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To my parents and Wanlu

“The art of doing mathematics consists in finding that special case which
contains all the germs of generality.”

– David Hilbert





Abstract
Recent results in communication theory suggest that significant throughput gains in
wireless fading networks can be achieved by exploiting network coordination (e.g., CoMP,
network MIMO, and interference alignment), provided that each node in the network has
perfect channel knowledge. In practice, however, the channels are not known a priori
and must be estimated. Lack of a priori channel knowledge determines a penalty on the
throughput compared to the case where perfect channel knowledge is available.

In this thesis, we take a fresh look at the problem of learning fading channels. We
characterize the cost of learning fading channels in an information-theoretic way by
determining the maximal achievable rate over point-to-point fading channels under the
assumption that neither the transmitter nor the receiver have a priori channel knowledge.

Paper A and Paper B characterizes the capacity of fading channels in the high signal-
to-noise ratio (SNR) regime. Specifically, in paper A, we establish an upper bound on the
capacity pre-log (i.e., the asymptotic ratio between capacity and the logarithm of SNR
as SNR goes to infinity) of Rayleigh-fading correlated block-fading single-input multiple-
output (SIMO) channels. The upper bound matches the lower bound reported in Riegler
et al. (2011), and, hence, yields a complete characterization of the SIMO capacity pre-
log, provided that the channel covariance matrix satisfies a mild technical condition. In
Paper B, we characterize the capacity of Rayleigh-fading constant block-fading multiple-
input multiple-output (MIMO) channels in the high SNR regime, and provide the input
distribution that achieves capacity up to a term that vanishes as SNR grows large.

The insights gained from the high-SNR analysis allows us to obtain tight bounds on
the maximal achievable rate R∗(n, ε) for a given blocklength n and block error probability
ε at finite SNR. Specifically, in Paper C, we establish upper and lower bounds on R∗(n, ε)
for a single-antenna Rayleigh-fading constant block-fading channel. Our results show that
for a given block-length and error probability, R∗(n, ε) is not monotonic in the channel
coherence time, but there exists a rate maximizing coherence time that optimally trades
between diversity and cost of estimating the channel. Finally, in Paper D, we consider
the special case when the fading channel does not vary over the transmission of each
codeword (quasi-static fading channels). We characterize the channel dispersion in the
SIMO setting, and provide tight bounds on R∗(n, ε) together with an easy-to-compute
approximation.

Keywords: Shannon capacity, outage capacity, block-fading channel, finite blocklength,
quasi-static fading, multiple antennas
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Chapter 1

Introduction

The surge in the use of broadband services in the public and private sectors poses high
demands on future wireless communication networks, from the core (backhaul) to the
periphery (cellular base stations). Ericsson, a wireless network manufacturer, predicts
that mobile data traffic will have to double every year to match future demands [1]. At
the same time, wireless networks also need to provide ubiquitous connectivity for the
end user at a minimum guaranteed data rate. It is widely agreed that these throughput
gains as well as the expectation of ubiquitous user experience can only be achieved by a
dense and heterogeneous deployment of the wireless network infrastructure. Under this
scenario, the availability of effective interference management schemes becomes crucial.

Recent results in communication theory suggest that throughput gains of up to two or-
ders of magnitude are obtainable by exploiting interference management techniques such
as CoMP [2], network MIMO [3], and interference alignment [4]. However, over-the-air
trials have only demonstrated disappointingly low throughput improvements (typically
not exceeding 30%) [2] or no improvements at all [5].

One possible explanation for this disconnect between theory and practice lies in the
assumption of perfect channel state information (CSI) under which state-of-the-art inter-
ference management techniques are developed. This assumption is not realistic because,
in most wireless communication networks, CSI is not known a priori at each node and
must be estimated, for example through the transmission of pilot symbols. The time
and/or bandwidth spent sending pilot symbols is not negligible, particularly in systems
with a large number of nodes or antenna elements. Also, determining the amount of
resources to be used for channel estimation is crucial in the design of wireless commu-
nication systems operating over fading channels. It is therefore of great importance to
understand the cost of learning fading channels.

In this thesis, we take a fresh look at the problem of learning fading channels. De-
termining the Shannon capacity [6, Ch. 7] of fading channels under the assumption that
neither the transmitter nor the receiver have a priori channel knowledge is a fundamental
way to assess the cost of learning fading channels. We emphasize that in our setup of
no a priori channel knowledge, the receiver is allowed to try and estimate the channel.
The employed communication strategy does not necessarily need to be noncoherent. The
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typical approach of transmitting pilot symbols to estimate the channel is simply viewed
as a specific form of coding. Hence, capacity in the absence of a priori CSI is the ultimate
limit on the rate of reliable communication over fading channels, regardless of whether
channel estimation is performed or not.

