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Abstract

The burning plasmas of the next generation tokamak fusion experiment ITER
will contain significant populations of highly energetic ions. Both fusion gener-
ated alpha particles and fast ions accelerated by auxiliary heating schemes are
capable of exciting instabilities in the Alfvén frequency range, which may in
turn cause redistribution of energetic particles and lead to deleterious events
such as e.g. monster sawtooth crashes. On present day machines, many aspects
of fast ion collective effects are observed and well understood, including e.g. ex-
citation of toroidal Alfvén eigenmodes (TAEs) and frequency sweeping Alfvén
cascades. However, a currently hot topic is the role of kinetic and nonlinear
Alfvénic instabilities, including explanations for rapid frequency sweeping and
unambiguous identification of energetic particle modes.

This thesis presents theoretical research carried out on the linear and non-
linear dynamics of fast particle driven instabilities, with a major focus on such
events in tokamaks. In the linear regime, we investigate particle behavior in
the presence of a given electromagnetic perturbation. In particular, we formu-
late a condition on the prescribed wave amplitude to cause stochastic particle
motion and we calculate the rate coefficients for the associated diffusive ran-
dom walks. We also derive analytic expressions for the damping rate of even
and odd TAEs, which arises as a result of non-ideal coupling to radially prop-
agating waves. The damping is found to be weak for the odd mode, which
raises concern for the confinement of energetic particles on ITER, where an-
tiballooning instabilities are likely to be resonantly driven by passing, fusion
born alpha particles.

Nonlinearly, we develop a simple one-dimensional model to investigate the
impact of significant frequency shifts on the dynamics of frequency sweeping,
weakly driven modes. We include a number of previously neglected long range
effects that are all capable of significantly altering the temporal frequency
sweeping patterns. In the case when the fast particle collision operator con-



tains both a drag-like slowing-down term, due to binary, small-angle Coulomb
collisions, and velocity space diffusion, the model predicts transiently hooked
and steady state frequency sweeping patterns. The latter scenario turns out
to be analytically tractable.

Keywords: Fusion plasma physics, wave-particle interaction, toroidal Alfvén
eigenmodes, kinetic Alfvén wave, radiative damping, bump-on-tail, holes and
clumps, hooked and snaking frequency sweeping.
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1
Introduction

The world population is growing, and so is our need for energy in order to
develop and retain a high average standard of living. By 2035, the total energy
consumption is predicted to have increased by 50 % from today’s usage [1],
and virtually all projections conclude that by the year 2100, the world energy
demand will have at least doubled. Limited supplies of today’s major energy
sources – fossil fuels – and the increasing awareness of associated environmental
issues place severe restrictions on tomorrow’s energy production. In these dark
hours, controlled thermonuclear fusion emerges as one of the most promising
candidates for an environmentally friendly, in practice inexhaustible, large-
scale energy source.

Thermonuclear fusion is the energy source that powers our Sun. On a
subatomic level, it is the process whereby two atomic nuclei merge to form a
third nucleus. To do so, however, the binding energy of the end state must by
higher than the total binding energy of the reactants. The discrepancy, given
by Einstein’s law

E = ∆mc2 , (1.1)

where ∆m is the difference in total rest mass between the reactants and prod-
ucts, is released in the form of kinetic energy carried away by the reaction
products. Due to the large factor c2 in equation (1.1), the energy yield per
unit mass of fusion is huge, roughly 107 times higher than that of burning fossil
fuels and 100 times higher than the kinetic energy per unit mass released from
splitting Uranium atoms in fission power plants.

In order to bring positively charged nuclei close enough to fuse, a significant
repulsion due to the electrostatic Coulomb force must somehow be overcome.
In the solar core this is accomplished through the action of gravity, which bal-
ances the net outward pressure from the energy released in the thermonuclear
reactions. Here on Earth, conditions for nuclear fusion have to be created by
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2 Chapter 1 Introduction

other means, and the Coulomb repulsion puts extreme demands on the tech-
nology. For instance, the temperatures required to accomplish economically
feasible thermonuclear fusion on Earth range from 107 K to a few 108 K. The
latter is substantially higher than the temperature in the center of the Sun. At
such temperatures, the fuel is a completely ionized gas and constitutes what
is known as a plasma.

From a practical point of view, the most promising reactions considered for
a fusion reactor are

D + D −→ He3 + n+ 3.27 MeV (1.2a)

D + D −→ T + H+ 4.05 MeV (1.2b)

D + T −→ He4 + n+ 17.58 MeV (1.2c)

In these reaction formulae, deuterium (D) and tritium (T) are heavy hydrogen
isotopes, carrying one and two neutrons, respectively, and the helium isotope
He4 will be referred to as an alpha particle throughout this thesis. Deuterium
occurs naturally in sea water, which contains 0.015 % D, whereas the ra-
dioactive isotope T is most easily obtained through neutron bombardment of
lithium. Of the three reactions listed in (1.2), the so called D–T reaction (1.2c)
has the advantage of having the highest reaction probability at the lowest tem-
perature. It also has, by far, the highest energy output: In each D–T reaction,
17.58 MeV is released in the form of kinetic energy shared between the neutron
and the alpha particle, with the lighter neutron carrying away on average 80
% of that. The D–T reaction will most likely dominate in early fusion reac-
tors, although most experiments are currently running D–D reactions (with
a significantly lower, but measurable, flux of neutrons generated in reaction
(1.2c)), and certainly all the reactions in (1.2), as well as others, will occur
inside a burning fusion reactor.

Two main paths have so far been explored in order to establish nuclear
fusion as a reliable power source: Inertial and magnetic confinement. The
former relies in an intricate way on the inertia of the reactants. A small,
spherical target capsule that contains a D–T mixture is irradiated uniformly
by a short, high power pulse (laser or particle beam). As the capsule outer
layer evaporates explosively due to the heating generated by the radiation,
the remainder of the target implodes with great force into a central hot spot
where the fusion reactions occur. Magnetic confinement schemes, on the other
hand, utilizes that at fusion temperatures the fuel is in the plasma state. It
thus consists of coexisting ions and electrons, i.e. charged particles, which can
be confined by magnetic fields. So far, magnetic fusion has been the more
successful route, with the often used fusion performance measure niTiτE [2],
the so called fusion triple product, historically doubling approximately every
second year for a special class of toroidal magnetic confinement devices known
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as tokamaks [3]. In the triple product, ni is the density of ions, Ti is their
temperature, and τE is the relaxation time of the plasma energy due to heat
conduction – the so called energy confinement time.

In tokamaks [4], the plasma particles are confined by a magnetic field whose
field lines trace out nested, toroidal surfaces. The main field component points
along the toroidal direction. It is generated by a set of external coils that carry
large currents poloidally around the torus. A smaller poloidal field component
is generated inside the device by running a toroidal current through the plasma
itself. The plasma current is partly ohmic, induced through transformer action,
and partly due to non-inductive current drive such as neutral beam injection
(NBI) and radio frequency (RF) heating. The largest tokamak currently in
operation is the Joint European Torus (JET), located in Culham, UK, which
in 1997 set the world record fusion power output of 16.1 MW during one second
of D–T operation. JET has also succeeded in producing a steady state power
output of 5 MW for 5 seconds.

