
Open Source Hardware
Can embedded electronics companies thrive through the use and/or development of open source hardware?

Jonathan Lock

Department of Technology Management and Economics
Division of Management of Organizational Renewal and Entreprenuersip – MORE
Chalmers University of Technology

Gothenburg, Sweden, June 2013

Report No. E2013:107

O P E N S O U R C E H A R D WA R E
C A N E M B E D D E D E L E C T R O N I C S C O M PA N I E S T H R I V E

T H R O U G H T H E U S E A N D / O R D E V E L O P M E N T O F O P E N
S O U R C E H A R D WA R E ?

jonathan lock

Department of Technology Management and Economics
Division of Management of Organizational Renewal and Entreprenuersip – MORE

chalmers university of technology

SE-412 96 Gothenburg, Sweden, June 2013

Jonathan Lock: Open Source Hardware, Can embedded electronics com-
panies thrive through the use and/or development of open source
hardware?, June 2013.

Department of Technology Management and Economics
Division of Management of Organizational Renewal and Entreprenuer-
sip – MORE
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Telephone +46 (0)31 772 1000

Copyright c©2013 Jonathan Lock. This work is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License. To
view a copy of this license, visit or send a letter to Creative Commons,
444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

The front cover illustration shows a Printed Circuit Board (PCB) for an
Open Source Hardware (OSHW) device (titled CheapAmp) developed
by the author and available at http://www.rabidmantis.se. This was
the first OSHW device developed by the author.

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”.

http://www.rabidmantis.se

O P E N S O U R C E H A R D WA R E

can embedded electronics companies thrive through

the use and/or development of open source hardware?

Jonathan Lock, Department of Technology Management and Economics,
Chalmers University of Technology

A B S T R A C T

This report studies the ability for embedded electronics companies
to effectively use and/or develop Open Source Hardware (OSHW)1. A
lack of existing research into OSHW has led the author to conduct a
web-based survey and two interviews with retailers and developers
of embedded electronics modules, one with an OSHW work-flow and
one without.

Analysis of the results show that both use and development of
OSHW has the potential to be useful in a business context. Use of
OSHW was found to be less risky than development, and particularly
beneficial when used as a tool in a development setting; allowing for
modification to match the requirements of the development process,
as well as part of a product; where the OSHW device can be integrated
into product development undertaken by the firm. Poor documen-
tation and support, and the potential difficulty in determining the
quality of a device were found to be the foremost negative aspects to
using OSHW.

Developing OSHW as a part of business activities was also identi-
fied as feasible; users value OSHW devices highly, in particular if accu-
rately documented and supported. However, the risk of third parties
cloning or duplicating sections of the device was identified as a large
risk due to the poor Intellectual Property (IP) protection available.
Though successful companies developing OSHW have been identified,
it remains to be determined which methods of OSHW development
are realistic and can be effectively used.

Keywords: Open Source Hardware, Embedded Electronics, Busi-
ness Models in Open Source Hardware, Open Source Hardware Doc-
umentation

1 Very briefly, OSHW is where the design files for physical devices (such as drawings,
schematics, Printed Circuit Board (PCB) artwork, bill of materials, and so on) are
distributed under a liberal license allowing users to freely use, copy, change, study,
and improve the original device in a manner somewhat similar to that of Open
Source Software (OSS).

v

O P E N S O U R C E H A R D WA R E

can embedded electronics companies thrive through

the use and/or development of open source hardware?

Jonathan Lock, Department of Technology Management and Economics,
Chalmers University of Technology

S A M M A N FAT T N I N G

Den här rapporten undersöker möjligheterna för företag som arbetar
inom inbyggd elektronik att använda och/eller utveckla Open Sour-
ce Hardware (OSHW)2. Bristande forskning inom området har lett till
att författaren har genomfört en internet-baserad enkät samt två in-
tervjuer med företag som utvecklar och säljer moduler inom inbyggd
elektronik, varav den ena arbetar med OSHW och den andra inte gör
det.

Analys av resultaten visar att både användning och utveckling av
OSHW har potentialen att vara mycket effektiv inom företag. Använd-
ning visade sig vara mindre riskfyllt än utveckling, och särskilt gynn-
sam dels som ett verktyg i utvecklingsmiljön; där möjligheten finns
att göra förändringar som gör att enheten uppfyller utvecklingsmil-
jöns krav, och dels som en del av en produkt; där den integreras i
produktutvecklingsprocessen på företaget. Undermålig dokumenta-
tion och support, samt att det kan vara svårt att bedöma kvalitén har
uppmärksammats som nackdelar med användning av OSHW.

Att utveckla OSHW som en del av företagets verksamhet har också
identifierats som en möjlighet, där användare värderar OSHW-produkter
högt, särskilt om de är väldokumenterade och väl underhållna. Där-
emot är risken att en tredje part gör exakta kopior eller duplicerar
delar av enheten stor, eftersom det endast finns mycket svaga im-
materialrättsskydd för OSHW-produkter. Även om flera företag som
framgångsrikt utvecklar OSHW har identifierats så är det fortfarande
oklart vilka metoder av OSHW-utveckling som är realistiska och ge-
nomförbara.

Nyckelord: Öppen Hårdvara, Open Source Hardware, Inbyggd Elekt-
ronik, Affärsmodeller inom Öppen Hårdvara, Dokumentation inom
Öppen Hårdvara

2 Kortfattat; fysiska enheter där utvecklingsfiler (såsom ritningar, scheman, mönster-
kort, inköpslistor, och så vidare) distribueras under en licens där användaren fritt får
möjligheten att använda, kopiera, ändra, studera, och förbättra ursprungsenheten på
ett sätt som delvis liknar Open Source Software (OSS).

vi

A C K N O W L E D G M E N T S

I would like to thank my supervisor Mats Lundqvist for the useful
comments and feedback throughout the development of this report;
Chelsea Moll, for the extensive and thought-through responses to the
interview with SparkFun Electronics; Jan Maléšek of Pololu for the
clarifications to the interview with Make Magazine; Brain Benchoff
of hackaday for posting the survey on http://hackaday.com; all of
the participants of the survey, whose responses the majority of the
conclusions of this report are based on; and Goli Mohammadi from
Make Magazine, who permitted including their entire interview with
Jan Maléšek of Pololu.

Note that Section A.1, Interview with Chelsea Moll from SparkFun
Electronics [26]; Section A.2, Interview with Jan Maléšek, company
president of Pololu [25]; and Section A.3, Maker Media’s interview
with Jan Maléšek [32] include verbatim content not written by the
author which is reproduced with permission.

vii

http://hackaday.com

C O N T E N T S

i introduction & theory 1

1 introduction 3

1.1 Background . 3

1.2 Purpose . 4

1.2.1 Research questions . 4

1.2.2 Scope limitations of report 5

1.2.3 Report outline . 5

2 theory 7

2.1 Open Source Software . 7

2.1.1 Business Models in Open Source Software 12

2.2 Open Source Hardware . 13

ii methodology & results 17

3 methodology 19

3.1 Survey . 19

3.2 Interviews . 19

3.3 Survey Questions . 21

4 results 27

4.1 Terms Used in Results . 29

4.2 Open Source Hardware Usage 30

4.3 Open Source Hardware Development 33

4.4 Open Source Hardware vs. Proprietary Hardware 36

4.4.1 Simple devices . 37

4.4.2 Complex devices . 41

4.5 Importance of Open Source Hardware Attributes 45

4.6 Participant Demographics 49

iii discussion & conclusions 53

5 discussion 55

5.1 Original and Preexisting Research at a Glance 55

5.2 Original Research Analysis 57

5.2.1 Use and Development of Open Source Hardware 57

5.2.2 Open Source Hardware compared to Proprietary Hard-
ware . 58

5.2.3 Importance of Open Source Hardware Attributes 64

5.2.4 Participant Demographics 64

5.2.5 General Analysis . 65

5.3 Research Implications for Companies 69

5.3.1 Using Open Source Hardware in Businesses 69

5.3.2 Developing Open Source Hardware in Businesses 72

6 conclusions 79

ix

x contents

bibliography 81

iv appendix 85

a interview transcripts 87

a.1 Interview with Chelsea Moll from SparkFun Electronics [26] 87

a.2 Interview with Jan Maléšek, company president of Pololu
[25] . 92

a.3 Maker Media’s interview with Jan Maléšek [32] 93

b collected survey data 97

b.1 Participant Comments . 101

b.1.1 Meta-comments . 102

b.1.2 Noncommercial Users . 103

b.1.3 Noncommerical Developers 105

b.1.4 Commercial Users . 107

b.1.5 Commercial Developers 108

b.1.6 Inexperienced Users . 109

c proposed documentation style for oshw devices 111

L I S T O F F I G U R E S

Figure 1 Responses to survey question “In which way(s)
have you used OSHW device(s)?”. 31

Figure 2 Responses to survey question “Would you have
been able to use an otherwise equivalent pro-
prietary solution to solve the same problem(s)?”. 32

Figure 3 Responses to survey question “In which form
have you contributed to the project(s)?”. 33

Figure 4 Responses to survey question “Have other peo-
ple used/modified/hacked with the project(s)
you started or contributed to after publication?”. 34

Figure 5 Responses to survey question “Why did you
contribute/start the project?”. 35

Figure 6 Responses to functionality metric for simple
devices. 37

Figure 7 Responses to stability metric for simple devices. 38

Figure 8 Responses to cost metric for simple devices. . 38

Figure 9 Response to documentation metric for simple
devices. 39

Figure 10 Response to support metric for simple devices. 39

Figure 11 Response to gut feeling metric for simple de-
vices.. 40

Figure 12 Response to functionality metric for complex
devices. 41

Figure 13 Response to stability metric for complex devices. 42

Figure 14 Response to cost metric for complex devices. . 42

Figure 15 Response to documentation metric for complex
devices. 43

Figure 16 Response to support metric for complex devices. 43

Figure 17 Response to gut feeling metric for complex de-
vices. 44

Figure 18 Response to the importance of transparency at-
tribute. 46

Figure 19 Response to the importance of the modifica-
tion attribute. 47

Figure 20 Responses to the importance of the re-use at-
tribute. 47

Figure 21 Response to the importance of the philosophy
attribute. 48

Figure 22 Survey response to “What is your educational
background?”. 49

Figure 23 Survey response to “What is your age?”. 51

xi

Figure 24 Survey response to “Where are you from?”. . . 51

Figure 25 Examples of easily found flawed circuit schemat-
ics. 60

Figure 26 Bill of materials, functional description, and
full schematic diagrams presented in the ser-
vice manual for the Tektronix 545A, a state of
the art cathode-ray vacuum-tube powered os-
cilloscope from 1957[13]. 66

L I S T O F TA B L E S

Table 1 Rating table for OSHW and proprietary devices. 24

Table 2 Rating table for OSHW values. 25

Table 3 Number of individuals in each participant group. 29

Table 4 Numerical survey results as introduced in Chap-
ter 4, divided into the utilization groups de-
scribed. 97

A C R O N Y M S

CAD Computer Aided Design

EMI Electromagnetic Interference

EMC Electromagnetic Compatibility

FCC Federal Communications Commission

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

IC Integrated Circuit

IDE Integrated Development Environment

IP Intellectual Property

OSHW Open Source Hardware

OSI Open Source Initiative

OSS Open Source Software

PCB Printed Circuit Board

RoHS Restriction of Hazardous Substances Directive

TTL Transistor-transistor logic

xii

Part I

I N T R O D U C T I O N & T H E O RY

1
I N T R O D U C T I O N

Open Source Software (OSS) has fundamentally shaped the software
industry; a radical notion where software is distributed with its source
code, freely allowing anyone to modify and redistribute it for any
purpose. This may sound like a completely unrealistic utopia — but
nothing could be farther from the truth. OSS powered over 65% of the
entire web-server market1, 75% of all smart-phones2, and nearly 94%
of the top 500 supercomputers in the world3 in 2012.

Open Source Hardware (OSHW) is an attempt to bring the same
freedom and power to physical devices, but is as of yet still a newborn
compared to OSS. The future success of OSHW largely depends on
its adoption among developers and users; individuals, organizations,
companies, and governments.

This report aims to shed some light on a few questions related to
OSHW that have as of yet been unanswered in academic publications,
primarily;

Can embedded electronics companies thrive through the
use and/or development of open source hardware?

This section introduces the concept of OSHW (briefly comparing it
to the concept of OSS), lists the research questions this report will
study along with applicable scope limitations, and finally describes
the structure of this document.

1.1 background

In order to understand OSHW it is important to understand its concep-
tual parent OSS, which disrupted previously held notions of property
and rights in the field of software. Weber [34, p. 16] describes this as;

Property in open source is configured fundamentally around
the right to distribute, not the right to exclude.

Perens et al. [27] define the core rights that OSS gives users as;

• The right to make copies of the program, and distribute those
copies.

• The right to have access to the software’s source code, a neces-
sary preliminary before you can change it.

1 See http://news.netcraft.com/archives/category/web-server-survey/ and
http://w3techs.com/technologies/overview/operating_system/all.

2 See http://www.idc.com/getdoc.jsp?containerId=prUS23771812.
3 See http://www.top500.org/statistics/overtime/.

3

http://news.netcraft.com/archives/category/web-server-survey/
http://w3techs.com/technologies/overview/operating_system/all
http://www.idc.com/getdoc.jsp?containerId=prUS23771812
http://www.top500.org/statistics/overtime/

4 introduction

• The right to make improvements to the program.

These rights allow anyone to without limitation study the workings
of software released under an open source license, improve on it, and
freely redistribute the derivative work.

OSHW is based on the same concept, one definition of this is, as per
the Open Source Hardware Statement of Principles 1.0[1];

Open source hardware is hardware whose design is made
publicly available so that anyone can study, modify, distribute,
make, and sell the design or hardware based on that design. The
hardware’s source, the design from which it is made, is available
in the preferred format for making modifications to it. Ideally,
open source hardware uses readily-available components and
materials, standard processes, open infrastructure, unrestricted
content, and open-source design tools to maximize the ability
of individuals to make and use hardware. Open source hard-
ware gives people the freedom to control their technology while
sharing knowledge and encouraging commerce through the open
exchange of designs.

Many of the topics that will be discussed later in the report are cen-
tered around the inherent differences between software and hard-
ware; modifying software does not usually require hardware beyond
an ordinary personal computer, has (virtually) no distribution cost,
and has licenses based on copyright law that can give control over
the way the code can be used — attributes that are not always true
when it comes to hardware.

1.2 purpose

Though there have been numerous studies into the feasibility of busi-
nesses centered around or heavily involving OSS, the same can not
be said about OSHW. This report will attempt to shed some light on
the ability of and suitable methods for embedded electronics firms to
work with OSHW.

1.2.1 Research questions

The primary research question of this report;

Can embedded electronics companies thrive through the
use and/or development of OSHW?

will be discussed in itself and strengthened by addressing the sec-
ondary research questions;

• Which business models are feasible for embedded electronics
companies working with OSHW?

1.2 purpose 5

• What potential limitations may an OSHW work-flow apply to
embedded electronics companies?

• What potential gains could an OSHW work-flow give to embed-
ded electronics companies?

The discussion of these questions will be backed up by using pre-
vious research where it exists, as well as adding new data through
interviews and a web-based survey administered by the author. For
the purpose of this report, embedded electronics companies refers
to companies working primarily with embedded electronics — the
development, sales, and support of electrical devices using passive
components, diodes, transistors, and integrated circuits; both analog
and digital.

1.2.2 Scope limitations of report

This report will study the ability for companies within the embedded
electronics field to use or develop OSHW. Limiting the scope to com-
panies within the embedded electronics field is done due to several
factors,

• most companies developing, selling, or supporting OSHW today
primarily work with embedded electronics, giving a suitable
study group,

• most development within the OSHW field, from a hobbyist to
commercial level, are centered around embedded electronics,

• the author’s experience of OSHW lies within an embedded elec-
tronics setting.

Additionally, the business models presented in the discussion and
conclusion have neither been tested as a part of the this report, nor
will the actual method of implementing these business models be
discussed.

Finally, though other authors in the OSHW field (such as Acosta [14])
define Field-Programmable Gate Array (FPGA) application code (such
as Hardware Description Language (HDL) source code) as OSHW, this
will not be done in this report. This is done as even though HDL

describes hardware, the development and distribution of HDL source
code is nearly identical to that of software.

1.2.3 Report outline

In Chapter 2 existing research on OSS is summarized, after which the
primary differences between OSS and OSHW are listed, and finalized
with a very brief summary of successful companies developing and
selling OSHW devices.

6 introduction

In Chapter 3 the method of the two conducted interviews and the
Internet-based survey is described, which is followed by the results
of the survey in Chapter 4. In Chapter 5 and Chapter 6 the results are
discussed and combined with existing knowledge on OSHW in order
to draw conclusions based on the research questions of this report.

Chapter A in the appendix contains full transcripts of the con-
ducted interviews, Chapter B lists the collected responses from the
survey in a numerical format as well as listing the comments received
in the survey, and Chapter C presents a proposed documentation
style for OSHW devices.

2
T H E O RY

OSHW, being a relatively new phenomenon, has not been as thor-
oughly studied as its conceptual parent OSS. Due to this there is
very little written academically about OSHW, which is why many of
the sources used from here onwards consist of academic publications
on OSS in combination with non-academic sources on OSHW (such as
Internet blog posts, data from OSHW advocacy groups, and so on).
As much of the data on OSHW remains unverified primary sources
— such as individuals discussing OSHW — it is difficult to maintain
as high a degree of scientific rigor as had there been a large amount
of peer-reviewed data to rely on.

The goal of this section is to highlight the attributes of OSS that
are relevant for OSHW, as well as bringing up what academic re-
search there is on OSHW and “filling in” as much as possible with
non-academic sources.

One potential issue with the non-academic sources is their volatil-
ity; many of the sources only exist as an online blog post that may
be removed for little or no reason (in contrast to a published article
which is generally archived and stored for a longer period). In order
to preserve the usefulness of this report in the event that some of the
non-academic content becomes unavailable, the core of the content
referred to will be quoted and contained in this report; increasing the
useful lifespan of this document.

2.1 open source software

OSS is a concept that has very widely varying acceptance and beliefs,
and is often hotly argued for or against, ranging from;

Linux [and OSS with a reciprocal license] is a cancer that
attaches itself in an intellectual property sense to everything it
touches

(Steve Ballmer, CEO of Microsoft [6])

to;

Software is like sex: it’s better when it’s free.
(Linus Torvalds, founder and current project coordina-

tor of Linux [11])

The very varied and often emotionally laden opinions that individ-
uals hold stems from (among others) the disruption of previously
held notions of property and rights. Weber [34, p. 16] describes this

7

8 theory

as “Property in open source is configured fundamentally around the right
to distribute, not the right to exclude”. To wit, the concept of OSS cen-
ters around the right for anyone to study, modify, and redistribute
software, without cost, to anyone, and for any purpose.

Weber [34] gives some background to this by writing that for the
early computing systems in the 1950’s there was no distinction be-
tween machine code and source code. Machine code — the fundamental
instructions executed by a computer — is easy enough to write for
small and compact programs, but as the complexity increases it be-
comes difficult to write directly (and is very rarely used today in
desktop PC’s). Source code is an intermediate descriptor that is eas-
ier for humans to use when describing instructions that would be
very complex using the limited set of instructions available in ma-
chine code. The source code can then be translated (or compiled) in a
one-way process to machine code for execution.

As time progressed more sophisticated programming languages
and compilers were developed by computer scientists, making it feasi-
ble to develop more complex programs. At the same time, this made
improving or otherwise altering software dependent on access to its
source code, as the compilation process is one-way and is not very
effectively reversible. This made it very difficult to modify software
unless the source code was distributed along with the machine code.

In the early days when software was developed at academic institu-
tions source code was very often freely distributed, but this changed
over time and today a very large amount of software is released under
closed source licenses, where only the machine code is available (well
known examples are the Microsoft Windows operating system, their
Office software package, and Apple’s OS X and iOS operating sys-
tems for desktop and mobile devices). The source code is viewed as a
very important Intellectual Property (IP) asset and is fiercely guarded.
At the same time, a significant amount of software is released under
an open source license, which requires that the source code be dis-
tributed along with the machine code to allow for the user to study,
modify, and redistribute the source and machine code.

There is no “one true” definition of OSS, with different groups defin-
ing OSS in slightly different ways. The Open Source Initiative (OSI), an
organization that promotes OSS, defines OSS as software that is sup-
plied under a license that complies with the following criterion[2];

1. Free Redistribution

The license shall not restrict any party from selling or giving
away the software as a component of an aggregate software
distribution containing programs from several different sources.
The license shall not require a royalty or other fee for such sale.

2. Source Code

2.1 open source software 9

The program must include source code, and must allow distri-
bution in source code as well as compiled form. Where some
form of a product is not distributed with source code, there
must be a well-publicized means of obtaining the source code
for no more than a reasonable reproduction cost preferably, down-
loading via the Internet without charge. The source code must
be the preferred form in which a programmer would modify
the program. Deliberately obfuscated source code is not al-
lowed. Intermediate forms such as the output of a preprocessor
or translator are not allowed.

3. Derived Works

The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the
license of the original software.

4. Integrity of The Author’s Source Code

The license may restrict source-code from being distributed in
modified form only if the license allows the distribution of "patch
files" with the source code for the purpose of modifying the pro-
gram at build time. The license must explicitly permit distribu-
tion of software built from modified source code. The license
may require derived works to carry a different name or version
number from the original software.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group
of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the
program in a specific field of endeavor. For example, it may
not restrict the program from being used in a business, or from
being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom
the program is redistributed without the need for execution of
an additional license by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the
program’s being part of a particular software distribution. If
the program is extracted from that distribution and used or dis-
tributed within the terms of the program’s license, all parties
to whom the program is redistributed should have the same
rights as those that are granted in conjunction with the original
software distribution.

10 theory

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is
distributed along with the licensed software. For example, the
license must not insist that all other programs distributed on
the same medium must be open-source software.

10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual
technology or style of interface.

Rosen [29] describes many of the numerous licenses that OSS can be
released under, and groups them primarily into two types;

academic licenses which allow using the source code for any
purpose without any obligation for the licensee to distribute
the derivative work under an open source license, for example
allowing a company to use open source software in a closed
source proprietary program.

reciprocal licenses also allow for using the source code for any
purpose, but require the derivative work to be distributed under
the same license (and thereby making the source code freely
available to those who use the derivative work).

The BSD license [7] is one example of an academic license, it was
developed at the University of California when in need of a license to
use when distributing software to the public.

The GNU GPL [9], developed at the Free Software Foundation1, is
an example of a widely-used reciprocal license. The reciprocity of
this license is what Steve Ballmer refers to when stating that “Linux
is a cancer [. . .]” in the quote at the start of this section.

The above description only briefly touches on the many subtleties
present in the many OSS licenses available (all with varying degrees
of rights). Feller et al. [17], Von Hippel [33], Weber [34], Rosen [29]
offer a more thorough study of OSS licenses and what they imply with
regards to those who develop and/or use OSS.

Bonaccorsi and Rossi [16] consider the behavior of individuals con-
tributing to OSS and ask (among others);

• why do people contribute to OSS if they are not paid for it, and

• how do people spread over the entire globe manage to co-ordinate
their development work without a traditional hierarchical struc-
ture?

The thought of developing software without monetary compensation
may seem strange, as Glass [19] puts it;

1 See http://www.fsf.org/.

http://www.fsf.org/

2.1 open source software 11

I don’t know who these crazy people are who want to write,
read and even revise all that code without being paid anything
for it at all.

Lerner and Tirole [24] describe a few non-monetary reasons for peo-
ple to contribute to projects, such as; an improved reputation leading
to an increased status and attention among peers and corporations;
an increased ability to acquire venture capital; and receiving credit
for contributions to a project.

Bonaccorsi and Rossi [16] list some slightly different reasons, firstly
arguing that releasing software under an OSS license gives some in-
tellectual gratification — having solved a problem, why not release
the software so that others can concentrate on other problems rather
than reinventing the wheel? For larger projects with multiple col-
laborators contributing leads to an increased reputation and prestige,
leading to a strong and visible community. Bonaccorsi and Rossi [16]
continue by describing that contributers often regard programming
as an art form, where solving complex problems gives immense sat-
isfaction. Finally, the pleasure of creativity is listed as an important
aspect, where “[in] the commercial world, the nightmare of delivery dead-
lines is transforming production into an assembly line”. Developers that
are pressured to do work they feel is substandard, crude, or ugly can
instead express themselves though OSS by developing software in a
way that is more satisfying for themselves.

Bonaccorsi and Rossi [16] continue by stating that for larger OSS

projects, the community of developers both ties together the project as
well as generates a dynamic hierarchy that changes over time, unlike
proprietary projects where a clear project leader is often designated
initially. Ghosh and Prakash [18] estimate that 10% of the developers
write over 70% of the source code, where this concentration of de-
velopment work leads to a project leaders growing from the bottom
up.

The ability to write modular source code is also credited by Bonac-
corsi and Rossi [16] as a critical factor for developers to be able
to be in completely different countries and yet be able to collabo-
rate on a project. Far from being a monolithic whole, most OSS is
written in modular sections with clearly defined methods of inter-
communication, modules that can even be re-used between entirely
different programs. Weber [34], Bonaccorsi and Rossi [16] both credit
the Internet for being critical for the coordination of OSS projects,
where email listings and newsgroups are publicly available to allow
both long-time and completely new developers to have an equally
clear view of the current status of a project, such as features that are
under development, bug-fixes that are underway, and proposals for
new designs.

OSS has shown itself to be more than an academic thought exper-
iment, it is today very wide-spread and used in a large range of sit-

12 theory

uations from simple developer utilities, to office software suites like
OpenOffice2, and entire operating systems such as Linux and BSD
variants. The use of OSS is far from simple fringe cases of hobbyist
programmers playing around in their free time; over 65% of the web-
server market is powered by OSS and run on open source software
operating systems3, the open source Linux-based Android operating
system developed by Google powered 75% of all smart-phones in
2012

4, and nearly 94% of the top 500 supercomputers run applica-
tions on a Linux operating system5.

2.1.1 Business Models in Open Source Software

Krishnamurthy [23] and Hecker [21] list some applicable business
models for companies whose products center (more or less) around
OSS. In particular, Hecker [21] lists strategies of (among others);

support sellers who can make a profit on media distribution,
branding, training, consulting, custom development, and sup-
port of OSS. Red Hat6 is one company that primarily works
with this method (whose most well-known product is their Fe-
dora Linux variant) and in 2012 had a yearly revenue of $1.13

billion.

loss leaders allow a subset of a company’s products to be re-
leased under an OSS license, with more advanced or customized
products available under other, proprietary, licenses.

widget frosting can be applicable for companies working primar-
ily with hardware where the drivers and interfaces for their
hardware is released under an OSS license, allowing for the
use of their hardware in situations beyond their first-party sup-
ported applications.

accessorizing may be useful for companies distributing books,
computer hardware, and other physical items associated with
or supportive of OSS.

sell it, free it where a company initially releases its software un-
der a closed source license, and eventually converts it to OSS

when appropriate. For example, the source code for the game
engine for the immensely popular Quake III computer game
was released7 under an OSS license approximately five years

2 See http://www.openoffice.org/.
3 See http://news.netcraft.com/archives/category/web-server-survey/ and
http://w3techs.com/technologies/overview/operating_system/all.