Unfortunately, capacity in the absence of a priori CSI is notoriously difficult to char-
acterize analytically and no closed-form expressions are available to date, even for the
simplest channel models [7, 8]. Most of the results in this area pertain to the asymptotic
regime of low or high signal-to-noise ratio (SNR) [9–12].

In order to study channel capacity of fading channels with no a priori CSI, we need
to specify a channel model that describes the channel variations in time. In this the-
sis, we consider two models, namely, the constant block-fading model and the correlated
block-fading model. In the constant block-fading model, the fading process takes on inde-
pendent realizations across blocks of a certain length, and remains constant within each
block. This model is accurate for systems employing frequency hopping or time-division
multiple access, and is widely used in the literature due to its simplicity [8, 9, 13]. The
correlated block-fading model, which was first introduced in [14], generalizes the constant
block-fading model by allowing more general forms of temporal correlation between dif-
ferent fading gains within each block. Hence, channel variations in time can be captured
in a more accurate way than with the constant block-fading model. The correlated block-
fading model arises naturally in the analysis of cyclic-prefix orthogonal frequency-division
multiplexing (OFDM) systems operating over frequency-selective channels [12, 15].

Channel capacity is a relevant performance metric only when sufficiently long code-
words are used. In emerging applications such as machine-type and vehicle-to-vehicle
communications, the requirement of long codewords is often too stringent, and short
codewords are needed to meet the delay constraints. Indeed, the 4G wireless standard
LTE-Advanced employs codes with blocklengths as short as 100 symbols [16, Sec. 5.1.3].
For such short blocklengths, the fundamental limit of practical interest is the maximal
achievable rate R∗(n, ε) for a given blocklength n and block error probability ε.

In the nonasymptotic regime of finite blocklength, there are no exact formulas for
the maximal achievable rate as a function of blocklength and error probability. In fact,
the exact computation of R∗(n, ε) is an NP-hard problem [17], and is prohibitive already
for very short blocklengths. Nevertheless, computable upper and lower bounds on the
maximal achievable rate are available in the literature [18–23]. Of particular interest for
this thesis are the new bounds recently developed by Polyanskiy, Poor and Verdú [23]
such as the meta-converse bound, the dependence-testing bound, and the κβ bound.
Using these bounds, they showed that for various channels with positive capacity C, the
maximal achievable rate can be tightly approximated by

R∗(n, ε) ≈ C −
√
V

n
Q−1(ε). (1.1)

Here, Q−1(·) denotes the inverse of the complementary cumulative distribution function
(cdf) of a standard normal random variable, and V is the channel dispersion (see [23,
Def. 1] or (2.17)).
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1.1 Objectives

The aim of this thesis is to study—under the assumption of no a priori CSI—the capacity
and the maximal achievable rate at finite blocklength of point-to-point fading channels.
To this end, we first study the capacity in the high SNR regime. For the correlated
block-fading model, we determine the pre-log (also known as number of degrees of free-
dom or multiplexing gain), which is defined as the asymptotic ratio between capacity and
the logarithm of the SNR as SNR goes to infinity, in the single-input multiple-output
(SIMO) setting. For the constant block-fading model, we characterize the capacity of
multiple-input multiple-output (MIMO) channel in the high SNR regime and provide
the input distribution that achieves capacity up to a term that vanishes as SNR grow
large. The insights gained from the high-SNR analysis allows us to obtain tight bounds
on the maximal achievable rate R∗(n, ε) at finite SNR and at finite blocklength. Specif-
ically, we establish upper and lower bounds on R∗(n, ε) for a single-input single-output
(SISO) constant block-fading channel at finite SNR and at finite blocklength. Finally,
for the special case that the fading channel does not vary over the transmission of a
codeword (quasi-static fading channels), we characterize the dispersion of the channel in
the SIMO setting and provide tight bounds as well as an easy-to-compute approximation
for R∗(n, ε).

1.2 Thesis Outline

The thesis is organized as follows: in Chapter 2, we introduce the fading channel models
studied in this thesis, define the fundamental information-theoretic limits, and review
previous results. In Chapter 3, we present the information-theoretic tools we shall use
in this thesis. Finally, in Chapter 4, we summarize our contributions.



