II
PN GENERATION: INPUT IID NOISE VARIANCE

Fig. 5 shows the total one-sided PSD of the generated PN
samples for a particular example. The frequencyfigures ofmerits
are set to be 110dB, 10 , and 10. Ac-
cording to Table II, the variance of input white Gaussian noises
to the PN generation system in Fig. 4 for a system with symbol
rate 10 symbol/sec are calculated to be ,

, and .Thisfigure shows
that generated time-domain samples match to the PSD of PN.

B. Monte-Carlo Simulation

Consider a communication system like that of Fig. 3. Two
modulation schemes i.e., 16-QAM and 64-QAM are used and
length of the communication block is set to 200 symbols. A
local oscillator with the PN PSD of Fig. 5 is used. For theMonte-
Carlo simulation, we first generate the PN samples following the
routine proposed in Section V-A. Then, we design the maximum
a posteriori (MAP) estimator of the PN vector at the receiver.
The MAP estimator is a Bayesian estimator that can be used for
estimation of random parameters [60], [61]. This estimator finds
that maximizes the posteriori distribution of :

(45)

The needed likelihood and prior functions for designing this es-
timator are calculated in Section III. However, the detailed im-
plementation of this estimator is not in the focus of this paper
and we focus only on the final results. We refer the interested
reader to [9], [60], [61], [67] for more information on imple-
mentation of the MAP and other Bayesian estimators such as
Kalman or particle filters, that can be used for estimation of
random parameters. The estimated phase values from the MAP
estimator are used to eliminate the effect of PN by de-rotation
of the received signals. Finally, the EVM is computed by com-
paring the transmitted symbols with the signal after PN com-
pensation. Fig. 6 shows the density of the residual phase errors
for two of the symbols in the frame ( and ).
It can be seen that phase errors are almost zero mean and have
Gaussian distribution. PN in the middle of the block can be esti-
mated better has a lower residual variance. Fig. 7 compares the
proposed theoretical EVMbound (average EVMover the block)
against the resulted EVM calculated from the Monte-Carlo sim-
ulation of a practical system. In this simulation, 16-QAM and
64-QAM modulations are used, where of the symbols are
known (pilot symbols) at the receiver. For the unknown sym-
bols, decision-feedback from a symbol detector is used at the
estimator. It can be seen that the calculated EVM from the em-
pirical simulation matches the proposed theoretical bound at
moderate and high SNRs. It can also be seen that at low SNR,
the bound is more accurate for 16-QAM modulation format.

Fig. 8. The proposed theoretical EVM bound against different noise floor
levels. and are kept constant. The low cut-off frequency
is considered to be and and block-length is set to 10. In
the hatched regime, the white PN (noise floor) dominates over the cumulative
part of the PN.

This is mainly due to the fact that 16-QAM has a lower symbol
error probability than 64-QAM for a given SNR, thus the deci-
sion-feedback is more accurate in this case.

C. Analysis of the Results

Now, when the EVM bound is evaluated, the system perfor-
mance for a given oscillator spectrum may be quantified. In this
section we study how the EVM is affected by white PN (PN
floor) and cumulative PN, respectively. The effect from cumu-
lative PN is further divided into origins from white and col-
ored noise sources, i.e., SSB PN slopes of 30 dB decade and
20 dB decade, respectively. It is found that the influence from

the different noise regions strongly depends on the communi-
cation bandwidth, i.e., the symbol rate. For high symbol rates,
white PN is more important compared to the cumulative PN that
appears near carrier.
Fig. 8 compares the performance sensitivity of two commu-