4 See http://www.idc.com/getdoc.jsp?containerId=prUS23771812.
5 See http://www.top500.org/statistics/overtime/.
6 http://www.redhat.com/

7 And is available at ftp://ftp.idsoftware.com/idstuff/source/quake3-1.32b-

source.zip.

http://www.openoffice.org/
http://news.netcraft.com/archives/category/web-server-survey/
http://w3techs.com/technologies/overview/operating_system/all
http://www.idc.com/getdoc.jsp?containerId=prUS23771812
http://www.top500.org/statistics/overtime/
http://www.redhat.com/
ftp://ftp.idsoftware.com/idstuff/source/quake3-1.32b-source.zip
ftp://ftp.idsoftware.com/idstuff/source/quake3-1.32b-source.zip

2.2 open source hardware 13

after the initial game release, generating massive interest and
spawning several new games based on the old game engine8.

Krishnamurthy [23], Weber [34] highlight the importance of maintain-
ing good relations with the community that develops the OSS parts of
the product — though the community is not (usually) driven by profit
there is a great interest in making the product, and the OSS sections of
it in particular, available to as broad an audience and as wide an ap-
plication range as possible. As Krishnamurthy [23, p. 4] writes, “[the
community] wants any interested developer to have access to the entire code
so that the person can tinker with it to make improvements”.

2.2 open source hardware

The OSHW concept has largely been born from the same philosophical
concept that OSS was constructed from; the freedom of redistribution
of verbatim copies, access to source files, and the right for others to
freely distribute derivative versions of the device. OSHW differs from
OSS in that it focuses on hardware — physical artifacts — rather than
immaterial source code.

One description of OSHW9 is, as per the Open Source Hardware
Statement of Principles and Definition v1.0[1];

Open source hardware is hardware whose design is made
publicly available so that anyone can study, modify, distribute,
make, and sell the design or hardware based on that design. The
hardware’s source, the design from which it is made, is available
in the preferred format for making modifications to it. Ideally,
open source hardware uses readily-available components and
materials, standard processes, open infrastructure, unrestricted
content, and open-source design tools to maximize the ability
of individuals to make and use hardware. Open source hard-
ware gives people the freedom to control their technology while
sharing knowledge and encouraging commerce through the open
exchange of designs.

Though the term OSHW is relatively modern, the concept of publicly
releasing designs so that others can further build upon them is not
new — one of the fundamental bases of the scientific theory is the
ability for others to be able to replicate the results of experiments,
both for the validation of original results as well as for furthering
development.

Though OSHW shares many philosophical attributes with OSS, there
are several practical differences between the two which are often cited
as potential problems for the wide-spread adoption of OSHW. The

8 For example, ioquake3 http://ioquake3.org/.
9 One description among many, where most are at least philosophically like-minded.

http://ioquake3.org/

14 theory

most commonly cited issues (Thompson [30], Acosta [14], Torrone
[32]) can typically be grouped into the following categories ;

distribution costs Though software can be widely distributed
at next to no cost over the Internet, hardware has intrinsic dis-
tribution and storage costs.

automated updating Software updates can be distributed and
applied automatically over the Internet, while changing hard-
ware involves physically replacing sections and/or an entire
unit, which is neither automatic nor free of cost.

expensive equipment Software development typically has limited
hardware requirements, only requiring access to a personal com-
puter and the device the program is intended for. Personal com-
puters are relatively inexpensive and within the reach of nearly
all individuals in industrialized countries. Electrical hardware
development can have extensive equipment requirements, and
though most equipment is within the economic range of compa-
nies, this may not be the case for amateur and semi-professional
developers[32]. Though Ghosh and Prakash [18] found that 90%
of the OSS projects they studied were developed by only one or
two authors, Bonaccorsi and Rossi [16] note that the community
of developers around OSS projects is critical for their survival.
The same may also apply for OSHW projects, making the cost of
equipment a potentially important factor.

heterogeneous design software Source code for nearly all pro-
gramming languages is written in text format and stored in
plain-text files that can be opened by nearly any platform with-
out any proprietary applications. Electrical hardware develop-
ment is done in a multitude of different competing Computer
Aided Design (CAD) programs, nearly all of which use their
own file format and many of which are expensive to purchase.
Though the different CAD drawings can often be exported to
generic file formats that can be used without exotic software
these files are not easily modified and any changes cannot be
applied to the original file.

version merging As software source code is nearly always writ-
ten in text format, automated version difference checking is fea-
sible and often used10 when merging different branches of soft-
ware versions. This is in contrast to electrical hardware develop-
ment where very few CAD programs offer merge functionality
(also requiring the developers to use the same CAD software).
This is further exacerbated when working with Printed Circuit
Board (PCB) CAD, where it is nearly impossible to automatically

10 See http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html.

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html

2.2 open source hardware 15

merge two or more different designs without extensive rework-
ing.

weak licenses There are many licenses available for OSS, both aca-
demic and reciprocal, that have been upheld in courts[22]. Most
reciprocal licenses use copyright law for enforcement of terms;
by failing to abide by the terms stated, the user has no right
to use the source code and can be convicted of copyright in-
fringement. Many of the components of an OSHW design are
not protected by copyright, such as a specific circuit design or
component choice. This has caused most OSHW licenses to be
more similar to academic licenses, allowing others to essentially
do anything with the source files. This is not always desirable,
reciprocal licenses in software are very popular — the Linux
kernel for example is released under a reciprocal license11 and
Linus Torvalds, the founder of Linux, has stated “Making Linux
GPL’d was definitely the best thing I ever did”12. One of few options
available for OSHW licenses to be more reciprocal is through the
use of patent licensing, the TAPR Open Hardware License[3]
requires “... those who benefit from an OHL design may not bring
lawsuits claiming that design infringes their patents or other intel-
lectual property.” It may be possible to construct other licenses
where the patented sections of a design are only permitted to be
used if derivative versions are released under the same license,
thereby using patents instead of copyright as an enforcement
mechanism. Boettiger and Burk [15] give an example of this in
the biotechnology field, where certain research tools and tech-
niques are released under a reciprocal license. Patent protection
is not a complete substitute for the copyright protection that OSS

receives, as it requires active work to apply for and maintain a
patent, requires an inventive step, and is relatively expensive.

compliance requirements OSS development for non safety-critical
and non-medical applications can generally be done without
compliance testing. Selling and distributing electrical hardware
however requires adherence to regulations such as Electromagnetic
Compatibility (EMC) limitations, Restriction of Hazardous Sub-
stances Directive (RoHS), and CE marking directives as applica-
ble in Europe and by the Federal Communications Commission
(FCC) in the United States. Regulation compliance testing can be
very expensive, and beyond the abilities of amateur and semi-
professional developers.

11 See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

COPYING.
12 See http://web.archive.org/web/20070210224351/http://hotwired.goo.ne.jp/

matrix/9709/5_linus.html.

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/COPYING
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/COPYING
http://web.archive.org/web/20070210224351/http://hotwired.goo.ne.jp/matrix/9709/5_linus.html
http://web.archive.org/web/20070210224351/http://hotwired.goo.ne.jp/matrix/9709/5_linus.html

16 theory

supplier dependence Software, being an intangible entity and es-
sentially only information, does in itself require any suppliers.
In practice, software development requires development hard-
ware such as a PC and supporting software such as a compiler
and an Integrated Development Environment (IDE). However,
these are available from a broad range of suppliers and software
written for widely-used platforms is at no major risk of obsole-
tion in the foreseeable future. OSHW devices however are typ-
ically constructed from numerous parts, and though some are
commonly available from multiple distributors (such as 7400-
series digital logic13) many parts are only available from a sin-
gle supplier without any equivalent replacement (such as mi-
croprocessors, which are often produced by a single manufac-
turer; replacement would entail extensive modification to both
the electrical design and software running on the microproces-
sor).

Though these attributes may seem to be unsurmountable disadvan-
tages, Acosta [14] describes several business models that are appli-
cable for OSHW businesses, and there are many companies that have
become highly successful with business models where nearly all of
their output is OSHW.

Acosta [14] describes applicable business models for companies
working with OSHW that are nearly identical to those presented for
OSS in 2.1.1. Described business models include OSHW adaptions of
the previously mentioned support sellers, loss leaders, and widget
frosters.

Creators and distributors of a broad range of electronic modules
for hobbyist and prototyping purposes are one of groups [4, 8] of
companies that have been successful; SparkFun Electronics had a staff
of 115 and a revenue of $27.5 million during 2011[26].

Designers and manufacturers of single devices are another group
that have achieved a high level of success in some regions; the Ar-
duino, a low-cost and simple programmable microcontroller board
primarily intended for hobbyists and non-programmers, has sold over
300,000 units and spawned a broad range of accessories[31]. The
Raspberry Pi, a small very low-cost single-board computer originally
intended for teaching computer science in schools, has sold over
700,000 units in only one year since its release in February 2012[20].

Though the success of the aforementioned companies and products
may or may not be due to their adoption of an OSHW-oriented busi-
ness model, their success proves at the very least that adopting an
OSHW-centered business model can be successful.

13 An historically important family of Transistor-transistor logic (TTL) Integrated
Circuit (IC) still used and widely available today.

Part II

M E T H O D O L O G Y & R E S U LT S

3
M E T H O D O L O G Y

As was noted in Chapter 2 there is a lack of empirical research into
the viewpoints and attitudes of developers and users of OSHW, with
most literature instead considering hypotheticals and drawing com-
parisons to studies on OSS.

In an attempt to remedy this lack of empirical data an online sur-
vey has been conducted, targeting individuals with a background or
interest in embedded electronics. Another survey has also recently
been conducted studying participation in OSHW [12], focusing on
user’s behavior and contribution. The survey conducted in associ-
ation with this report instead focuses on the different perceptions
and attitudes that individuals have of OSHW, spread across five dif-
ferent demographic groups, and is tailored for the specific research
questions studied in this report.

In addition to the survey two interviews have been conducted, one
with an embedded electronics company working with an OSHW work-
flow, and one with a relatively similar company working with a more
traditional process. The goal of the interviews is to give some addi-
tional background when analyzing the responses to the survey, hope-
fully shedding more light on subtle aspects of the responses.

3.1 survey

The behavior and attitude of developers and users of OSHW — the
community that often develops and sustains it — is as important to
study as the companies that work with OSHW. Understanding the rea-
sons that developers and users contribute to and choose to use OSHW

is crucial. A relatively simple online survey was administered to an
audience with a background and/or interest in embedded electronics,
primarily readers of the online magazine hackaday[10]. The survey
audience was intentionally chosen to be individuals with previous
knowledge of OSHW, as many of the questions relate to their experi-
ences of OSHW. This does add a risk of self-selection bias, in that only
those who persue OSHW chose to conduct the survey, which is ex-
panded on in Chapter 5. Section 3.3 lists the questions and response
choices presented in the survey.

3.2 interviews

The goal of conducting interviews with two successful companies
targeting roughly the same market (embedded electronics modules),

19

20 methodology

one with an OSHW work-flow, and one without, is to highlight the
relative benefits and drawbacks that each style generates. The two in-
terviewed companies are SparkFun Electronics “[. . .] an online retail
store that sells the bits and pieces to make your electronics projects possi-
ble.”1 and Pololu Corporation “[selling] small electronics modules for
robot and motion control.”2. These companies were chosen for their
similarities; developing and selling devices in roughly the same field,
with a similar company size of 115 employees at SparkFun and 45 at
Pololu (as of 2013), and both with knowledge and thoughts of OSHW.
For the purpose of the interview the main differences highlighted are
their perception towards and plans for OSHW; where SparkFun Elec-
tronics has extensively placed their products under an OSHW license,
while Pololu has maintained a more traditional work-flow and has
not released the inner workings of their devices.

Maker Media, owner of the MAKE magazine3 has previously con-
ducted an interview with Jan Maléšek of Pololu where many relevant
questions were discussed; this interview is used as a base for the brief
interview with Pololu conducted in connection with this report.

The two interviews conducted for the purpose of this report were
done through an e-mail medium and full transcripts, both from the
interview MAKE magazine conducted as well as the two conducted
in connection with this report, are shown in Section A.1, Section A.2,
and Section A.3.

Though there are several companies working within the same field
as Pololu and SparkFun Electronics, adopters of OSHW or otherwise,
scope limitations limit the number of interviews that can be done.
Some examples of other successful companies working with OSHW

(that may be useful to study when considering further research) are
Adafruit Industries [4], the Arduino group [5], and Evil Mad Science
LLC [8].

1 http://www.sparkfun.com

2 http://www.pololu.com

3 http://blog.makezine.com

http://www.sparkfun.com
http://www.pololu.com
http://blog.makezine.com

3.3 survey questions 21

3.3 survey questions

The survey, presented to those who participated as described in Sec-
tion 3.1, follows in near-verbatim (with only stylistic changes necessi-
tated by adapting from a web-based format to a paper format).

Each shaded box below corresponds to one web page as seen by
the survey participants.

Open source hardware survey

This quick, 5-minute survey, aims to study the way Open Source Hardware
(referred to as OSHW, see https://en.wikipedia.org/wiki/Open_source_

hardware) is used and created. The goal of this survey is to aid a Master’s
thesis studying the regions where electronics firms can sustain themselves
with OSHW.

This survey is primarily targeted towards people with some prior experience
with electrical OSHW projects, such as the Arduino, Raspberry pi, or any
project you may have made yourself. In this survey some comparisons are
made to proprietary devices, which in this setting means any device where
the source documents (design calculations, CAD drawings, PCB artwork,
and so on) are not freely distributed. Think of devices like an ordinary
notebook computer, an alarm clock, or audio amplifier.

The entire survey is completely anonymous and only aggregate data will be
publicly released.

Thank you for your time and input,
Jonathan Lock
http://www.rabidmantis.se

OSHW Usage

Have you used an or several OSHW device(s) within the past year?

• Yes (continue)

• No (go to OSHW Development)

• Unsure (go to OSHW Development)

https://en.wikipedia.org/wiki/Open_source_hardware
https://en.wikipedia.org/wiki/Open_source_hardware
http://www.rabidmantis.se

22 methodology

OSHW Usage (contd.)

In which setting did you use the OSHW device? (If both, please do this survey
twice, once for each choice).

• Personal, educational, or noncommercial

• Commercial

In which way(s) have you used OSHW device(s)? (Check all that apply)

• Directly, as a finished product, with next to no modifications

• With relatively minor adjustments (such as minor code changes or
component substitution)

• With relatively large changes (such as a near complete code rewrite
or PCB changes)

• As a base to design a completely different device (such as re-using
small amounts of code or duplicating schematic or PCB sections)

• Other: .

Would you have been able to use an otherwise equivalent proprietary solution to
solve the same problem(s)?

• Always

• Most of the time

• Sometimes

• Rarely

• Never

• Unsure

• Other: .

3.3 survey questions 23

OSHW Development

Have you contributed to or started OSHW project(s) within the past year?
(A publicly available or published project; available online, in a magazine,
or elsewhere)

• Yes (continue)

• No (go to OSHW in general)

• Unsure (go to OSHW in general)

OSHW Development (contd.)

In which form have you contributed to the project(s)? (Check all that apply)

• Started personally or in a group

• A major contribution to an already existing project (such as an archi-
tectural code rewrite or a change that required extensive discussion)

• A minor contribution to an already existing project (such as a minor
code bug-fix or a change that does not require much discussion)

• Other: .

Have other people used/modified/hacked with the project(s) you started or
contributed to after publication? (Check all that apply)

• Yes

• Unsure, but people have considered / discussed doing it

• Unsure, but probably

• Unsure

• No

• Other: .

Why did you contribute/start the project? (Check all that apply)

• To be able to use the updated project to solve an immediate problem

• As an educational activity

• As a hobby (for the lulz)

• Other: .

24 methodology

OSHW in General

In general, in your experience, how would you rate a simple (such as a
DC/DC converter module, Arduino shield, headphone amplifier, or similar)
OSHW device and proprietary device solving the same problem as in <Table
1 on page 24>?

In general, in your experience, how would you rate a complex (such as a cell
phone, raspberry pi, autonomous helicopter, or similar) OSHW device and
proprietary device solving the same problem as in <Table 1 on page 24>?

In your experience, how much value do you place on the attributes of OSHW
as in Table 2 on page 25?

Do you have any other thoughts on the various benefits and drawbacks of
OSHW compared to proprietary solutions?

• .

O
SH

W
cl

ea
r

w
in

ne
r

O
SH

W
sl

ig
ht

ly
be

tt
er

R
ou

gh
ly

eq
ua

lly
go

od

Pr
op

ri
et

ar
y

sl
ig

ht
ly

be
tt

er

Pr
op

ri
et

ar
y

cl
ea

r
w

in
ne

r

U
ns

ur
e

Functionality (what it can do)

Stability (how well engineered
and thought-through the device

is)

Cost (for an equivalent
product)

Documentation (how clearly
described it is to use)

Support (how easy it is to get
help if something goes wrong)

Gut feeling (all in all, your
preference in total)

Table 1: Rating table for OSHW and proprietary devices.

3.3 survey questions 25

Ve
ry

im
po

rt
an

t

Sl
ig

ht
ly

im
po

rt
an

t

N
ei

th
er

im
po

rt
an

t
no

r
un

im
po

rt
an

t

So
m

ew
ha

t
un

im
po

rt
an

t

C
om

pl
et

el
y

un
im

po
rt

an
t

The ability to see the way a
project works (electrical

schematic, component choices,
PCB layout, and so on)

The ability to modify a project
(such as altering the program

code or changing the PCB
layout)

The ability to reuse parts of a
project as a reference for own

designs (such as re-using small
amounts of code or duplicating

schematic or PCB sections)

The philosophical and ethical
aspects of OSHW (the

perceived net benefit to society
by designs and their derivatives

being available to the public)

Table 2: Rating table for OSHW values.

26 methodology

Your background

What is your educational background?

• Some high school

• Finished high school

• Some college/university (without any degree)

• Finished bachelor’s degree or equivalent

• Finished master’s degree or equivalent

• Finished PhD or equivalent or higher

What is your age?

• Under 15

• 15 to 18

• 19 to 22

• 23 to 27

• 28 to 33

• 34 to 39

• 40 to 47

• 48 to 57

• 58 to 68

• Over 68

Where are you from? (Choose the region you feel most accurately describes
your background)

• Africa

• Asia

• Australia

• Europe

• North America

• South America

4
R E S U LT S

The results of the survey described in Section 3.1 is contained in this
section, together with a brief analysis of the results on a question-
by-question basis. A more broad and comprehensive analysis of the
results is performed in Chapter 5. The numerical values that underly
each graphic are listed in Table 4 on page 97 (in Appendix B). As
part of the survey, some users added an optional comment. These
comments are listed in Section B.1 and analyzed in Chapter 5.

The survey was made publicly available on the Internet and re-
ceived responses from 2013-02-24 through 2013-03-25. The survey
was was publicly seen in several locations, however, the vast ma-
jority of the responses collected originated from viewers of hacka-
day [10]. Approximately 420 responses (over 90%) came from par-
ticipants through from hackaday [10], with the remainder, a 30-odd
participants, from AVR Freaks1, Svenska Elektronikforumet2, and per-
sonal contacts. These sources were all largely similar in their distri-
bution of responses and no distinction has been made in the analysis
of the data regarding the different response sources.

Five different participant groups have been identified as taking part
in the survey;

noncommercial users Who use but do not develop projects and
devices for their own, educational, or non-profit purposes.

noncommercial developers Who develop (by modifying exist-
ing devices or creating something from scratch) for their own,
educational, or non-profit purposes. Individuals in this group
may also be noncommercial users.

commercial users Who use but do not develop devices for com-
mercial (for-profit) purposes.

commercial developers Who develop devices (by modifying ex-
isting devices or creating something from scratch) for commer-
cial (for-profit) purposes. Individuals in this group may also be
commercial or non-commercial users.

inexperienced individuals Who do not have any experience us-
ing or developing OSHW devices at all.

1 An online community primarily centered on Atmel’s AVR family of microprocessors,
available at http://www.avrfreaks.com.

2 A Swedish internet forum primarily targeting hobbyists for the discussion of elec-
tronics and related subjects, available at http://elektronikforumet.com.

27

http://www.avrfreaks.com
http://elektronikforumet.com

28 results

All of the results are shown in Figure 2 on page 32 through Figure
24 on page 51. The responses are divided into the aforementioned
participant groups and shown side-by-side for comparison.

In some of the questions posed some participants chose not to an-
swer. This causes the sum of the number of answers chosen for that
question to be less than 100% of that participant’s group size, and is
shown in the figures as a white space (such as in Figure 7 on page 38,
seen most clearly for the commercial users, where some 5-10% chose
not to answer). Additionally, in some questions there was an “other”
response option where the user could add a custom response should
none of the other response choices be applicable. There were very few
who elected to use this option3, and for the sake of simplicity these
responses have been ignored from all analysis. For increased read-
ability, the “other” choices are not shown in the question excerpts in
the following sections.

Due to the asymmetric distribution of individuals in each partici-
pant group — varying from 271 to 12 — the relative confidence of
statistical certainty for the answers in each group varies greatly. For
questions with binary response choices, such as “Have you directly
used an OSHW device?” (paraphrased from the second question in
the OSHW Usage section), a 95% (±2σ) confidence interval has been
calculated. This applies to Figure 1 on page 31, Figure 3 on page 33,
Figure 4 on page 34, and Figure 5 on page 35 and is illustrated with
thin red bars signifying the statistical certainty of the results — the
“true” value (the value that would be found with an infinitely large
sample group) lies somewhere within the bounds of the red bar.

The confidence interval is calculated by using the normal approxi-

mation interval, which states that p = p̂± z1− 1
2 α

√
1
n p̂ (1 − p̂), where p

gives the range of true values for the measurement, p̂ is the measured
value, z1− 1

2 α is the 1 − 1
2 α percentile of a standard normal (Gaussian)

distribution, α is the error percentile, and n is the number of individ-
uals in the participant group [28]. In this case, with a 95% confidence
interval, α = 0.05 and z1− 1

2 α ≈ 1.96.
This calculation assumes a normally distributed sample group and

a sample size that is large enough. (A rough rule-of-thumb states
that if np̂ > 5 and n (1 − p̂) > 5 the sample size is large enough). In
this case, neither of these attributes can be said to be true — there is
nothing to say the audience is a unbiased independently chosen set
of individuals, and for some questions np̂ = 1.2 � 5. This makes the
confidence intervals shown useless for statistical inferences, though
they can still be used for the intuitive benefit of the reader4. In short,
the error bars are useful when eyeballing the figures to get a sense of

3 Most of the responses in the “other” category were non-responses, such as “hard to
say” and similar formulations.

4 This is also why the relatively crude normal approximation interval method is cho-
sen, rather than a more sophisticated method of calculating the confidence interval.

4.1 terms used in results 29

Table 3: Number of individuals in each participant group.

Participant group Sample size Proportion of survey

Noncommercial user 271 59.7%

Noncommercial developer 103 22.7%

Commercial user 17 3.7%

Commercial developer 12 2.7%

Inexperienced participant 51 11.2%

Total participants 454 100%

accuracy, but should not be used to draw sensitive statistical con-
clusions!

For non-binomial result types (such as where the user rates an at-
tribute on a scale with several choices) a confidence interval is not
shown, as this would make the graphical plots very unclear without
adding any immediate benefits.

Table 3 on page 29 lists the number of responses in each participant
group. In general, there are more users than developers, and more
in the non-commercial group than the commercial group. When an-
alyzing the results, keep in mind that the commercial users and de-
velopers are of a relatively small sample size, making the confidence
interval relatively coarse.

4.1 terms used in results

Due to space constraints, some terminology is used in the presented
results.

In Figure 1 on page 31 though Figure 24 on page 51, the five dif-
ferent participant groups; noncommercial users, noncommercial de-
velopers, commercial users, commercial developers, and individuals
with no prior experience of OSHW are referred to as “NC user”, “NC
dev.”, “C user”, “C dev.”, and “No Exp.” respectively.

In Figure 6 on page 37 through Figure 17 on page 44, which lists
the results from the questions in Table 1 on page 24, the six response
categories “OSHW clear winner”, “OSHW slightly better”, “Roughly
equally good”, “Proprietary slightly better”, “Proprietary clear win-
ner”, and “Unsure” are referred to as “OSHW++”, “OSHW+”, “Equal”,
“Prop. +”, “Prop ++”, and “Unsure” respectively.

In Figure 18 on page 46 through Figure 21 on page 48, which list
the results from the questions in Table 2 on page 25, the five response
categories “Very important”, “Slightly important”, “Neither impor-
tant nor unimportant”, “Somewhat unimportant”, and “Completely
unimportant” are referred to as “Very imp.”, “Slightly imp.”, “Nei-
ther”, “Slightly unimp.”, and “Comp. unimp.” respectively.

30 results

4.2 open source hardware usage

The first part of the study involves looking at how OSHW is used
and contains responses from all participant groups other than those
with no prior experience of OSHW. The collected answers to the first
question;

In which way(s) have you used OSHW device(s)? (Check all that apply)

• Directly, as a finished product, with next to no modifications

• With relatively minor adjustments (such as minor code changes or
component substitution)

• With relatively large changes (such as a near complete code rewrite
or PCB changes)

• As a base to design a completely different device (such as re-using
small amounts of code or duplicating schematic or PCB sections)

are shown in Figure 1 on page 31, with 95% confidence intervals
shown with red bounding lines.

Though the small sample size of the commercial user and commer-
cial developer groups make it difficult to draw very many inferences,
some statistically significant results are;

• OSHW is for the most part used directly “as-is” or with relatively
minor changes, both among developers and users. Commercial
developers are more likely than non-commercial developers to
use various parts of an existing design when making something
new.

• The sum of all responses for the non-commercial users is ap-
proximately 1.9; meaning that the average non-commercial user
of OSHW has used OSHW in slightly below two of the ways listed
in the question. As all but one of the responses involves some
development work, the average non-commercial user is also,
to some extent, a developer. Due to the small sample size, it
cannot be said whether or not this is also true for commercial
users.

• Noncommercial users (and possibly commercial users as well)
are most likely to use a device as-is or with relatively minor
changes, while developers are more likely to modify or use de-
vices as a reference for other development work.

4.2 open source hardware usage 31

Direct use Minor changes Large changes As a base
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
a
ti
o
 o

f
u
s
e
rs

Useage of OSHW devices

NC user

NC dev.

C user

C dev.

Figure 1: Responses to survey question “In which way(s) have you used
OSHW device(s)?”.

The responses to the second question;

Would you have been able to use an otherwise equivalent proprietary solution to

solve the same problem(s)?

