

5211-90

Institutionen för vattenbyggnad Chalmers Tekniska Högskola

Department of Hydraulics Chalmers University of Technology 1Cps

ISSN 0348-1069

SEDIMENT IN SEWERS Research Leaves in England

PART ONE: WALLINGFORD, October-November 1989 PART TWO: NEWCASTLE, March-April 1990

Gustavo Perrusquia

Report Series B:52 CTHB 1990 -11- 1 9 GÖTEBORG

Göteborg 1990

Institutionen för vattenbyggnad Chalmers tekniska högskola

Department of Hydraulics Chalmers University of Technology

ISSN 0348-1069

SEDIMENT IN SEWERS

Research Leaves in England

Part one: Wallingford, October-November1989 Part two: Newcastle, March-April 1990

Report Series B:52

Göteborg 1990

Adress: 1

Institutionen för vattenbyggnad Chalmers tekniska högskola 412 96 GÖTEBORG

Telefon:

031-72 10 00

ABSTRACT

Experiments were made in part-full pipes with a deposited sediment bed both at Hydraulics Research, Wallingford and the University of Newcastle upon Tyne in the United Kingdom. Tests were carried out using different pipe diameters, sand sizes and sediment thicknesses.

Discharge rates, flow depths, sediment transport rates and bedform dimensions were measured. The aim of these studies was to gather information for an oncomming report on the effects that the relative flow depth, the relative sediment depth, the relative grain size, the pipe diameter (in other words: shape factors) and the bedform dimensions produce on the sediment transport in part-full pipes.

The preliminary results showed that a functional relationship of the type $\Theta_b = f(\Phi_b)$ can be used to describe the transport capacity of such pipes.

÷

PREFACE

During the fall of 1987 contacts were established between the Department of Hydraulics at Chalmers University of Technology and both Hydraulics Research Ltd at Wallingford and the University of Newcastle upon Tyne in the United Kingdom. The aim was to start technical co-operation in the field of Sediment in Sewers.

After performing an extensive series of experiments at the Department of Hydraulics, I was able to spend six weeks at Hydraulics Research in the fall of 1989 and five weeks at the University of Newcastle in the spring of 1990. The purpose of these visits was to do some experimental work to investigate among other things whether scale effects have any influence in the rate of sediment transport in pipe channels with a deposited bed. Different pipe diameters, pipe materials, sand sizes and sediment bed thicknesses were used. Only bed load transport and part-full flow were studied. This report contains exclusively the work carried out during both visits. The analysis of results from these experiments will be done and published in my Doctor's thesis.

These trips were possible thanks to funds from the Swedish Council for Building Research (BFR) through the Urban Geohydrology Research Group. Also Åke and Greta Lisshed Foundation and Chalmers Research Fund provided financial support which is gratefully acknowledged.

I wish to thank my hosts Mr. Richard May at Hydraulics Research and Dr. Chandra Nalluri at the University of Newcastle for all the facilities they gave me to conduct my experiments.

Göteborg, September 1990

Gustavo Perrusquia

LIST OF CONTENTS	
	Page
ABSTRACT	i
PREFACE	ii
LIST OF CONTENTS	iii
PART ONE: WALLINGFORD	1
 EXPERIMENTAL PROCEDURE Calibration of sediment supply 	2 2
2. EXPERIMENTAL RESULTS	7
PART TWO: NEWCASTLE	12
3. EXPERIMENTAL PROCEDURE	13
4. EXPERIMENTAL RESULTS	14
5. SUMMARY AND CONCLUSION	18
APPENDIX I:	
Longitudinal bed profiles, Wallingford	20
APPENDIX II:	
Longitudinal bed profiles, Newcastle	30

PART ONE: WALLINGFORD, October-November 1989

the second se

1. EXPERIMENTAL PROCEDURE

The experiments were carried out in a 21 m long, 450 mm diameter concrete pipe placed on a tilting flume. The pipe was constructed of 2.52 m long sections of spun concrete. Each pipe length had two 900 x 90 mm slots cut along the pipe's crown. Water was recirculated between two tanks, one at each end of the pipe. The water discharge rates were measured using a 1.234 m wide rectangular thin plate weir. Sediment was also recirculated by a slurry pump and the velocity measured using an electromagnetic current meter. The sediment concentration was measured using an infrared sensor. A layout of the test rig is shown in Figure 1. Flow depths were measured using five digital depth gauges along the pipe length. Uniform flow conditions were gradually established with the help of an adjustable sluice gate at the downstream end. Sediment bed thickness and bedform dimensions were measured using a digital point gauge while sediment bed width using a ruler. The sediment used was sand with $D_{so} = 0.72$ mm. A more detailed description of the test arrangement can be seen in a report by Hare (1988) from which Figure 1 has been taken.