Figure 1.1: View of ITER, obtained from [5].

The next generation tokamak experiment ITER is being constructed at
present time in the south of France. ITER, see Figure 1.1, will be a long-
pulsed tokamak with a plasma volume of 837 m3 and superconducting coils to
generate a large and long-lasting toroidal field. The main physics objectives
for the ITER project are [6]:

• To momentarily produce ten times more energy from thermonuclear fu-
sion reactions than is supplied by auxiliary heating (Q = 10).
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• To demonstrate steady-state operation with Q ≥ 5.

• To maintain a fusion pulse for up to eight minutes.

The reasons for the immense size of ITER, almost twice the linear size of
JET, as well as the powerful, superconducting coils, are that the fusion triple
product scales with both plasma radius and magnetic field strength, making
operation of large plasma volumes at high magnetic field strength key issues
in reaching the outlined goals.

Burning D–T plasmas on ITER will rely heavily on the self-heating pro-
vided by fusion generated alpha particles. Alpha particles carry off 20 % of
the 17.58 MeV produced in each D–T reaction, so they are highly energetic
ions with large velocities that on average greatly exceed the thermal velocity
of the bulk ions. In addition to alpha particles, auxiliary heating systems such
as NBI and RF heating also produce and maintain significant energetic ion
populations, even in today’s devices (where, in fact, alpha particles are rare,
and the externally heated ions constitute by far the largest energetic particle
populations). Common to all these types of fast ions is that they tend to
concentrate in the plasma core, with particle speeds intermediate between the
thermal electron and ion speeds, vi < vf < ve, and that their large kinetic
energy content is slowly (as compared to their rapid motion) transferred to
the bulk plasma as the fast particles decelerate due to small angle Coulomb
collisions, mainly with thermal electrons. As a result, fast particles are not
in thermodynamical equilibrium, and so their velocities do not conform to
Maxwellian distributions.

The presence of energetic ions in the tokamak center has major impact on
achieving and maintaining high plasma temperatures and long energy confine-
ment times. In particular, the free energy available in their non-Maxwellian
velocity distribution can destabilize wave like perturbations from the plasma
equilibrium, if the mode phase velocity resonates with the motion of the en-
ergetic particles. When the fast ion pressure is high enough, or the modes are
weakly damped, instability occurs [7]. Once destabilized, such modes inter-
act heavily with the resonant fast particles, which may result in rapid radial
transport, and even expulsion, of fast particles [8]. In a sense, these instabili-
ties are therefore unwanted features that can lead to significant degradation of
the plasma confinement. However, their presence also unveils new diagnostic
opportunities, providing means of probing the otherwise inaccessible plasma
core by measuring the wave fields at the plasma edge.

The work presented in this thesis is devoted to the study of energetic parti-
cle driven instabilities in tokamaks. Particular emphasis is placed on a special
class of magnetohydrodynamic perturbations known as shear Alfvén waves.
Such modes oscillate in a relatively low frequency range, and they propagate
along the tokamak magnetic field at the characteristic Alfvén speed, denoted
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by vA. The importance of Alfvénic modes stems from the magnitude of the
Alfvén speed, which is often comparable to the incipient velocities of fast ions
in tokamak experiments. In particular, if vA ≤ vf holds, as is, e.g., expected
for alpha particles on ITER, the fast ions will almost inevitable destabilize and
interact with Alfvénic waves as they slow down due to collisions with the bulk
plasma.

The remainder of this thesis is organized as follows: In Chapter 2, we dis-
cuss the dynamics of fast ions in tokamaks. We consider the motion of single,
charged particles in a given magnetic field, including the toroidal geometry and
magnetic field topology of tokamak experiments, and we briefly touch upon
some statistical properties of the fast particles. Chapter 3 is devoted to linear
and nonlinear aspects of wave-particle interaction in the case of fast particle
driven instabilities. We discuss the importance of so called resonant particles,
which move in synch with the wave, and we develop simple one-dimensional
models for the descriptions of Landau damping and nonlinear wave-particle
interaction. Chapter 4 concerns the dynamics of Alfvén waves in tokamaks.
We discuss magnetohydradynamic features such as the Alfvén continuum and
the associated continuum damping, toroidal Alfvén eigenmodes and Alfvén
cascades, and we briefly mention how nonideal effects lead to mode conversion
into so called kinetic Alfén waves, resulting in e.g. radiative damping of TAEs.
We also discuss the possibility of a one-dimensional, nonlinear description of
evolving TAEs. Finally, Chapters 5 and 6 contains, respectively, short sum-
maries of the work presented in the four amended papers and some concluding
thoughts on future research directions.
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2
Dynamics of Fast Particles in

Toroidal Systems

Most tokamak experiments comprise a population of ions with kinetic energies
that by far exceed the thermal energy of the bulk ions. Such fast ions are
created in fusion reactions (as, e.g., the highly energetic alpha particles pro-
duced in D–T reactions), but also by means of auxiliary heating systems such
as NBI and RF heating. The large majority of these particles is concentrated
in the tokamak center, with velocities intermediate between the thermal ion
and electon speeds, vi < vf < ve, and they contribute significantly to the
heating of the plasma as they slow down and thermalize due to collisions with
thermal bulk particles. However, the fast ions are also prone to resonate with
and destabilize thermonuclear wave instabilities, in which case their heating
efficiency and confinement may be significantly lowered.

In contrast to neutral gases, whose constituent particles move on straight
paths until colliding head on, tokamak fusion plasmas are governed by the
laws of electrodynamics. Loosely speaking, each plasma particle continuously
interacts with many others through the action of long-range Coulomb forces
mediated by electromagnetic fields (or, from an equivalent quantum mechan-
ical point of view, via emission and absorption of light quanta, so called pho-
tons). Various mathematical models exist that describe, with varying degree
of complexity and accuracy, the intricate aggregate of such interactions in a
plasma. For fast ions, whose velocities do not conform to Maxwellian distribu-
tions, the relevant framework is so called kinetic theory. Such models describe
the energetic population statistically in terms of a density function of phase
space coordinates and time. The distribution of fast ions evolves according
to the combined laws of statistical physics and electromagnetics. It is deter-
mined primarily by two dominant mechanisms: Fast ion sources such as fusion

7



8 Chapter 2 Dynamics of Fast Particles in Toroidal Systems

reactions, NBI, RF heating etc., and small-angle Coulomb collisions, which
mainly act to slow the ions down as a result of the average drag force from the
thermal electrons. However, during RF heating, particle acceleration in the
electromagnetic RF wave field must also be taken into account, and whenever
thermonuclear wave instabilities are present the ensuing wave-particle interac-
tion may well dominate the evolution of the fast particle distribution.

Much insight can also be gained through a careful study of charged parti-
cle trajectories in a given electromagnetic field, so called single particle motion
theory. In fact, single particle trajectories form the basis for kinetic theory:
Jeans’ theorem states that any function constructed from constants of single
particle motion is a solution to the Vlasov equation, which describes the evo-
lution of the fast ion distribution when collisions are neglected. Moreover,
single particle trajectories are often employed in perturbative descriptions of
wave-particle interaction: As a first approximation, the single particle orbits
can be used as lowest order results around which expansions in one or several
small parameters are performed.