• Always

• Most of the time

• Sometimes

• Rarely

• Never

• Unsure

are shown in Figure 2 on page 32 with the response choices pre-
sented in a stacked format.

In general, commercial users and developers reported an increased
ability to use proprietary equivalents, while noncommercial users
and developers more often found there were fewer proprietary equiv-
alents available. Interestingly, both developers groups displayed a re-
duced ability to use proprietary equivalents, while both users groups
were more able to use proprietary equivalents. The largest disparity
between groups is the noncommercial developers and the commer-
cial users, who found it the most difficult and the most easy to use a
proprietary equivalent respectively.

32 results

NC user NC dev. C user C dev.

R
a
ti
o
 o

f
u
s
e
rs

Ability to use proprietary equivalent

Always

Mostly

Sometimes

Rarely

Never

Unsure

Figure 2: Responses to survey question “Would you have been able to use an
otherwise equivalent proprietary solution to solve the same prob-
lem(s)?”.

4.3 open source hardware development 33

4.3 open source hardware development

The second part of the study inspects the way that developers have
contributed to their OSHW projects. Due to the nature of the questions,
responses only exist for noncommercial and commercial developers.
The responses to the question in this section;

In which form have you contributed to the project(s)? (Check all that apply)
• Started personally or in a group

• A major contribution to an already existing project (such as an archi-
tectural code rewrite or a change that required extensive discussion)

• A minor contribution to an already existing project (such as a minor
code bug-fix or a change that does not require much discussion)

are shown in Figure 3 on page 33 with 95% confidence intervals
shown with red bounding lines. Due to the small sample size, no
statistically significant differences can be inferred from the results on
a per-question basis.

Started Major contribution Minor contribution
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
a
ti
o
 o

f
u
s
e
rs

Development involvement

NC dev.

C dev.

Figure 3: Responses to survey question “In which form have you con-
tributed to the project(s)?”.

34 results

The response to the second question in this section;

Have other people used/modified/hacked with the project(s) you started or
contributed to after publication? (Check all that apply)

• Yes

• Unsure, but people have considered / discussed doing it

• Unsure, but probably

• Unsure

• No

is shown in Figure 4 on page 34 with 95% confidence intervals
shown with red bounding lines. In the same way as with the pre-
vious question, the small sample size makes it impossible to draw
statistically significant differences from the results on a per-question
basis.

Used Discussed with others Probably Unsure No
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
a
ti
o
 o

f
u
s
e
rs

Use of project by others

NC dev.

C dev.

Figure 4: Responses to survey question “Have other people used/modi-
fied/hacked with the project(s) you started or contributed to after
publication?”.

The responses to the final question in this section;

Why did you contribute/start the project? (Check all that apply)
• To be able to use the updated project to solve an immediate problem

• As an educational activity

• As a hobby (for the lulz)

are shown in Figure 5 on page 35 with 95% confidence intervals
shown with red bounding lines. This question, in contrast to previous

4.3 open source hardware development 35

questions in this category, does have responses that are statistically
significant on a per-question basis. Commercial developers are more
likely than non-commercial developers to contribute or start a project
to solve an immediate problem, while non-commercial developers
reported that significant contributions are made for hobby purposes
(with no commercial developers choosing this option).

To solve a problem For educational reasons As a hobby
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
 o

f
u
s
e
rs

Reason for contribution

NC dev.

C dev.

Figure 5: Responses to survey question “Why did you contribute/start the
project?”.

In light of this data — non-commercial developers quite frequently
contribute to projects “for fun”, while commercial developers are
more likely than non-commercial developers to contribute to solve
a problem — it is possible to generate broad results based on the
data in, among others Figure 3 on page 33 and Figure 4 on page 34;
this is presented in 5.2.1.

36 results

4.4 open source hardware vs . proprietary hardware

This section of the survey studies the perceived benefits and draw-
backs of various aspects of OSHW compared to proprietary hardware.
This is the first part of the survey where all five participant groups
have been asked questions. The relative strengths and weaknesses of
OSHW are grouped into simple and complex device groups, as formu-
lated below;

In general, in your experience, how would you rate a simple (such as
a DC/DC converter module, Arduino shield, headphone amplifier,
or similar) OSHW device and proprietary device solving the same
problem as in <rating table>?

In general, in your experience, how would you rate a complex (such
as a cell phone, raspberry pi, autonomous helicopter, or similar)
OSHW device and proprietary device solving the same problem as
in <rating table>?

and scored along six different performance metrics, as shown in
the rating table below;

O
SH

W
cl

ea
r

w
in

ne
r

O
SH

W
sl

ig
ht

ly
be

tt
er

R
ou

gh
ly

eq
ua

lly
go

od

Pr
op

ri
et

ar
y

sl
ig

ht
ly

be
tt

er

Pr
op

ri
et

ar
y

cl
ea

r
w

in
ne

r

U
ns

ur
e

Functionality (what it can do)

Stability (how well engineered
and thought-through the device

is)

Cost (for an equivalent
product)

Documentation (how clearly
described it is to use)

Support (how easy it is to get
help if something goes wrong)

Gut feeling (all in all, your
preference in total)

The results of the scoring of these twelve questions follows, divided
into simple devices (in 4.4.1) and complex devices (in 4.4.2). Each
performance metric is shown in a stacked format and divided into
each of the five participant groups.

4.4 open source hardware vs . proprietary hardware 37

4.4.1 Simple devices

Figure 6 on page 37 through Figure 11 on page 40 displays the partic-
ipant perception of simple devices rated by six performance metrics.
Some results are directly apparent from these responses;

• The perception of simple OSHW devices in general is very posi-
tive, Figure 11 on page 40 shows a very high gut feeling among
all users. This is upheld throughout the other metrics as well,
with the average rating among all participants ranging from
“OSHW clear winner” to “Roughly equally good”.

• The cost of OSHW devices is the most favorable metric for sim-
ple devices, while stability and support were the attributes that
OSHW devices fared most poorly with.

• There is a clear disparity among the non-commercial and com-
mercial groups. Commercial users and developers were gen-
erally less inclined towards OSHW devices, especially among
functionality, documentation, and support. In particular, com-
mercial users rated OSHW documentation as significantly poorer
than the rating noncommercial users gave. However, commer-
cial users and developers rated the cost metric even more posi-
tively than noncommercial users and developers.

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Functionality of a simple device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 6: Responses to functionality metric for simple devices.

38 results

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Stability of a simple device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 7: Responses to stability metric for simple devices.

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Cost of a simple device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 8: Responses to cost metric for simple devices.

4.4 open source hardware vs . proprietary hardware 39

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Documentation of a simple device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 9: Response to documentation metric for simple devices.

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Support of a simple device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 10: Response to support metric for simple devices.

40 results

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Gut feeling of a simple device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 11: Response to gut feeling metric for simple devices..

4.4 open source hardware vs . proprietary hardware 41

4.4.2 Complex devices

Figure 12 on page 41 through Figure 17 on page 44 displays the partic-
ipant perception of complex devices rated by six performance metrics.
Some results are directly apparent from these responses;

• Through the responses to the gut feeling metric (Figure 17 on
page 44) were generally positive with a mean response of “OSHW
slightly better” for all participant groups, the responses to four
of the five remaining metrics were significantly poorer (the cost
metric being the exception to this).

• There is a significant degree of relative similarity among the
responses between the simple and complex device categories.
However, the average level is less favorable of OSHW in the com-
plex device category. Two notable aspects are;

– As was the case as for simple devices, commercial users in
particular found the quality of documentation to be worse
than the noncommercial groups.

– Commercial developers in particular are more negative to-
wards complex OSHW devices.

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Functionality of a complex device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 12: Response to functionality metric for complex devices.

42 results

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Stability of a complex device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 13: Response to stability metric for complex devices.

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Cost of a complex device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 14: Response to cost metric for complex devices.

4.4 open source hardware vs . proprietary hardware 43

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Documentation of a complex device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 15: Response to documentation metric for complex devices.

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Support of a complex device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 16: Response to support metric for complex devices.

44 results

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Gut feeling of a complex device

OSHW ++

OSHW +

Equal

Prop. +

Prop. ++

Unsure

Figure 17: Response to gut feeling metric for complex devices.

4.5 importance of open source hardware attributes 45

4.5 importance of open source hardware attributes

This section of the survey looks at the importance of some of the
indirect effects and attributes of OSHW, divided into four groups. The
question as formulated to the participants of the survey was;

In your experience, how much value do you place on the attributes
of OSHW as below?

Ve
ry

im
po

rt
an

t

Sl
ig

ht
ly

im
po

rt
an

t

N
ei

th
er

im
po

rt
an

t
no

r
un

im
po

rt
an

t

So
m

ew
ha

t
un

im
po

rt
an

t

C
om

pl
et

el
y

un
im

po
rt

an
t

The ability to see the way a
project works (electrical

schematic, component choices,
PCB layout, and so on)

The ability to modify a project
(such as altering the program

code or changing the PCB
layout)

The ability to reuse parts of a
project as a reference for own

designs (such as re-using small
amounts of code or duplicating

schematic or PCB sections)

The philosophical and ethical
aspects of OSHW (the

perceived net benefit to society
by designs and their derivatives

being available to the public)

The responses to these attributes are shown in Figure 18 on page
46 through Figure 21 on page 48 and are presented in a stacked for-
mat. For the sake of brevity, the four categories are referred to as
transparency, modification, re-use, and philosophy in the figures.

Some results that can be directly seen in these plots are;

• Nearly all of the four attributes are generally regarded as very
important over all user groups. The ability to re-use parts of a
design as a reference for another project was generally regarded
as the least important, while the abilities of studying the way a

46 results

design works and performing modifications to a design were
regarded as the most important.

• There is a clear difference between the commercial and non-
commercial groups with regards to the philosophy of OSHW.
The commercial users in particular stand out as being differ-
ent, while the four other participant groups have very similar
values. The group of commercial users found the philosophi-
cal aspects of OSHW to be of far less importance than the other
four groups. Some 35% rated the philosophical aspects to be
between “neither important nor unimportant” and “completely
unimportant”, while the average for the other groups is approx-
imately 12.4%.

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Importance of transparency

Very imp.

Slightly imp.

Neither

Slightly unimp.

Comp. unimp.

Figure 18: Response to the importance of transparency attribute.

4.5 importance of open source hardware attributes 47

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Importance of modification

Very imp.

Slightly imp.

Neither

Slightly unimp.

Comp. unimp.

Figure 19: Response to the importance of the modification attribute.

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Importance of re−use

Very imp.

Slightly imp.

Neither

Slightly unimp.

Comp. unimp.

Figure 20: Responses to the importance of the re-use attribute.

48 results

NC user NC dev. C user C dev. No exp.

R
a

ti
o

 o
f

u
s
e

rs

Importance of philosophy

Very imp.

Slightly imp.

Neither

Slightly unimp.

Comp. unimp.

Figure 21: Response to the importance of the philosophy attribute.

4.6 participant demographics 49

4.6 participant demographics

This final section of the survey looks at the demographics of the par-
ticipants. The first question posed to the participants was;

What is your educational background?
• Some high school

• Finished high school

• Some college/university (without any degree)

• Finished bachelor’s degree or equivalent

• Finished master’s degree or equivalent

• Finished PhD or equivalent or higher

whose responses are shown in Figure 22 on page 49. Nearly all
participants in all groups have at least some university or college ed-
ucation. The group of commercial users is particularly well educated,
with over 80% holding a bachelor’s degree or equivalent and some
35% with a master’s degree.

NC user NC dev. C user C dev. No exp.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
 o

f
u
s
e
rs

Educational background of participants

>PhD

>Master

>Bachelor

<Uni.

>High

<High

Figure 22: Survey response to “What is your educational background?”.

50 results

The responses to the second question;

What is your age?
• Under 15

• 15 to 18

• 19 to 22

• 23 to 27

• 28 to 33

• 34 to 39

• 40 to 47

• 48 to 57

• 58 to 68

• Over 68

are shown in Figure 23 on page 51
5. As can be seen, the age span in

all groups is large — from 15-year-olds to those up to 68. Generally,
the most represented group are individuals in the range of 23 to 47

years of age. Developers are generally older than users, and the indi-
viduals in the commercial groups are significantly older than individ-
uals in the non-commercial groups; over half of the non-commercial
users are under 27 years of age, while over half of the commercial
developers are over 34 years of age.

The responses to the final question in this section;

Where are you from? (Choose the region you feel most accurately describes
your background)

• Africa

• Asia

• Australia

• Europe

• North America

• South America

are shown in Figure 24 on page 51. The distribution of responses
is very similar across all participant groups, with North America and
Europe representing approximately 90% of the responses.

5 Note that the response choices are distributed logarithmically; this is intentional
and done in order to increase the ability to discern small age differences for younger
participants.

4.6 participant demographics 51

NC user NC dev. C user C dev. No exp.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

a
ti
o
 o

f
u
s
e
rs

Age of participants

>68

58−68

48−57

40−47

34−39

28−33

23−27

19−22

15−18

<15

Figure 23: Survey response to “What is your age?”.

NC user NC dev. C user C dev. No exp.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
 o

f
u
s
e
rs

Participants’s continent of residence

South America

North America

Europe

Australia

Asia

Africa

Figure 24: Survey response to “Where are you from?”.

Part III

D I S C U S S I O N & C O N C L U S I O N S

5
D I S C U S S I O N

Combining existing research into OSS and OSHW (as brought up in
Chapter 2) with the results found in the survey (as described in Sec-
tion 3.1) and the interviews (as shown in Chapter A in the appendix)
allows for shedding light on the research questions this report stud-
ies;

• Can embedded electronics companies thrive through the use
and/or development of OSHW?

• Which business models are feasible for embedded electronics
companies working with OSHW?

• What potential limitations may an OSHW work-flow apply to
embedded electronics companies?

• What potential gains could an OSHW work-flow give to embed-
ded electronics companies?

The content in this section will first examine the similarities and dif-
ferences between preexisting research and the results found in the
survey and interviews. Afterwards, the survey results and comments
are analyzed in more detail, followed by a general analysis using all
the data. Finally, the implications of the results are considered from
the standpoint of the research questions.

5.1 original and preexisting research at a glance

In general, both the interviewees and the survey participants who left
comments highlighted similar aspects as those brought by academic
research in Chapter 2. In particular, the philosophical attributes that
are equally applicable to both OSS and OSHW were expressed and
viewed in similar ways.

For example, the ability to study the source files of a device, one of
the fundamentals of an open source work-flow, was widely regarded
as being very important both in the survey as well as the interview
with SparkFun Electronics. This was the most common comment
left by the participants in the survey with 23 expressing this opin-
ion (B.1.1). Additionally, 70% of the survey participants rated this as
very important, while only 10% rated this as less than slightly impor-
tant (as shown in Table 4 on page 97, transparency, very important).
SparkFun Electronics highlights this in their interview with

55

56 discussion

[. . .] we published our source code, schematics and eagle
and gerber files for our early products. We did this because we
weren’t experts yet, and we figured if someone had an idea on
how to improve our designs, then it would be in the best interest
of everyone if we could work together.

(Section A.1, Interview with Chelsea Moll from Spark-
Fun Electronics [26])

This very closely matches what is said about OSS, where Weber [34, p.
16] writes; “Property in open source is configured fundamentally around
the right to distribute, not the right to exclude”, and in a similar vein
Krishnamurthy [23] writes; “[the community] wants any interested de-
veloper to have access to the entire code so that the person can tinker with it
to make improvements”.

The largest difference between the original research into OSHW and
existing research into OSS is, somewhat unsurprisingly, due to inher-
ent practical differences between OSHW and OSS. The little academic
research that exists studying OSHW (as described in Chapter 2) is
largely in line with the results found.

Acosta [14, p.14] brings up attributes such as reliance on manu-
facturers for parts, difficulty in merging or updating to different ver-
sions, and often needing in-depth knowledge and expensive equip-
ment for developing complex devices, attributes that have been ex-
pressed in the survey and in the interviews.

Comments from participants in the survey (shown in full in Section
B.1) list similar attributes; highlighting a lack of standardization be-
tween devices making it difficult to use them together or merge them;
a dependence on suppliers (often even a single supplier) of the physi-
cal parts used to construct the device; and weak IP protection, thereby
allowing others to “clone” designs without releasing them under an
OSHW license.

Additionally, many (though not all) of the reasons that Pololu brought
up for not adopting OSHW (Section A.2 and Section A.3) are related
to the same practical issues, such as requiring mechanical parts and
expensive hardware and software for development.

On the other hand, a few of the other potentially problematic at-
tributes discussed in Section 2.2 were not mentioned at all in the
survey comments or the interviews, such as; the unavailability of au-
tomated updates, heterogeneous design software, and difficulty with
version merging. However, with the relatively small sample size of
the survey and interviews absence of evidence is not evidence of ab-
sence — it may be possible that these attributes are relevant but were
simply not brought up in the comments or interviews.

In general, the results gathered in this report adds much-needed
empirical data regarding the reported importance of OSHW among
both its users and developers. This is useful both for general studies
of OSHW, as well as for the research questions of this report.

5.2 original research analysis 57

5.2 original research analysis

There are many aspects of the survey and interviews that are worth
considering; ranging from the way OSHW is used, to the expressed
value of the philosophical aspects of OSHW.

Many of the identified results in the survey are based on the differ-
ences between the different participant groups (described in Chapter
4). Briefly, the survey participants are grouped into five different cate-
gories based on their way of using or developing OSHW; noncommer-
cial users, noncommercial developers, commercial users, commercial
developers, and participants with no experience of OSHW.

It is important to keep in mind that neither level of bias in the par-
ticipants nor the truthfulness of their responses to the survey can be
determined. Hackaday is generally is favorable of OSHW, making it
possible that an unknown contribution to the positive view of OSHW

in the survey is due to a self-selection bias, though this is somewhat
mitigated by comparing groups rather than studying the levels on
their own. Additionally, it is possible that some or many of the par-
ticipants selected answers that are not in line with their opinions as
a form of humor, vandalism, boredom, or for no particular reason.
However, the relatively small scale of the survey (posted in an en-
thusiast/hobbyist setting) in combination with no direct incentives
to respond untruthfully (as the responses are anonymised and no
compensation was given for responses) reduces the risk of this. Addi-
tionally, although not all of the participants chose to leave a comment,
of those who did there were no obviously untrustworthy ones.

The results of the interviews with Pololu and SparkFun Electronics
are brought up occasionally in this section, though the majority of the
analysis is based on the survey results.

5.2.1 Use and Development of Open Source Hardware

As is stated in Section 4.2, use of OSHW is for the most part done
directly or with relatively minor changes, both among developers
and users. Additionally, commercial developers are more likely than
non-commercial developers to use various parts of an existing de-
sign as a base when making something new. Commercial developers
are also more likely than non-commercial developers to contribute
or start a project to solve an immediate problem, making it proba-
ble that commercial developers often use existing OSHW as a base
when developing devices as a part of their scheduled work, rather
than making contributions to existing hardware as is the case for
non-commercial developers.

Additionally, as can be seen in Figure 1 on page 31, most non-
commercial users have also performed development work with the
devices they have used, with the majority performing relatively mi-

58 discussion

nor changes. Additionally, as stated by five separate participants in
the comments by the non-commercial users, the community of devel-
opers and users is regarded as very important. It is likely that many
of the minor changes made by the non-commercial user group are
fed back into the original device, leading to improvements by the
users as well as the developers.

Though there is no statistical ground to stand on for a question-by-
question basis for the development of OSHW as described in Section
4.3, some broad conclusions can be drawn. In general, it seems that
commercial developers are more focused on the end-goal of devel-
oping a specific device, while non-commercial developers are more
likely to contribute to projects “for fun” or for educational reasons.
This is also in line with the previous analysis of how commercial
developers use OSHW, lending credibility to this viewpoint. This is
somewhat expressed in two of the three the comments received from
commercial developers, who present a very pragmatic view of OSHW;

[. . .] On the positive side [OSHW] buys goodwill and expo-
sure from the users but on the negative side you are giving away
your labor for someone else to exploit. At the end of the day you
have to feed yourself and family.

(See B.1.5, Commercial Developers)

and

Getting to the place of allowing everyone to have your design
for free from the beginning is risky if you are trying to build a
business from it. [. . .] [OSHW] relies on the idea that everyone
[should] be able to use your idea immediately to create their own.
If their idea is better, they can be more successful than you with
that product even though the idea was originally yours. [. . .]
This can cripple the newcomer if their idea is great but they
don’t get the word out (marketing).

(See B.1.5, Commercial Developers)

5.2.2 Open Source Hardware compared to Proprietary Hardware

In general OSHW devices are rated quite positively, with a very posi-
tive gut feeling for both simple and complex devices (as seen in Fig-
ure 11 on page 40 and Figure 17 on page 44). OSHW in both device
categories fares best with the cost attribute and worst with the stabil-
ity1 and support2 attributes, with functionality3 and documentation4

on a similar level. Complex OSHW devices were continuously rated
more poorly than simple devices.

1 Defined as “How well engineered and thought-through [a] device is” in the survey.
2 Defined as “How easy it is to get help if something goes wrong” in the survey.
3 Defined as “What it can do” in the survey.
4 Defined as “How clearly described it is to use” in the survey.

5.2 original research analysis 59

5.2.2.1 Stability and Testing Requirements

One possible reason, in the author’s opinion, for the stability at-
tribute’s poor rating is the large number of poorly thought-through
do-it-yourself designs generally available on the Internet. Figure 25

on page 60 shows an example of two circuits found when searching
for images related to “headphone amplifier circuit” and “ignition coil
circuit” (these search terms chosen partly arbitrarily, and partly due
to the large number of responses generated by these terms). Though
other circuit schematics without as large flaws are found as well, it
is difficult for an individual without a large degree of experience to
be able to determine what constitutes a good design or a bad design.
This is further exacerbated by widespread misinformation on public
discussion forums and the like, where circuit schematics like those in
Figure 25 on page 60 are publicized and used, leading to a form of
cargo-cult development. This viewpoint is backed up by several com-
ments left by participants, among others these two responses from
non-commercial developers;

[. . .] Issues crop up that should’ve been addressed earlier. I
regularly see incredibly poor pcb layouts lauded as great, short-
sighted designs praised as commercial challengers, all only be-
cause they were released as open source. Releasing something as
OSHW does not give one an excuse to release shoddy code and
get praised. [. . .]

(See B.1.3, Noncommerical Developers)

OSHW is useful, but it seems [to be] only useful to those who
possess a background of related education or to those willing
to struggle to acquire the education. In the many instances I
have been directly involved, and especially when trying to get
others interested, the lack of plain clear information available to
a layman is disappointing and discouraging.

(See B.1.3, Noncommerical Developers)

This issue is indirectly resolved for most proprietary devices, as
there are legal regulations that require various safety, EMC, and Electromagnetic
Interference (EMI) testing protocols to be passed before devices can be
legally being sold. Though some of the flaws in the examples shown
in Figure 25 on page 60 would not directly lead to failing these tests,
it is probable that an engineer capable of developing a product that
passes regulations would also develop a product without as many
functionality flaws. (Of course, the existence of numerous safety-
related product recalls5 shows that this is not always the case.)

Though safety requirements would ideally only be a positive force,
they are often regarded as a difficulty when developing OSHW de-

5 For example, the recall of 3 million notebook computer batteries due
to fire hazards http://www.cpsc.gov/en/Recalls/2007/Sony-Recalls-Notebook-

Computer-Batteries-Due-to-Previous-Fires/.

http://www.cpsc.gov/en/Recalls/2007/Sony-Recalls-Notebook-Computer-Batteries-Due-to-Previous-Fires/
http://www.cpsc.gov/en/Recalls/2007/Sony-Recalls-Notebook-Computer-Batteries-Due-to-Previous-Fires/

60 discussion

(a) Schematic for a headphone amplifier; lacking decoupling capac-
itors for the operational amplifier which may cause instability
and/or worsened distortion; without a bandwidth limiting feed-
back capacitor across the gain-setting resistor, which increases the
output noise at high frequencies (made doubly worse by selecting
a relatively high-speed operational amplifier); and with an output
resistor outside of the feedback loop, greatly reducing the damp-
ing factor (the control of the output) of the amplifier, increasing the
total distortion and creating a varying output amplitude depend-
ing on the output impedance (which, for a loudspeaker, varies
with frequency). [http://diyaudioprojects.blogspot.se/2007/
08/grado-ra1-headphone-amplifier.html]

(b) Schematic for an ignition coil driver; missing decoupling capaci-
tors for the timer, likely injecting a large amount of disturbance
into the various parts of the device when the output switches; and
without any protection for the power transistor when switching
off, reducing the lifespan significantly or destroying the device
completely on use due to avalanche breakdown caused by para-
sitic inductance in the ignition coil. [http://www.oocities.org/
capecanaveral/lab/5322/coildrv.htm]

Figure 25: Examples of easily found flawed circuit schematics.

http://diyaudioprojects.blogspot.se/2007/08/grado-ra1-headphone-amplifier.html
http://diyaudioprojects.blogspot.se/2007/08/grado-ra1-headphone-amplifier.html
http://www.oocities.org/capecanaveral/lab/5322/coildrv.htm
http://www.oocities.org/capecanaveral/lab/5322/coildrv.htm

5.2 original research analysis 61

vices. Changes to hardware sold or distributed as a finished design
often require expensive testing, even after small changes, which may
be beyond the abilities of non-commercial developers (whom are sig-
nificant group as they outnumber the commercial developers by 8.5
to 1 in the survey (Table 4 on page 97)). As open source movements
are generally oriented around a distributed community of develop-
ers, many whom are unpaid, compliance testing for turnkey OSHW

devices may prove to be a problematic issue. This is highlighted
in the interview with SparkFun Electronics where some methods of
avoiding compliance testing requirements are described;

Testing to make sure new electronic devices work as
function and pass legal requirements (EMI, safety, and
so on) is typically regarded as expensive and time con-
suming. One of the fundamentals of OSHW is right to
change or modify a circuit to become whatever you want
it to be. As some testing must be done on every change
to hardware, this places some limitations on the ability
to (legally) change things freely. How do you at Spark-
fun test and evaluate your devices before releasing them?
How can a hacker use the right to make changes to a wid-
get without paying the very large sums for testing that is
traditionally viewed as a requirement?

Engineer Mike Hord: The simple answer is, we avoid cre-
ating products that require a great deal of testing as much as
possible. Most of what we make can rightly be considered a
subassembly or a kit, and requires little or no testing.

In most cases, a hacker making changes on their own, for their
own use, doesn’t have a great deal of regulatory onus on them.
If they’re making a derivative product to resell, then I would
expect them to be aware of the laws regarding safety and EMC
the same as they should be aware of, for instance, tax obligations.
It’s part of the cost of doing business.