The water pump was turned on first and the slurry pump was not turned on until the water had reached the downstream end. In this way a constant head over the slurry pump was kept. Each test was allowed to run for several hours so that bedforms occurred along the whole pipe length. No suspended load was detected. Both pumps were turned off while the sluice gate was shut off so that the bedforms were undisturbed. The pipe was then slowly emptied of all water and the bed profile measured the following day.

1.1 Calibration of sediment supply

Before the experimental series was started, it was necessary to calibrate the infrared sensor which measures sediment concentration. This was done for a range of velocities in the pipe that transported the mixture sand-water. The infrared light source was installed on the outside of a 1 m long transparent PVC section and the sensor mounted opposite the source, see Figure 2. The signal detected by the sensor and modified by the amount of sand passing along the pipe was fed to an amplifier unit and converted to a voltage. The signal could be monitored by both a chart recorder and a counter. Figure 3 shows a schematic layout of sensor equipment. The calibrations were done according to the following steps:

- A pre-weighed amount of sand was supplied to the slurry pump over a given period of time. The rate of supply was converted to kilograms per second.
- 2) Knowing the rate of supply and the discharge in the sediment pipe (using the electromagnetic current meter) the concentration in the sediment pipe could be computed as

Figure 1. Layout of the test rig for the 450 mm pipe. (Published with permission, HR Wallingford)

Cross section through sediment sensor. (Published with permission, HR Wallingford) Figure 2.

Figure 3. Schematic layout of sensor equipment. (Published with permission, HR Wallingford)

$$C = T_{b} / Q_{a}$$
(1)

in which C = concentration, T_b = transport rate and Q_p = water discharge in sediment pipe.

The water discharge in the sediment pipe Q_p , could be computed using the relationship

$$Q_p = 0.003065 (V-2) m^3/s$$
 (2)

in which V = reading on the electromagnetic current meter in volts.

3) Sensor readings were made for each particular concentration and discharge in the sediment pipe. This was done during the time the sand was being supplied to the pipe and at 100-second intervals. Then the sensor reading was expressed as

$$(M-M_{c})/1000$$
 (3)

in which M = mean sensor reading with sediment flowing and $M_c =$ sensor reading for clear water.

Figure 4 shows the calibration for a velocity of 2.775 m/s in the sediment pipe.

Figure 4. Sensor calibration at 2.775 m/s, Q = 12.26 l/s, ECM = 6 V. (Published with permission, HR Wallingford)

2. EXPERIMENTAL RESULTS

It took two weeks to complete the calibrations. On the third week two preliminary runs were made just to test the condition when a deposited bed builds along the pipe invert. It was found that the best calibration curve was the one shown in Figure 4 because the range of concentrations measured were within the region where the sensor gives an approximately linear response.

The water discharge over the weir was found using the following relationship

$$Q_{w} = 2/3 \ (2g)^{1/2} \ C_{0} \ B \ H_{e}^{3/2} \tag{4}$$

$$C_0 = 0.602 + 0.083 \text{ (H/P)}$$
(5)

 $H_{e} = H + 0.0012$ (6)

in which g is the acceleration of gravity, C_0 is the discharge coefficient, B is the width of the weir = 1.234 m, H_e is the energy head over the weir, H is the head over the weir and P is the height of the weir = 0.807 m.

The mean sensor reading with sediment flowing, M, was found taking the mean value of ten consecutive readings, each representing the mean concentration for a 1000 s period. The sensor reading for clear water M_c was fairly constant and equal to 0.22 V. The calibration curve could then be used to find the value of the concentration in the sediment pipe C in kg/m³.