Chapter 2

Channel Model, Fundamental
Limits, and Known Results

This thesis deals with the problem of characterizing the maximal achievable rate over
point-to-point fading channels. In Section 2.1, we introduce the two channel models that
will be studied in this thesis, namely, the constant block-fading model and the correlated
block-fading model. In Section 2.2, we define the notion of channel capacity, outage
capacity, and maximal achievable rate at finite blocklength, and review some known
results.

2.1 Channel Model

The capacity of fading channels under no a priori CSI is known to be sensitive to the
channel model used, especially in the high SNR regime [10, 24, 25]. In our quest for
simplicity of exposition, we focus on block-fading channel models, which we will describe
in the following two sections.

2.1.1 Constant Block-Fading Model

The constant block-fading model is perhaps the simplest model to capture channel vari-
ations. The input-output relation of a constant block-fading MIMO channel with T
transmit antennas, R receive antennas within a block of N channel uses is [8, 9, 13]:

yr =

√
ρ

T

T∑
t=1

hr,txt +wr, r ∈ {1, . . . , R}. (2.1)

Here, xt ∈ CN is the signal vector originating from the tth transmit antenna over the
block of N channel uses; yr ∈ CN is the signal vector at the rth receive antenna; hr,t is the
channel coefficient between receive antenna r and transmit antenna t; wr ∼ CN (0, IN ) is
the noise vector at the rth receive antenna; finally, ρ ∈ R+ denotes the SNR. In most of
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the thesis (with the exception of Paper D) we shall assume hr,t ∼ CN (0, 1), i.e., Rayleigh
fading. In our setup, the transmitted signal vectors xt do not depend on the channel
coefficients hr,t and the noise vectors wr. The channel coefficients hr,t are assumed to be
mutually independent and independent across r ∈ {1, . . . , R} and t ∈ {1, . . . , T}, and to
change in an independent fashion from block to block (“block-memoryless” assumption).
We assume that neither the transmitter nor the receiver have a priori knowledge of the
realizations of {hr,t} and {wr}, bur both know their statistics.

In most of the thesis, we shall consider an ergodic scenario where the coding is per-
formed over sufficiently many blocks. A different scenario considered in Section 2.2.2
and Paper D is the so-called quasi-static setting, originally proposed in [26], where it
is assumed that N is large and that coding is performed over one block only. In this
scenario, the fading is a non-ergodic process.

2.1.2 Correlated Block-Fading Model

The correlated block-fading model extends the constant block-fading model to allow for
the N fading coefficients in each block to be jointly Gaussian with a covariance matrix
of rank Q ≥ 1. The input-output relation of a correlated block-fading MIMO channel
with T transmit antennas, R receive antennas within a block of N channel uses is [14]:

yr =

T∑
t=1

diag{hr,t}xt +wr, r ∈ {1, . . . , R}. (2.2)

Here, the vector hr,t ∼ CN (0,PPH) contains the fading coefficients between the receive
antenna r and transmit antenna t, and its realizations are assumed to be unknown by
the transmitter and the receiver. The N × Q matrix P , which is deterministic and of
full rank 1 ≤ Q ≤ N , describes the correlation structure within a block and is assumed
to be known perfectly to the transmitter and the receiver. We further assume that the
rows of P have unit norm, and hence, the entries of hr,t are identically distributed.
The fading vectors {hr,t} between all antenna pairs are assumed to be independent
and identically distributed (i.i.d.),1 and are independent across different blocks. The
correlated block-fading model just described captures channel variation in time in a more
accurate (yet simple) way than the constant block-fading model: large Q corresponds
to fast channel variations. Furthermore, (2.2) models accurately the IO relation in the
frequency domain of a cyclic-prefix OFDM system that operates over a multipath channel
with Q uncorrelated taps. Note that (2.1) is a special case of (2.2) with P = [1, . . . , 1]T

and Q = 1.
Before ending this section, we remark that in both the constant block-fading model

and the correlated block-fading model the fading is modeled as a non-stationary process.
An alternative approach to capturing channel variations in time is to assume that the
fading process is symbol-by-symbol stationary. The key differences between block-fading
and stationary fading is discussed in [28]. The high-SNR capacity of the stationary
channel with no a priori CSI is studied in [10, 24, 29, 30]. Somewhat surprisingly, this

1This assumption can be further relaxed by allowing for the fading vectors between different antenna
pairs to have different covariance matrices of the same rank [27].
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model can lead in some cases to capacity estimates that are drastically different from the
ones obtained using the block-fading models.