Engineer Jordan McConnell: We do a lot of testing for the
functionality and quality of our boards, but not a lot of testing
for ’legality’ or safety. It’s rare that one of our products needs
FCC or other legal testing, and we often avoid creating these for
that reason. Also, due to using low DC voltages, our boards
are very safe compared to working with direct AC from a wall
outlet. For hackers worried about whether or not they need FCC
testing, Mike Hord wrote a FCC tutorial.

(See Section A.1 for the full interview transcript and
http://www.sparkfun.com/tutorials/398 for the tutorial
mentioned by Jordan McConnell)

http://www.sparkfun.com/tutorials/398

62 discussion

5.2.2.2 Differences Between Participant Groups

In general there is a clear difference between the commercial and
non-commercial participant groups that extends to both the simple
and complex device categories. Commercial users and developers
were generally less favorable of OSHW devices and rated an increased
ability to use proprietary equivalents, especially among functionality,
documentation, and support (as seen in Figure 6 on page 37 through
Figure 17 on page 44). However, the cost metric rating given by the
commercial groups was even more favorable towards OSHW than the
rating given by the noncommercial groups.

It is possible that some of the differences between the non-commercial
and commercial groups are due to some very enthusiastic individu-
als in the non-commercial group, while the commercial groups may
be generally more serious and pragmatic. Though it is difficult to de-
termine the validity of this statement, some of the comments left by
the noncommercial groups were extremely supportive of OSHW and
arguably unrealistic. Excerpts from some of these comments include;

[. . .] So by designing and manufacturing our own cellu-
lar network hardware we can set up [the United States] and
Canada [with a high-bandwidth,] very cheap network with
unlimited internet and calling! This will change the world!!!
Then expand into Europe and make ONE global cellular net-
work! With unlimited everything! I would LOVE to do this
project!

(See B.1.2, Noncommercial Users)

OSHW typically has better documentation because the com-
munity won’t allow undocumented progress.

(See B.1.3, Noncommerical Developers)

This is in contrast to the majority of comments from the non-commercial
groups and all of the received comments form the commercial groups,
which are generally aligned with the numerical results of the survey,
such as;

[. . .] Getting to the place of allowing everyone to have your
design for free from the beginning is risky if you are trying
to build a business from it. It takes a fair leap of faith; it’s
important to remember that the patent system is actually closely
related to the Open movement. Patents must list prior art, and
after the owner’s right expire anyone is free to use the design.
[OSHW] relies on the idea that everyone [should] be able to use
your idea immediately to create their own. If their idea is better,
they can be more successful than you with that product even
though the idea was originally yours.

This can cripple the newcomer if their idea is great but they
don’t get the word out (marketing). But it certainly pushes the

5.2 original research analysis 63

state of the art more quickly in what could be argued a more
socially beneficial manner.

(See B.1.5, Commercial Developers)

The “boring” parts of the development process (documenta-
tion, debugging, polish) can be hard to motivate people to do
and are often left lacking.

(Said by 8 noncommercial users and 1 noncommercial
developer, see B.1.1, Meta-comments)

It is the belief of the author that there are higher number of outliers
in the collected data from the non-commercial groups which tend to
bias the results of the analysis. Most of these outliers are believed to
be strongly in favor of OSHW, and may give an unrealistic image of
what is feasible.

The group of commercial users in particular was very critical of the
documentation and support of OSHW devices. This is reflected in the
comments from the survey, which paint an image of a very pragmatic
commercial user. Though the commercial users see many positive
aspects of OSHW , the determining factor is largely due to the total
cost of using the device, including set-up time (which may be long
in the case of poor documentation). This statement is backed up
by the received comments, as two of the four participants from the
commercial user group write;

In a professional environment, where time is money, my em-
ployer is more prepared to buy a relatively expensive solution
that works from the start, than having me spending hours get-
ting OSHW working just right. Buying a proprietary, well
supported product is often the quickest way forward.

(See B.1.4, Commercial Users)

[. . .] The flipside is that OSHW/SW documentation is often
absolutely awful or non-existent, and in a commercial opera-
tion you cannot afford to spend weeks trying to get something
to work - it’s worth paying the premium for something closed-
source that will work out of the box and is documented.

(See B.1.4, Commercial Users)

The group of commercial developers have a viewpoint similar to that
of the commercial users, giving similar ratings in the survey and with
a pragmatic tone in their comments. However, the commercial de-
velopers describe the very weak licensing structures available (in
contrast to OSS) as one of the major drawbacks to developing OSHW.
A poignant example of this is the comment;

OSHW is great for the community but has pros and cons
for the developers. On the positive side it buys goodwill and
exposure from the users but on the negative side you are giving

64 discussion

away your labor for someone else to exploit. At the end of the
day you have to feed yourself and family.

(See B.1.5, Commercial Developers)

Interestingly, both developer groups reported a reduced ability to use
proprietary equivalents as compared to the user groups. This is pos-
sibly due to a selection effect, where individuals who see a lack of
devices in some region decide to develop an OSHW device filling said
gap.

The group of users without any previous experience very often
gave ratings similar to those of the non-commercial users. It is possi-
ble that this group has previous knowledge from other open source
movements, such as OSS.

5.2.3 Importance of Open Source Hardware Attributes

Nearly all of the four attributes of OSHW brought up in the survey;
transparency6, re-use7, modification8, and philosophy9, were consid-
ered important over all four participant groups with experience of
OSHW.

Transparency and modification were generally viewed as the most
important attributes among all groups, with re-use viewed as less im-
portant among all groups. Commercial users rated philosophy as
relatively unimportant compared to other groups, which strength-
ens the previous hypothesis of the commercial users as being pri-
marily pragmaticists. Some 35% of the commercial users rated the
philosophical aspects to be between “neither important nor unimpor-
tant” and “completely unimportant”, while the average for the other
groups is approximately 12%; nearly a three-fold increase.

5.2.4 Participant Demographics

The demographics of the participants offers some hints to the reasons
for their responses in the survey. The commercial group of users is
more highly educated and older than the non-commercial groups.
The relative youth of the non-commercial user group, with a median
age of 23-27 and 33% below 22 years of age may be a reason for the
lower educational level among this group — a large portion of this

6 Defined as “The ability to see the way a project works (electrical schematic, compo-
nent choices, PCB layout, and so on) ” in the survey.

7 Defined as “The ability to reuse parts of a project as a reference for own designs
(such as re-using small amounts of code or duplicating schematic or PCB sections)”
in the survey.

8 Defined as “The ability to modify a project (such as altering the program code or
changing the PCB layout)” in the survey.

9 Defined as “The philosophical and ethical aspects of OSHW (the perceived net ben-
efit to society by designs and their derivatives being available to the public)” in the
survey.

5.2 original research analysis 65

group is simply not old enough to have finished their education. With
this in mind, it is not surprising that many of the non-commercial
users use OSHW in a hobbyist setting; it is possible that a sizable
portion of the non-commercial users are students and use OSHW in
their free time, possibly in a way that is related to their studies.

From a geographical perspective, the absolute dominance of Eu-
rope and North America, representing approximately 90% of the re-
sponses, is likely due to hackaday (the primary source of survey par-
ticipants) being far more well-known in these regions than the others.

5.2.5 General Analysis

In general, participants of the survey found the documentation of
OSHW projects to be relatively poor. Non-commercial users often
viewed this as an annoyance, while commercial users both rated doc-
umentation more poorly in the survey and described the poor level
of (among others) documentation to be a reason to use a proprietary
equivalent. As one commercial user wrote;

[. . .] The flipside is that OSHW/SW documentation is often
absolutely awful or non-existent, and in a commercial opera-
tion you cannot afford to spend weeks trying to get something
to work - it’s worth paying the premium for something closed-
source that will work out of the box and is documented.

(See B.1.4, Commercial Users)

In spite of the poor documentation available for projects, the most
common sentiment in all of the user groups is;

The ability to study the source files of OSHW devices (such
as a schematic or board layout file) is one of the main benefits
of OSHW. This simplifies debugging and increases the useful
lifespan of the device as compared to a proprietary device, where
the end of support from the developing company may effectively
be a death sentence for the device.

(Said by 16 noncommercial users, 4 noncommercial de-
velopers, and 3 Inexperienced users. See B.1.1, Meta-comments)

It is the opinion of the author that there is the potential for useful-
ness of OSHW documentation to dramatically exceed the usefulness
of the typical proprietary device documentation of today. Thorough
documentation allows both for a casual user, uninterested in the in-
ner workings of the device, to get started and simply use the device,
while at the same time allowing others whom wish to repair, modify,
or otherwise alter the device to do so at their leisure. The importance
of this is backed up by the very high rating of transparency among
the survey participants, with an average of 95% of all participants rat-
ing this as very important or somewhat important (of which 75% rate
this as very important).

66 discussion

(a) Functional description excerpt from the 545A.

(b) Bill of materials except from the 545A.

(c) Schematic diagram excerpt from the 545A.

Figure 26: Bill of materials, functional description, and full schematic dia-
grams presented in the service manual for the Tektronix 545A,
a state of the art cathode-ray vacuum-tube powered oscilloscope
from 1957[13].

5.2 original research analysis 67

Documentation that covers the internal workings of devices for re-
pair was relatively common in the past, Figure 26 on page 66 shows
documentation for the Tektronix 545A; a cathode-ray vacuum-tube
based oscilloscope from 1957 which shipped with original service
manuals fully describing both how to operate the device as well as the
entire internal functionality, with a bill of materials and schematic di-
agrams in order for the user to replace parts as needed [13]. Though
this is to some extent due to the very high cost of the device (around
half a year’s salary for an engineer) and the low lifespan of vacuum
tubes (making replacements a necessity) this is a stark contrast to the
documentation of most proprietary devices released today.

Both SparkFun Electronics and Pololu have expressed the useful-
ness and importance of distributing the internal workings of their
devices, though they differ with regards to their view of OSHW. As
SparkFun Electronics writes;

According to Wikipedia, Sparkfun was one of the con-
tributors in drafting the first Open Source Hardware (OSHW)
definition. How was it that open source hardware became
such a key part of who you are?

The concept of an open exchange of ideas for the good of the
community makes very clear sense to us. In fact, our company
motto, which sums up a lot of our motivation and convictions -
is “sharing ingenuity.” In the beginning, before the open source
movement was organized enough to be called a movement, we
published our source code, schematics and eagle and gerber files
for our early products. We did this because we weren’t experts
yet, and we figured if someone had an idea on how to improve
our designs, then it would be in the best interest of everyone if
we could work together. We still don’t think we’re experts, and
we still believe that working together yields better results, and
now we’re happy to be part of a recognized, burgeoning open
source community.

Open source makes sense to us from both a practical and eth-
ical standpoint; we want to be more useful to the customer than
not, and being forthcoming with all of our materials seems a
simple and obvious thing. And, as it turns out, it makes amaz-
ing business sense, too. We’ve never had to worry about IP or
patents, or, for the most part, lawyers. We just want to focus
on what we love to do: build stuff with our toys and sharing
the love of electronics with others. Being open source allowed
us to be closer to that ideal, and less what might be considered
“business norm.” And it turns out that there are a lot of people
out there that feel as we do.

(See Section A.1 for the full interview transcript)

Some of these thoughts are expressed by Pololu as well, who say;

68 discussion

Though your products are not released under an open
source hardware (OSHW) license, many of your devices
are released with a schematic (which is not the norm for
proprietary products). Why have you chosen to do this?
Why do you believe that this is a good level of openness?

Releasing schematics and otherwise explaining how our prod-
ucts work are good for documentation and further our goal of
helping those wanting to learn about electronics. That therefore
helps the end customer in a direct way. I suspect that full access
to source files, on the other hand, are unlikely to be helpful to
most customers and disproportionally help just those who would
make knock-offs without contributing anything.

(See Section A.2 for the full interview transcript)

Though the viewpoints Pololu and SparkFun Electronics have differ
to a large extent, which is reflected to a large degree in the choice
of adopting an OSHW work-flow, both are of the opinion that docu-
mentation beyond basic fundamentals needed to operate the device
is useful.

It is the opinion of the author that effective documentation for
OSHW (as well as proprietary devices to some extent) should cover
both the fundamentals for setting up and using a device10 as well
as a more detailed description11 of how the device works, in order
for individuals to repair, analyze, or modify the device. Chapter
C in the appendix shows an example of what the author regards as
effective documentation for an OSHW device12.

By first describing the fundamentals needed for solely configuring
and using the device, an individual not interested in the inner work-
ings of the device can get started as quickly as possible. Following
sections show the electrical schematic, PCB design, and a functional
description of the hardware and software to allow for others to under-
stand the inner workings and modify the device to suit their needs.
Though many users may not be interested or even understand the
inner workings of the device, many of these users still find value
in these details being present. This is repeatedly brought up in the
collected comments from the survey as well as the interviews. 16

noncommercial users and 3 inexperienced users (as well as 4 non-
commercial developers) bring this attribute up, as do SparkFun Elec-
tronics (and to some extent Pololu), as seen in the above excepts.

Claims of devices that “just work” and being simple to use no
longer hold when they eventually fail or are artificially limited to
a small region of use. By distributing what is needed to repair or

10 Such as “connect cable A to point B, turn dial C to location D”.
11 Such as circuit diagrams, functional descriptions, and so on.
12 A simple OSHW device developed by the author for temperature regulation by con-

trolling a heater, a cooling fan, or almost any other heating/cooling element.

5.3 research implications for companies 69

improve the device, simplicity of use can be extended to simplicity
of repair and simplicity of improvement.

5.3 research implications for companies

In this section, the results of the prior analysis of the survey will be
placed in the context of the research questions for this report;

• Can embedded electronics companies thrive through the use
and/or development of OSHW?

• Which business models are feasible for embedded electronics
companies working with OSHW?

• What potential limitations may an OSHW work-flow apply to
embedded electronics companies?

• What potential gains could an OSHW work-flow give to embed-
ded electronics companies?

In practice, there is a very large difference between using OSHW and
developing OSHW as a part of commercial activities. Each of these two
different ways of interacting with OSHW will be studied separately in
5.3.1 and 5.3.2.

5.3.1 Using Open Source Hardware in Businesses

Generally, use of OSHW is a smaller step than development of OSHW as
it is more easily tested and usually requires a far smaller investment
and “leap of faith”. Though much of the research performed in this
report is not entirely relevant when determining the applicability of
using OSHW in businesses, there are parts that remain very applicable.

The group of commercial users in the survey are a good reference
point for studying the actual usefulness of OSHW use in businesses.
As was discussed in 5.2.2.2, commercial users generally rated the level
of documentation and support of OSHW devices far more poorly than
the other groups, while the cost attribute was rated more positively.
These values, in combination with the received comments from com-
mercial users (reproduced here in entirety, also shown in B.1.4) give
a starting point for discussion of the research questions;

The hacker community isn’t driven by a commercial model,
so it’s possible to find unique devices unserved by commercial
means. It does mean a somewhat steeper learning curve, but the
“price of entry” for virtually any technology nowadays includes
that. Additionally, the OSHW community is where the future’s
engineers are being motivated and trained RIGHT NOW. These
kids amaze me.

70 discussion

IP can [be] an issue with OSHW if the licencing strategy isn’t
well thought out. The fact that you are not tied down a licence
restriction is really useful (I.E. the Libre side of OSHW).

At the basic end, OSHW is generally more likely to provide
a very specific solution to any given problem where a large com-
mercial venture would not be able to justify the effort of making
multiple very specific devices.

At the complex end, OSHW is adaptable to specific needs
where a commercial solution relies on it being worth their while
doing the R&D to cover your use-case. As an example, we
previously used a Connii I2C tester which is quite expensive,
now we have a BusPirate which is far more flexible and we can
bend it to our needs.

The flipside is that OSHW/SW documentation is often abso-
lutely awful or non-existent, and in a commercial operation you
cannot afford to spend weeks trying to get something to work -
it’s worth paying the premium for something closed-source that
will work out of the box and is documented.

In a professional environment, where time is money, my em-
ployer is more prepared to buy a relatively expensive solution
that works from the start, than having me spending hours get-
ting OSHW working just right. Buying a proprietary, well
supported product is often the quickest way forward.

These comments closely reflect the collected data in the survey, lend-
ing credit to the ability of these comments to act as a fair sampling of
the survey responses.

The potential gains of adopting the use of OSHW in a commercial
setting are primarily (based on the data collected in the above com-
ments and in previous sections of the discussion section);

• Greatly increased flexibility of use due to all the design files
being publicly available;

• The ability to incrementally or dramatically modify the design
as needed in any physically realizable way;

• An improved capability of avoiding obsolescence as there are
no artificial locks to single suppliers13;

13 It remains possible for a design to require a specific device supplied by a single
supplier, though in many cases it may be possible to find an equivalent replacement.
Regardless of this, there is no requirement to acquire the device from the original
developer, removing one source of a single supplier dependence.

5.3 research implications for companies 71

• The possibility for finding specific solutions which would not
be profitable in traditional commercial development;

• Very low purchasing cost (as the device can be manufactured
anywhere);

• The ability to analyze and check for poor design choices before-
hand;

• The relatively high prevalence of a supporting community, often
developing without economic incentives;

• No licensing costs14 and very limited IP regulation, effectively
allowing most actions, such as making a closed-source deriva-
tive version.

Similarly, potential limitations of the use of OSHW in a commercial
setting include;

• (Often) poor documentation and support of designs, which may
not be noticed at first;

• A reported increase in time required to set up or use the device,
often due to the poor documentation, leading to increased total
costs;

• The prevalence of poor designs and (often) lack of certification;

• Reluctance in adopting OSHW due to lack of knowledge of qual-
ity and suitability.

Unfortunately, the answer to whether embedded electronics compa-
nies can use open source hardware effectively is; “it depends”. From
what has been seen in the survey, both ratings and comments, if there
exists some reasonably well documented device OSHW use would be
very beneficial as;

• A tool in a development setting; where direct use or use with
minor in-house changes would fill a gap or be significantly
less expensive than traditional commercial products.

• A (part of a) product; where the device can be modified to
create a new product (not necessarily an OSHW product) or
integrated into existing product development, reducing devel-
opment time and costs.

On the other hand, sometimes using OSHW devices does not really
make sense, such as;

• Poorly documented or designed devices,

14 Assuming an OSHW license that fulfills the OSI license requirements [2].

72 discussion

• Situations where traditional devices are available at low cost,
that require no modification for use and where lock-in effects
are minor,

• Situations where the knowledge needed to evaluate if a de-
sign is good or not does not exist within the company and
misjudging design quality would be very costly.

Of course, there are countless other scenarios where the use of OSHW

is a good business choice, and many others where it is a poor choice.
In practice, the evaluation must be done on a case-by-case basis and is
not particularly dependent on any specific business model. Neverthe-
less, the collected data points to OSHW use having a strong potential
of being useful in a business context.

5.3.2 Developing Open Source Hardware in Businesses

Developing OSHW as a part of the business conducted by a company
is a more daring and potentially risk-filled endeavor than simply us-
ing OSHW, though not without its potential benefits as well.

In order to draw conclusions on this topic the analysis of the numer-
ical results and the comments from the survey, together with relevant
material from the interviews, will be used to generate a list of conclu-
sions regarding OSHW development in a company. This is followed
up with a discussion of some of the attributes of OSHW development
that may be difficult to implement. Finally, a few examples of busi-
ness models or situations where OSHW development makes sense is
listed.

5.3.2.1 Applicable Findings in Original Research

Comments received from existing commercial developers of OSHW

(also shown in B.1.5) give a starting point for discussing the various
benefits and drawbacks of OSHW development;

OSHW is great for the community but has pros and cons
for the developers. On the positive side it buys goodwill and
exposure from the users but on the negative side you are giving
away your labor for someone else to exploit. At the end of the
day you have to feed yourself and family.

I think Open Source and Open Hardware is the only way to
go. It is the most efficient use of people’s time and resources.
The ability to accelerate innovation is so great that I think com-
panies that embrace open source can leverage the crowd to be
able to iterate and innovate quicker and cheaper than any other

5.3 research implications for companies 73

development path. If companies lose their ego and just make
good products that are open source people will still stick with
[their] brand because they are the originators [of the device,
developed] it first and know why things work. However, I
think there needs to be a new type of licences that [is] essen-
tially open source but [gives] protections from someone copying
it whole-sale and undercutting the originators. There needs to
be a way to ensure open hardware is being used in the spirit of
open hardware.

The question of OSHW in a commercial context is whether
it can actually make a company viable. While there are a very
very few companies that have made it work, there are those, like
Makerbot, that have not. Makerbot likely wrapped up the Repli-
cator 2 at the insistence of those funding them. While places
like Adafruit and DIY Drones publish their designs, their com-
mercial viability is in the little impetus the buyer has to go out
and wait for their own board to be produced and sent back to
them, or in soldering SMD components, or in having to buy the
needed components when they could instead just buy the kit.

Getting to the place of allowing everyone to have your design
for free from the beginning is risky if you are trying to build a
business from it. It takes a fair leap of faith; it’s important to
remember that the patent system is actually closely related to
the Open movement. Patents must list prior art, and after the
owner’s right expire anyone is free to use the design. [OSHW]
relies on the idea that everyone [should] be able to use your idea
immediately to create their own. If their idea is better, they can
be more successful than you with that product even though the
idea was originally yours.

This can cripple the newcomer if their idea is great but they
don’t get the word out (marketing). But it certainly pushes the
state of the art more quickly in what could be argued a more
socially beneficial manner.

These comments reflect the analysis of the survey in previous sec-
tions, lending credit to the ability of these comments to act as a fair
sampling of the survey responses.

The interviews with SparkFun and Pololu give very different, though
both interesting, viewpoints of the usefulness of OSHW. However, it is
very difficult to generalize large parts of the interviews as the content
is heavily based on the specific business models used by the intervie-
wees. Two relevant excerpts from the interviews follow, beginning
with an excerpt from the interview with SparkFun Electronics;

According to Wikipedia, Sparkfun was one of the con-
tributors in drafting the first Open Source Hardware (OSHW)

74 discussion

definition. How was it that open source hardware became
such a key part of who you are?

The concept of an open exchange of ideas for the good of the
community makes very clear sense to us. In fact, our company
motto, which sums up a lot of our motivation and convictions -
is “sharing ingenuity.” In the beginning, before the open source
movement was organized enough to be called a movement, we
published our source code, schematics and eagle and gerber files
for our early products. We did this because we weren’t experts
yet, and we figured if someone had an idea on how to improve
our designs, then it would be in the best interest of everyone if
we could work together. We still don’t think we’re experts, and
we still believe that working together yields better results, and
now we’re happy to be part of a recognized, burgeoning open
source community.

Open source makes sense to us from both a practical and eth-
ical standpoint; we want to be more useful to the customer than
not, and being forthcoming with all of our materials seems a
simple and obvious thing. And, as it turns out, it makes amaz-
ing business sense, too. We’ve never had to worry about IP or
patents, or, for the most part, lawyers. We just want to focus
on what we love to do: build stuff with our toys and sharing
the love of electronics with others. Being open source allowed
us to be closer to that ideal, and less what might be considered
“business norm.” And it turns out that there are a lot of people
out there that feel as we do.

(See Section A.1, Interview with Chelsea Moll from Spark-
Fun Electronics [26])

This contrasts greatly with a response from Pololu, who writes;

You’re in the maker world, but you do not release any
of your products as open-source hardware, why?

There are many reasons, but they mostly boil down to not
thinking it’s worth it from a business perspective. I am some-
what skeptical of companies pushing OSHW, so I think it would
be disingenuous to use what I think is a gimmick to market a
product. For instance, the 3pi robot I mentioned earlier has sev-
eral custom mechanical parts, a patented circuit, and is done in
Altium Designer, which costs over $5k per seat. I realize that
some schools might have site licenses for Altium, but for the
typical user, releasing the source documents would not mean
much. We already provide schematics and explanations of how
the thing works, the design is fairly well validated, and it’s not
a particularly useful starting point for an improved design (e.g.
one with a better processor), so the main entities actually get-
ting something out of our releasing the source would be those

5.3 research implications for companies 75

trying to make knock-offs, and I’m fine with not giving them a
shortcut.

(See Section A.3, Maker Media’s interview with Jan Maléšek
[32])

The vast number of different ways that OSHW development can be
performed makes it impossible to draw very broad positive or neg-
ative conclusions. Additionally, only so much can be backed up by
the survey and the interviews without delving into completely un-
substantiated discussion. What can be substantiated from the survey
results follows;

• Improvements to an OSHW device from non-commercial users
are likely often fed back into the original device, where changes
are often made as a hobby, as part of an education, or for plea-
sure.

• It is likely that many of the non-commercial users are students
and use OSHW as a part of their education.

• Commercial users of OSHW are very pragmatic and the total cost
of adoption is important. OSHW devices are usually regarded as
having poor documentation and support.

• There is the potential for OSHW documentation to be regarded
as very good; many users stated that the ability to study the
inner workings of a device is very important both in the numer-
ical part of the survey and in the comment section.

• Existing commercial developers of OSHW primarily use existing
devices as a base for developing a new device rather than incre-
mental or minor changes.

• In general, all survey groups rated OSHW devices highly, mak-
ing it likely that among audiences similar to that of the survey
the added value of a device being OSHW is high.

• It is possible that OSHW devices can be very useful in a tech-
nical research setting; seven of the survey participants (approx-
imately 1.5%) reported an educational background of holding
a PhD or higher. The inherent flexibility of OSHW may find
many applications in research, partly due to the high level of
customization that is required in novel research and partly due
to the level of collaboration that is common between different
teams.

5.3.2.2 Potential Pitfalls when Implementing OSHW Development

Previous research into OSHW (as described in Chapter 2), comments
from the survey, and interview responses are generally in line and
support two primary difficulties in commercially developing OSHW.

76 discussion

The foremost issue, brought up by Pololu, the survey comments,
and Acosta [14], concerns the licensing options available for OSHW15.
These licenses are often very limited, nearly placing the device in the
public domain and allowing free use of the non-copyrightable parts
of a device. This is primarily due to the lack of legal protection for
hardware that serves the equivalent of copyright for software (which
allows for the construction of recursive licenses such as the GNU
GPL [9]). The closest existing license, the TAPR-OHL [3], primarily
gives protection for patented parts of devices; thereby requiring far
more effort and financial resources for protection. Though patents
are typically within the financial reach of a company, this is primar-
ily applicable for companies developing few complex devices, rather
than SparkFun Electronics which develops very many devices.

The risk of clones in OSHW is brought up in the comment section of
the survey; where a device is copied by a third party and then sold at
a very low cost, competing with the original developer whom must re-
cuperate development costs in order to remain profitable. This behav-
ior is typically not seen in the OSS world, as OSS is often distributed
at zero cost, thereby removing any cloning incentive (income being
most often generated through other channels, such as support or con-
sulting). Branding, trademarks, manufacturing quality, continuously
updating devices, and developing new devices are methods that are
often used by the developer to maintain sales, according to SparkFun
Electronics (see Section A.1) and Thompson [30].