The solid discharge was computed using the expression

$$Q_s = C Q_o / \rho_s \tag{7}$$

in which ρ_s is the density of the sediment = 2650 kg/m³.

The volumetric concentration was finally computed as

Bedform dimensions (height and length) were also measured. The mean values were computed using the following criteria:

- The height of a particular bedform was taken as the difference in elevation between the bedform crest and the mean of the elevations of the troughs at the ends of the bedform. The mean height is the mean of all individual heights taken on the centerline of the sediment bed.
- 2) The mean length was determined by averaging the length of all individual lengths taken along the centerline of the sediment bed.

Table 1 summarizes the results. All tests were carried out with the pipe flowing below half-full. The sediment thickness was kept reasonably constant and consequently the sediment width did not present large variations. The column denominated "TOTAL DEPTH" is the sum of the sediment thickness and the flow depth. The water temperature was kept relatively constant. The most significant longitudinal bed profiles are shown in Appendix I.

No further analysis of the results is done in this report because the limited amount of data is unsufficient to study scale effects. This will be done in conjunction with the main series of experiments conducted by the author (CTH runs). However, the relationship between the mobility number Θ_b and the transport parameter Φ_b is shown in Figure 5. The mobility number is defined as

$$\Theta_{\rm b} = R_{\rm b} S / (s-1) D_{\rm so} \tag{9}$$

in which $R_b =$ hydraulic radius of the bed; S = hydraulic gradient; s = specific density; and D_{50} = particle diameter of bed material 50% being finer. The hydraulic radius of the bed was determined using the side wall elimination procedure of Einstein (1942).

The transport parameter is defined as

$$\Phi_{\rm b} = q_{\rm b} / [(s-1)g D_{\rm so}^3]^{1/2}$$

or

$$\Phi_{\rm h} = C_{\rm s} Q / P_{\rm h} [(s-1)g D_{\rm s0}^3]^{1/2}$$

in which $q_b =$ unit solid discharge; g = acceleration of gravity; and $P_b =$ wetted perimeter of the sediment bed. C_v is the volumetric sediment concentration as defined in Equation (8) and Q is the total flow discharge. The so called CTH runs were performed using different methodologies from those of the Wallingford runs. Also, pipe and sediment dimensions were different. The pipe diameter in the Wallingford runs was double the size of the pipe used in the CTH runs. Even though no shape factors have been included for plotting the points shown in Figure 5, a preliminary curve can be drawn to fit the data.

A complementary set of results is summarized in Table 2.

(10)

TABLE 1. EXPERIMENTAL DATA, WALLINGFORD RUNS, OCT-NOV 1989 D = 450 mm; $D_{50} = 0.72 \text{ mm}$

RUN	SLOPE	SEDIM THICK	SEDIM WIDTH	DISCHARGE	FLOW DEPTH	
	°/00	mm	mm	1/s	mm	
1 2 3 4 5 6 7 8 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		332 355 335 344 344 356 340 354 349	16.5 26.4 39.1 24.5 31.4 48.6 20.7 36.3 26.2	87 123 204 121 145 214 134 168 115	
RUN	TOTAL DEPTH	WATER TEMP	TRANSP RATE	VOL SED CONC	SOLID DISCH	
	mm	°C	kg/s	ppm	kg/m ³	
1 2 3 4 5 6 7 8 9	160 210 279 201 225 301.5 212 254 198	15 14 15 13 13 13 13 13 13 13	0.0120 0.0093 0.0039 0.0141 0.0143 0.0097 0.0154 0.0100 0.0210	276 133 38 217 171 75 281 104 303	0.9794 0.7557 0.3187 1.1448 1.1600 0.7900 1.2526 0.8132 1.7100	
	RUN	BEDFORM HEIGHT	DIMENSIONS LENGTH			
		mm	mm			
	1 2 3	7.4 12.6 -	347 236			
	4 5 6 7 8 9	13.1 19.7 28.6 33.1 34.1 37.7	396 386 463 567 718 673			

Figure 5. Transport parameter versus mobility number for all CTH and Wallingford runs.