nication systems with different bandwidths, namely System A
and SystemB against a set of different noise floor levels. System
A operates with the symbol rate of 0.1 MSymbols/s that leads
to 10 s symbol duration. In contrast, System B has 5 MSym-
bols/s symbol rate results in 0.2 s symbol time that is almost
50 times shorter than that of System A. It is seen in Fig. 8 that
an increase in the level of white PN affects the System B with
high symbol rate much more than the more narrowband System
A system. This result can be intuitively understood, since in a
system with a higher symbol rate, symbols are transmitted over
a shorter period of time and thus experience smaller amount of
cumulative PN. On the other hand, the amount of phase pertur-
bation introduced by the white PN is a function of the system
bandwidth and a wideband system integrates a larger amount
of white PN (31). Therefore, in contrast to the cumulative PN,
white PN affects a system with high bandwidth more compared
to a system with a narrower bandwidth.
The next step is to identify the different effects from

cumulative PN originating in white noise sources (slope
20 dB decade) and cumulative PN originating in colored

noise sources (slope 30 dB decade). Fig. 9 shows the effect
of changing the corner frequency on the performance of the
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Fig. 9. The proposed theoretical EVM bound against different values of corner
frequency for two systems with different bandwidth. and

160 dBc/Hz are kept constant and is increased by adding to
. The low cut-off frequency is considered to be 1 Hz and dB

and block-length is set to 10.

Fig. 10. The proposed theoretical EVM bound against different values of low
cut-off frequency . , and 160 dBc/Hz are kept
constant, SNR 30 dB and symbol rate is 1 M Symbol/s.

introduced systems by increasing the level of noise, .
Other parameters such as and are kept constant in
this simulation to just capture the effect of different values
of . Intuitively the performance degrades when the noise
level is increased. However, as seen in Fig. 9, the EVM is
not significantly affected below certain corner frequencies
( for System A and for
System B). This constant EVM is due to the dominant effect of

on the performance. By increasing the corner frequency,
after a certain point becomes more dominant which
results in a continuous increase in EVM. It can also be seen
that System A is more sensitive to increase of the noise
level. Because of the higher bandwidth, System B contains
more of the noise which is constant and dominates the

effect, and its EVM stays unchanged for a larger range of
corner frequencies.
Fig. 10 illustrates the effect of increasing the low cut-off fre-

quency on the EVM bound. As mentioned before, the PN
spectrum after a PLL can be modeled similar to a free running
oscillator with a flat region below a certain frequency. In our

Fig. 11. Two SSB PN spectrums with pure PN and PN.We assume
the two spectrums have a very low white PN level. For a system with the symbol
rate of 3.84 MSymbols/s, both spectrums result in the same variance of phase
increments .

analysis, is the low cut-off frequency below which the spec-
trum flatten. It can be seen that changes of below certain fre-
quencies ( kHz) does not have any significant effect on the
calculated EVM. However, by increasing more, the effect of
the flat region becomes significant and the final EVM decreases.
Finally, we compare the individual effect of PN and
PN on the performance. Consider two SSB PN spectrums

as illustrated in Fig. 11. One of the spectrums contains pure
PN while PN is dominant in another. In a system with the
symbol rate of 3.84 MSymbols/s (bandwidth of 3.84 MHz), the
variance of phase increment process for both spectrums is equal
to . However, comparing the
EVM values shows that the spectrum with pure PN results
in 2.36 dB lower EVM. This is due to the correlated samples of
phase increment process for noise which results in lower
PN estimation errors compared to noise.

D. Measurements

To materialize the analytical discussion above, Figs. 12 and
13 show the measured SSB PN spectrums from a GaN HEMT
MMIC oscillator under two different bias conditions with dras-
tically different characteristics for the cumulative PN. Fig. 12
shows the spectrum for the oscillator biased at a drain voltage
of 6 V and drain current of 30 mA. At this bias
condition, the noise (flicker noise) from the transistor is
fairly low. The corner frequency between the 30 dB decade
and 20 dB decade regions can be clearly detected at 83.3 kHz.
In contrast, Fig. 13 shows a spectrum from the same oscillator
biased at 30 V and 180 mA. Under this bias con-
dition the noise from colored noise sources is increased signifi-
cantly and the cumulative PN has 30 dB decade slope until it
reaches the white PN floor. Further, the power of the oscillator
is higher in Fig. 12, resulting in a lower level for the white PN.
Fig. 14 compares EVM for the SSB PN spectrums in Figs. 12
and 13, respectively, versus the symbol rate. As expected based
on the results in Section V-C, the spectrum in Fig. 12 gives the
best EVM for low symbol rates, while the spectrum in Fig. 13
gives the best EVM for higher symbol rates as a result of the
lower level of white PN.
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Fig. 12. SSB PN spectrum from a GaNHEMTMMIC oscillator. Drain voltage
6 V and drain current 30 mA. The corner frequency at

83.3 kHz.