Finally, compliance testing of OSHW devices is an aspect that may
be difficult to solve for business models where community improve-
ments are integrated into the main device. SparkFun Electronics
writes that for most of the devices they sell expensive testing is not
required, such as kits or sub-assemblies which do not require any
testing. The Arduino group [5] has developed relatively few main de-
vices that are certified and do not change rapidly, while the commu-
nity instead focuses on developing separate hardware that attaches to
the main Arduino device, expanding functionality without requiring
the main device to redo compliance testing. (Of course, the add-in
boards themselves must undergo some certification process before
they can be sold, though this does not directly influence the original
developers).

5.3.2.3 Applicable Business Models for OSHW Development

In the end, the ability to develop OSHW in a commercial setting largely
depends on the business model employed by the company and the
purpose of choosing to develop OSHW. As was described in 2.1.1,
there are business models that do work for OSHW development. Acosta

15 Though this is also brought up in the interview with SparkFun Electronics, this is
not regarded as a negative attribute in the interview.

5.3 research implications for companies 77

[14] describes several applicable business models for OSHW develop-
ment;

selling support, service , or customization where OSHW de-
vices are developed and sold, with income primarily from sup-
port and customization. Both the Arduino founders and Spark-
Fun Electronics [26] are wildly different examples of how this
can work, with SparkFun Electronics primarily selling individ-
ual devices while the primary income for the Arduino founders
coming from clients integrating their devices or hiring them as
consultants [30]. Makerbot, however, is one example of where
this business model (likely) did not work. A developer of a 3D-
printer, their devices were initially OSHW, however after clones
started appearing leading to (alleged) force from their venture
capital financiers, they have now adopted a closed-source model
with a large outcry from the community that previously had
supported them16.

hardware versioning where simple devices are freely released
while more complex, functional, or advanced devices are sold
under a closed-source license. This is based on the hope of
upgrades among the users of the devices, who begin with the
relatively simple device, and as requirements increase switch to
the more capable, closed-source, version.

integrated oshw modules where modules that are difficult to
manufacture are sold and released with full documentation. This
is primarily applicable where the majority of those who use
the device do not have the required hardware to manufacture
the device, while still giving the users the full ability to study
and understand the functionality. To some extent SparkFun
Electronics matches this category as well, as many of their cus-
tomers do not have the knowledge needed or find it worth their
time to manufacture the devices rather than purchasing them
directly from SparkFun Electronics.

There are of course nearly infinite variants and combinations of busi-
ness models that may be applicable for OSHW, making the end deci-
sion of whether or not to implement OSHW development something
that must be done on a case-by-case basis.

Generally, the findings shown in 5.3.2.1 and 5.3.2.2 must considered
and weighed against the business models currently used by compa-
nies considering adopting OSHW development. Methods of perform-
ing this evaluation are far beyond the scope of this report, yet remain
an interesting research question for further studies.

16 See http://blog.makezine.com/2012/09/19/is-one-of-our-open-source-heroes-

going-closed-source/.

http://blog.makezine.com/2012/09/19/is-one-of-our-open-source-heroes-going-closed-source/
http://blog.makezine.com/2012/09/19/is-one-of-our-open-source-heroes-going-closed-source/

6
C O N C L U S I O N S

The core research question of this report;

Can embedded electronics companies thrive through the use
and/or development of OSHW?

has been primarily studied through the use of a survey (administered
to an audience with a background and/or interest in embedded elec-
tronics) and interviews with two different companies developing em-
bedded electronics modules (SparkFun Electronics and Pololu, which
have and have not respectively adopted an OSHW work-flow).

The results from the original research, placed in a business-context,
highlight the differences between using OSHW and developing OSHW.
Generally, use of OSHW was found to be less risky and easier to im-
plement than developing OSHW in a running company.

Use of OSHW shows great use as a tool in a development setting,
where direct use or use with minor in-house changes would fill a gap
or be significantly less expensive than traditional commercial prod-
ucts. Additionally, OSHW as a (part of a) product was identified to
be useful; where the device can be modified to create a new product
(not necessarily an OSHW product) or integrated into existing product
development, reducing development time and costs.

On the other hand, sometimes using OSHW devices does not really
make sense, such as; poorly documented or designed devices; situa-
tions where traditional devices are available at low cost, that require
no modification for use and where lock-in effects are minor; and situ-
ations where the knowledge needed to evaluate if a design is good or
not does not exist within the company and misjudging design quality
would be very costly.

The utility of developing OSHW in a company is a more complex
question, and not fully answered by the research in this report. Though
some companies have achieved stability through development of OSHW

devices, others have failed, the reasons of which are beyond the scope
of this report. Generally, users of OSHW reported the ability to study
the inner workings of a device a very important, and rated OSHW de-
vices very highly because of (among others) this reason. However, the
ability for others to clone or duplicate parts of a design, due to the
lack of IP protection inherent in OSHW licenses, is viewed as a large
risk, potentially making it difficult to maintain profitability. Though
the ability for a company to succeed through the development of
OSHW has been shown, both through simply observing the existence

79

80 conclusions

of several companies doing this1, as well as the benefits highlighted
in the original research, the reasons for one company succeeding and
another failing remains to be determined.

In the end, this report has established some much-needed empiri-
cal data into the values held by users and developers of OSHW, and
answered the primary research question;

Can embedded electronics companies thrive through the use
and/or development of OSHW?

with;

There exist several companies that have succeeded with both
development and/or use of OSHW.

However, several others have not.

Use of OSHW was found to be generally less risky than de-
velopment of OSHW and offers a great ability to reduce devel-
opment costs, integrate a large amount of “free” development
work into the company’s own development process, and reduce
the dependence of external suppliers. However, the level of docu-
mentation and support of OSHW devices must be verified prior
to adoption.

Development of OSHW is a bolder endeavor, and though users
value OSHW devices highly, in particular if accurately docu-
mented, the risk of others cloning or duplicating sections of the
device remains large due to the poor IP protection capabilities
available.

Further research into OSHW may well find the results from the survey
useful, in particular for research studying the applicability of OSHW

in businesses. As this report has not considered (among others) the
political and psychological effects that OSHW has on businesses, fur-
ther studies into these topics would be very applicable for shedding
more light onto the ability for OSHW to be used in companies and the
reasons that some succeed while others fail.

1 Such as SparkFun Electronics [26], Adafruit Industries [4], and the Arduino group
[5].

B I B L I O G R A P H Y

[1] Open Source Hardware Statement of Principles and Defini-
tion V1.0. http://freedomdefined.org/Definition. (Cited on
pages 4 and 13.)

[2] Open Source Initiative. http://opensource.org/osd. (Cited on
pages 8 and 71.)

[3] TAPR Open Hardware License. http://www.tapr.org/ohl.html.
(Cited on pages 15 and 76.)

[4] Adafruit Industries. http://www.adafruit.com. (Cited on
pages 16, 20, and 80.)

[5] Arduino. http://www.arduino.cc/. (Cited on pages 20, 76,
and 80.)

[6] Why Microsoft is wary of open source. http://news.cnet.com/
2100-1001-268520.html. (Cited on page 7.)

[7] The BSD 3-Clause License. http://opensource.org/licenses/

BSD-3-Clause. (Cited on page 10.)

[8] Evil Mad Science LLC. http://www.evilmadscientist.com/.
(Cited on pages 16 and 20.)

[9] GNU General Public License, version 3. http://opensource.

org/licenses/GPL-3.0. (Cited on pages 10 and 76.)

[10] Hackaday Online Magazine. http://www.hackaday.com. (Cited
on pages 19 and 27.)

[11] 15 Great Quotes from Torvalds and Stallman about Free and
Open Source Software. http://www.junauza.com/2008/09/15-

great-quotes-from-torvalds-and.html. (Cited on page 7.)

[12] OSHW Community Survey 2012. http://www.oshwa.org/oshw-

community-survey-2012/. (Cited on page 19.)

[13] Tektronix 545A Oscilloscope. http://www.thevalvepage.com/

testeq/tek/545a/545a.htm. (Cited on pages xii, 66, and 67.)

[14] Roberto Acosta. Open source hardware. Master’s thesis, Mas-
sachusetts Institute of Technology, 2009. (Cited on pages 5, 14,
16, 56, 76, and 77.)

[15] Sara Boettiger and Dan Burk. Open source patenting. Jour-
nal of International Biotechnology Law, 1:221–231, 2004. (Cited on
page 15.)

81

http://freedomdefined.org/Definition
http://opensource.org/osd
http://www.tapr.org/ohl.html
http://www.adafruit.com
http://www.arduino.cc/
http://news.cnet.com/2100-1001-268520.html
http://news.cnet.com/2100-1001-268520.html
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause
http://www.evilmadscientist.com/
http://opensource.org/licenses/GPL-3.0
http://opensource.org/licenses/GPL-3.0
http://www.hackaday.com
http://www.junauza.com/2008/09/15-great-quotes-from-torvalds-and.html
http://www.junauza.com/2008/09/15-great-quotes-from-torvalds-and.html
http://www.oshwa.org/oshw-community-survey-2012/
http://www.oshwa.org/oshw-community-survey-2012/
http://www.thevalvepage.com/testeq/tek/545a/545a.htm
http://www.thevalvepage.com/testeq/tek/545a/545a.htm

82 bibliography

[16] Andrea Bonaccorsi and Cristina Rossi. Why Open Source Soft-
ware can succeed. Research Policy, 32(7):1243–1258, 2003. (Cited
on pages 10, 11, and 14.)

[17] Joseph Feller, Brian Fitzgerald, et al. Understanding open source
software development. Addison-Wesley London, 2002. (Cited on
page 10.)

[18] R. Ghosh and V.V. Prakash. The Orbiten Free Software Survey.
First Monday, 5(7), 2000. (Cited on pages 11 and 14.)

[19] Robert L. Glass. Loyal Opposition - Of Open Source, Linux...and
Hype. IEEE Software, 16(1):128, 1999. (Cited on page 10.)

[20] Nick Heath. ’We thought we’d sell 1,000’: The inside story of the
Raspberry Pi. http://www.zdnet.com/we-thought-wed-sell-

1000-the-inside-story-of-the-raspberry-pi-7000009718/.
(Cited on page 16.)

[21] Frank Hecker. Setting Up Shop: The Business of Open-Source
Software. IEEE Software, 16(1):45–51, 1999. (Cited on page 12.)

[22] Julian P Höppner. The GPL prevails: An analysis of the first-
ever Court decision on the validity and effectivity of the GPL.
SCRIPT-ed, 1(4):628–635, 2004. (Cited on page 15.)

[23] Sandeep Krishnamurthy. An analysis of open source business
models. 2005. (Cited on pages 12, 13, and 56.)

[24] Josh Lerner and Jean Tirole. Some Simple Economics of
Open Source. Journal of Industrial Economics, 50:197–234, 2002.
URL http://dx.doi.org/10.1111/1467-6451.00174. (Cited on
page 11.)

[25] Jan Maléšek. Pololu Corporation. http://www.pololu.com,
March 2013. (Cited on pages vii, x, and 92.)

[26] Chelsea Moll. SparkFun Electronics. http://www.sparkfun.com,
March 2013. (Cited on pages vii, x, 16, 56, 74, 77, 80, 87, 89,
and 91.)

[27] Bruce Perens et al. The open source definition. Open sources:
voices from the open source revolution, pages 171–85, 1999. (Cited
on page 3.)

[28] Lennart Råde and Bertil Westergren. Mathematics Handbook for
Science and Engineering. Studentlitteratur, 5 edition, 2004. (Cited
on page 28.)

[29] Lawrence Rosen. Open Source Licensing. Software Freedom and In-
tellectual Property Law. Prentice Hall, Upper Saddle River, NJ,
2005. (Cited on page 10.)

http://www.zdnet.com/we-thought-wed-sell-1000-the-inside-story-of-the-raspberry-pi-7000009718/
http://www.zdnet.com/we-thought-wed-sell-1000-the-inside-story-of-the-raspberry-pi-7000009718/
http://dx.doi.org/10.1111/1467-6451.00174
http://www.pololu.com
http://www.sparkfun.com

bibliography 83

[30] Clive Thompson. Build it. share it. profit. Can open source
hardware work. Wired Magazine, 16(11):16–11, 2008. (Cited on
pages 14, 76, and 77.)

[31] Phillip Torrone. Why Google Choosing Arduino Matters
and Is This the End of "Made for iPod" (TM)? http:

//blog.makezine.com/2011/05/12/why-google-choosing-

arduino-matters-and-the-end-of-made-for-ipod-tm/. (Cited
on page 16.)

[32] Phillip Torrone. MAKE’s Exclusive Interview with Jan Malasek
from Pololu. http://blog.makezine.com/2012/04/25/makes-

interview-with-jan-malasek-from-pololu/, April 2012. (Cited
on pages vii, x, 14, 75, 93, and 95.)

[33] Eric Von Hippel. Learning from open-source software. MIT Sloan
management review, 42(4):82–86, 2001. (Cited on page 10.)

[34] Steve Weber. The success of open source, volume 368. Cambridge
Univ Press, 2004. (Cited on pages 3, 7, 8, 10, 11, 13, and 56.)

http://blog.makezine.com/2011/05/12/why-google-choosing-arduino-matters-and-the-end-of-made-for-ipod-tm/
http://blog.makezine.com/2011/05/12/why-google-choosing-arduino-matters-and-the-end-of-made-for-ipod-tm/
http://blog.makezine.com/2011/05/12/why-google-choosing-arduino-matters-and-the-end-of-made-for-ipod-tm/
http://blog.makezine.com/2012/04/25/makes-interview-with-jan-malasek-from-pololu/
http://blog.makezine.com/2012/04/25/makes-interview-with-jan-malasek-from-pololu/

Part IV

A P P E N D I X

A
I N T E RV I E W T R A N S C R I P T S

a.1 interview with chelsea moll from sparkfun elec-
tronics [26]

On your about page you describe what Sparkfun is today, do you have a brief
description of how and for what reasons Sparkfun was founded?

SparkFun was founded in 2003 when our CEO Nathan Seidle was an
electrical engineering student at the University of Colorado. He was
working on a project and fried an expensive board. While looking for
an affordable replacement, he realized there was a frustrating lack
of websites offering small, affordable quantities of individual compo-
nents with clear images of their inventory, and decided it was a gap
in the electronics market that needed filling.

According to Wikipedia, Sparkfun was one of the contributors in drafting
the first Open Source Hardware (OSHW) definition. How was it that open
source hardware became such a key part of who you are?

The concept of an open exchange of ideas for the good of the com-
munity makes very clear sense to us. In fact, our company motto,
which sums up a lot of our motivation and convictions - is “sharing
ingenuity.” In the beginning, before the open source movement was
organized enough to be called a movement, we published our source
code, schematics and eagle and gerber files for our early products.
We did this because we weren’t experts yet, and we figured if some-
one had an idea on how to improve our designs, then it would be
in the best interest of everyone if we could work together. We still
don’t think we’re experts, and we still believe that working together
yields better results, and now we’re happy to be part of a recognized,
burgeoning open source community.

Open source makes sense to us from both a practical and ethical
standpoint; we want to be more useful to the customer than not, and
being forthcoming with all of our materials seems a simple and obvi-
ous thing. And, as it turns out, it makes amazing business sense, too.
We’ve never had to worry about IP or patents, or, for the most part,
lawyers. We just want to focus on what we love to do: build stuff
with our toys and sharing the love of electronics with others. Being
open source allowed us to be closer to that ideal, and less what might
be considered “business norm.” And it turns out that there are a lot
of people out there that feel as we do.

87

88 interview transcripts

One of the commonly cited "issues" with OSHW is the ability for someone
else to clone an idea and undercut the development costs (in particular for
complex devices). What experience have you had with this behavior? Do
people clone your devices, and if so, do sales drop when the clones become
available?

Honestly, if someone’s clever enough to take our designs and make
their own boards, they’re likely clever enough to improve on our
work. We can’t really fault them for that, and we’ll emulate them
as they emulated us, rolling their improvements into our own design
and trying to improve further. We share attribution, everybody’s got
a better product and the customer is happier. Therein lies the essence
of open source, and the driving force of SparkFun.

The threat of someone being able to do our job better keeps us on
our toes and forces us to work harder to stay current, flexible, and
on the cutting edge of the tech we sell. This is a great benefit of the
open source business model – the market gets to create and evolve
tools and products along with the business that produces them. We
have to be willing to kill ideas that don’t work, take a lot of tough
criticism, and be agile. Competition is a huge motivator.

There’s a multitude of new widgets that you are developing and releasing
all the time, how do you develop them? Is it mostly through engineers
employed at sparkfun, external people who believe in what you are doing
and submitting their designs freely, or something else completely?

It’s both, really. For our engineering department, developing new
products and finding new ways to improve on existing designs is the
job. They come up with ideas for new products (or revisions for exist-
ing ones) along with customer feedback, then they design the board,
review products as a group, and then begin to prototype and write
example code where necessary. Besides that, they are encouraged to
write tutorials to help users with new products. We also encourage
our engineers to use their products in side projects when they have a
chance.

And everyone who works at SparkFun is encouraged to get in-
volved in concepts for new products or upgrades; more brains = more
ideas. We’ve had members of Production (manufacturing), IT and
Tech Support departments contribute to product design and develop-
ment. If people in the building see a problem or have an idea, we
encourage them to address it.

We also pay close attention to comments and suggestions from our
customers and community, and we take them to heart. Every product
page on our site has room for comments on the bottom of the page.
As customers leave comments we are able to respond, but we also
use that information to determine which products need a revision or
an accompanying product that we have yet to develop.

A.1 interview with chelsea moll from sparkfun electronics [26] 89

By staying involved in and contributing to the DIY community our-
selves - either by building our own projects, communicating with our
customers, or visiting events and hackerspaces - we’re able to keep a
finger on the pulse of the electronics market and figure out what our
community needs.

How would you describe the business model that Sparkfun is employing? A
materialistic way of viewing it would be that you exchange physical goods
for economic payment, but is there something more gained by releasing your
design files under an OSHW license?

Well, I’m not sure if materialistic is the right word, but yes, we are
a business. In the end, we want to make enough money to keep
running and, if we are lucky, keep growing. That being said, you are
right that the open source model is intrinsically better; information
is power. If we give all the information about our products to our
customers, they have a more powerful tool for their project, prototype,
etc.

Plus, if we are willing to be transparent with and supportive of a
community that’s going to experiment with our products (and pos-
sibly improve them) anyway, that community is going to be more
loyal to us for it, as opposed to a company that guards its intellec-
tual property and treats people who modify their designs as crimi-
nals. Our customers learn and cultivate their interest by getting their
hands dirty and trying new things, and we’re more than happy to
help them get excited about electronics any way we can - that’s how
SparkFun started, after all.

Do you have some figures as to the number of devices you sell (as of now) on
a yearly basis? Maybe even a (rough) figure of how much sales income you
have?

In 2012, we sold somewhere in the neighborhood of 727,650 items on
192,000 orders. From 2011 to 2012 we grew about 9.5%, and we did
around $27.5 million in revenue in 2011.

90 interview transcripts

Many of your widgets and devices are relatively simple break-out boards for
IC’s with some degree of supporting components; there are far fewer complex
devices available. (For example, the logic level converter (https://www.
sparkfun.com/products/8745) and Xbee explorer USB (https://www.
sparkfun.com/products/8687) are popular simple devices, and the Dig-
ital Oscilloscope DIY Kit (https://www.sparkfun.com/products/9484)
is far more complex.) Have you felt that your customers are more interested
in simple modular units? Does the development, testing, and evaluation
time required for the more complex widgets make them a less interesting in-
vestment? All in all, what is the reasoning behind this distribution of device
complexity?

Technical Researcher Pearce Melcher: The simple modular units ap-
peal to a certain customer base, while the more complex kits and de-
velopment boards appeal to another. The simple modules fill a void
for people looking to prototype, or use a new sensor or IC, who don’t
want to buy a $200 full-featured development board. Instead, for a
fraction of the cost, they can purchase the sensor they want to use on
an easily solder-able board that breaks out all or the majority of the
functional pins of the device. We’ve found these to be popular with
students looking for a easy way to include devices in their projects,
and also with engineers and researchers prototyping in the commer-
cial world. We’ve been told by some of our suppliers that they refer
users who are looking for this simple solution to their products to
SparkFun.

The larger, more complex products are usually geared towards hob-
byists and those looking to learn about electronics. The DIY Oscillo-
scope kit is great for someone looking to learn to solder, and provides
a useful tool when finished. Other, more complex boards or kits may
teach a development tool like Arduino, or may achieve a solution that
your typical novice user could not do on their own. For example, the
MP3 Trigger allows users to easily add sound effects to their project.
This cuts down greatly on development time and frustration some-
one would experience trying to assemble a similar platform on their
own.

Of course there is plenty of overlap between these markets. Chances
are, if you work in the electronics industry as a designer or engineer,
you most likely enjoy electronics as a hobby in your free time. On
the other end, those who tinker in their free time might consider elec-
tronics or a similar field as a career. So the benefit of carrying both
basic modules and more complex boards and development kits is to
reach a broader audience - covering different markets in the electron-
ics world, each equally valuable.

Engineer Mike Hord: It behooves us not to try and guess what our
customers are going to do. The more complex a design is, the fewer
uses it has.

https://www.sparkfun.com/products/8745
https://www.sparkfun.com/products/8745
https://www.sparkfun.com/products/8687
https://www.sparkfun.com/products/8687
https://www.sparkfun.com/products/9484

A.1 interview with chelsea moll from sparkfun electronics [26] 91

Engineer Jordan McConnell: Modularity allows customers to pick
and choose the necessary components for their projects. We also gen-
erally have example code for each modular piece so that allows for
easy testing and easier integration into a larger project.

Testing to make sure new electronic devices work as function and pass legal
requirements (EMI, safety, and so on) is typically regarded as expensive and
time consuming. One of the fundamentals of OSHW is right to change or
modify a circuit to become whatever you want it to be. As some testing must
be done on every change to hardware, this places some limitations on the
ability to (legally) change things freely. How do you at Sparkfun test and
evaluate your devices before releasing them? How can a hacker use the right
to make changes to a widget without paying the very large sums for testing
that is traditionally viewed as a requirement?

Engineer Mike Hord: The simple answer is, we avoid creating prod-
ucts that require a great deal of testing as much as possible. Most of
what we make can rightly be considered a subassembly or a kit, and
requires little or no testing.

In most cases, a hacker making changes on their own, for their own
use, doesn’t have a great deal of regulatory onus on them. If they’re
making a derivative product to resell, then I would expect them to be
aware of the laws regarding safety and EMC the same as they should
be aware of, for instance, tax obligations. It’s part of the cost of doing
business.

Engineer Jordan McConnell: We do a lot of testing for the func-
tionality and quality of our boards, but not a lot of testing for ’legal-
ity’ or safety. It’s rare that one of our products needs FCC or other
legal testing, and we often avoid creating these for that reason. Also,
due to using low DC voltages, our boards are very safe compared
to working with direct AC from a wall outlet. For hackers worried
about whether or not they need FCC testing, Mike Hord wrote a FCC
tutorial.

Sparkfun has a relatively new and very exciting educational department,
could you tell me a little bit about the causes for starting this department
and how things have gone with it?

We started the SparkFun Department of Education in 2011 with the
hope that it would serve as a hub to spread our passion for electronics
to educators and students worldwide. The department offers free,
open-source curriculum for users to customize; products; tutorials;
and classes designed to encourage people of all ages and skill levels
to play, create and invent.

So far the department has been a huge success - we’ve traveled
all over the country teaching, and we’ve hosted a lot of classes at
our Colorado headquarters. In fact, this June we’re embarking on a

92 interview transcripts

National Education Tour for the remainder of the year. We recently
bought an RV and we’re going to hit the road, teaching electronics
basics at makerspaces, schools and anywhere people want to sponsor
a stop — and we’ve had dozens sign up already!

a.2 interview with jan maléšek , company president of

pololu [25]

Though your products are not released under an open source hardware (OSHW)
license, many of your devices are released with a schematic (which is not the
norm for proprietary products). Why have you chosen to do this? Why do
you believe that this is a good level of openness?

Releasing schematics and otherwise explaining how our products
work are good for documentation and further our goal of helping
those wanting to learn about electronics. That therefore helps the
end customer in a direct way. I suspect that full access to source files,
on the other hand, are unlikely to be helpful to most customers and
disproportionally help just those who would make knock-offs with-
out contributing anything.

You seem to be taking a lot of flak in the comment section of your interview
with MAKE for not releasing your devices under an OSHW license and
encrypting the firmware for microprocessor-based devices. Have you found
that the users of your devices are as interested as the people in the comment
section that your devices be released under an OSHW license? Why/why
not do you think this is the case?

I don’t think the comments in that Make interview amount to "a lot
of flak", and it’s a very small sample size. You can see in the few
comments (again, small sample size) in my blog post that our position
does not seem to be particularly controversial. I think it’s not much
of an issue for most of our customers.

What do you see happening to the OSHW movement in the future?

I am skeptical about the OSHW movement ever becoming very rel-
evant to the world, for the reasons I mentioned in the blog post: "I
see two main reasons OSHW does not live up to its claimed potential:
the source documents tend to have little value as a starting point for
anything other than very minor changes, and there are other large
barriers to meaningful participation."

A.3 maker media’s interview with jan maléšek [32] 93

a.3 maker media’s interview with jan maléšek [32]

Reproduced verbatim with permission.

Hi Jan! Thanks for answering these questions! Where are you right now?

I’m in my office in Las Vegas.

How did Pololu get started?

We got started in 2000 as college students making an IR beacon sys-
tem for MIT’s 6.270 autonomous robot contest. (There’s more info
about it here) I was involved with organizing the contest for a few
years, and the beacons they were using the first year I was there were
very limited and cost a lot, so I convinced the other organizers to get
the beacons from me if I could come up with something better.

What are the products you’re most proud of?

At this point, I’m still shooting for “not embarrassing”. Some of the
products that fit that designation are our 3pi robot, Maestro servo
controllers, and Wixel wireless modules. Those products have some
decent engineering to them, we’ve sold thousands of them, and cus-
tomers seem to like them.

What are your more popular products?

Besides the ones I just mentioned, some of the simple sensor and
motor driver carriers are quite popular. It’s kind of frustrating when
a really simple carrier sells more than a design we spend months on.

How many people do you have?

Around 45.

Why did you move to Nevada?

I think a lot of Nevada is quite different from Las Vegas, though
I’ve only driven through Reno once. Las Vegas was appealing be-
cause it doesn’t get very cold, natural disasters are not very likely,
and the business climate seemed relatively good (coming from Mas-
sachusetts). I like the idea of prostitution and gambling being legal
in Nevada, even if I don’t engage in it (my gamble was coming to Las
Vegas in the first place).

Is it true the taxes are less? Was that a reason?

I think so, and it definitely contributed to the decision. Unfortunately,
having no income tax didn’t help that much when we weren’t making

94 interview transcripts

money, and the sales tax is pretty high (and keeps rising), which sucks
when we’re buying equipment.

Is there a lot of space for a maker company to have machines like manufac-
turing equipment, etc.?