RUN	FLOW VELOC	RELATIVE SEDIM DEPTH	RELATIVE FLOW DEPTH	INVERSE MOBILITY NUMBER	TRANSP PARAM
	m/s				
1 2 3 4 5 6 7 8	0.486 0.516 0.454 0.494 0.520 0.531 0.375 0.509 0.555	0.16 0.19 0.17 0.18 0.18 0.19 0.17 0.19 0.18	0.19 0.27 0.45 0.27 0.32 0.48 0.30 0.37 0.26	18.6 12.9 6.50 5.19 4.32 2.93 2.71 2.31 2.57	0.176 0.127 0.057 0.199 0.201 0.133 0.220 0.137 0.293

TABLE 2. COMPLEMENTARY EXPERIMENTAL DATA, WALLINGFORD

PART TWO: NEWCASTLE, March-April 1990

3. EXPERIMENTAL PROCEDURE

The experiments were carried out in a 20 m long, 154 mm diameter PVC pipe placed on a tilting frame. Water was recirculated between two tanks, one at each end of the pipe.

Water discharge rates were measured using a V-notch according to the following relationship

$$Q = 1.365 (H + 0.002)^{25}$$
(11)

in which H is the head over the V-notch. Sediment rates were measured by a sediment trap located just downstream of the sediment test section. A layout of the test rig is shown in Figure 6. Flow depths were measured using nine point gauges along the pipe length. Uniform flow conditions were gradually established with the help of a tail gate at the downstream end; in the cases this was not possible the slopes were corrected by using nonuniform flow equation. Sediment was supplied by a feeder just upstream of the sediment test section. Bedform dimensions were measured using a specially designed ruler. The sediment used was sand with $D_{so} = 1.0$ mm and a density $\rho_s = 2593$ kg/m³.

After establishing uniform flow each test was allowed to run for some time until bedforms occurred along the sediment test section. At first, sediment was supplied by simply checking that at the beginning of the test section neither erosion nor accumulation of sediment occurred. Later, once samples had been taken and weighed while running each test, the feeder was adjusted to supply the same rate of sediment that was falling into the sediment trap. This process took several hours.

The pump was turned off while the tail gate was shut off so that the bedforms were undisturbed. The pipe was slowly drained and the bed profile measured later.

Figure 6. Experimental layout for the 154 mm diameter pipe. (Published with permission, University of Newcastle)

4. EXPERIMENTAL RESULTS

The parameters presented in Table 3 are similar to those shown in Table 1. Both sediment thickness and width are considered constant because the false bed had fixed dimensions and the average values for the loose sediment bed were considered to be equal to those of the false bed. This was decided after the longitudinal bed profiles had been analyzed, see Appendix II for the most significant bed profiles.

Figure 7 shows the plot of the mobility number against the transport parameter as defined by Equations (9) and (10) along with the preliminary curve drawn in Figure 5. Table 4 contains a complementary set of results.

The scatter in Figure 7 is considerably less than in Figure 5. It should be mentioned that the pipe diameter in the Newcastle runs is almost two thirds the size of the pipe used in the CTH runs. However, no consideration has been taken with regard to any scale or shape factor in plotting Figure 7.

RUN	SLOPE	SEDIM THICK	SEDIM WIDTH	DISCHARGE	FLOW DEPTH
	°/00	mm	mm	1/s	mm
1 2 3 4 5 6 7 8 9 10 11	2.4 2.4 2.3 3.2 2.6 3.0 3.8 3.8 1.9 2.0 2.1	41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5	136.7 136.7 136.7 136.7 136.7 136.7 136.7 136.7 136.7 136.7 136.7	1.64 3.29 4.93 2.10 4.92 5.04 2.64 2.32 1.68 4.43 2.75	33.2 55.0 79.4 35.8 65.3 66.9 40.4 36.4 35.4 70.8 47.8
RUN	TOTAL DEPTH	WATER TEMP	TRANSP RATE	VOL SED CONC	SOLID DISCH
	mm	°C	kg/s	ppm	kg/m ³
1 2 3 4 5 6 7 8 9 10 11	74.70 96.50 120.9 77.30 106.8 108.4 81.90 77.90 76.90 112.3 89.30	18 18 18 18 18 18 20 20 20 20 20 20 18	0.0003 0.0011 0.0014 0.0009 0.0023 0.0024 0.0015 0.0017 0.0002 0.0013 0.0006	78 133 111 156 179 186 217 280 34 113 84	0.1989 0.3371 0.2812 0.3961 0.4541 0.4724 0.5498 0.7100 0.0874 0.2871 0.2135
	RUN	BEDFORM HEIGHT	DIMENSIONS LENGTH		
		mm	mm		
	1 2 3 4 5 6 7 8 9 10 11	4.3 4.6 4.9 - 4.1	- 543 - 768 256 - - 359		