2.2 Fundamental Limits and Known Results

2.2.1 Channel Capacity

To keep notation simple, we write X , [x1, . . . ,xT ] ∈ CN×T and Y , [y1, . . . ,yR] ∈
CN×R. Because of the block-memoryless assumption, the ergodic capacity of the channel
in (2.1) and (2.2) is given by

C(ρ) =
1

N
sup I(X;Y ). (2.3)

Here, I(X;Y ) denotes the mutual information [6, p. 251] and the supremum is taken
over all input distributions on CN×T satisfying the average power-constraint

T∑
t=1

E
[
‖xt‖2

]
≤ NT. (2.4)

The capacity pre-log is defined as

χ = lim
ρ→∞

C(ρ)

log ρ
. (2.5)

The capacity of the constant block-fading MIMO channel (2.1) with no a priori CSI
has been studied extensively in the literature for the Rayleigh fading case [8, 9, 13,
31]. However, no closed-form capacity expression is available to date. Marzetta and
Hochwald [8] proved that the capacity-achieving input matrix X is of the form X =
ΦD, where Φ is an N × T isotropically distributed unitary matrix and D is a T × T
nonnegative diagonal matrix independent of Φ. In the same paper, they also conjectured
that allocating equal powers to different transmit antennas, i.e., choosing D =

√
NIT ,

is optimal at high SNR. The corresponding probability distribution on X is sometimes
referred to as unitary space-time modulation (USTM) [31–33]. Zheng and Tse [9] studied
capacity of the channel (2.1) at high SNR and proved that the pre-log is given by

χ = M∗
(

1− M∗

N

)
, with M∗ = min{T,R, bN/2c}. (2.6)

For the case N ≥ T +R, Zheng and Tse [9] proved that USTM is indeed optimal at high
SNR, and that

C(ρ) = χ log ρ+ c+ o(1), ρ→∞ (2.7)

where [9, Eq. (24)]

c =
1

N
log

ΓT (T )

ΓT (N)
+ T

(
1− T

N

)
log

N

Te
+

(
1− T

N

)
E
[
log det(HHH)

]
(2.8)
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is a constant that does not depend on ρ, Γm(a) = πm(m−1)/2
m∏
k=1

Γ(a− k + 1) with Γ(·)
being the Gamma function [34, Eq. (6.1.1)], and o(1) denotes a function of ρ that vanishes
as ρ → ∞. Differently from the pre-log result (2.6), the high-SNR expression (2.7)
describes capacity accurately already at moderate SNR values [35].

For the correlated block-fading channel model, it was shown in [14] that the capacity
pre-log for the SISO case is given by

χ =

(
1− Q

N

)
. (2.9)

A lower bound on the SIMO capacity pre-log is reported in [36, 37], and generalized
in [27] to the MIMO case. Finding a capacity characterization that is tight up to o(1)
[cf. (2.7)] for the correlated block-fading channel is an open problem.

While all results reviewed in this section pertain to the Rayleigh fading case, it is
shown in [38] that among all fading distributions whose law has no mass point at zero,
the Rayleigh distribution gives rise to the smallest pre-log. So Rayleigh fading is the
worst fading in terms of capacity pre-log.

2.2.2 Outage Capacity

For the quasi-static fading model introduced at the end of Section 2.1.1, the channel
capacity is zero whenever the closure of the support of the fading distribution includes
zero, because reliable communication cannot be guaranteed for any positive data rate.
In this scenario, a more meaningful performance metric may be the outage capacity (also
referred to as ε-capacity [39]). Let H , [hr,t]1≤r≤R,1≤t≤T ∈CR×T . The outage capacity
of MIMO quasi-static fading channels is given by [40]

Cε = sup

{
ξ : Pout(ξ) ≤ ε

}
(2.10)

where Pout(ξ) denotes the outage probability2 corresponding to a given rate ξ

Pout(ξ) = inf
Q:Q�0

tr{Q}≤T

P
[
log det

(
IR +

√
ρ

T
HQHH

)
≤ ξ
]
. (2.11)

Note that (2.10) holds for the case when CSI is not available at the transmitter and
regardless of whether CSI is available at the receiver or not. The matrixQ that minimizes
the right-hand-side (RHS) of (2.11) is in general not known. For the Rayleigh-fading case,
Telatar [40] conjectured that the optimal Q is of the form3

ρ

T ∗
diag

{
1, . . . , 1︸ ︷︷ ︸

T∗

, 0, . . . , 0︸ ︷︷ ︸
T−T∗

}
, 1 ≤ T ∗ ≤ T (2.12)

2Strictly speaking, (2.10) holds for all ε > 0 for which Cε is a continuous function of ε.
3This conjecture has recently been proved in [41] for the multiple-input single-output case.
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and that for small ε values or for high SNR, all available transmit antennas should be
used (see also [42, p. 367]).