If you’re asking about commercial real estate space, there’s quite a bit
available, though it can be difficult to find a space with the right mix
of warehouse and office space for a company like ours. I am quite
happy with the space we just moved to, where we have almost 40,000

square feet, of which about 12,000 is warehouse.

How is the maker scene out there? Are there hackerspaces and events in
Nevada?

We helped start the Las Vegas robot club, LVBots, around 2004. Partic-
ipation in that was decent and growing until around 2008; it dropped
off quite a bit as Las Vegas got hit by the recession. Some of the
LVBots members are involved in a Las Vegas hacker space (SYN Shop)
that’s been slowly getting off the ground, but I have not been involved
with it, so I do not really know what they are up to.

What products of yours are open-source hardware?

None.

You’re in the maker world, but you do not release any of your products as
open-source hardware, why?

There are many reasons, but they mostly boil down to not thinking
it’s worth it from a business perspective. I am somewhat skeptical
of companies pushing OSHW, so I think it would be disingenuous to
use what I think is a gimmick to market a product. For instance, the
3pi robot I mentioned earlier has several custom mechanical parts, a
patented circuit, and is done in Altium Designer, which costs over $5k
per seat. I realize that some schools might have site licenses for Al-
tium, but for the typical user, releasing the source documents would
not mean much. We already provide schematics and explanations of
how the thing works, the design is fairly well validated, and it’s not
a particularly useful starting point for an improved design (e.g. one
with a better processor), so the main entities actually getting some-
thing out of our releasing the source would be those trying to make
knock-offs, and I’m fine with not giving them a shortcut.

A.3 maker media’s interview with jan maléšek [32] 95

In my previous article about Arduino being counterfeited you said “I do not
think intellectual property is a morally valid concept, and I am all about
freedom” – that comment surprised me and was the reason I wanted to do
this interview, what did you mean?

My father escaped from communist Czechoslovakia when he was
eighteen; he instilled in me a love of freedom. I think a lot of the
problems in the world come from people thinking it’s okay to force
others to do things, especially when that force is coming from a demo-
cratic society. Physical property must be protected since exclusivity is
inherent in physical things (I no longer have something if you take it
from me) and the rights to the result of your own work are fundamen-
tal to basic freedom. That is not the case with intellectual property:
the primary purpose of that construct is to forcibly prevent people
from doing things. If I invent a wheel, of course I would rather you
give me something in exchange for me making you one, but it is not
right for me to go beat you up or destroy your wheel if you make
one yourself. Besides being immoral, intellectual property is also em-
pirically bad for society; however, that should not really be relevant
to the discussion, just as consideration of economic costs should be
irrelevant when considering the morality of slavery.

Are there any products you plan to release as open-source hardware, if so
which ones?

There’s nothing specific in the works. The most likely candidates are
supporting boards for something like a mechanical chassis. But since
the hardware would support a proprietary product (the chassis) and
be done in Altium, I don’t think we would make a big deal of it.

You had mentioned you filed a patent or attempted to, what was it for?

US patent 7781920 is for the pushbutton power switch we use in sev-
eral of our products. To those that might think it’s hypocritical to
think patents are bad and then to get one, I think it’s acceptable to
play by the rules while saying the rules are bad. I doubt that getting a
lot of patents will be part of our long-term strategy, and participating
in the system might give more credibility to my criticisms of it.

You also “DRM” your bootloaders, why? Has it helped protect your intel-
lectual property? Did it work, has anyone cracked it?

I think it’s not quite right to call it DRM, in the sense that we do not
talk about selling that secured firmware. We sell, for instance, a servo
controller, and once you buy it, you have it. The servo controller has
the capability of being updated, but we do not sell the updates or
try to limit you to using a particular update on a particular servo
controller. Anyway, we secure the bootloaders so that people cannot

96 interview transcripts

copy our designs too easily. We shoot for a level of security such
that it would be easier to just rewrite the firmware from scratch than
to try to crack the security. I don’t know if anyone has cracked it.
You seemed to think there was no room for secrets in my freedom
principle. Secrets are fine in that you do not owe it to anyone to tell
them things you do not want to, and you should not be forced to tell
others something.

What new products are working on?

We just released the mechanical part of our new Zumo robot, which
in some sense has been in development for almost 5 years. We will
be working on electronics for that such as an Arduino shield and
stand-alone controllers.

Where can people see some Pololu hardware in person?

Counting our electronics boards and mechanical parts like wheels
and brackets, we’ve sold hundreds of thousands of units, so chances
are that something we made is in a maker project near you. We’re
also happy to give tours and show people our products in person, so
if you’re interested and in Vegas, let us know.

B
C O L L E C T E D S U RV E Y D ATA

Table 4: Numerical survey results as introduced in Chapter 4, divided into
the utilization groups described.

Note; NC User refers to the non-commercial user group, NC Dev. refers to the

non-commercial developer group, C User refers to the commerical user group, C Dev. refers to

the commercial developer group, and No Exp. refers to the no prior experience group. See 4.1

on page 29 for an explanation of the meaning of the questions.

Question NC User NC Dev. C User C Dev. No Exp.

Number of responses in group; 271 103 17 12 51

Useage of OSHW Devices; Direct use 72.3% 65.0% 47.1% 66.7% -

Useage of OSHW Devices; Minor changes 64.2% 66.0% 41.2% 58.3% -

Useage of OSHW Devices; Large changes 21.4% 38.8% 23.5% 33.3% -

Useage of OSHW Devices; As a base 35.1% 46.6% 41.2% 75.0% -

Ability to use proprietary equivalent; Always 7.0% 10.7% 17.6% 16.7% -

Ability to use proprietary equivalent; Mostly 24.0% 15.5% 29.4% 33.3% -

Ability to use proprietary equivalent; Sometimes 35.4% 29.1% 35.3% 16.7% -

Ability to use proprietary equivalent; Rarely 18.1% 24.3% 5.9% 25.0% -

Ability to use proprietary equivalent; Never 6.6% 6.8% 5.9% 0.0% -

Ability to use proprietary equivalent; Unsure 7.0% 6.8% 0.0% 8.3% -

Developer involvement; Founded project - 59.2% - 75.0% -

Developer involvement; Major contribution - 12.6% - 16.7% -

Developer involvement; Minor contribution - 55.3% - 41.7% -

Use of project by others; Used by others - 44.7% - 41.7% -

Use of project by others; Discussed with others - 20.4% - 8.3% -

Use of project by others; Probably - 18.4% - 25.0% -

Use of project by others; Unsure - 13.6% - 8.3% -

Use of project by others; No - 11.7% - 16.7% -

Reason for contribution; To solve a problem - 51.5% - 83.3% -

Reason for contribution; Educational reasons - 55.3% - 33.3% -

Reason for contribution; As a hobby - 82.5% - 0.0% -

Simple device; functionality; OSHW ++ 31.7% 29.1% 23.5% 16.7% 27.5%

Simple device; functionality; OSHW + 18.5% 21.4% 35.3% 25.0% 15.7%

Continued on next page

97

98 collected survey data

Question NC User NC Dev. C User C Dev. No Exp.

Simple device; functionality; Equal 39.1% 40.8% 29.4% 50.0% 37.3%

Simple device; functionality; Prop. + 5.2% 5.8% 11.8% 0.0% 9.8%

Simple device; functionality; Prop ++ 1.1% 0.0% 0.0% 0.0% 3.9%

Simple device; functionality; Unsure 3.7% 2.9% 0.0% 8.3% 5.9%

Simple device; stability; OSHW ++ 13.7% 17.5% 17.6% 8.3% 21.6%

Simple device; stability; OSHW + 19.6% 20.4% 35.3% 16.7% 17.6%

Simple device; stability; Equal 39.9% 34.0% 17.6% 50.0% 35.3%

Simple device; stability; Prop. + 18.8% 13.6% 17.6% 16.7% 13.7%

Simple device; stability; Prop ++ 4.1% 6.8% 5.9% 0.0% 3.9%

Simple device; stability; Unsure 3.0% 5.8% 0.0% 8.3% 7.8%

Simple device; cost; OSHW ++ 53.9% 43.7% 70.6% 58.3% 45.1%

Simple device; cost; OSHW + 24.4% 24.3% 29.4% 33.3% 35.3%

Simple device; cost; Equal 9.6% 14.6% 0.0% 0.0% 11.8%

Simple device; cost; Prop. + 5.5% 7.8% 0.0% 8.3% 0.0%

Simple device; cost; Prop ++ 3.7% 3.9% 0.0% 0.0% 3.9%

Simple device; cost; Unsure 2.2% 5.8% 0.0% 0.0% 3.9%

Simple device; documentation; OSHW ++ 42.4% 50.5% 29.4% 41.7% 47.1%

Simple device; documentation; OSHW + 25.5% 23.3% 17.6% 25.0% 23.5%

Simple device; documentation; Equal 18.5% 9.7% 17.6% 16.7% 13.7%

Simple device; documentation; Prop. + 4.8% 7.8% 23.5% 8.3% 5.9%

Simple device; documentation; Prop ++ 4.4% 2.9% 5.9% 8.3% 7.8%

Simple device; documentation; Unsure 3.7% 4.9% 5.9% 0.0% 2.0%

Simple device; support; OSHW ++ 37.3% 35.9% 17.6% 41.7% 33.3%

Simple device; support; OSHW + 31.7% 26.2% 35.3% 16.7% 23.5%

Simple device; support; Equal 14.8% 13.6% 17.6% 16.7% 19.6%

Simple device; support; Prop. + 5.5% 11.7% 5.9% 8.3% 11.8%

Simple device; support; Prop ++ 4.4% 2.9% 17.6% 8.3% 5.9%

Simple device; support; Unsure 5.5% 8.7% 5.9% 8.3% 5.9%

Simple device; gut feeling; OSHW ++ 52.0% 47.6% 23.5% 50.0% 47.1%

Simple device; gut feeling; OSHW + 32.5% 40.8% 47.1% 41.7% 35.3%

Simple device; gut feeling; Equal 10.0% 6.8% 23.5% 8.3% 5.9%

Simple device; gut feeling; Prop. + 3.0% 1.0% 5.9% 0.0% 5.9%

Simple device; gut feeling; Prop ++ 0.0% 0.0% 0.0% 0.0% 3.9%

Simple device; gut feeling; Unsure 1.8% 2.9% 0.0% 0.0% 2.0%

Complex device; functionality; OSHW ++ 26.6% 35.0% 35.3% 25.0% 25.5%

Continued on next page

collected survey data 99

Question NC User NC Dev. C User C Dev. No Exp.

Complex device; functionality; OSHW + 23.2% 26.2% 11.8% 0.0% 19.6%

Complex device; functionality; Equal 21.4% 22.3% 23.5% 33.3% 23.5%

Complex device; functionality; Prop. + 17.7% 5.8% 5.9% 25.0% 9.8%

Complex device; functionality; Prop ++ 4.8% 7.8% 17.6% 0.0% 13.7%

Complex device; functionality; Unsure 5.5% 2.9% 5.9% 16.7% 7.8%

Complex device; stability; OSHW ++ 10.0% 17.5% 11.8% 8.3% 13.7%

Complex device; stability; OSHW + 18.8% 19.4% 17.6% 16.7% 13.7%

Complex device; stability; Equal 29.9% 30.1% 29.4% 33.3% 29.4%

Complex device; stability; Prop. + 26.6% 21.4% 23.5% 25.0% 27.5%

Complex device; stability; Prop ++ 5.9% 8.7% 11.8% 0.0% 5.9%

Complex device; stability; Unsure 6.6% 2.9% 5.9% 16.7% 7.8%

Complex device; cost; OSHW ++ 38.7% 36.9% 52.9% 33.3% 31.4%

Complex device; cost; OSHW + 27.3% 30.1% 17.6% 33.3% 31.4%

Complex device; cost; Equal 14.0% 13.6% 17.6% 8.3% 15.7%

Complex device; cost; Prop. + 8.9% 9.7% 5.9% 0.0% 11.8%

Complex device; cost; Prop ++ 4.8% 8.7% 0.0% 0.0% 3.9%

Complex device; cost; Unsure 5.5% 1.0% 5.9% 25.0% 5.9%

Complex device; documentation; OSHW ++ 35.8% 38.8% 35.3% 25.0% 37.3%

Complex device; documentation; OSHW + 26.9% 29.1% 23.5% 16.7% 23.5%

Complex device; documentation; Equal 16.6% 14.6% 5.9% 41.7% 23.5%

Complex device; documentation; Prop. + 10.0% 9.7% 23.5% 0.0% 9.8%

Complex device; documentation; Prop ++ 2.2% 2.9% 5.9% 0.0% 3.9%

Complex device; documentation; Unsure 6.6% 4.9% 5.9% 16.7% 2.0%

Complex device; support; OSHW ++ 30.6% 36.9% 29.4% 16.7% 27.5%

Complex device; support; OSHW + 32.1% 35.0% 23.5% 33.3% 21.6%

Complex device; support; Equal 17.3% 11.7% 17.6% 16.7% 19.6%

Complex device; support; Prop. + 9.2% 4.9% 11.8% 16.7% 21.6%

Complex device; support; Prop ++ 4.1% 5.8% 11.8% 0.0% 5.9%

Complex device; support; Unsure 5.9% 5.8% 5.9% 16.7% 3.9%

Complex device; gut feeling; OSHW ++ 38.0% 43.7% 23.5% 33.3% 43.1%

Complex device; gut feeling; OSHW + 32.5% 38.8% 41.2% 41.7% 29.4%

Complex device; gut feeling; Equal 14.0% 6.8% 11.8% 16.7% 13.7%

Complex device; gut feeling; Prop. + 6.3% 4.9% 17.6% 0.0% 3.9%

Complex device; gut feeling; Prop ++ 2.2% 2.9% 0.0% 0.0% 7.8%

Complex device; gut feeling; Unsure 5.5% 2.9% 5.9% 8.3% 0.0%

Continued on next page

100 collected survey data

Question NC User NC Dev. C User C Dev. No Exp.

Transparency; Very important 67.9% 75.7% 64.7% 83.3% 64.7%

Transparency; Slightly important 26.6% 19.4% 29.4% 16.7% 25.5%

Ttransparency; Neither nor 4.1% 4.9% 5.9% 0.0% 5.9%

Transparency; Slightly unimportant 0.7% 0.0% 0.0% 0.0% 2.0%

Transparency; Completely unimportant 0.0% 0.0% 0.0% 0.0% 2.0%

Modification; Very important 70.8% 70.9% 76.5% 83.3% 56.9%

Modification; Slightly important 26.2% 23.3% 17.6% 16.7% 31.4%

Modification; Neither nor 2.2% 4.9% 0.0% 0.0% 5.9%

Modification; Slightly unimportant 0.0% 1.0% 0.0% 0.0% 2.0%

Modification; Completely unimportant 0.0% 0.0% 0.0% 0.0% 2.0%

Re-use; Very important 60.5% 59.2% 58.8% 41.7% 68.6%

Re-use; Slightly important 28.0% 32.0% 41.2% 50.0% 21.6%

Re-use; Neither nor 8.1% 4.9% 0.0% 0.0% 2.0%

Re-use; Slightly unimportant 1.5% 3.9% 0.0% 0.0% 5.9%

Re-use; Completely unimportant 0.7% 0.0% 0.0% 0.0% 2.0%

Philosophy; Very important 63.5% 68.0% 41.2% 66.7% 68.6%

Philosophy; Slightly important 22.5% 22.3% 17.6% 16.7% 19.6%

Philosophy; Neither nor 8.1% 3.9% 17.6% 16.7% 5.9%

Philosophy; Slightly unimportant 3.7% 3.9% 5.9% 0.0% 2.0%

Philosophy; Completely unimportant 1.5% 0.0% 11.8% 0.0% 3.9%

Education; Some high school 8.5% 8.7% 0.0% 0.0% 11.8%

Education; Finshed high school 7.0% 8.7% 0.0% 0.0% 9.8%

Education; Some university/college 34.3% 27.2% 17.6% 33.3% 41.2%

Education; Bachelor’s degree 34.3% 36.9% 47.1% 50.0% 25.5%

Education; Master’s degree 13.7% 17.5% 35.3% 16.7% 9.8%

Education, PhD or higher 1.8% 1.0% 0.0% 0.0% 2.0%

Age; Under 15 0.0% 0.0% 0.0% 0.0% 0.0%

Age; 15-18 11.1% 9.7% 0.0% 0.0% 9.8%

Age; 19-22 22.1% 11.7% 0.0% 16.7% 19.6%

Age; 23-27 20.7% 23.3% 23.5% 0.0% 31.4%

Age; 28-33 17.3% 24.3% 41.2% 25.0% 17.6%

Age; 34-39 11.8% 18.4% 0.0% 25.0% 3.9%

Age; 40-47 9.6% 6.8% 17.6% 8.3% 3.9%

Age; 48-57 6.3% 3.9% 5.9% 8.3% 11.8%

Age; 58-68 1.1% 1.0% 11.8% 16.7% 2.0%

Continued on next page

B.1 participant comments 101

Question NC User NC Dev. C User C Dev. No Exp.

Age; Over 68 0.0% 0.0% 0.0% 0.0% 0.0%

Residence; Africa 1.1% 0.0% 0.0% 0.0% 0.0%

Residence; Asia 1.1% 1.9% 0.0% 0.0% 5.9%

Residence; Australia 5.9% 6.8% 5.9% 8.3% 5.9%

Residence; Europe 42.4% 40.8% 64.7% 25.0% 29.4%

Residence; North America 46.9% 49.5% 29.4% 58.3% 49.0%

Residence; South America 2.2% 0.0% 0.0% 0.0% 7.8%

End of table

b.1 participant comments

Many participants of the survey chose to leave an optional comment;
most of these are listed below, grouped into the same five categories
as used in Chapter 4.

Due to the large number of comments received, often with very
similar content, the most common comments have been grouped to-
gether into meta-comments, which summarize individual points and
statements. Below each statement in B.1.1 are the number of com-
ments whose core was summarized by the meta-comment.

More complex and nuanced comments have been included and
sometimes edited; spelling or major grammatical errors are fixed, ex-
ternal references to other subjects are annotated, and excessive pro-
fanity has been removed. Comments have intentionally not been
screened for plausibility or factual correctness; all these comments,
regardless of the truth of what they propose, are listed. This is done
primarily to give a balanced image of each group that is hard to con-
vey through purely the numerical results of the study. However, com-
ments that contain essentially no information have been removed, for
example, the hypothetical comment “I like OSHW =)” would be re-
moved.

All changes to comments beyond trivial spelling changes have been
marked by using italicized square brackets [like this].

102 collected survey data

b.1.1 Meta-comments

• The ability to study the source files of OSHW devices (such as a
schematic or board layout file) is one of the main benefits of OSHW.
This simplifies debugging and increases the useful lifespan of the de-
vice as compared to a proprietary device, where the end of support
from the developing company may effectively be a death sentence for
the device.

16 noncommercial users

4 noncommercial developers

3 Inexperienced users

• The “boring” parts of the development process (documentation, de-
bugging, polish) can be hard to motivate people to do and are often
left lacking.

8 noncommercial users

1 noncommercial developer

• OSHW devices often require more work on behalf of the user to make
things work, which is sometimes a reason to use a proprietary device
instead.

5 noncommercial users

1 noncommercial developer

• The ability to modify or re-use parts of OSHW devices in other
projects is very important.

6 noncommercial users

• OSHW devices in a better way include the features that the users actu-
ally find useful, which is not always the case for proprietary devices.
The overlap between the users and developers and the community
helps this to a large extent.

2 noncommercial users

2 noncommercial developer

• The ability for companies to take an OSHW design and turn it into
a proprietary design, “ripping off” the initial developers, is a falling
point of OSHW.

4 noncommercial users

1 noncommercial developer

• As OSHW devices have reduced marketing, development, and sup-
port costs the device cost can often be far lower.

4 noncommercial users

B.1 participant comments 103

• The community that develops OSHW is very important.

4 noncommercial users

• Standardization between different OSHW projects can often be very
low, making it difficult to combine different devices.

3 noncommercial users

1 inexperienced user

b.1.2 Noncommercial Users

• One major drawback is [the] stability and availability of OSHW com-
pared to proprietary solutions. TIa is not that likely to go out of
business compared to SparkFun.
If all the guts are out there, community support can continue, but I al-
ways worry about making OSHW responsible for something mission
critical.

a Texas Instruments, a large producer of IC’s and electronic devices.

• Proprietary solutions are most of the time aimed at companies that
make large quantities of products. They don’t provide the kind of ser-
vice a hobbyist is looking for: cheap, small volume, free supporting
software, community to ask questions, lots of examples available on
internet. . .

• Open systems often have better documentation than propriety sys-
tems if the propriety systems do not come from a mature and dedi-
cated team. This is getting worse in recent years. I also find that Open
systems tend to have a lot more chatter around them that makes find-
ing real information hard. Arduino is a good example of this, 98%
of the content on the web is too light to be informative and seems to
drown out much of the insightful information.

• [OSHW is] sometimes difficult to use in [a] professional environment
because there is no "official support". OSHW is sometime difficult to
source in quantity.

• [OSHW devices] are usually not made in China as much (Arduino,
Raspberry Pi, RepRaps...) and I can even make them myself from
parts I choose to use, which is important to me.

• We need everyday gadgets like TV’s and set top boxes to becomes
OSHW. If I dont like the way my TV interface works, I should be able
to change it. My wife has an electric car (Reva) and I would love to
get my hands on a schematic.

• OSHW helps people (who are not necessarily engineers) to create
new uses for technology. Their ideas eventually become a proprietary
solution.

104 collected survey data

• OSHW currently lacks the volume purchasing power to resell at a
price point for the end consumer [that is] low enough. [As it is today,]
purchasing from the OSHW organization (person/group/company)
[that develops the device is more expensive] than hunting around places
like eBay for the parts and boards.
I do understand that both have to make a profit to “keep the lights on”
so to speak, neither the proprietary nor [the] OSHW [developers] have
[the] means to [keep someone like me] come back for a second or third
when the cost point is prohibitive. OSHW needs an option for selling
that does not raise the price point over the cost of buying an item used
and pulling out the parts needed to get an equivalent. A nice example
is how cheap original Palm Pilots are used and instantly I have access
to a pre-programed ARM based processor, touch screen. IR tranciever
and web searched software base for almost any project to add to or
use it as the center of the project with more documentation than I
could ever want.

• They both can be good, but the engineering [of OSHW devices] needs
to be good.

• OSHW tend to be easier to combine with other hardware and soft-
ware, [open source] or proprietary. Usually [this is] because someone
else has had the same or a similar idea. I think that is sort of the
added value of OSHW.

• OSHW is better in the sense that it is free for anyone to build and
use and therefore can help communities or students that don’t have
the money to buy proprietary solutions. The drawback is that with
proprietary solutions for a business they provide a guarantee and
fallback. For example if a controls system for a factory has a problem
and kills someone. If it is OSHW the family would likely get no
compensation as there is no one to sue due to the fact that it’s open
source. With proprietary you could sue the maker of the controls
machine (Siemens, allen bradley etc) for making a product that is sub
par.

• OSHW helps greatly in many ways, but I see too many projects avoid
any organization, so they get little done, and what is accomplished
isn’t very useful. None of the big ones suffer from this (they wouldn’t
be big if they did) but I’ve seen many small projects with potential
that die in this way.

• Much quicker response to feature change requests (e.g. RPi and the
mounting holes)a.

a The Raspberry Pi, a very small bare-bones computer-on-a-board, initially shipped
without any screw holes for mounting the device; they were relatively quickly added
after a discussion in the community where the benefits and broad desire of mounting
holes became apparent.

B.1 participant comments 105

• With OSHW I know I’m using all the power available in the hardware;
unlike where a manufacturer intentionally cripples functionality in
software unless you pay a fee to "unlock" features.

• [Regarding] OSHW, [one could] for example, bring [a] group of people
that are capable of designing a WiFi router. Make sure the router is
the best in the world and easily (like really easily) "hackable" [to be able
to] go over [the legal WiFi signal strength limit] for example. Add a GPS
sensor, GSM, tons of RAM, SD, USB, or RAMDRIVE storage backed
by a battery or a super capacitor. Make the router very reliable, [with
a] removable fan, [replacable] casing, [with] solar panels on the casing.
Then together we can manufacture routers like that and kick Cisco’sa

[profanity] :-) [Add] DD-WRTb and we are ready to go! Give each
router very good antennas and create a mesh network. Also make a
mobile router unit that are installed in cars, so the cars are connected
together, [giving you] internet anywhere you go and also [the] ability
to dump music from home onto [the] car’s music library through
WiFi, or tap into someone’s music while on highway who is near you;
perhaps listen to what they listen, or have [two-way] communication
between cars, and the gps and accelerometer [could] alert other cars
with a sound or [some] other notification that the car ahead stopped
really fast or simply state an emergency.
OR! My very best and [favorite] idea that I would love to turn into a
reality is a cellular network. [Currently, the] hardware that is used in
[cell-phone base stations] is REALLY expensive. But if you get down
to it it is really not that fancy and certainly doesn’t cost as much as
manufacturers ask for it. So by designing and manufacturing our
own cellular network hardware we can set up [the United States] and
Canada [with a high-bandwidth,] very cheap network with unlimited
internet and calling! This will change the world!!! Then expand into
Europe and make ONE global cellular network! With unlimited ev-
erything! I would LOVE to do this project!

a A manufacturer of networking equipment, routers among others.
b A popular OSS firmware that can replace the default firmware of some routers

• Many times I need a certified solution for a project. The available
OSHW solutions are generally fewer [than proprietary solutions].

• Proprietary products tend to stick with original mistakes. OSHW
tends to change more freely, for any reason the community deems
necessary, with less attachment to prior poor decisions.

b.1.3 Noncommerical Developers

• Security; it’s a blind trust vs. truly knowing situation. Which ap-
plies to the whole range. From the private/consumer use, to security
for the general population such as; voting machines, power plants,
healthcare devices, IT infrastructure.

106 collected survey data

• It really depends on the domain. Even classifying projects as "sim-
ple" or "complex" is still vague. There is also the software infrastruc-
ture that allows the hardware to be used effectively, so that even if
a (potentially open) hardware product is technically superior, if the
supporting software isn’t there or isn’t as mature, it will not be as
effective as a tool.
For example, which one is "better" or "cheaper", an Arduino or a TI
MSP430? The MSP430 is 1/4 the cost of an Arduino, but the support-
ing infrastructure, community, Linux toolchain and documentation
pales in comparison to the Arduino.
Stepper drivers are on the other end of the spectrum, where many
quality OSH solutions exist that are very reasonably priced, but
the software for a CNC toolchain is probably much better for Win-
dows/proprietary workflow.

• I see the model as operating outside of the traditional venture cap-
ital channels for developing new products. This will make VC and
the traditional finance community less important and return some
control of the economy to users.

• Both OSHW and proprietary [devices] have their drawbacks, but I
think they’re pretty similar. It all comes down to support, whether
you get any at all is down to the whims of the community, as much as
it is down to the whims of a proprietary company, however, those that
provide decent documentation and some kind of support network
generally tend to fare better than those that don’t.