Fig. 13. SSB PN spectrum from a GaNHEMTMMIC oscillator. Drain voltage
30 V and drain current 180 mA.

Fig. 14. EVM comparison of given measurements in Figs. 12 and 13 vs.
symbol rate (bandwidth). The low cut-off frequency is considered to be 1 Hz,
and 30 dB.

VI. CONCLUSIONS

In this paper, a direct connection between oscillator measure-
ments, in terms of measured single-side band PN spectrum, and
the optimal communication system performance, in terms of
EVM, is mathematically derived and analyzed. First, we found
the statistical model of the PN which considers the effect of
white and colored noise sources. Then, we utilized this model
to derive the modified Bayesian Cramér-Rao bound on PN es-
timation that is used to find an EVM bound for the system
performance.
The paper demonstrates that for high symbol rate communi-

cation systems, the near carrier cumulative PN is of relatively
low importance compared to white PN far from carrier. Our re-
sults also show that noise is more predictable compared to

noise, and in a fair comparison it affects the system per-
formance less. These findings will have important effects on de-
sign of hardware for frequency generation as well as the require-
ments on voltage controlled oscillator design, choice of refer-
ence oscillators and loop bandwidth in the phase-locked loops.
Although in several empirical measurements of oscillators
, , and -shaped noise dominate the PN spectrum,

there has been studies where other slopes ( , ) have
been observed in the measurements. Our PN model can be ex-
tended in future studies to include the effect of various noise
statistics. Our current analysis can be used in order to study
free running oscillators, and it is valid for study of phase-locked
loops up to some extent. Further, our theoretical results can
be extended for a more thorough study of phase-locked loops.
In our analysis, the transition from continuous to discrete-time
domain was based on a slow-varying PN assumption. A more
sophisticated study can be conducted to analyze the effect of
relaxing this assumption. Finally, we analyzed a single carrier
communication system. It is interesting to extend this work to
the case of multi-carrier communication systems.

APPENDIX A

In this appendix, elements of the covariance matrix
are calculated. According to (15), and stationarity of the PN
increments

E E E

E

E E E

E E

E E

E E

(46)
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Note that in calculation of the MBCRB, we need to compute the
inverse of the covariance matrix . It is possible to mathemat-
ically show that the correlations between the initial PN of the
block and future PN increments (the four last terms in (46)) do
not have any effect on . Therefore, we omit those terms in
our calculations and finally the covariance matrix can be written
as

(47)

APPENDIX B

Steps taken to solve the integral in (41) are described here.
We can write (41) as

(48)

It is clear that solving the integral in the form of
is enough to compute the

total integral of (48). This integral is complicated enough that
powerful software such as Mathematica are not able to con-
verge to the final answer. Consequently, first, partial-fraction
decomposition of is done:

(49)

Note that, is a real positive number. Using Mathematica (Ver-
sion 7.0), the following integral can be evaluated

(50)

where must be a complex or a negative real number, and
and are sine and cosine integrals define as

(51)

where is the Euler-Mascheroni’s constant.

Consider the case where time lag is small. By Taylor ex-
pansion of the functions in (50) around zero

and neglecting the terms after second order, the integral can be
approximated as

(52)

where . Employing this approximation and the
fraction decomposition in (49), followed by a series of simpli-
fications

(53)

Now the first term in (48) is calculated. By changing the vari-
able to and , second and third terms can also be
computed, respectively. Finally, is approximated by

(54)

To calculate the ACF for , and , we need to take
the limits of (54) as approaches 0, and , respectively that
results in

(55)

(56)
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