When CSI is available at the transmitter, the well known water-filling power allocation
achieves the infimum in (2.11).

2.2.3 Maximal Achievable Rate

We introduce the notion of the maximal achievable rate R∗(n, ε) for a given blocklength
n and error probability ε. As in [23, 43], we define it for an abstract random transfor-
mation PY |X with input and output sets A and B. An (M, ε)max code for the random
transformation PY |X is a pair of random transformations PX|W : {1, · · · ,M} 7→ X and
PŴ |Y : Y 7→ {1, · · · ,M} such that

max
1≤j≤M

P[Ŵ 6= W |W = j] = max
1≤j≤M

(
1− PŴ |W

(
j|j
))
≤ ε. (2.13)

The random transformations PX|W and PŴ |Y are called the encoder and the decoder of

the code, respectively. An (M, ε)avg code is defined in a similar way, except that (2.13)
is replaced with the average probability of error criterion:

P[Ŵ 6= W ] =
1

M

M∑
j=1

(
1− PŴ |W

(
j|j
))
≤ ε (2.14)

where W is equiprobable on {1, . . . ,M}.
A channel is a sequence of random transformations, {PY n|Xn , n = 1, 2, . . .}, parame-

terized by the blocklength n. An (M, ε) code for the n-th random transformation of the
channel is called an (n,M, ε) code. The maximal achievable rate R∗(n, ε) is defined as4

R∗(n, ε) , sup

{
logM

n
: ∃ (n,M, ε) code

}
. (2.15)

As already mentioned, the capacity C and ε-capacity Cε are the asymptotic limits of
R∗(n, ε):

C = lim
ε→0

lim
n→∞

R∗(n, ε), Cε = lim
n→∞

R∗(n, ε). (2.16)

As noted in Chapter 1, the exact value of R∗(n, ε) is unknown. In fact, the search
for R∗(n, ε) in (2.15) is doubly exponential in the blocklength n. Nevertheless, bounds
and easy-to-compute approximations for R∗(n, ε) are available in the literature [18–23].
In particular, Polyanskiy, Poor and Verdú [23] recently derived several new bounds on
the maximal achievable rate, such as the meta-converse bound, the dependence-testing
bound, and the κβ bound. By analyzing these bounds using the central limit theo-
rem, they obtained a simple closed-form approximation, given in (1.1), for the maximal
achievable rate. To compute the approximation (1.1), one only needs to know one more

4In addition, one should also specify which probability of error criterion, (2.13) or (2.14), is used.
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parameter of the channel (in addition to channel capacity), i.e., the channel disper-
sion [23, Def. 1], which is defined as

V = lim
ε→0

lim
n→∞

n

(
C −R∗(n, ε)
Q−1(ε)

)2

. (2.17)

The rationale behind the approximation (1.1) and the definition (2.17) of channel dis-
persion is the following expansion [23]

R∗(n, ε) = C −
√
V

n
Q−1(ε) +O

(
log n

n

)
(2.18)

which is valid for various channels with positive channel capacity. Here, the notation
f(x) = O(g(x)) means that lim supx→∞ |f(x)/g(x)| <∞.



Chapter 3

Information Theoretic Tools

In this chapter, we introduce the information theoretic tools we shall need for the analysis
of the capacity and of the maximal achievable rate over block-memoryless fading channels.

3.1 The Duality Technique

For the convenience of notation, consider a memoryless channel PY |X : X 7→ Y. Here, X
and Y denote the input and output alphabets, respectively. Let PY be the probability
distribution induced on Y by the input distribution PX and by the channel PY |X . By
the definition of mutual information [6, Sec. 8.5] [21, Eq. (1.8)], we have that

I(X;Y ) , D(PY |X‖PY |PX) (3.1)

=

∫
dPX(x)

∫
dPY |X=x(y) log

dPY |X=x

dPY
(y)dydx (3.2)

where D(·‖·) stands for the relative entropy between two probability distributions and

D(V ‖W |PX) , EPX [D(V (·|X)‖W (·|X))] (3.3)

denotes the conditional relative entropy [21, Eq. (2.4)]. The capacity of the channel PY |X
is given by

C = sup
PX

D(PY |X‖PY |PX) (3.4)

where the supreme is taken over all probability measures PX on X that satisfy the given
cost constraint (e.g., an average power constraint).