• [The] biggest drawback is it can be hard to get support at times [for
OSHW devices], but even then it’s usually easier to get support [for]
them than through a proprietary vendor. . .

• With OSHW I can control the quality of the parts for a reasonable
price, whereas consumer, off-the-shelf hardware tends to be mass-
produced so they [have to follow applicable] standards, so it can [become]
very expensive to get better quality stuff.

• With proprietary products, you get what you buy. With OSHW, you
may not always get what you buy, but you always get what you make.

• OSHW is a great place to get ideas, and to improve ideas.

• OSHW typically has better documentation because the community
won’t allow undocumented progress.

• [OSHW] benefits society more and increases self-driven inven-
tors/hackers to create, share and absorb all the appreciation from
others who find their creation useful and adaptable to their specific
needs. We need more OSHW on the market.

• [OSHW] has minor drawbacks with [regards to] documentation if the
project is not adopted by many, but [most often] anything that has
happend to one person [has] happened to [someone else]; that is the
case with communities based on OSHW.

B.1 participant comments 107

• You can always run open source software on OSHW, but closed hard-
ware is often locked down so you can’t modify the software on it.
So from a software point of view, open hardware is often way better
to work with.

• Although I like to see open source hardware, most of the time it only
works on a very small scale — just a few units. Issues crop up that
should’ve been addressed earlier. I regularly see incredibly poor pcb
layouts lauded as great, short-sighted designs praised as commercial
challengers, all only because they were released as open source.
Releasing something as OSHW does not give one an excuse to release
shoddy code and get praised. Meanwhile, another person designing
a solid product but wanting to sell it to pay for huge time investments
and closing source to prevent chinese clones is ignored.
In more advanced designs (say 8 layer pcb with several 500+ ball BGA
devices and controlled impedance) there may be literally nobody tak-
ing the source files and modifying it to build a result from that. There
are many more practical considerations with hardware that the com-
munity in their blind acceptance of ad-nauseum breakout boards and
glorified LED flashers don’t see yet.

• OSHW is useful, but it seems [to be] only useful to those who possess
a backround of related education or to those willing to struggle to
acquire the education. In the many instances I have been directly
involved, and especially when trying to get others interested, the lack
of plain clear information available to a layman is disappointing and
discouraging.

• I hope one day all things will be open, software, hardware, etc. I
think if people really care about environment and waste, this should
be the way to go. Fixing and upgrading existing devices, instead of
throwing them away and buying new ones.

• In general, if the OSHW solution has a large user base, the support
and documentation is quite good. The proprietary products mostly
are clearer in what documentation is available, already before you
buy the product, because it can all be found in one spot ([the] manu-
facturer’s website), and when the manufacturer is known, you have
some feeling for its quality. OSHW is more fragmented, which gives
greater uncertainty of quality.

b.1.4 Commercial Users

• The hacker community isn’t driven by a commercial model, so it’s
possible to find unique devices unserved by commercial means. It
does mean a somewhat steeper learning curve, but the "price of en-
try" for virtually any technology nowadays includes that. Addition-
ally, the OSHW community is where the future’s engineers are being
motivated and trained RIGHT NOW. These kids amaze me.

108 collected survey data

• IP can [be] an issue with OSHW if the licencing strategy isn’t well
thought out. The fact that you are not tied down a licence restriction
is really useful (I.E. the Libre side of OSHW).

• At the basic end, OSHW is generally more likely to provide a very
specific solution to any given problem where a large commercial ven-
ture would not be able to justify the effort of making multiple very
specific devices.
At the complex end, OSHW is adaptable to specific needs where a
commercial solution relies on it being worth their while doing the
R&D to cover your use-case. As an example, we previously used a
Connii I2C tester which is quite expensive, now we have a BusPirate
which is far more flexible and we can bend it to our needs.
The flipside is that OSHW/SW documentation is often absolutely aw-
ful or non-existent, and in a commercial operation you cannot afford
to spend weeks trying to get something to work - it’s worth paying
the premium for something closed-source that will work out of the
box and is documented.

• In a professional environment, where time is money, my employer is
more prepared to buy a relatively expensive solution that works from
the start, than having me spending hours getting OSHW working
just right. Buying a proprietary, well supported product is often the
quickest way forward.

b.1.5 Commercial Developers

• OSHW is great for the community but has pros and cons for the
developers. On the positive side it buys goodwill and exposure from
the users but on the negative side you are giving away your labor
for someone else to exploit. At the end of the day you have to feed
yourself and family.

• I think Open Source and Open Hardware is the only way to go. It is
the most efficient use of people’s time and resources. The ability to
accelerate innovation is so great that I think companies that embrace
open source can leverage the crowd to be able to iterate and innovate
quicker and cheaper than any other development path. If companies
lose their ego and just make good products that are open source peo-
ple will still stick with [their] brand because they are the originators
[of the device, developed] it first and know why things work. However,
I think there needs to be a new type of licences that [is] essentially
open source but [gives] protections from someone copying it whole-
sale and undercutting the originators. There needs to be a way to
ensure open hardware is being used in the spirit of open hardware.

B.1 participant comments 109

• The question of OSHW in a commercial context is whether it can
actually make a company viable. While there are a very very few
companies that have made it work, there are those, like Makerbot,
that have not. Makerbot likely wrapped up the Replicator 2 at the
insistence of those funding them. While places like Adafruit and DIY
Drones publish their designs, their commercial viability is in the little
impetus the buyer has to go out and wait for their own board to be
produced and sent back to them, or in soldering SMD components,
or in having to buy the needed components when they could instead
just buy the kit.
Getting to the place of allowing everyone to have your design for
free from the beginning is risky if you are trying to build a business
from it. It takes a fair leap of faith; it’s important to remember that
the patent system is actually closely related to the Open movement.
Patents must list prior art, and after the owner’s right expire anyone
is free to use the design. [OSHW] relies on the idea that everyone
[should] be able to use your idea immediately to create their own. If
their idea is better, they can be more successful than you with that
product even though the idea was originally yours.
This can cripple the newcomer if their idea is great but they don’t
get the word out (marketing). But it certainly pushes the state of the
art more quickly in what could be argued a more socially beneficial
manner.

b.1.6 Inexperienced Users

• OSHW is still in its infancy. If these projects can get past the initial
"nobody uses it, so nobody contributes" problem, they’ll be vastly better
than proprietary solutions. Note Wikipedia’s early years, for a similar
situation.
Benefits [of OSHW]:

– Greater understanding

– Easier to use in own projects / products

– Cheaper

– Sharing is caring

Drawbacks [of OSHW]:

– Sometimes not as polished when released as proprietary solu-
tions are (altho OSHW eventually grows better)

– Uses usually proprietary solutions like MCUs etc itself (which
is usually reasonable though)

110 collected survey data

• Typically the challenges I face when trying to implement OSHW is
the belief [held] by others that because it is open source it is somehow
less secure and unreliable. While there are many projects out there
[where] this may be true, I feel that the same research needs to be
done no matter which route is chosen.

• There are no benefits and no drawbacks — it’s all about lazyness.
Why compose my own code for a microcontroller (of my [choice]),
when there is [the] Arduino? Not because I want to save time, but
because I’m a lazy [profanity]. You should know I’m against Open
Source.

• [Getting] funding for OSHW projects seems like it could be difficult,
which makes me truly sad.

• Everyone should have to work for a living, not sit back for the rest of
their lives after one good idea. Copyright/patent law should give an
individual (or [a corporation]) a set [time] limit to recover [research and
development] costs, [and] then require ALL design schematics be place
in multiple public libraries. Work for yourself, but think for mankind.

• I owned a Dingoo A320, which is not open source, but got hacked
faaaar open very soon It died after 3 years of use, not bad for a 70$
device. The community is awesome and gave so many new uses to
the device. And the hackers developed their own "Dream-Dingoo",
the GCW Zero, which afaik is fully open source.

• The fun of building OSHW beats buying some mass produced part
every single time.
Much of the joy comes from the pride of building something with
your own hands and know-how, even when following step-by-step
instructions.
That being said, you should probably administer this survey to non-
hardware hackers to get a more accurate perspective on you your
market.

• My only negative experience with OSHW is trying to fix an error and
20 people each have a different idea how it should work, due to their
own modifications, and sometimes, none of the suggestions work.

C
P R O P O S E D D O C U M E N TAT I O N S T Y L E F O R O S H W
D E V I C E S

Rabid
mantis

Cooling
Controller

Very flexible field-configurable temperature
regulator with hysteresis for heaters or

coolers.

Features
Controls both heating or cooling
loads.
Directly switches up to 7A loads
and/or relays.
Output switching rate controllable
from 2kHz to 60 seconds.
Support for nearly any NTC
thermistor and temperature range.
All system parameters configurable
in-situ.
Hysteresis reduces perceived noise
in load due to output power level
changes.
Minimal functioning setup with
only 15 through-hole components.
Failsafe mode that activates on
thermistor or system failure.

Description
Cooling Controller is a general-purpose temperature
regulator with one sensor and one output for either
heating or cooling elements. All system parameters
are configurable without the use of any external hard-
ware, and are set with Morse code over a 1-button
interface.
The device is directly capable of switching inductive
loads of up to 7A, with an adjustable output rate
varying from 2kHz to 60 seconds, and supports virtu-
ally any NTC thermistor and temperature range the
thermistor is capable of surviving.
A guaranteed absolute temperature accuracy of up
to ≈ ±1°C is achievable, with a worst-case absolute
error over a large range of ±2.5°C.
A piecewise-linear control scheme with hysteresis al-
lows for configuring the device in a wide range of
schemes; from a simple ON/OFF thermostat with
hysteresis to a linear ramp in output power with hys-
teresis and a minimum power cutoff level.

Overview

Output power over temperature when used with a cooling
element (increased temperature results in increased power).

cooling-controller_manual_v1.0.1_2013-04-09 Page 1 of 25

111

Contents Cooling Controller http://www.rabidmantis.se

Contents

Assembly 3

Pin Description 5

Usage 6

Changing Settings 7

Bill of materials 13

Mechanical Description 14

Electrical Characteristics 16

Typical Performance 17

Operation 18

A. MATLAB script for determining worst-case temperature accuracy and reso-
lution 24

Copyright Notice

This entire work is copyright 2013 by Jonathan Lock and released under the terms of the
Creative Commons Attribution-ShareAlike 3.0 Unported License.
https://creativecommons.org/licenses/by-sa/3.0/ . Some Rights Reserved.

Hardware Revision History

1.1 Initial distributed version.

1.0 Initial version. Major flaws found, unusable.

Documentation Revision History

1.0.1 Minor grammatical changes.

1.0.0 Initial version, applies to hardware revision 1.1.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 2 of 25

112 proposed documentation style for oshw devices

Assembly Cooling Controller http://www.rabidmantis.se

Absolute Maximum Ratings

Parameter Symbol Rating

Input voltage Vin,max 30Va

Output current (continuous) Iout,max 10Ab

Operating temperature −50°C to +105°C

Peak current to load, single 10ms pulse. IL,pk 100Ac

aAssuming load tolerant of Vin,max.
bOutput current is limited by PCB trace width.
cThis is untested! Assuming F1 does not trigger, peak current is limited by Q1 and PCB trace heating.

Assembly

Cooling Controller is made to be easy to assemble with limited resources — only through-
hole components are used — making it possible to assemble with only the most basic
tools. The microprocessor does need to be programmed before use, which can be done
using any programmer capable of programming the ATTINY85 over the ISP interface1.
See the Bill of materials section for the components used and figure 7 for the component

placement. The default component values will give a reasonable temperature resolution
(better than 0.6°C over the entire range) and accuracy (ranging from ±1.2°C at 40°C to
±2.5°C at 100°C) at ranges of −35°C to +100°C (see figure 3 and figure 4). By changing
two components the resolution and accuracy can be tuned to other operating ranges,
as described in the Operation section. See the Pin Description section for a list of all
input/output connections.
See the Changing Settings section for a description of how to set the firmware to the

desired settings. Additionally, the Operation section describes the functionality of the
unit (in both hardware and software) in more detail.
When assembling the unit, note that not all components are strictly required for use.

In particular, the components that can safely be left unmounted are;

JP1 a pin header only used for debugging purposes during development. Allows for
connection UART device for serial terminal support. Note: the released version
of the microprocessor firmware does not output any data to the header, nor does it
accept any data input, due to code size limitations.

J1 the 6-pin ISP header used for programming the ATTINY85. As this header is only
used for programming the microprocessor once there is no need to solder the header
to the board permanently — instead connect the pin-header to the programmer,
insert the lower section of the header into J1’s socket and lightly apply torque to
the connector. This will usually give ample contact with all pins and allow for

1Programmers such as (among many others) the AVR ISPMKII (www.atmel.com/tools/AVRISPMKII.
aspx), the USBtinyISP (http://www.ladyada.net/make/usbtinyisp/), or the Arduino as an ISP
programmer (http://arduino.cc/en/Tutorial/ArduinoISP).

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 3 of 25

proposed documentation style for oshw devices 113

Assembly Cooling Controller http://www.rabidmantis.se

the one-time programming of the microprocessor. If J1 is mounted it is easy to
accidentally reset the device during operation as the reset pin is exposed and easy
to touch; if J1 is mounted avoid making contact with it.

C5 an additional decoupling capacitor that is not needed except for in extremely electri-
cally noisy environments. If Cooling Controller spuriously restarts this component
may be needed. Note that if mounted there is risk of damaging IC2 (the voltage
regulator) if the input voltage supply is shorted during operating.

LED1/R2 a power status LED and current regulation resistor, these are not required if
power status indication is not needed.

JP2 a standard 4-pin fan header. Not needed if the load is connected through the screw
terminal. (Typically this pin header is only used if the load is a standard 3 or 4-pin
computer fan). Note: The Bill of materials specifies two parts for this item, as the
nominal part (Molex 47053-1000) is not commonly available. Instead a standard
3-pin header with plastic molding and a 1-pin header is specified, which together
allow for 3 and 4-pin fan support, even though this is a kludge of a solution.

D1 acts as a reverse-polarity protection diode and can be left unmounted if this safety
function is not needed. WARNING: If left unmounted the system will be
damaged by applying a reverse input voltage!

Note that F1 may be any fast fuse rated for ≤ 8A.

Programming the microprocessor

Programming the microprocessor can either be done when mounted on Cooling Con-
troller or in an external programmer. If programming the device when mounted on
Cooling Controller, disconnect any loads loads nominally drawing over 1A2 and any fan
with a tachometer signal connected to JP2. Depending on the platform and programmer
used the actual commands to program the device vary. If using AVRDUDE, a pack-
age available on most platforms (http://www.nongnu.org/avrdude/), the command to
program the device’s flash memory and set the device’s fuse bytes is;

avrdude −pt85 −c<programmer> −P<port> −u −Uflash :w: dev i ce . hex : a
−Ul fuse :w: 0 xc1 :m −Uhfuse :w: 0 xcc :m −Uefuse :w: 0 x f f :m

(Note that it is not necessary to write the EEPROM data, as the default values will be
loaded from flash memory on the initial startup).
If using other programming tools, the important actions to perform are uploading the

.hex file containing the software and specifying the fuse bytes as follows;
Low fuse High fuse Extended fuse

0xC1 (PLL clock, 14 CK + 4 ms startup time) 0xCC (SPI enabled, Watchdog always on) 0xFF

2The output pin driving the MOSFET transistor is tri-stated when in reset (and when being pro-
grammed) and may rise to an intermediate voltage, bringing the transistor into the current-saturation
region and potentially heating the transistor beyond acceptable levels.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 4 of 25

114 proposed documentation style for oshw devices

Pin Description Cooling Controller http://www.rabidmantis.se

Pin Description

All connections to Cooling Controller are as follows;

Header Pin Description

X1

V+ IN Positive voltage input.
GND Ground input.

FAN + Load positive voltage output. (Fan, heater, or
otherwise)

FAN - Load negative voltage output. (Fan, heater, or
otherwise)

THERMISTOR
A Thermistor lead input.

THERMISTOR
B

Thermistor lead input. Connect any applicable
cable shielding to this pin.

JP1

GND Ground reference.
TX Device UART output.
RX Device UART input.
V+ Internally regulated logic voltage, Vlogic.

JP2 - 3pin/4pin fan connector.
J1 - 6-pin ISP connector.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 5 of 25

proposed documentation style for oshw devices 115

Usage Cooling Controller http://www.rabidmantis.se

Usage

In order to use Cooling Controller, assemble the device as per the directions in the
Assembly section and connect incoming power, the load to control, and a thermistor to
the device as per the Pin Description section.
Though great effort has been spent to ensure that Cooling Controller works as in-

tended3 there is always the potential for the device to operate erroneously and drive
the load in a constantly on or off state. Whenever severe damage may occur by
the output being constantly on or off be sure to implement some type of
secondary output protection — such as using thermal fuses for a heating
load!
Cooling Controller uses the load as a loudspeaker when altering the device settings,

both on startup and if the internal settings become corrupted. As such, the load must
be able to withstand a 50% duty cycle square wave output at frequencies of
200 - 500 Hz.
See the Electrical Characteristics section for typical input voltage ranges and load

capability. As there is a flywheel diode integrated into the device relays can be directly
connected to the load output without any additional components.
Before the device can be used it must be configured using the 1-button interface.

See the Changing Settings section for instructions as to how to configure the firmware
settings.
There are other parameters that may be of interest to modify in some applications,

see the Operation section for a description of the electrical and software implementation
and a list of parameters that may be useful to modify.

3Cooling Controller has two redundant copies of settings with independent CRC checksums stored in
EEPROM, uses a permanently enabled hardware watch-dog timer, and has sturdy voltage stabiliza-
tion with a brown-out detector.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 6 of 25

116 proposed documentation style for oshw devices

Changing Settings Cooling Controller http://www.rabidmantis.se

Changing Settings

Cooling Controller’s settings are set with a 1-button interface using the load as a loud-
speaker to give feedback. If using a load that does not make any switching noise (such
as a purely resistive load) attach a load that makes sound, such as a 3-pin PC fan.
All user settings are controlled by programming the device with Morse code over a

single button (SW1). To enter programming mode; power up Cooling Controller , press
and hold the button when the load starts making a sound, and finally release the button
when the sound stops. If the device has correctly entered programming mode a short
beep will be output after a pause. (Cooling Controller can not enter programming mode
once it has started in its ordinary operating mode, it must be powered down and started
up again with the button depressed during the startup tone).
Valid commands are listed in table 2 and described in more detail in the Parameter

Description section. The codes listed in table 2 consist of three characters; “•” a dit
character, “–” a dah character, and “ “ a pause. These are input to Cooling Controller
by pressing the button briefly for a dit character, for a longer time (until the output tone
changes) for a dah character, and by pausing and waiting for a brief beep for a pause
character. Most commands have a parameter following the command which is input in
the same way. All commands must be terminated with a period (“.”) character before
Cooling Controller will attempt to interpret the data.
As an example, the full command to set the low temperature point to 5°C, “TL5.”, is

– • – • • • • • • • • – • – • – in Morse code. This corresponds to one long
press (T); a pause (waiting for a short beep from Cooling Controller); one short press,
one long press, two short presses (L); a pause again; five short presses (5); a final pause;
and three repetitions of a short press followed by a long press (.).
When a valid command has been input it is immediately saved and Cooling Controller

will output the data it interpreted in order to ensure that the command was correctly
parsed. Any invalid command, such as an incorrectly specified header and/or Morse
input that doesn’t match any letter, is ignored entirely. If Cooling Controller does not
output anything after a period “.” symbol has been input then no action has been taken
and all previous characters have been ignored.
If the stored settings become corrupted4 Cooling Controller will reload the default

settings on startup and warn the user that the default settings have been loaded by
outputting a constant tone5 until the button has been pressed. If Cooling Controller
warns about corrupted data there is a high probability that there are other problems
in device, that may for example have been caused by exceeding the absolute maximum
ratings! Note: after programming the ATTINY85 from a host PC and starting up for
the first time, Cooling Controller will warn that the settings are corrupted, this is normal
behavior and occurs only on the first startup!
After setting the system parameters, restart the Cooling Controller (and be sure not

hold the button pressed while starting) to bring it into its temperature control mode.

4This is very unlikely in normal operation, see the Operation section.
5A 500Hz, 50% duty cycle square wave output to the load.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 7 of 25

proposed documentation style for oshw devices 117

Changing Settings Cooling Controller http://www.rabidmantis.se

Table 2: List of valid input command headers.
Parameter Characters Morse codea Parameterb

Reset to defaults RS • – • • • • N/A
Low temperature point TL – • – • • (x) °C
High temperature point TH – • • • • (x) °C
Temperature hysteresis TY – – • – – (x/10) °C

Low temperature power level PL • – – • • – • • (x) %
High temperature power level PH • – – • • • • • (x) %

Cutoff power level PC • – – • – • – • (x) %
4-pin fan mode enable FN • • – • – • See Parameter Description

Failsafe mode FS • • – • • • • See Parameter Description
Minimum switch period [ms] SM • • • – – (x) milliseconds
Minimum switch period [s] SS • • • • • • (x) seconds

Bias resistor Rb value RB • – • – • • • (x) Ω

Thermistor R0 value R0 • – • – – – – – (x) Ω

Thermistor β value BT – • • • – (x)

Help XX – • • – – • • – N/A

For example, setting the low temperature point to 5°C corresponds to the command “TL5.”, which is
“– • – • • • • • • • • – • – • –” in Morse code.

aHere, a • corresponds to a dit symbol and is input with a short press, – is a dah and is input with a
long press.

bNote: Most commands take an additional numerical argument, all commands are terminated with a
“.” character, • – • – • – in Morse code.

Number Morse Code Number Morse Code

0 – – – – – 6 – • • • •
1 • – – – – 7 – – • • •
2 • • – – – 8 – – – • •
3 • • • – – 9 – – – – •
4 • • • • – - (negative) – • • • • –
5 • • • • • . (period) • – • – • –

(a) Other Morse code symbols.

Table 3: Default parameter settings.
Parameter Default Parameter Default Parameter Default

TL 40 PH 100 SH/SM 10 (ms)
TH 60 PC 20 RB 33000
TY 50 FN 0 R0 33000
PL 0 FS 1 BT 4090

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 8 of 25

118 proposed documentation style for oshw devices

Changing Settings Cooling Controller http://www.rabidmantis.se

(a) Temperature and power relationship for
a cooling load.

(b) Temperature and power relationship for
a heating load.

Figure 1: Temperature and power parameters for cooling and heating loads.

Parameter Description

Control settings

Shown in figure 1 is the fundamental behavior of Cooling Controller. At temperatures
below Tlow the output power level is Plow; at temperatures above Thigh the output power
level driving the load is Phigh, and at temperatures in-between the power level is linearly
interpolated. In some cases (such as when controlling a fan) there is a minimum useful
power level which can be set by Pcutoff , which sets the output power to the lowest of Plow

and Phigh when the linearly interpolated value is below Pcutoff .
An additional parameter Thyst sets the measured temperature’s hysteresis, which adds

a degree of delay to the system. For example, if Thyst is set to one degree and Tlow =
Thigh = 25° the output will need to reach 25.5° before the output power level is changed
to Phigh and fall below 24.5° before the output power level is changed to Plow. At
temperatures in the range 24.5° − 25.5° the output level will be constantly Phigh if the
temperature was most recently above 25.5° and constantly Plow if the temperature was
most recently below 24.5°.
Parameters can be “mangled” to a large extent, Phigh can be lower than Plow (which is

what is needed for a load that heats the sensor, as shown in figure 1b). If Pcutoff is not
needed it can be set to zero. If Tlow ≥ Thigh the output will be Phigh for temperatures
greater than Thigh and Plow for temperatures lower than Thigh,; IE. the system will behave
like a thermostat, without any linearly interpolated region (in this case a nonzero Thyst

is useful to reduce the switching frequency).
Temperature values are expressed in degrees Celsius except Thyst which is expressed

in tenths of degrees Celsius; IE. an input value of 15 corresponds to a hysteresis of 1.5°.
Valid values are whole degrees Celsius from absolute zero to several tens of thousands
of degrees, making the useful range limited only by the thermistor specification. Note
that the default component setup and tolerances results in an accuracy range as shown
in figure 3 and figure 4.
The output power levels to the load are expressed in %, where 0% corresponds to the

load being completely off and 100% corresponds to the load being completely on.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 9 of 25

proposed documentation style for oshw devices 119

Changing Settings Cooling Controller http://www.rabidmantis.se

Load settings

These settings relate to the type of load connected to Cooling Controller. FN sets the
type of load; if using a four-pin PC fan with a PWM input connected to JP2 set this
parameter to one. If using any other type of load set this parameter to zero. (A four-pin
PC fan will typically make slightly less noise than an equivalent 3-pin fan). FS sets the
failsafe mode for the load — if the sensor fails or Cooling Controller crashes the output
will be set to a failsafe state. This is not normal behavior and will typically never occur.
Set this to zero to turn off the load when in the failsafe state and set it to one to turn
on the load when in failsafe mode.
The two parameters SM and SS control the minimum output periods for the output.

Due to the output modulation scheme used the load will experience a varying PWM fre-
quency depending on the power level6. These parameters allow for setting the minimum
time between load on/off transitions. SM specifies the time in milliseconds, while SS
specifies the time in seconds. The two commands are otherwise identical and effectively
control the same system parameter — the most recently specified value of either SM or
SS sets the minimum switching time. Set to zero to switch at Tmin, which is as fast
as possible (see the Electrical Characteristics section). The maximum allowable value is
60 seconds (60000 milliseconds). Keep in mind the minimum time between load on/off
transitions is strictly enforced — regardless of any temperature change the output power
level will not change until the minimum time has expired. Conversely, if there is a short
minimum time between load on/off transitions and low or no hysteresis there is the po-
tential for the average power level to be below Pcutoff if the temperature fluctuates close
to the cutoff point.

Sensor settings

As Cooling Controller supports nearly any thermistor7 the sensor used must be specified.
RB sets the bias resistor Rb (R3) used, expressed in a whole number of Ohms [Ω].
Similarly, R0 sets the thermistor reference resistance8, also expressed in a whole number
of Ohms [Ω]. BT specifies the thermistor’s β parameter, expressed in whole numbers.

Miscellaneous settings

RS resets the entire device to the default settings in table 3, and XX gives generally
helpful advice to the user.

Examples

See examples 1,2, and 3 for a few usage-cases for Cooling Controller and the settings used
for them. The initial reset is not strictly needed, but ensures that the default settings
are used for the unspecified parameters.

6High and low power levels give a low PWM frequency, while a 50% power level gives a high frequency.
7See theElectrical Characteristics section for limitations.
8Defined as the resistance at 25°C.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 10 of 25

120 proposed documentation style for oshw devices

Changing Settings Cooling Controller http://www.rabidmantis.se

Setting Mnemonics

All the input settings to the device consist of two letters to define the parameter to
change, with an optional argument, followed by a period (a “.” character). All the valid
input commands are;

RS Reset the entire unit to the default parameters. No additional argument.