In this chapter, we consider the dynamics of fast ions in tokamak experi-
ments by neglecting all kinds of wave-particle interactions. Such models are
highly sophisticated, and are therefore postponed until later chapters in this
thesis. We start off in Section 2.1 with a general discussion of single parti-
cle motion in a given electromagnetic field. Then, in Section 2.2, we apply
the general formalism to describe particle orbits in the special geometry and
equilibrium fields of a tokamak. Finally, Section 2.3 contains a statistical de-
scription of fast particles in terms of a phase space distribution that evolves
according to the famous Boltzmann equation.

2.1 The Motion of Single Particles

The motion of a charged particle in the presence of a given electromagnetic
field is, in fact, very complex. Its components include a gyration around the
magnetic field lines (so called Larmor gyration), parallel motion along the
field lines, which may include acceleration if the electric field has a parallel
component, and drifts across the magnetic field. In order to fully appreciate the
effects of forces and field inhomogeneities on the particle trajectories, a careful
perturbative analysis has to be carried out. This section gives the results,
and presents some important aspects, of such an analysis, without going too
much into the details. First, in Section 2.1.1, we give an introduction to the
variational formulations of Lagrangian and Hamiltonian mechanics, needed
for the subsequent discussion in which particle trajectories in the presence of
electromagnetic fields are treated with increasing degree of complexity: We
start off in Section 2.1.2 with a discussion of static and uniform fields. Finally,
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in Section 2.1.3, we generalize somewhat and discuss the case of slowly varying
fields via a guiding center approach.

2.1.1 Variational Formulations of Classical Mechanics

In Lagrangian mechanics [9], the particle motion is governed by the Lagrangian
L (q, q̇, t), a function of some set of generalized coordinates q, and their (total)
time derivatives q̇, that may depend explicitly on time. The equations of
motion are given by the so called Euler-Lagrange equations

d

dt

∂L
∂q̇

=
∂L
∂q

, (2.1)

which follow from demanding that the trajectory between two positions q (t1)
and q (t2) at distinct times t1 and t2 minimizes the integral

t2∫
t1

L (q, q̇, t) dt . (2.2)

As an example, consider the motion of a charged particle in an electromagnetic
field

E = −∇ϕ− ∂A

∂t
, B = ∇×A . (2.3)

Here, ϕ (q, t) is the electrostatic potential and A (q, t) is the magnetic vector
potential. They are both functions of space and time, but not of the velocity
q̇. In Cartesian coordinates the Lagrangian is given by

L (x, ẋ, t) =
M

2
ẋ · ẋ+ e [A (x, t) · ẋ− ϕ (x, t)] , (2.4)

whereM and e are the particle mass and charge, respectively. The correspond-
ing Euler-Lagrange equations are given by

M ẍ+ e
dA

dt
= eẋ× (∇×A) + eẋ · ∇A− e∇ϕ . (2.5)

Keeping in mind that
d

dt
=

∂

∂t
+ ẋ · ∇ , (2.6)

application of (2.3) yields

M ẍ = e
[
E+ ẋ×B

]
, (2.7)

which is immediately recognized as the usual Newtonian equations of motion
with a Lorentz force right hand side.
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The Lagrangian formalism has the advantage of being coordinate inde-
pendent. That is, the Euler-Lagrange equations (2.1) hold for any set of
generalized coordinates q. In practice, this means that given a coordinate
transformation

q = f (Q, t) (2.8)

from q to a new set Q, the transformed Lagrangian is found via direct substi-
tution of (2.8) and

q̇ =
∂f

∂t
+
∑
i

Q̇i ∂f

∂Qi
(2.9)

into L (q, q̇, t). The equations of motion will then be given by equation (2.1),
with q replaced by Q. As an example, the transformation

x = r cosφ , y = r sinφ , z = z (2.10)

from Cartesian to cylindrical coordinates produces

ẋ · ẋ = ẋ2 + ẏ2 + ż2 = ṙ2 + r2φ̇2 + ż2 . (2.11)

The transformed form of, e.g., the charged particle Lagrangian (2.4) can then
be found by transforming the factors A (x, t) · ẋ and ϕ (x, t) similarly.

Another merit of the Lagrangian formalism is that it allows for easy iden-
tification of conserved quantities. Consider a Lagrangian L (q, q̇, t) that is
independent of one or several of the generalized coordinates q. Such a coordi-
nate qi is called cyclic, and its conjugate canonical momentum, given by

pi =
∂L
∂q̇i

, (2.12)

is conserved in accordance with the Euler-Lagrange equations (2.1). Moreover,
if L has no explicit time dependence, then the total energy

E = q̇ · ∂L
∂q̇

− L (2.13)

is preserved during the motion, since

dE

dt
= −∂L

∂t
. (2.14)

As a particular example, consider again the charged particle Lagrangian (2.4).
When there is no electric field, ∇ϕ = 0, there are no accelerating forces, so the
particle kinetic energy

W =
M

2
q̇ · q̇ (2.15)



2.1 The Motion of Single Particles 11

is a constant of motion.
An alternative, but equivalent, description is given in terms of the Hamil-

tonian function H [9], obtained from the Lagrangian via a Legendre transfor-
mation of the form

H (q,p, t) = p · q̇ (q,p, t)− L (q,p, t) . (2.16)

The Hamiltonian is equal in value to the total energy E, but it is a function
of the phase-space coordinates q and p rather than q and its time derivative.
The Hamiltonian framework can be employed whenever the relations (2.12)
may be inverted to give q̇ as a function of q, p and t. It is obvious that cyclic
coordinates also do not figure in H, in which case the Hamilton equations of
motion,

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, (2.17)

immediately give ṗi = 0 for their conjugate momenta. In this sense, the total
energy E can be thought of as a ”momentum” conjugate to to the time variable
t, satisfying

Ė = −∂L
∂t

=
∂H
∂t

, (2.18)

i.e. a conserved quantity if the time variable is cyclic.
As an example, we review once more the motion of a charged particle in

an electromagnetic field. The canonical momenta are given by differentiating
(2.4) with respect to ẋ,

p =M ẋ+ eA (x, t) , (2.19)

which gives

ẋ =
p− eA (x, t)

M
. (2.20)

and, subsequently,

H (p,x, t) =
1

2M

[
p− eA (x, t)

]2
+ eϕ (x, t) . (2.21)

The relevant Hamilton equations of motion, ẋ = ∂H/∂p and ṗ = −∂H/∂x,
then give, respectively, equation (2.20) and

ṗ =
e

M

[
(p− eA) · ∇A+ (p− eA)× (∇×A)

]
− e∇ϕ (2.22)

Finally, substitution of the expressions (2.3) and (2.19) gives, once more, the
charged particle equations of motion (2.7).