Establishing lower bounds on channel capacity is relatively simple: every input dis-
tribution PX leads to a lower bound on C

C ≥ D(PY |X‖PY |PX). (3.5)

To obtain a tight lower bound, we need to choose PX to be close to a capacity-achieving
input distribution and such that D(PY |X‖PY |PX) is tractable.
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Finding upper bounds on channel capacity is more difficult because we need to per-
form the maximization over all possible input distributions, and because the function we
need to maximize depends on PX in an intricate way (see (3.2)). The main idea behind
the duality technique is the following dual expression for capacity

C = inf
QY

sup
PX

D(PY |X‖QY |PX). (3.6)

We see from (3.6) that every probability distribution QY on the output Y yields an upper
bound on C

C ≤ sup
PX

D(PY |X‖QY |PX). (3.7)

Comparing (3.4) and (3.7), we see that in the duality bound (3.7) the distribution PY is
replaced by an axillary distribution QY that does not depend on the input distribution
PX . This makes the RHS of (3.7) much easier to deal with than the RHS of (3.4). As
illustrated in many examples (see, e.g., [10, 12] and Paper B), for an appropriate choice of
QY , it is possible to establish tight upper bounds on D(PY |X‖QY |PX) that hold for every
input distribution PX . In other words, the maximization in (3.7) can be circumvented
through appropriate bounding steps.

Obviously, the crucial step in deriving capacity upper bounds using the duality tech-
nique is to choose an appropriate output distribution QY . In principle, one should choose
QY to be close to the capacity-achieving output distribution and so as to guarantee that
the RHS of (3.7) is tractable. At high SNR, a typical choice of QY is the output dis-
tribution induced by the input distribution without the additive Gaussian noise (see,
e.g., [12]). In Paper A and Paper B, we used a more refined choice of QY , which is
motivated by geometric arguments.

3.2 Finite Blocklength Bounds

In this section, we review some of the bounds on the maximal achievable rate R∗(n, ε)
developed in [23]. These results apply to arbitrary channels and arbitrary blocklengths.
As in [23], we state them for an abstract random transformation PY |X with input and
output sets A and B.1

For a joint distribution PXY on A× B we denote the information density by

i(x; y) = log
dPY |X=x

dPY
(y). (3.8)

The following result, referred to as the dependence testing (DT) bound, provides an
achievability (lower) bound on R∗(n, ε).

1When we apply these results, we shall take A and B to be n-fold Cartesian products of some alphabets
X and Y. Thus, the element of A and B and the realizations of the random variables X and Y can be
thought of as vectors of dimension equal to the blocklength n.
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Theorem 3.1 (DT bound, [23, Th. 17]) For every distribution PX on A, there exists a
code with M codewords and average probability of error not exceeding

ε ≤ E

[
exp

{
−
∣∣∣∣i(X;Y )− log

M − 1

2

∣∣∣∣+
}]

(3.9)

where | · |+ , max{0, · }.
The DT bound uses a threshold decoder that sequentially tests all messages and returns
the first message whose likelihood exceeds a pre-determined threshold. Applications of
the DT bound to various channels (mainly channels without input constraints) can be
found in [23] [44]. In Paper C, we use the DT bound to derive lower bounds on R∗(n, ε)
for constant block-fading channels.

For channels with input constraints, an achievability bound, called κβ bound, that is
easier to analyze analytically than the DT bound is established in [23]. To state the κβ
bound, we need some definitions regarding the performance of hypothesis testing. Given
two distributions P and Q on a common measurable space W, we define a randomized
test between P and Q as a random transformation PZ|W : W 7→ {0, 1} where 0 indicates
that the test chooses Q. As performance metric for the test between P and Q, we take
the Neyman-Pearson ROC curve [45]

βα(P,Q) = min

∫
PZ|W (1|w)Q(dw) (3.10)

where the minimum is over all probability distributions PZ|W satisfying∫
PZ|W (1|w)P (dw) ≥ α. (3.11)

The minimum in (3.10) is guaranteed to be achieved by the Neyman-Pearson Lemma [46].
Each per-codeword cost constraint can be defined by specifying a subset F ⊂ A of per-
missible inputs. For an arbitrary F ⊂ A, we define the following measure of performance
for the composite hypothesis test between QY and the collection {PY |X=x}x∈F:

κτ (F, QY ) = inf

∫
PZ|Y (1|y)QY (dy). (3.12)

Here, the infimum is over all probability distributions PZ|Y satisfying∫
PZ|Y (1|y)PY |X=x(dy) ≥ τ, ∀x ∈ F. (3.13)

We are now ready to state the κβ bound.