TL Sets the lower temperature control point. At temperatures below the argument the
output power will be PL.

TH Sets the upper temperature control point. At temperatures above the argument the
output power will be PH.

TY Sets the temperature hysteresis expressed in tenths of degrees Celsius. After
a temperature change in one direction the temperature must change by the argu-
ment’s amount in the other direction before the output power level will change.

PL Sets the output power at the low temperature level. At temperatures below TL the
output power will be the value specified.

PH Sets the output power at the high temperature level. At temperatures above TH
the output power will be the value specified.

PC Sets the power cutoff level. When the temperature is between TL and TH the power
level is linearly interpolated. When the interpolated power output level is below the
argument the power level will be set to PL. Set to zero to disable this functionality.

FN Sets the load type, set to zero if using a load connected to the terminal block or
if using a 3-pin fan. Set to one if using a 4-pin computer fan (with PWM input)
connected to JP2.

FS Sets the failsafe mode. Set to zero to turn off the load when in the failsafe state, set
to one to turn on the load when in the failsafe state.

SM Sets the minimum time between output on/off transitions in milliseconds.

SS Sets the minimum time between output transitions in seconds. This is identical to
specifying SM with an argument 1000 times greater.

RB Set the bias resistor (Rb) value used expressed in Ohms [Ω].

R0 Set the thermistor reference resistance (R0) value used expressed in Ohms [Ω].

BT Set the thermistor beta (β) value used.

XX Use only when in dire need, no arguments needed.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 11 of 25

proposed documentation style for oshw devices 121

Changing Settings Cooling Controller http://www.rabidmantis.se

Example 1 Set the device to use a 4-pin fan connected to JP2 (switching at as high a fre-
quency as possible), turning on when the temperature exceeds 35°C, reaching maximum
power at 50°C, with a 3°C hysteresis, and otherwise using the default settings.

RS.
TL35.
TH50.
TY30.
FN1.
SM0.

Example 2 Set the device to drive a refrigerator (through a relay connected to the screw
terminal X1), turning it on when the temperature rises above 5°C and turning it off when
falling below 3°C, switching at most every 30 seconds, and otherwise using the default
settings.

RS.
TL4.
TH4.
TY20.
PL100.
PH0.
PC0.
SS30.

Example 3 Set the device to drive a resistive heater directly connected to the screw
terminal, with maximum power when under 50°C, linearly ramping down to 25% power
when at 60°C without any hysteresis, using a thermistor / bias resistor pair with param-
eters R0 = 22kΩ, β = 4220, Rb = 8k2Ω, and otherwise using the default settings.

RS.
TL50.
TH60.
TY0.
PL100.
PH25.
PC0.
R022000.
BT4220.
RB8200.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 12 of 25

122 proposed documentation style for oshw devices

Bill of materials Cooling Controller http://www.rabidmantis.se
B

ill
of

m
at

er
ia

ls

N
ot
e;

A
va
lu
e
of

4n
7
co
rr
es
po
nd

s
to

a
va
lu
e
of

4.
7n

,
an

d
in

th
e
ca
se

of
a
ca
pa
ci
to
r
co
rr
es
po
nd

s
to

4.
7n

F
.
T
he

su
gg
es
te
d
pa
rt

nu
m
be
r
is

on
ly

th
at

—
a
su
gg
es
ti
on

—
an

d
m
ay

be
re
pl
ac
ed

w
it
h
an

y
ot
he
r
eq
ui
va
le
nt

m
at
ch
in
g
th
e
sp
ec
ifi
ca
ti
on

s
lis
te
d
un

de
r
va
lu
e,

ra
ti
ng

,
an

d
ty
pe
.
N
ot
e
th
at

hi
gh
-a
cc
ur
ac
y
re
si
st
or
s
ar
e
on

ly
ch
os
en

fo
r
R
2,
R
4,
R
5
du

e
to

(t
yp
ic
al
ly
)
re
du

ce
d
m
in
im

um
or
de
r
qu
an

ti
ti
es
.

C
o
m
po

n
en

t
n
a
m
e

V
a
lu

e
R

at
in

g
T

y
pe

S
u
g
g
es

te
d

P
a
rt

N
o
.

C
1,
C
3,
C
4

10
0n

50
V

X
7R

ce
ra
m
ic
,
7.
5m

m
pi
n
gr
id

K
10
4K

15
X
7R

F
5T

H
5

C
2,
C
5

10
0u

50
V

8m
m

ca
n,

3.
5m

m
pi
n
gr
id

50
Z
L
H
10
0M

E
F
C
8X

11
.5

D
1,
D
2

SR
30
3

30
V
,
3A

G
en
er
ic

po
w
er

Sc
ho

tt
ky

di
od

e
SR

30
3

F
1

≤
8
A

Fa
st

ac
ti
ng

fu
se

5x
20
m
m

fu
se

ho
ld
er

an
d
fu
se
.

M
C
H
T
C
-1
5M

&

M
C
F
05
G
-8
A

IC
2

L
M
31
7L

Z
20
m
A

T
O
-9
2
pa

ck
ag
e

L
M
31
7L

Z

IC
1

A
T
T
IN

Y
85
-2
0P

U
A
tm

el
A
V
R

T
in
y
se
ri
es

A
T
T
IN

Y
85
-2
0P

U

J1
2.
54
m
m

x
2-
ro
w
,
6-
w
ay

pi
n
he
ad

er
M
20
-9
98
06
46

JP
1

2.
54
m
m

x
1-
ro
w
,
4-
w
ay

pi
n
he
ad

er
M
20
-9
99
04
46

JP
2

4-
pi
n
fa
n
he
ad

er
2.
54
m
m

x
1-
ro
w
,
3-
w
ay

pi
n
he
ad

er
&

2.
54
m
m

x
1-
ro
w
,
1-
w
ay

pi
n
he
ad

er

M
C
34
63
1
&

90
12
0-
07
61

L
E
D
1

G
en
er
ic

L
E
D

≥
5m

A
5m

m
bo

dy
,
2.
5m

m
gr
id

L
-9
29
4S

Y
C
K

Q
1

IR
L
78
33
P
B
F

4
m

Ω
,
V
D

S
S
≥

3
0
V

L
ow

R
D
S
o
n
at

4.
5V

,
T
O
22
0
pa

ck
ag
e

IR
L
78
33
P
B
F

R
2,
R
5

2k
8

1%
,
25
0m

W
7.
5m

m
gr
id

Y
R
1B

2K
8C

C

R
3

D
ef
au

lt
:
33
k

0.
1%

,
25
0m

W
7.
5m

m
gr
id

Y
R
1B

33
K
2C

C

R
4

1k
1%

,
25
0m

W
7.
5m

m
gr
id

Y
R
1B

1K
0C

C

SW
1

B
3F

10
20

N
O

ta
ct
ile

sw
it
ch

B
3F

10
20

T
he
rm

is
to
r

D
ef
au

lt
:
N
T
C
L
E
10
0E

33
33
JB

0

R
0

=
3
3
k
±

5
%
,

β
=

4
0
9
0
±

1
.5

%

G
en
er
ic

le
ad

ed
th
er
m
is
to
r

N
T
C
L
E
10
0E

33
33
JB

0

X
1

5m
m

x
6-
w
ay

te
rm

in
al

C
T
B
52
02
/6

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 13 of 25

proposed documentation style for oshw devices 123

Mechanical Description Cooling Controller http://www.rabidmantis.se

Mechanical Description

Cooling Controller is takes up a space of 50mm by 50mm, with a build height of 23mm,
limited by the transistor Q1. Mounting holes are listed in table 6 following the coordinate
system shown in figure 2. PCB manufacturing requirements are shown in table 5 and
should be generally achievable at any PCB house.
If using a high-powered load be sure to use cabling with sufficient conductor area for

both the load and incoming power. If Cooling Controller is fused for 8A a wire of 1mm2

should be sufficient for most insulation types. If the distance from Cooling Controller to
the thermistor is large and the ambient environment is electrically noisy9 a shielded cable
may be useful. If so attach the cable’s shield to the negative thermistor input terminal.
Place the device in a position so that SW1 can be accessed, as this button is used to

configure the system settings.
The power MOSFET transistor (Q1) does not require any heat-sinking, however the

metal tab is electrically connected to the negative load terminal, which switches between
GND and V+. Due to this, ensure the metal tab on Q1 does not make contact
with any other electrically conductive parts.
Though the device does not require any heat-sinking or active cooling, some passive

air-flow must be allowed when driving large loads (as the power MOSFET transistor
(Q1) and the traces on the PCB may warm slightly).

Table 5: PCB manufacturing requirements.
Parameter Requirement Unit

PCB thickness Any (nominal 1.6) mm
PCB layers 2 -

Copper fill thickness/density (minimum) 35/1 µm / oz/ft2

Trace isolation (minimum) 0.254/10 mm/mil
Trace width (minimum) 0.4064/16 mm/mil

Trace to board edge (minimum) 0.25 mm
Drill to board edge (minimum) 0.504 mm

Drill diameter (minimum) 0.3 mm
Via annular ring (minimum) 0.254/10 mm/mil

9Where a noisy environment in this contect induces a ripple of over 5mV on the positive thermistor
input terminal when measured with an oscilloscope.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 14 of 25

124 proposed documentation style for oshw devices

Mechanical Description Cooling Controller http://www.rabidmantis.se

Table 6: Mounting hole locations.
Hole diameter [mm] Position X [mm] Position Y [mm]

4.1 5 5
4.1 5 45
4.1 45 5
4.1 45 45

X

Y 1 2 3 4 5 6

IC1 J1

X1

R3

C1

Q
1

C5

JP
2

C4

D2

IC2

C3

C2

R4

R5

F1

D1

S
W

1

R
2

LED1

JP1

SJ1

Figure 2: Coordinate system for mounting holes.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 15 of 25

proposed documentation style for oshw devices 125

Electrical Characteristics Cooling Controller http://www.rabidmantis.se

Electrical Characteristics

Vin = 12V, Tambient = 25°C, Q1 mounted with IRL7833PBF transistor unless otherwise
specified.

Parameter Symbol Test Conditions/-

Comments

Min Typ Max Unit

Input Characteristics

Power Input voltage Vin 6 28 V

Quiescent supply current Iq 14 mA

Output Characteristics

Continuous current to load IL Limited by PCB trace

heating

8 A

Maximum switch rate SM parameter set to

zero

2 kHz

Sensor Characteristics

Bridge output resistance Resistance of

thermistor and bias

resistor (R3) in

parallel10.

100 kΩ

Sensor failure threshold,

low11
Vt,l 0.008 · VL 0.011 · VL V

Sensor failure threshold,

high12
Vt,h 0.989 · VL 0.992 · VL V

Internal

Characteristics

Logic supply voltage VLogic Voltage supplied to

ATTINY85 and analog

reference voltage.

4.75 V

10Note that the thermistor’s resistance changes with temperature, though as long as Rbias < 100kΩ this condition
will always be satisfied.

11At bridge voltages below Vt,l Cooling Controller will enter failsafe mode.
12At bridge voltages above Vt,h Cooling Controller will enter failsafe mode.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 16 of 25

126 proposed documentation style for oshw devices

Typical Performance Cooling Controller http://www.rabidmantis.se

Typical Performance

−40 −20 0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Temperature resolution with default components

Temperature [degC]

R
e
s
o
lu

ti
o
n
 [
d
e
g
C

]

Figure 3: Temperature resolution with default component values.

Figure 4: Worst-case absolute temperature error with default components.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 17 of 25

proposed documentation style for oshw devices 127

Operation Cooling Controller http://www.rabidmantis.se

Operation

Cooling Controller is electrically very simple, and has only the very most fundamental
components — nearly all of the complexity of the device is in its software. Cooling
Controller’s full schematic is shown in figure 5, the PCB in figure 6 and component
placement in figure 7.

Electrical operation

The screw terminal (X1) supplies the device with power through F1 which protects the
device from over-current. D1 protects the device from reverse-polarity by shorting the
input and triggering F1 in the event of a reversed polarity input. C2 and C3 decouple
the incoming voltage, which is linearly regulated down to VLogic by IC2, R4, R5, C4, and
optionally C5.
The regulated voltage VLogic supplies the microcontroller IC1 and drives the status

indicator LED1, R2. IC1 is programmed through J1, and is directly connected to several
components. SW1, the user interface button, is directly connected to the input and
biased with an internal pull-up resistor. R3, C1, and the thermistor form a simple half-
bridge with low-pass filter, which is fed to an ADC input. As can be seen in figure 6,
a star topology is used both for ground and power for the half-bridge as well as the
high-power and signal processing sections of the PCB, reducing the level of interference
caused by transient voltage differentials.
Q1 switches the load on and off while the flyback diode D2 ensures that inductive

loads can be switched without inducing large back-EMF transients. JP2 offers support
for standard 3-pin and 4-pin PC fans. Though there is hardware support for the standard
fan tachometer input on 3-pin and 4-pin fans (there is a trace from the tachometer output
to the microprocessor input) this is not used at all in the software. JP1 is a debug header
used only during development and allows for bidirectional UART transmission of data,
though the released version of software neither sends nor parses any data input to this
header.

Software operation

The software for Cooling Controller is written in C and distributed as an Eclipse13 project
file. Compiling and building the binary file requires the free packages avrdude, binutils-
avr, gcc-avr, and avr-libc; these are available for all major platforms. Several supporting
libraries are used with a relatively simple main program which performs the Cooling
Controller-specific functions. The libraries used are;

./button/ performs button debouncing and is used to check the button status.

./dbg_putchar/ is only used during development and allows for basic debug status
messages to be output from the device over a UART interface.

13A free development environment available at http://www.eclipse.org.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 18 of 25

128 proposed documentation style for oshw devices

Operation Cooling Controller http://www.rabidmantis.se

S
et

 F
1

ba
se

d
on

 fa
n

cu
rr

en
t (

Fa
st

, <
8A

)
M

ou
nt

 D
1

fo
r r

ev
er

se
 v

ol
ta

ge
 p

ro
te

ct
io

n
C

5
op

tio
na

l,
m

ou
nt

 in
 n

oi
sy

 e
nv

iro
nm

en
ts

M
ou

nt
 c

he
ap

er
 Q

1
fo

r r
ed

uc
ed

 c
ur

re
nt

 o
ut

pu
t

Fa
nTh

er
m

is
to

r

Th
is

 e
nt

ire
 w

or
k

is
 re

le
as

ed
 u

nd
er

 th
e

O
S

H
W

 li
ce

nc
e

[h
ttp

://
fre

ed
om

de
fin

ed
.o

rg
/O

S
H

W
]

A
TT

IN
Y

45
D

IP
8

A
V

R
_S

P
I_

P
R

G
_6

P
TH

+5V

+5V

G
N

DG
N

D

GNDGND

+5V

R_bias

G
N

D

10
0n

G
N

D

IR
L7

83
3

G
N

D

+5V
10

0u

V
+

V+

4-
pi

n
fa

n
co

nn

V
+

10
0n

SR303

LM
31

7L
Z

10
0n

10
0u

V
+

1k

2k8

<F
8A

SR303

G
N

D

V
+

M
O

U
N

T-
H

O
LE

4.
1

M
O

U
N

T-
H

O
LE

4.
1

M
O

U
N

T-
H

O
LE

4.
1

M
O

U
N

T-
H

O
LE

4.
1

B
3F

10
20

G
N

D

G
N

D

2k8/OPT+5V G
N

D

POK

U
A

R
T_

D
E

B
U

G

GND +5
V S
O

LD
E

R
JU

M
P

E
R

TR
A

C
E

V
C

C
8

P
B

1(
M

IS
O

)
6

P
B

5(
N

R
E

S
)

1
G

N
D

4

P
B

0(
M

O
S

I)
5

P
B

2(
S

C
K

/A
D

C
1)

7

P
B

3(
A

D
C

3)
2

P
B

4(
A

D
C

2)
3

IC
1

1
2

3
4

5
6

J1

X
1-

1

X
1-

2

X
1-

3

X
1-

4

X
1-

5

X
1-

6

R3

C
1

Q
1

C
5

G
N

D
1

V
+

2

S
E

N
S

E
3

C
O

N
TR

O
L

4

JP
2

C
4

D2

V
I

3

1

V
O

2

IC
2

A
D

J
C

3
C

2
R4

R5

F1

D1

H
4

H
3

H
2

H
1

S
W

1

R2

LED1

1 2 3 4JP
1

S
J1

G
N

D

TH
E

R
M

IS
TO

R

TH
E

R
M

IS
TO

R

FA
N

_G
N

D

FA
N

_G
N

D

FA
N

_G
N

D
V

+

4-
P

IN
_C

O
N

TR
O

L

4-
P

IN
_C

O
N

TR
O

L

U
A

R
T_

TX
U

A
R

T_
TX

U
A

R
T_

R
X

U
A

R
T_

R
X

FA
N

_T
A

C
H

FA
N

_T
A

C
H

M
O

S
I

R
E

S
E

T
S

C
K

M
IS

O
+5

G
N

D
A B C D

1
2

3
4

A B C D

1
2

3
4

+

+

F
ig
ur
e
5:

C
oo

lin
g
C
on

tr
ol
le
r
sc
he
m
at
ic
.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 19 of 25

proposed documentation style for oshw devices 129

Operation Cooling Controller http://www.rabidmantis.se

1 2 3 4 5 6

IC1 J1

X1

R3

C1

Q
1

C5

JP
2

C4

D2

IC2

C3

C2

R4

R5

F1

D1

S
W

1

R
2

LED1

JP1

SJ1

(a) Complete top layer as seen from above.

(b) Complete bottom layer as seen from below.

Figure 6: PCB details.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 20 of 25

130 proposed documentation style for oshw devices

Operation Cooling Controller http://www.rabidmantis.se

1 2 3 4 5 6

IC1 J1

X1

R3

C1

Q
1

C5

JP
2

C4

D2

IC2

C3

C2

R4

R5

F1

D1

S
W

1

R
2

LED1

JP1

SJ1

(a) Top layer component outline as seen from above.

(b) Bottom layer component outline as seen from below.

Figure 7: Component placement details.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 21 of 25

proposed documentation style for oshw devices 131

Operation Cooling Controller http://www.rabidmantis.se

./eeprom/ read/write functionality to non-volatile parameters (user settings) with CRC
checksums and redundant data copies.

./magic/ does some magic.

./morse/ performs all Morse input and output parsing using streams.

./pwm/ drives Q1 (the switching transistor) with a sigma-delta modulation scheme while
respecting minimum on/off times.

./ssched/ a simple cooperative multitasking scheduler that drives button, magic, Morse,
and pwm functions periodically.

./thermistor/ reads the ADC voltage from the half-bridge (R3,C1, and thermistor) and
calculates the thermistor temperature.

gpio.h & portpins.h gives easy bit-banging input/output functions.

The application-specific code is located in the few remaining files, as described below;

globals.h contains many of the Cooling Controller-specific compile-time constants.

input_commands.h/.c contains all the user-configurable parameter headers and their
corresponding function calls.

tasks.h/.c contains all the tasks to run with the ssched library, most importantly the
input parameter parsing function and the temperature-to-output-power conversion
function.

main.c initializes the hardware, checks for and warns in the event of invalid EEPROM
data, adds the tasks to the scheduler and checks the button status on startup. In
the event of the button being pressed the device starts the Morse subsystem and
enters an infinite loop where the user can configure settings; otherwise the device
will start up the PWM subsystem and enter an infinite loop where the thermistor
temperature is checked and the output power is set according to user settings.

The source files are compiled with GCC (4.6.3) to a file with very little free space on the
microprocessor, on the order of a few free bytes. This is done with the optimization flags

-Os -fpack -struct -fshort -enums -mcall -prologues -fno -split -
wide -types -funsigned -char -funsigned -bitfields

in order to bring the binary file size to something that will fit on the ATTINY85.

Temperature and ADC input relationship

The sensing element used for Cooling Controller , an NTC resistor, is a device whose
electrical resistance varies greatly with temperature as per the generic relation;

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 22 of 25

132 proposed documentation style for oshw devices

Operation Cooling Controller http://www.rabidmantis.se

Rthermistor (T) = R0e
β

(
1
T
− 1

T0

)
(1)

where R0 is the resistance at temperature T0, T is the current temperature and β is a
device-specific parameter (with temperatures in Kelvin). The NTC resistor is connected
in a simple voltage-divider, giving an input voltage to the ADC of

VADC = Vsupply
Rthermistor

Rbias +Rthermistor
. (2)

Solving (1) and (2) for the temperature with a measured ADC voltage gives the relations

T =
β · T0

β + T0 ln
(
Rthermistor

R0

) (3)

Rthermistor = Rbias
VADC

Vsupply − VADC
(4)

which is a closed-form and relatively simple relationship between the ADC voltage and
the measured temperature. This does however require the use of the ln (. . .) function,
which is relatively large in code size, as well as requiring floating point number support
with the standard math library. This is one of the main reasons for the large code size
of the software.

Temperature accuracy and resolution

The absolute accuracy of the temperature measurement is primarily limited by the tol-
erance of the thermistor used, the ADC and bias resistor only marginally contribute to
the accuracy. A very crude MATLAB script for calculating the worst-case accuracy error
and resolution is shown in Section A. By altering the parameters Rb, Rb_tol, R0, R0_tol,
Beta, and Beta_tol the temperature accuracy and resolution can be tuned to different
temperature regions.

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 23 of 25

proposed documentation style for oshw devices 133

Cooling Controller http://www.rabidmantis.se

A. MATLAB script for determining worst-case temperature
accuracy and resolution

clc
clear all
close all
format short eng

% Calculate the temperature accuracy of Cooling Controller for a given
% setup and temperature range.

% User configurable settings

Rb = 33e3; % Bias resistor [ohm]
Rb_tol = 0.001; % Bias resistor tolerance
R0 = 33e3; % NTC reference resistance [ohm]
R0_tol = 0.05; % NTC reference tolerance
T0 = 25; % NTC reference temperature [degC]
Beta = 4090; % NTC beta value
Beta_tol = 0.015; % NTC beta tolerance

ADC_err = 1.5; % ADC tolerance (in bits)

Tl_plot = -35; % Lower temperature point for plot
Th_plot = 110; % Upper temperature point for plo

plot_pts = 1e2; %number of data points in plot

% Do not modify below!

abszero = 274.15;
k2c = @(k) k - abszero;
c2k = @(c) c + abszero;
kADC = 1024; % ADC resolution
ADC_tol = ADC_err / kADC;

temp = linspace(Tl_plot ,Th_plot , plot_pts);

% Thermistor resistance at some temperature
Rtherm = @(t,R0,Beta) R0 * exp(Beta * (1./ c2k(t) - 1/c2k(T0)));

% ADC input at some temperature
ADC = @(t,R0 ,Beta ,Rb) Rtherm(t,R0,Beta) ./ (Rb + Rtherm(t,R0,Beta)) * kADC;

% partial derivative of ADC input wrt. temperature
dADC = @(t,R0 ,Beta ,Rb) abs(-Beta * Rb * Rtherm(t,R0,Beta) ./ (c2k(t).^2 .* (Rtherm

(t,R0,Beta) + Rb).^2) * kADC);

% ADC resolution for some temperature
res = @(t,R0 ,Beta ,Rb) 1./ dADC(t,R0,Beta ,Rb);

%Super ugly and crude (not quite) exhaustive combination of all worst -case
%error situations. Rb_tol direction manually tested and set to worst sign.
ADC_1 = ADC(temp ,R0*(1+ R0_tol),Beta *(1+ Beta_tol),Rb*(1- Rb_tol)) * (1+ ADC_tol);
ADC_2 = ADC(temp ,R0*(1+ R0_tol),Beta*(1- Beta_tol),Rb*(1- Rb_tol)) * (1+ ADC_tol);
ADC_3 = ADC(temp ,R0*(1- R0_tol),Beta *(1+ Beta_tol),Rb*(1+ Rb_tol)) * (1-ADC_tol);
ADC_4 = ADC(temp ,R0*(1- R0_tol),Beta*(1- Beta_tol),Rb*(1+ Rb_tol)) * (1-ADC_tol);
ADC_nom = ADC(temp ,R0 ,Beta ,Rb); % Ideal ADC value

% Endpoints for error computation (ADC values)

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 24 of 25

134 proposed documentation style for oshw devices

Cooling Controller http://www.rabidmantis.se

start = min([ADC_1 (1),ADC_2 (1),ADC_3 (1),ADC_4 (1)]);
stop = max([ADC_1(end),ADC_2(end),ADC_3(end),ADC_4(end)]);

start_temp = interp1(ADC_nom ,temp ,start ,’spline ’);
stop_temp = interp1(ADC_nom ,temp ,stop ,’spline ’);

err_temp = linspace(start_temp ,stop_temp , plot_pts);

err_pts = linspace(start ,stop , plot_pts);

ADC_interp = interp1(ADC_nom ,temp ,err_pts ,’spline ’);
err_1 = interp1(ADC_1 ,temp ,err_pts ,’spline ’) - ADC_interp;
err_2 = interp1(ADC_2 ,temp ,err_pts ,’spline ’) - ADC_interp;
err_3 = interp1(ADC_3 ,temp ,err_pts ,’spline ’) - ADC_interp;
err_4 = interp1(ADC_4 ,temp ,err_pts ,’spline ’) - ADC_interp;

err_tot = [err_1;err_2;err_3;err_4];
err_min = min(err_tot ,[],1);
err_max = max(err_tot ,[],1);

figure (1)
set(0,’DefaultAxesColorOrder ’ ,[0 0 0],...

’DefaultAxesLineStyleOrder ’,’-|--|-.’)
h = plot(temp ,res(temp ,R0,Beta ,Rb));

grid on
title(’Temperature␣resolution␣with␣default␣components ’)
xlabel(’Temperature␣[degC]’)
ylabel(’Resolution␣[degC]’)

set(gcf , ’PaperPosition ’, [0 0 7 4]);
set(h(1),’linewidth ’ ,3);

print(’-depsc ’,’resolution.eps’)

figure (2)
set(0,’DefaultAxesColorOrder ’ ,[0 0 0],...

’DefaultAxesLineStyleOrder ’,’ -|-|-.’)

X = [err_temp ,fliplr(err_temp)];
Y = [err_min ,fliplr(err_max)];

h = fill(X,Y,’k’,’FaceAlpha ’ ,0.1);

grid on
title(’Net␣worst -case␣temperature␣error␣bounds␣with␣default␣components ’)
xlabel(’Temperature␣[degC]’)
ylabel(’Absolute␣temperature␣error␣bound␣[degC]’)

set(gcf , ’PaperPosition ’, [0 0 7 4]);
set(h(1),’linewidth ’ ,2);

print(’-dpng’,’temp_error.png’,’-r300’)

Jonathan Lock Licensed under Creative Commons BY-SA 3.0 License Page 25 of 25

proposed documentation style for oshw devices 135