The beauty of the Hamiltonian description becomes apparent whenH lacks
a complete set of cyclic coordinates, but is still known to describe integrable
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particle orbits. It is then advantageous to seek a canonical transformation to
a new set of canonical coordinates and momenta (Θ,J), such that all the new
coordinates Θ are cyclic in the transformed Hamiltonian. We shall not give
the details of such a transformation here, but simply state the form of the
momenta J: They are to be chosen as the phase space areas [10]

Ji =

∮
γi

p · dq , (2.23)

where the integration paths are defined by the particle trajectories, denoted
here γi. When new momenta are introduced in this way, the transformed
Hamiltonian is a function merely of J, H = H (J), so that Θ are cyclic and
J are constant. Such a set of canonical phase space coordinates are called
action-angle variables. Integration of Hamilton’s equations

Θ̇ =
∂H
∂J

≡ Ω (J) (2.24)

for the angle variables then gives

Θ = Ω (J) t+Θ (t = 0) , (2.25)

where Ω are the orbital frequencies.
Integrals of the form (2.23) in fact remain constant even when the parti-

cle motion is only nearly periodic. Such particle orbits arise, e.g., when the
Hamiltonian has a slow explicit time dependence, or if a periodic trajectory
is slightly offset during each revolution due to another, slower motion, e.g. an
overall drift. This sort of invariance relies on the concept of adiabaticy, mean-
ing that the change in the Hamilitonian during one period is small enough to
ensure sufficient differentiability, and the conserved quantities are called adia-
batic invariants. Formally, such systems are represented by a Hamiltonian on
the form H (p, q,Z; t), where p and q are phase space coordinates that describe
the almost periodic motion, and Z represents dynamical variables (both coor-
dinates and momenta) that evolve slowly as compared to the variations in p
and q, as does the energy itself,[

∂H
∂Z

,
∂H
∂t

]
∼ δ

[
dp

dt
,
dq

dt

]
, δ ≪ 1 . (2.26)

The adiabatic invariant is given by the phase space area

J (E,Z; t) =

∮
p (q, E,Z; t) dq , (2.27)

and it is preserved to all orders in δ [11]. The function p is defined implicitly
in terms of the instantaneous value for the energy,

E = H (p, q,Z; t) , (2.28)
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and the integral is to be taken over one period of the frozen system, i.e. holding
E, Z and t fixed.

A third useful framework is the variational theory of the so called phase
space Lagrangian. The phase space Lagrangian equals the configuration space
Lagrangian in value, but is a function of the canonical phase space coordinates
q and p and their time derivatives rather than q and q̇. It is defined via the
expression

L (q,p, q̇, ṗ, t) = p · q̇−H (q,p, t) , (2.29)

and gives two sets of Euler-Lagrange equations when minimized under inde-
pendent variations of both q and p,

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

,
d

dt

(
∂L
∂ṗ

)
=
∂L
∂p

(2.30)

Due to the special form of the phase space Lagrangian (2.29), these equations
immediately reproduce the Hamilton equations (2.17).

As with the configuration space Lagrangian L (q, q̇, t), the phase space
Lagrangian framework admits transformations to any set of phase space co-
ordinates, including non-canonical pairs of coordinates and momenta. As an
example, consider for the last time the motion of a charged particle in an elec-
tromagnetic field. The phase space Lagrangian is, in Cartesian coordinates,

L (x,p, ẋ, ṗ, t) = p · ẋ−H (x,p, t) , (2.31)

with H given by (2.21). If we transform to another, non-canonical momentum
v, defined via

p =Mv + eA , (2.32)

the phase space Lagrangian in (2.31) becomes

L (x,v, ẋ, v̇, t) =
[
Mv + eA (x, t)

]
· ẋ−

[
M

2
v · v + eϕ (x, t)

]
. (2.33)

For this transformed phase space Lagrangian, the Euler-Lagrange equations
are

d

dt

(
∂L
∂ẋ

)
=
∂L
∂x

,
d

dt

(
∂L
∂v̇

)
=
∂L
∂v

. (2.34)

Since ∂L/∂v̇ = 0, the latter equation immediately gives ẋ = v. The first
equation gives

d

dt

[
Mv + eA

]
= ∇

[
eA · ẋ− eϕ

]
, (2.35)

which, with the identification ẋ = v, may be written as the Newtonian equa-
tions of motion for a charged particle, i.e. equations (2.7).
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2.1.2 Exact Motion in Static, Uniform Fields

Uniform E- andB-fields constitute a special case for which the charged particle
motion is exactly integrable. When there is only a B-field, the Lorentz force
eẋ × B in (2.7) is perpendicular to both the particle velocity and B, and
therefore does no work. The resulting motion, usually referred to as the Larmor
gyration, or simply the gyromotion, is a rotation in the plane perpendicular to
B, at constant radius rL. The gyration frequency is

ωc =
|e|B
M

, (2.36)

where B = |B| is the magnitude of the magnetic field strength B. The motion
parallel to B is unaffected by the presence of the field, and therefore consists
of a constant drift at the initial parallel velocity. Hence, the overall trajec-
tory is a helix. Usually, one thinks of the motion as decomposed into a rapid
gyration around the so called guiding center position, which meanwhile drifts
at constant speed along the field lines. When a uniform electric field E is
present as well, two additional guiding center velocity components are intro-
duced: Any component of E along B will result in an acceleration/deceleration
of the guiding center rather than the constant parallel drift. Further, non-zero
components of E in the plane perpendicular to B induces a drift of the guiding
center, with constant velocity

vE =
E×B

B2
, (2.37)

usually called the E×B-drift.
We proceed by means of the Lagrangian formulation outlined in the previ-

ous section. Without loss of generality, we consider a uniform magnetic field
aligned with the z-axis, B = Bẑ, where B is constant. In Cartesian coordi-
nates, the relevant charged particle Lagrangian was given in (2.4), and it can
be shown that the choice

A = −B
2

[
yx̂− xŷ

]
, ϕ = −

[
Exx+ Eyy + Ezz

]
(2.38)

reproduces the considered E- and B-fields via equations (2.3) when Ex, Ey
and Ez are constants. The motion is most readily assessed by performing a
Galilean transformation to an inertial frame moving with the drift velocity
(2.37), i.e. the frame in which there are no electric field components perpen-
dicular to B. Under such a transformation, the Lagrangian retains the form
(2.4), with x, ẋ, A and ϕ replaced with their transformed versions. If we
let (x, y, z) denote Cartesian coordinates in the transformed frame too, the
form of the vector potential remains as given in (2.38), while the electrostatic
potential transforms into

ϕ = −Ezz . (2.39)
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The Galilean transformation is actually non-trivial. One has to integrate by
parts and remove some total derivatives from the transformed Lagrangian, and
the Exx- and Eyy- terms in ϕ are canceled out by identical, but oppositely
signed terms, stemming from the transformation of ẋ ·A.