Theorem 3.2 (κβ bound, [23, Th. 25]) For every 0 < ε < 1, there exists an (M, ε)max

code with codewords chosen from F ⊂ A, satisfying

M ≥ sup
0<τ<ε

sup
QY

κτ (F, QY )

supx∈F β1−ε+τ (PY |X=x, QY )
. (3.14)
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The κβ is used in [23] to derive an achievability bound on R∗(n, ε) for the AWGN channel
and in [47] for point-to-point fading channels with perfect a priori CSI. In Paper D, we
shall use a modified version of this bound to derive an achievability bound on R∗(n, ε)
for quasi-static SIMO fading channels.

Next, we introduce a general converse bound called meta-converse bound.2 The meta-
converse bound allows one to establish a converse bound for the channel PY |X , provided
that a converse bound for an auxiliary channel QY |X is available.

Theorem 3.3 (Meta-converse, [23, Th. 26]) Let QY |X : A 7→ B be an auxiliary channel.
For a given code, let

ε = average error probability with PY |X

ε′ = average error probability with QY |X

PX = encoder output distribution with equiprobable codewords.

Then
β1−ε(PXPY |X , PXQY |X) ≤ 1− ε′. (3.15)

Choosing QY |X in Theorem 3.3 to be independent of the input X, we get the following
result.

Theorem 3.4 (Minmax converse, [23, Th. 27]) Every (M, ε)avg code with codewords
belonging to A satisfies

logM ≤ − log

{
inf
PX

sup
QY

β1−ε(PXPY |X , PXQY )

}
(3.16)

where PX ranges over all probability measures on A, and QY ranges over all probability
measures on B.

Note that βα(·, ·) satisfies the following saddle point property [48] (under regularity con-
ditions on the input set A)

inf
PX

sup
QY

β1−ε(PXPY |X , PXQY ) = sup
QY

inf
PX

β1−ε(PXPY |X , PXQY ). (3.17)

Hence, (3.16) can be written equivalently as

logM ≤ − log

{
sup
QY

inf
PX

β1−ε(PXPY |X , PXQY )

}
. (3.18)

The bound (3.18) can be further relaxed by fixing a convenient QY as follows

logM ≤ − log

{
inf
PX

β1−ε(PXPY |X , PXQY )

}
. (3.19)

2The maximal probability of error counterparts to Theorem 3.3 and Theorem 3.4 can be found
in [23, Th. 30 and Th. 31].
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As in the duality technique, a crucial step in using (3.19) to derive upper bounds on
R∗(n, ε) is to choose an appropriate output distribution QY . A natural choice for QY
is the capacity achieving output distribution (see, e.g., [23, p. 2324] and [47]). Other
choices of QY are motivated by symmetries in the channel input-output relations and
geometry arguments.

It is interesting to compare the duality bound (3.7) on the channel capacity with the
converse bound (3.19) on the maximal achievable rate at finite blocklength. The duality
bound (3.7) can be seen as the asymptotic counterpart of the bound (3.19). In fact, the
Chernoff-Stein Lemma [6, Th. 11.8.3] implies that

− log β1−ε(P
n
XY , P

n
XQ

n
Y ) = nD(PXY ‖PXQY ) + o(n) (3.20)

= nD
(
PY |X‖QY

∣∣PX)+ o(n) (3.21)

where PnXY , PnX and QnY are n i.i.d. copies of PXY , PX and QY . In particular, we
expect that the output distributions QY that yield tight upper bounds on capacity via
the duality bound perform also well at finite blocklength via the bound (3.19).



Chapter 4

Contributions

This thesis aims at studying—under the assumption of no a priori CSI—the capacity
and the maximal achievable rate at finite blocklength of point-to-point fading channels.
In Section 4.1, we list the papers that are appended to this thesis and summarize their
contributions. Additional publications by the author, which are not included in this
thesis, are listed in Section 4.2.