TABLE 3. EXPERIMENTAL DATA, NEWCASTLE RUNS, MAR-APR 1990 D = 154 mm ; $D_{50} = 1.00 \text{ mm}$

Figure 7. Transport parameter versus mobility number for all CTH and Newcastle runs.

RUN	FLOW VELOC	RELATIVE SEDIM DEPTH	RELATIVE FLOW DEPTH	INVERSE MOBILITY NUMBER	TRANSP PARAM
	m/s				
1	0.334	0.27	0.22	23.4	0.007
2	0.399	0.27	0.36	15.5	0.025
3	0.423	0.27	0.52	11.9	0.031
4	0.395	0.27	0.23	16.5	0.019
5	0.505	0.27	0.42	13.8	0.050
6	0.506	0.27	0.43	11.0	0.054
7	0.439	0.27	0.26	12.4	0.033
8	0.429	0.27	0.24	13.4	0.037
9	0.320	0.27	0.23	27.9	0.003
10	0.422	0.27	0.46	16.5	0.029
11	0.384	0.27	0.31	20.6	0.013

TABLE 4. COMPLEMENTARY EXPERIMENTAL DATA, NEWCASTLE

5. SUMMARY AND CONCLUSIONS

Transport capacity and bedform dimensions in part-full pipes with a deposited bed have been measured. Experiments were performed both at Hydraulics Research, Wallingford and the University of Newcastle upon Tyne using the facilities listed below.

Series	Pipe diameter mm	Sand size mm	Number of runs	Slope range %	Relative sediment depth
WALLINGFORD	450	0.72	9	1-4	0.18
NEWCASTLE	154	1.00	11	2-4	0.27

The preliminary results show that a functional relationship of the type $\Theta_b = f(\Phi_b)$ can be used to describe the transport capacity in such pipes as shown in Figure 8. Even before any shape factors are introduced it can be seen that the preliminary results fit fairly well to those obtained by the author in an extensive series of experiments (CTH runs).

The effects (if any) that the relative flow depth, the relative sediment depth, the relative grain size, the pipe diameter and the bedform dimensions produce on the sediment transport rate will be studied in an oncoming report. To that purpose, the results published herein will be extremely helpful.

Figure 8. Transport parameter versus mobility number for all CTH, Wallingford and Newcastle runs.