We now perform a second transformation to the set of cylindrical coordi-
nates (r, θ, z) defined in (2.10). The kinetic part of the resulting Lagrangian
was given in (2.11). Similarly, the potentials A and ϕ transform into

A =
rB

2
θ̂ , ϕ = −Ezz . (2.40)

In total, then, the transformed Lagrangian reads

L =
M

2

[
ṙ2 + r2θ̇2 + ż2

]
+
eBr2θ̇

2
+ eEzz . (2.41)

The canonical momenta are given by

pr =Mṙ , pθ =Mr2
[
θ̇ ± ωc

2

]
, pz =Mż , (2.42)

where the ± refers to ions/electrons, respectively, and the corresponding Euler-
Lagrange equations become

Mr̈ =Mrθ̇
[
θ̇ ± ωc

]
, ṗθ = 0 , Mz̈ = eEz . (2.43)

The θ- and z-equations can be immediately integrated to give

pθ = Const. (2.44)

and the parallel motion

z =
eEz
2
t2 + ż (t = 0) t+ z (t = 0) , (2.45)

which represents an acceleration/deceleration in the parallel electric field Ez.
The r-equation is more cumbersome. In general, it involves two non-trivial
integrations. However, a convenient class of solutions are those with r̈ = 0.
For such orbits, the r-equation immediately gives, for r ̸= 0,

θ̇ = ∓ωc . (2.46)

Then, the conserved canonical momentum becomes pθ = ∓Mr2ωc/2, so that

ṙ = 0 . (2.47)

Equations (2.46) and (2.47) represents a circular orbit at constant radius,
denoted rL, in the plane perpendicular to B, whose direction depends on the
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charge of the particle. In fact, the direction is such that the motion is always
diamagnetic, i.e. the particle gyrates as to oppose the magnetic field B. In
terms of the constant angular velocity vL = rLωc and the magnetic moment

µ =
Mv2L
2B

, (2.48)

the conserved canonical momentum reads

pθ = −M
e
µ . (2.49)

Hence, µ is also a constant of motion. The corresponding action variable
is given by integrating pθ along the orbit of one gyration, which effectively
changes the overall sign for the ions, but not the electrons,

Jθ =
M

|e|
µ . (2.50)

We note briefly that not all particles satisfy r̈ = 0, and therefore do not qualify
for the present analysis. However, such particles simply execute similar orbits,
with their gyration centers offset from the origin, thus making the current
description (in terms of cylindrical coordinates) a particularly inconvenient
one. In fact, particles that gyrate off the origin are more easily described, as
in most introductory textbooks, by solving the uncoupled harmonic oscillator
equations for x and y that result from the coupled equations of motion (2.7)
when sticking to Cartesian coordinates [12].

If we now transform back to the original frame, in which the electric field
components perpendicular to B do not vanish, the particle acquires the ad-
ditional velocity vE, given in equation (2.37). Thus, in the original frame,
the overall motion consists of a gyration, perpendicular to B, at constant fre-
quency ωc and radius rL, around the particle guiding center, which meanwhile
accelerates/decelerates along B according to (2.45) and drifts across B at the
E × B-velocity (2.37). We note that for thermal particles in tokamaks, rL
is usually very small, typically in the millimeter range for ions and about 2
% of that for electrons.1 Fast ions, however, can have much larger rL, up to
the decimeter range. On the contrary, ωc is one of the highest frequencies
encountered in fusion plasma physics.

1These are just rules of thumb, however. For thermal particles, vL scales with species
temperature, which in general is not the same for ions and electrons.
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2.1.3 Guiding Center Motion in Slowly Varying Fields

When E and B vary slowly in space and time (as compared to the charac-
teristic length rL and time ω−1

c of the Larmor gyration), the particle motion
is still integrable. However, in this case the particle orbits can only be found
perturbatively by means of a series expansion in the small parameter

δ ≡ max

[
rL
L
,

1

ωcT

]
, (2.51)

where L and T are characteristic length and time scales associated with the
spatial and temporal variations in E and B. To lowest order, the particles
still gyrate at radius rL = vL/ωc around their guiding centers. However, ωc
and vL are no longer constant. The cyclotron frequency changes due to the
variation in B, and there is an energy exchange between the kinetic energy
µB = Mv2L/2 of the Larmor gyration and the kinetic energy aligned parallel
to the magnetic field, Mv2∥/2. Moreover, the guiding center now drifts across
the magnetic field lines not only due to the occurrence of electric fields, but
also as a result of the inhomogeneity and curvature of the magnetic field.

In introductory textbooks, a set of particle velocity components, valid
though first order in the expansion parameters, are usually found via direct
integration of the equations of motion (2.7), once expanded appropriately. We
will however utilize the more complicated, but also more rewarding, phase
space Lagrangian approach presented at the end of section 2.1.1. The analysis
follows the review [13], but uses the assumptions and approximations of [14].
The method yields expressions for the particle guiding center velocity that
are higher order in δ than those of the usual textbook approach. However,
we will evaluate these expressions explicitly merely through first order, upon
which the resulting equations concur with the usual textbook analysis (nicely
reviewed in [15]).

The Lagrangian approach utilizes that the magnetic moment µ as given
in (2.48), previously exactly conserved, remains adiabatically invariant when
the fields vary slowly, and that the drifts across the magnetic field are small.
Strictly speaking, µ is preserved only to lowest order in the expansion parame-
ter δ, i.e. it has a time derivative µ̇ = O (δ). Higher order adiabatic invariants
have been calculated, see e.g. [14], but the present form suffices well to obtain
the guiding center motion to first order in δ. The guiding center phase space
Lagrangian Lgc is a function of the following non-canonical phase space coor-
dinates: The guiding center position xgc, around which the Larmor gyration
occurs; the guiding center velocity along the magnetic field, v∥ = b · ẋgc; the
canonical momentum pα =Mµ/e for the gyromotion; and the gyroangle α. It
is given by [14]

Lgc
(
xgc, v∥, pα, α; t

)
=

[
eA (xgc; t) +Mv∥b (xgc; t)

]
· ẋgc + pαα̇−Hgc , (2.52)
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where the guiding center Hamiltonian (the total energy of the guiding center)
is

Hgc

(
xgc, v∥, pα, α; t

)
=
M

2
v2∥ ∓ pαωc (xgc; t) + eϕ (xgc; t) , (2.53)

and the upper/lower signs apply for ions/electrons, respectively. Note that
we have written explicitly the dependencies of the non-coordinate quantities
A, b, ωc and ϕ, which are to be evaluated at the guiding center position xgc,
at time t, rather than the actual particle position. Note also that the term
∓pαωc is often written as µB. It is worth mentioning that the guiding center
Lagrangian (2.52) is constructed from the assumption that the E × B-drift
(2.37) is first order in δ. On the contrary, in [13], vE is allowed to be O (1).
The corresponding, more general analysis is only marginally more difficult, but
we refrain from presenting it here since we simply do not need to consider such
fast E×B-drifts in tokamaks.

The Euler-Lagrange equations for pα, α and v∥ trivially give α̇ = ∓ωc,
ṗα = 0 and v∥ = b · xgc. However, the equations for xgc are far more difficult
to analyze. After some algebra, one obtains

Mv̇∥b =

{
∂

∂t

[
eA+Mv∥b

]
−∇

[
ϕ∓ pαωc

]}
(2.54)

+ ẋgc ×
{
∇×

[
eA+Mv∥b

]}
.