4.1 Included Publications

1. Paper A: “Capacity pre-log of SIMO correlated block- fading channels”
We establish an upper bound on the noncoherent capacity pre-log of temporally cor-
related block-fading single-input multiple-output (SIMO) channels. The upper bound
matches the lower bound recently reported in Riegler et al. (2011), and, hence, yields
a complete characterization of the SIMO capacity pre-log, provided that the channel
covariance matrix satisfies a mild technical condition. This result allows one to de-
termine the optimal number of receive antennas to be used to maximize the capacity
pre-log for a given block-length and a given rank of the channel covariance matrix.

2. Paper B: “On the capacity of large-MIMO block-fading channels”
We characterize the capacity of Rayleigh block-fading multiple-input multiple-output
(MIMO) channels in the noncoherent setting where transmitter and receiver have no
a priori knowledge of the realizations of the fading channel. We prove that unitary
space-time modulation (USTM) is not capacity-achieving in the high signal-to-noise ra-
tio (SNR) regime when the total number of antennas exceeds the coherence time of the
fading channel (expressed in multiples of the symbol duration), a situation that is rele-
vant for MIMO systems with large antenna arrays (large-MIMO systems). This result
settles a conjecture by Zheng & Tse (2002) in the affirmative. The capacity-achieving
input signal, which we refer to as Beta-variate space-time modulation (BSTM), turns
out to be the product of a unitary isotropically distributed random matrix, and a
diagonal matrix whose nonzero entries are distributed as the square-root of the eigen-
values of a Beta-distributed random matrix of appropriate size. Numerical results
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illustrate that using BSTM instead of USTM in large-MIMO systems yields a rate
gain as large as 13% for SNR values of practical interest.

3. Paper C: “Diversity versus channel knowledge at finite block-length”
We study the maximal achievable rate R∗(n, ε) for a given block-length n and block
error probability ε over Rayleigh block-fading channels in the noncoherent setting and
in the finite block-length regime. Our results show that for a given block-length and
error probability, R∗(n, ε) is not monotonic in the channel’s coherence time, but there
exists a rate maximizing coherence time that optimally trades between diversity and
cost of estimating the channel.

4. Paper D: “Quasi-static SIMO fading channels at finite blocklength”
We investigate the maximal achievable rate for a given blocklength and error proba-
bility over quasi-static single-input multiple-output (SIMO) fading channels. Under
mild conditions on the channel gains, it is shown that the channel dispersion is zero
regardless of whether the fading realizations are available at the transmitter and/or
the receiver. The result follows from computationally and analytically tractable con-
verse and achievability bounds. Through numerical evaluation, we verify that, in
some scenarios, zero dispersion indeed entails fast convergence to outage capacity as
the blocklength increases. In the example of a particular 1× 2 SIMO Rician channel,
the blocklength required to achieve 90% of capacity is about an order of magnitude
smaller compared to the blocklength required for an AWGN channel with the same
capacity.

4.2 Publications Not Included

Publications by the author, which are not included in this thesis, are listed below.

[J1] V. I. Morgenshtern, E. Riegler, W. Yang, G. Durisi, S. Lin, B. Sturmfels, and
H. Bölcskei, “Capacity pre-log of noncoherent SIMO channels via Hironaka’s the-
orem,” IEEE Transactions on Information Theory, vol. 59, no. 7, pp. 4213–4229,
Jul. 2013.

[J2] Y. Sui, J. Vihrälä, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Mov-
ing cells: a promising solution to boost performance for vehicular users,” IEEE
Communications Magazine, vol. 41, no. 6, pp. 62–68, Jun. 2013.

[C1] W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Block-fading channels at finite
blocklength,” in Proceedings of IEEE International Symposium on Wireless Com-
munication Systems (ISWCS), Ilmenau, Germany, Aug. 2013, to appear.

[C2] E. Riegler, G. Koliander, W. Yang, and G. Durisi, “How costly is it to learn fading
channels?” in Proceedings of International Black Sea Conference on Communica-
tions and Networking (BlackSeaCom), Batumi, Georgia, Jul. 2013, to appear.

[C3] Yutao Sui, A. Papadogiannis, W. Yang, and T. Svensson, “Performance compari-
son of fixed and moving relays under co-channel interference,” in IEEE Globecom
Workshops, Anaheim, USA, Dec. 2012, pp. 574–579.
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[C4] W. Yang, G. Durisi, and E. Riegler, “Unitary isotropically distributed inputs are not
capacity-achieving for large-MIMO fading channels,” in Proceedings of IEEE Inter-
national Symposium on Information Theory (ISIT), Boston, MA, U.S.A., Jul. 2012,
pp. 1717–1721. (Student paper award).
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