APPENDIX I: Longitudinal bed profiles, Wallingford

APPENDIX II: Longitudinal bed profiles, Newcastle

CHALMERS TEKNISKA HÖGSKOLA Institutionen för vattenbyggnad

Report Series A

- A:1 Bergdahl, L.: Physics of ice and snow as affects thermal pressure. 1977.
- A:2 Bergdahl, L.: Thermal ice pressure in lake ice covers. 1978.
- A:3 Häggström, S.: Surface Discharge of Cooling Water. Effects of Distortion in Model Investigations. 1978.
- A:4 Sellgren, A.: Slurry Transportation of Ores and Industrial Minerals in a Vertical Pipe by Centrifugal Pumps. 1978.
- A:5 Arnell, V.: Description and Validation of the CTH–Urban Runoff Model. 1980.
- A:6 Sjöberg, A.: Calculation of Unsteady Flows in Regulated Rivers and Storm Sewer Systems. 1976.
- A:7 Svensson, T.: Water Exchange and Mixing in Fjords. Mathematical Models and Field Studies in the Byfjord. 1980.
- A:8 Amell, V.: Rainfall Data for the Design of Sewer Pipe Systems. 1982.
- A:9 Lindahl, J., Sjöberg, A.: Dynamic Analysis of Mooring Cables. 1983.
- A:10 Nilsdal, J-A.: Optimeringsmodellen ILSD. Beräkning av topografins inverkan på ett dagvattensystems kapacitet och anläggningskostnad. 1983.
- A:11 Lindahl, J.: Implicit numerisk lösning av rörelseekvationerna för en förankringskabel. 1984.
- A:12 Lindahl, J.: Modellförsök med en förankringskabel. 1985.
- A:13 Lyngfelt, S.: On Urban Runoff Modelling. The Application of Numerical Models Based on the Kinematic Wave Theory. 1985.
- A:14 Johansson, M.: Transient Motions of Large Floating Structures. 1986.
- A:15 Mårtensson, N., Bergdahl, L.: On the Wave Climate of the Southern Baltic. 1987.
- A:16 Moberg, G.: Wave Forces on a Vertical Slender Cylinder. 1988.
- A:17 Perrusquía González, G.S.: Part-Full Flow in Pipes with a Sediment Bed. Part one: Bedform dimensions. Part two: Flow resistance. 1988.
- A:18 Nilsdal, J-A.: Bedömning av översvämningsrisken i dagvattensystem. Kontrollberäkning med typregn. 1988.
- A:19 Johansson, M.: Barrier-Type Breakwaters. Transmission, Reflection and Forces. 1989.
- A:20 Rankka, W.: Estimating the Time to Fatigue Failure of Mooring Cables. 1989.
- A:21 Olsson, G.: Hybridelementmetoden, en metod för beräkning av ett flytande föremåls rörelse. 1990.

CHALMERS TEKNISKA HÖGSKOLA Institutionen för vattenbyggnad

Report Series B

- B:1 Bergdahl, L.: Beräkning av vågkrafter. (Ersatts med 1979:07) 1977.
- B:2 Arnell, V.: Studier av amerikansk dagvattenteknik. 1977.
- B:3 Sellgren, A.: Hydraulic Hoisting of Crushed Ores. A feasibility study and pilotplant investigation on coarse iron ore transportation by centrifugal pumps. 1977.
- B:4 Ringesten, B.: Energi ur havsströmmar. 1977.
- B:5 Sjöberg, A., Asp, T.: Brukar-anvisning för ROUTE-S. En matematisk modell för beräkning av icke-stationära flöden i floder och kanaler vid strömmande tillstånd. 1977.
- B:6 Annual Report 1976/77. 1977.
- B:7 Bergdahl, L., Wernersson, L.: Calculated and Expected Thermal Ice Pressures in Five Swedish Lakes. 1977.
- B:8 Göransson, C-G., Svensson, T.: Drogue Tracking Measuring Principles and Data Handling. 1977.
- B:9 Göransson, C-G.: Mathematical Model of Sewage Discharge into confined, stratified Basins Especially Fjords. 1977.
- B:10 Arnell, V., Lyngfelt, S.: Beräkning av dagvattenavrinning från urbana områden. 1978.
- B:11 Arnell, V.: Analysis of Rainfall Data for Use in Design of Storm Sewer Systems. 1978.
- B:12 Sjöberg, A.: On Models to be used in Sweden for Detailed Design and Analysis of Storm Drainage Systems. 1978.
- B:13 Lyngfelt, S.: An Analysis of Parameters in a Kinematic Wave Model of Overland Flow in Urban Areas. 1978.
- B:14 Sjöberg, A., Lundgren, J., Asp, T., Melin, H.: Manual för ILLUDAS (Version S2). Ett datorprogram för dimensionering och analys av dagvattensystem. 1979.
- B:15 Annual Report 1978/79. 1979.
- B:16 Nilsdal, J-A., Sjöberg, A.: Dimensionerande regn vid höga vattenstånd i Göta älv. 1979.
- B:17 Stöllman, L-E.: Närkes Svartå. Hydrologisk inventering. 1979.
- B:18 Svensson, T.: Tracer Measurements of Mixing in the Deep Water of a Small, Stratified Sill Fjord. 1979.
- B:19 Svensson, T., Degerman, E., Jansson, B., Westerlund, S.: Energiutvinning ur sjöoch havssediment. En förstudie. R76:1980. 1979.
- B:20 Annual Report 1979. 1980.
- B:21 Stöllman, L-E.: Närkes Svartå. Inventering av vattentillgång och vattenanvändning. 1980.