Equation (2.54) is sometimes compactified by defining

eA∗ ≡ eA+Mv∥b , ϕ∗ ≡ ϕ∓ pαωc , (2.55)

with

E∗ = −∂A
∗

∂t
−∇ϕ∗ = E− M

e
v∥
∂b

∂t
∓ pα∇ωc , (2.56)

and

B∗ = ∇×A∗ = B+
M

e
v∥∇× b . (2.57)

It then becomes

Mv̇∥b = e
[
E∗ + ẋgc ×B∗] . (2.58)

Equation (2.58) has a deceivably simple form. It is most easily analyzed via
application of the operations B∗· and b×, which yields expressions for v̇∥ and
ẋgc. If the resulting equations are evaluated explicitly to first order in δ, one
finds

Mv̇∥ = eE∥ − µb · ∇B (2.59)

and

ẋgc = v∥b+ vD , (2.60)
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where the drift velocity now consists of three pieces,

vD = vE + v∇B + vκ . (2.61)

Apart from the previously discussed E × B-drift given in (2.37), these drifts
are known as the ∇B- and the curvature drift. They are given by

v∇B = ± v2L
2ωc

b×∇B
B

, vκ = ±
v2∥
ωc

b× κ⃗ . (2.62)

In the equation for vκ,

κ⃗ ≡ (b · ∇)b = −b× (∇× b) (2.63)

is the curvature of the magnetic field evaluated at the guiding center position.
It may also be written as

κ⃗ = −Rc

R2
c

, (2.64)

where Rc is the radius of curvature of the magnetic field and Rc is the vector
pointing radially outwards from the center of curvature to the guiding center.

Figure 2.1: A magnetic mirror. A pair of current-carrying coils generate an
inhomogeneous magnetic field with two maxima. Particles with small enough v∥
are trapped between the two maxima of B, whereas particles with E > µBmax

escape through the coils.

A particularly neat application of guiding center theory can be found in the
analysis of the so calledmagnetic mirror, on display in Figure 2.1. Such devices
operate in steady state by means of merely a non-uniform magnetic field B,
generated by two circular, current-carrying coils. The system is rotationally
symmetric around the axis connecting the center of the two coils, and the
magnetic field strength exhibits a minimum midway between the coils and
maxima at the coil positions. Since the guiding center Hamiltonian (2.53)
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does not depend explicitly on time, the guiding center energy (actually the
kinetic energy in the absence of electric fields)

E =
M

2
v2∥ + µB (2.65)

is a constant of motion. Solving for v∥, we find

v∥ = ±
√

2

M
(E − µB) , (2.66)

which changes only due to the variation in B when µ is an adiabatic invariant.
Therefore, as a particle moves in the magnetic mirror towards a maximum of
B, its parallel velocity decreases. If the ratio v∥/v⊥ at, say, the midpoint is
sufficiently low,

v∥
v⊥

∣∣∣∣
midpoint

≤
√
Bmax −Bmin

Bmin

, (2.67)

the parallel velocity vanishes within the machine and the motion reverses. As
a result, mirror machines can be used to confine charged particles. A major
drawback with this scheme, however, is that particles that do not satisfy (2.67)
are immediately lost, and eventually small-angle Coulomb collisions will have
scattered a large majority of the originally confined particle population onto
such unconfined orbits.

2.2 Particle Orbits in Tokamaks

Tokamaks are toroidal devices designed to confine high temperature plasmas
through the action of magnetic fields, loosely speaking much like a number of
mirror machines (see Section 2.1.3) placed in line in a circular fashion, so that
the last mirror closes on the first. A detailed design drawing for the planned
tokamak ITER was shown in Figure 1.1 in Section 1. Another example, a cross
sectional drawing of the JET experiment, is on display in Figure 2.2.

Tokamak plasma particles move predominantly along the magnetic field,
and the actual geometry of the device prevents them from leaving the vessel
by making the field lines continuously encircle the central, toroidal axis. The
peculiar doughnut shape derives from the mathematical theorem that the only
geometrical surfaces (such as the outer boundary of a magnetic confinement
device) that can be covered by a non-vanishing vector field (such as a con-
fining magnetic field) are those of torii. In fact, the entire tokamak volume
is completely filled with nested such magnetic flux surfaces,2 each carrying a

2Plasma turbulence may of course destroy some, or all, of the flux surfaces. We are
considering, here and throughout this thesis, the ideal case with no turbulence and well
defined flux surfaces.
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Figure 2.2: Design plan for the Joint European Torus (JET), the largest
currently operational tokamak experiment in the world.

set of magnetic field lines that wind around the torus toroidally (the long way
around) and poloidally (the short way around). The plasma particles do not
follow the field lines exactly, however. As previously discussed, the particles
gyrate around their guiding center positions at the cyclotron frequency ωc.
Moreover, the guiding centers themselves are allowed to slowly drift across
the magnetic field lines as a result of inhomogeneities in and curvature of the
magnetic field, so the guiding center orbits also deviate somewhat from the
magnetic flux surfaces.

2.2.1 Toroidal Coordinates

In Figure 2.3 is shown the cross section of a circular tokamak, including two sets
of coordinates. The toroidal coordinates (r, θ, ζ) relate to the usual cylindrical
coordinates (R,φ, z) as


R = R0 + r cos θ
φ = −ζ
z = r sin θ

⇐⇒


r =

√
z2 + (R−R0)

2

θ = arctan z
R−R0

ζ = −φ
(2.68)

Here, R0 is the value of the cylindrical radius R at the geometrical center
of the circular cross section. The cylindrical coordinates relate to ordinary
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Figure 2.3: Cross section of a circular tokamak. The set (R,φ, z) are the usual
cylindrical coordinates, and (r, θ, ζ) are so called toroidal coordinates, given by
equation (2.68). The distance R0 from the toroidal axis to the geometric center
of the cross section is called the major radius. On the contrary, the minor
radius r denotes radial distances within the cross section, from the geometric
center out to the edge of the device.

Cartesians in the usual way,
x = R cosφ
y = R sinφ
z = z

⇐⇒

 R =
√
x2 + y2

φ = arctan y
x

z = z

(2.69)

Although modern tokamak cross sections in general are D-shaped, we will
nevertheless use this idealized, circular approximation throughout the main
part of this thesis. Of course the coordinates in (2.68) and (2.69) may well
be used to describe any type of cross section. However, their use is most
fruitful when the cross section is indeed circular and, moreover, the nested
magnetic flux surfaces inside the torus align as concentric tubes centered at
R0. A natural generalization towards the more accurate D-shape is to include
parameters that describe ellipticity, triangularity and offset of each magnetic
flux surface from the geometrical center of the cross section. The latter effect
will be discussed in more detail in Chapter 4, where such an offset will be
needed in order to properly account for toroidal effects.

2.2.2 Magnetic Field Structure

The equilibrium magnetic field in a tokamak is a combination of two field
components, BT and BP . The larger part BT points in the toroidal direction,
along ζ. It is generated entirely by currents running in a set of exterior coils
that encircle the torus poloidally, along θ. While a finite number, say n, of such
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toroidal field coils naturally produces a magnetic field structure with an n-fold
rotational symmetry around the toroidal axis, we will throughout this thesis
make the simplifying assumption that tokamaks are completely axisymmetric,
i.e. that all equilibrium quantities satisfy

∂

∂ζ
(. . . ) = 0 . (2.70)

The smaller component BP points in the poloidal θ-direction. It is due to a
net toroidal current in the plasma, generated inductively by transformer action
and/or by non-inductive current drive schemes such as NBI and RF heating.
The total magnetic field therefore has a helical structure, with field lines that
encircle the torus toroidally and poloidally as they trace out nested magnetic
flux surfaces across which there is no magnetic flux. The field lines may even-
tually close upon themselves (after many, many revolutions, or sometimes after
just a few), or they may not (in which case a single field line densely covers
the surface).