Report Series B

- B:22 Häggström, S., Sjöberg, A.: Effects of Distortion in Physical Models of Cooling Water Discharge. 1979.
- B:23 Sellgren, A.: A Model for Calculating the Pumping Cost of Industrial Slurries. 1981.
- B:24 Lindahl, J.: Rörelseekvationen för en kabel. 1981.
- B:25 Bergdahl, L., Olsson, G.: Konstruktioner i havet. Vågkrafter-rörelser. En inventering av datorprogram. 1981.
- B:26 Annual Report 1980. 1981.
- B:27 Nilsdal, J-A.: Teknisk-ekonomisk dimensionering av avloppsledningar. En litteraturstudie om datormodeller. 1981.
- B:28 Sjöberg, A.: The Sewer Network Models DAGVL-A and DAGVL-DIFF. 1981.
- B:29 Moberg, G.: Anläggningar för oljeutvinning till havs. Konstruktionstyper, dimensioneringskriterier och positioneringssystem. 1981.
- B:30 Sjöberg, A., Bergdahl, L.: Förankringar och förankringskrafter. 1981.
- B:31 Häggström, S., Melin, H.: Användning av simuleringsmodellen MITSIM vid vattenresursplanering för Svartån. 1982.
- B:32 Bydén, S., Nielsen, B.: Närkes Svartå. Vattenöversikt för Laxå kommun. 1982.
- B:33 Sjöberg, A.: On the stability of gradually varied flow in sewers. 1982.
- B:34 Bydén, S., Nyberg, E.: Närkes Svartå. Undersökning av grundvattenkvalitet i Laxå kommun. 1982.
- B:35 Sjöberg, A., Mårtensson, N.: Regnenveloppmetoden. En analys av metodens tillämplighet för dimensionering av ett 2-års perkolationsmagasin. 1982.
- B:36 Svensson, T., Sörman, L-O.: Värmeupptagning med bottenförlagda kylslangar i stillastående vatten. Laboratorieförsök. 1982.
- B:37 Mattsson, A.: Koltransporter och kolhantering. Lagring i terminaler och hos storförbrukare. (Delrapport). 1983.
- B:38 Strandner, H.: Ett datorprogram för sammankoppling av ILLUDAS och DAGVL-DIFF. 1983.
- B:39 Svensson, T., Sörman, L-O.: Värmeupptagning med bottenförlagda slangar i rinnande vatten. Laboratorieförsök. 1983.
- B:40 Mattsson, A.: Koltransporter och kolhantering. Lagring i terminaler och hos storförbrukare. Kostnader. Delrapport 2. 1983.
- B:41 Häggström, S., Melin, H.: Närkes Svartå. Simuleringsmodellen MITSIM för kvantitativ analys i vattenresursplanering. 1983.
- B:42 Hård, S.: Seminarium om miljöeffekter vid naturvärmesystem. Dokumentation sammanställd av S. Hård, VIAK AB. BFR-R60:1984. 1983.
- B:43 Lindahl, J.: Manual för MODEX-MODIM. Ett datorprogram för simulering av dynamiska förlopp i förankringskablar. 1983.

Report Series B

- B:44 Activity Report. 1984.
- B:45 Sjöberg, A.: DAGVL-DIFF. Beräkning av icke-stationära flödesförlopp i helt eller delvis fyllda avloppssystem, tunnlar och kanaler. 1984.
- B:46 Bergdahl, L., Melin, H.: WAVE FIELD. Manual till ett program för beräkning av ytvattenvågor. 1985.
- B:47 Lyngfelt, S.: Manual för dagvattenmodellen CURE. 1985.
- B:48 Perrusquía, G., Lyngfelt, S., Sjöberg, A.: Flödeskapacitet hos avloppsledningar delvis fyllda med sediment. En inledande experimentell och teoretisk studie. 1986.
- B:49 Lindahl, J., Bergdahl, L.: MODEX-MODIM. User's Manual. 1987.
- B:50 Mårtensson, N.: Dynamic Analysis of a Moored Wave Energy Buoy. 1988.
- B:51 Lyngfelt, S.: Styrning av flöden i avloppssystem. Begrepp Funktion FoU-Behov. 1989.
- B:52 Perrusquía, G.: Sediment in Sewers. Research Leaves in England. 1990.