It is clear on a conceptual level what is the effect of the poloidal field BP

and why it is needed: A toroidal component BT alone would indeed exhibit
field lines that close upon themselves after a toroidal revolution. However, in
the absence of plasma currents and electric fields, one can integrate Ampére’s
law,

∇×B = µ0J+ µ0ϵ0
∂E

∂t
, (2.71)

written here in its post-Maxwell, generalized version that includes the displace-
ment current, along a path that encircles the toroidal axis at constant radius
R. Employing Stoke’s theorem, one finds

BT =
µ0IC
2πR

, (2.72)

where IC is the total current in all the exterior coils. As discussed in Section
2.1.3, the inverse R-scaling introduces particle drifts. Specifically, the∇B- and
curvature drifts will jointly result in a vertical separation of ions and electrons
that sets up an associated electric field. The resulting E × B-drift rapidly
transport particles of both species radially outwards. A convenient way to
counteract this drift-induced transport is to introduce the small component
BP . With the resulting helical magnetic field, the unwanted drifts average out
as the particles follow the field lines around the torus, not only toroidally but
also poloidally.

There is a generic class of curvilinear, toroidal coordinates, so called mag-
netic flux coordinates or straight field line coordinates, which are often em-
ployed for the description of toroidal plasmas. Such a set (rf , θf , ζf ) is designed
as to satisfy the following two requirements: 1) The radial flux coordinate rf
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is to remain constant on each magnetic flux surface; 2) the magnetic field lines
are to form straight lines (on the flux surfaces) in the poloidal and toroidal flux
angles θf and ζf . Mathematically, the requirement on rf can be formulated as

∇rf ·B = 0 , (2.73)

so that any monotonic function of rf alone serves well to label magnetic flux
surfaces (and is accordingly called a flux label). The relation (2.73) also means
that the contravariant component Brf vanishes identically throughout the de-
vice. Thus, the total magnetic field

B = BP +BT (2.74)

may be expanded in terms of covariant flux coordinate basis vectors as

BP = Bθf
∇ζf ×∇rf

Jf
, BT = Bζf

∇rf ×∇θf
Jf

, (2.75)

where
Jf = ∇rf · ∇θf ×∇ζf (2.76)

is the flux coordinate Jacobian. The second requirement, that the magnetic
field lines are to form straight lines on the magnetic flux surfaces, can be
expressed through an equation of the form

ζf = q (rf ) θf + Const. , (2.77)

where q is a flux label commonly referred to as the safety factor. Upon com-
paring equation (2.77) with the equation for a magnetic field line,

dζf
dθf

=
B · ∇ζf
B · ∇θf

=
Bζf

Bθf
= q , (2.78)

it is obvious that the total magnetic field can be written as

B =
Bθf

Jf
∇ (ζf − qθf )×∇rf . (2.79)

It is important to understand that rf does not measure the radial distance from
the geometric center of the vessel, as does the usual toroidal radius r. Rather,
rf denotes distances from the innermost, degenerate flux surface, the so called
magnetic axis, located at the cylindrical radius R = RA. We also note that
the usual toroidal coordinate system given in (2.68) is not flux-type. To begin
with, general plasma equilibria do not have circular flux surfaces centered at
R0, so usually r is not a flux label. Moreover, even when the flux surfaces are



2.2 Particle Orbits in Tokamaks 25

circular and concentric, the usual toroidal angle θ is not a flux angle, simply
because it does not yield straight field lines.

Flux coordinates are extra useful for the description of axisymmetric toroidal
systems, in which case identifying ζf with the usual toroidal coordinate ζ sim-
plifies the analysis considerably. The co- and contravariant basis vectors in the
toroidal direction then relate to the unit vector ζ̂ as

∇ζ = 1

R2

∇ζ ×∇rf
Jf

=
ζ̂

R
. (2.80)

Moreover, axisymmetry renders

∇ ·B = Jf
∂

∂θf

(
Bθf

Jf

)
= 0 , (2.81)

which shows that Bθf/Jf is a flux label in axisymmetric systems. We can then
define another flux label,

ΨP (rf ) ≡
rf∫
0

Bθf

Jf
dr′f , (2.82)

such that the magnetic field becomes

B = ∇ (ζ − qθf )×∇ΨP . (2.83)

In fact, ΨP constitutes a slight renormalization of the poloidal magnetic flux,

FP (rf ) ≡
1

2π

∮
V (rf)

B · ∇θf d3x = 2πΨP (rf ) , (2.84)

through a ribbon-like surface that extends toroidally around the tokamak from
its magnetic axis to the flux surface ∂V (rf ), enclosing the volume V (rf ). If
we also introduce the toroidal magnetic flux through any cross sectional disk
whose rim lies on ∂V (rf ), defined similarly to FP as

FT (rf ) ≡
1

2π

∮
V (rf)

B · ∇ζf d3x , (2.85)

the safety factor may be written as the ratio

q (rf ) =
dFT/drf
dFP/drf

=
dFT
dFP

. (2.86)
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Equation (2.86) is the usual definition of the safety factor. As such, it is always
a flux label, regardless of the choice of coordinates, the purpose of which is
to measure the average pitch of the magnetic field lines on a flux surface (the
average number of toroidal circuits per poloidal circuit). In flux coordinates,
however, the field lines are straight, so q measures not the average but local
field line pitch. If q is irrational, the surface is densely covered by just one
field line that never closes on itself. On the contrary, on surfaces where q is
rational the field lines eventually close after, say, n poloidal and m toroidal
circuits, and the rational value of q equals the ratio m/n.

The introduction of FT also enables simple representations for the mag-
netic field strength and vector potential in terms of the poloidal and toroidal
magnetic fluxes. If we first define the renormalized toroidal flux ΨT ≡ FT/2π,
the safety factor reads

q =
dΨT/dr

dΨP/dr
=
dΨT

dΨP

, (2.87)

and the magnetic field strength becomes

B = ∇ΨT ×∇θf +∇ζ ×∇ΨP . (2.88)

Now, in a gauge where the covariant component Arf vanishes,3 i.e. where

A = Aθf∇θf + Aζ∇ζ , (2.89)

the magnetic field strength relates to the covariant components of A via

B = ∇×A = ∇Aθf × θf +∇Aζ ×∇ζ . (2.90)

Comparing with (2.88), it is easily seen that Aθf = ΨT and Aζ = −ΨP .

3Such a gauge can always be chosen, in fact regardless of the choice of coordinates.
For instance, with unspecified toroidal coordinates (r, θ, ζ), in which the magnetic vector
potential has the generic form

A = Ar∇r +Aθ∇θ +Aζ∇ζ ,

one may define

η (r, θ, ζ) ≡
r∫
Ar (r

′, θ, ζ) dr′ , A′
θ = Aθ −

∂η

∂θ
, A′

ζ = Aζ −
∂η

∂ζ
,

which transforms A to
A = A′

θ∇θ +A′
ζ∇ζ +∇η .

The third term on the right hand side may of course be removed via a gauge transformation,
which puts A in the desired form.
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To proceed further with the flux coordinate formalism, we need to consider
the governing equations for toroidal plasma configurations in static equilib-
rium. The simplest and most important class of toroidal equilibria are char-
acterized by a force balance equation of the form

J×B = ∇P , (2.91)

where the plasma current density is given by Ampére’s law for static fields,

µ0J = ∇×B , (2.92)

and P is the total plasma pressure. The set of equations for B, J and P is
closed by means of the Maxwell equation

∇ ·B = 0 . (2.93)

Equation (2.91) immediately tells us that P is a flux label,

∇P ·B = 0 =⇒ P = P (rf ) . (2.94)

Hence, the magnetic surfaces are also surfaces of constant plasma pressure.
Moreover, (2.91) reveals that there is no net flux of plasma particles across the
magnetic flux surfaces,

∇P · J =
dP

drf
Jrf = 0 =⇒ Jrf = 0 , (2.95)

a property sometimes referred to as ambipolarity. Thus, the plasma current
lines are confined to lie in the magnetic flux surfaces (although they are not
parallel to the magnetic field lines). When the magnetic field is axisymmet-
ric, Ampére’s law provides additional information on the magnetic field itself:
Evaluation of the contravariant rf -component of equation (2.92) gives

Jrf =
Jf
µ0

∂Bζ

∂θf
= 0 , (2.96)

which reveals that the covariant ζ-component of B is a flux label, usually
denoted Bζ = I (rf ). The total magnetic field can therefore be written in the
mixed representation form

B = I∇ζ +∇ζ ×∇ΨP = I∇ζ +Bθf
∇ζ ×∇rf

Jf
, (2.97)

whose magnitude evaluates to

B2 =
I2

R2

[
1 +

1

R2q2

∣∣∣∣∇ζ ×∇rf
Jf

∣∣∣∣2
]
. (2.98)
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Note that the covariant poloidal basis vector in toroidal systems typically sat-
isfies ∣∣∣∣∇ζ ×∇rf

Jf

∣∣∣∣ ∼ rf , (2.99)

Moreover, the flux label I is closely related to the total exterior current in the
toroidal field coils, IC , via the expression

I (rf ) =
µ0

2π

[
IC +

(
IP (a)− IP (rf )

)]
. (2.100)

Here, IP (rf ) is the total poloidal plasma current through a ribbon-like surface
extending throughout the torus from the magnetic axis to the magnetic flux
surface labeled with rf , and a denotes the value of rf at the outermost flux
surface.

2.2.3 Large Aspect Ratio Approximation

The flux coordinates discussed in the preceding section have so far given many
general results and provided useful information on toroidal plasmas. However,
in order to actually determine rf and θf for a specific axisymmetric tokamak
equilibrium, one has to resort to numerical modeling. Such an analysis will
not be presented here. Rather, we will proceed in an approximate fashion by
invoking some idealized assumptions, the purposes of which are to obtain an
approximate analytical formula for Ψ in terms of R. Such a relation is needed
for the discussion of tokamak particle orbits in the following section.

We therefore restrict our analysis to the case of circular flux surfaces, all
commonly centered at R = R0. Under these assumptions, the toroidal coor-
dinates (2.68) are almost flux-type. Indeed, r labels the flux surfaces, so we
can set rf = r and R0 = RA. The relation between θf and θ is more involved,
and generally has to be solved for numerically. However, if we assume that
the ratio of major to minor radius is large throughout the device, so that the
inverse aspect ratio satisfies

ϵ ≡ r

RA

≪ 1 , (2.101)

and that the plasma-β, the ratio of kinetic to magnetic pressure, is even
smaller,

β ≡ 2µ0P

B2
∼ ϵ2 , (2.102)

then there is an analytical expression for θf in terms of θ that holds through
first order in ϵ, namely

θf = θ − ϵ sin θ . (2.103)
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The former assumptions are not particularly well justified in modern toka-
maks. As previously discussed, the generic cross section is D-shaped rather
than circular, with an aspect ratio of major to minor radius around 3.4 Never-
theless, we will use the large aspect ratio, circular cross section approximation
throughout this chapter in order to make analytical progress. The low β as-
sumption is however far more accurate. Tokamak equilibrium pressures are
indeed limited by stability regards to β-values of a few percent [16,17].5

The next few calculations will be carried out perturbatively to first order
in ϵ. That is, terms on the order of O (ϵ2) and smaller will be neglected. In
this fashion, it can be shown that in a tokamak, IP/IC ∼ β, so that

I (rf ) ≈
µ0IC
2π

= Const. (2.104)

Since the second term inside the bracket on the right hand side of (2.98) is
O (ϵ2) as compared to the first, we therefore have

B ≈ µ0IC
2πR

=
BARA

R
, (2.105)

whereBA is the magnitude of the total magnetic field evaluated at the magnetic
axis. With (2.105), the poloidal and toroidal magnetic fluxes become, to first
order in ϵ,

ΨP ≈ BA

r∫
0

r′ dr′

q (r′)
, ΨT ≈ BAr

2

2
, (2.106)

and the expression (2.86) for the safety factor becomes

q =
dΨT/dr

dΨP/dr
= BA

rdr

dΨP

. (2.107)

Viewing q as a function of ΨP rather than r, q = q (r (ΨP )), and expanding it
in powers of ΨP , the solution to (2.107) reads

r2 =
2

BA

[
qAΨp +

1

2

dq

dΨp

∣∣∣∣
Ψp=0

Ψ2
p +

1

6

d2q

dΨ2
p

∣∣∣∣
Ψp=0

Ψ3
p + . . .

]
, (2.108)

4As examples, JET has an aspect ratio of 3, whereas ITER will have the aspect ratio
3.1. There are also spherical tokamaks, with aspect ratios ∼ 1. Such devices are certainly
not covered by the present analysis.

5In recent years, tokamak experimentalists have nevertheless found ways to slightly
stretch the limitations on β. Careful shaping of the plasma cross section by an elonga-
tion in the vertical direction and a bean-like, D-shaping of the flux surfaces have increased
the conceivable values of β [18]. A more intriguing method of increasing β was found through
the discovery of so called advanced scenarios, in which external heating schemes are applied
as to create a non-monotonic radial current profile with a local minimum rather than a
maximum at the magnetic axis. Such current-hole configurations exhibit potent transport
barriers at mid-minor radius, within which the plasma confinement improves significantly.
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where qA ≡ q (Ψp = 0). Although the safety factor in general varies through-
out the tokamak, the constant model q = qA enables a simple qualitative
description of the guiding center orbits. We then have

r2 ≈ 2qA
BA

Ψp , (2.109)

which may be combined with the expression for z2 in equation (2.68) to give

z2 =
2qA
BA

Ψp − (R−RA)
2 . (2.110)

Note that the vertical midplane of the tokamak is then described by an equation
of the form

Ψp =
BA

2qA
(R−RA)

2 , (2.111)

i.e. a parabola in (R,Ψp)-space.
The above calculations are not quite rigorous. A properO (ϵ)-description of

a large aspect ratio, low-β tokamak equilibrium should really include a small,
gradual inward (towards smaller R) shift of the magnetic flux surfaces from
the geometric center of the cross section, the so called Shafranov shift. While
this shift itself is indeed O (ϵ2), and therefore most often rigorously neglected,
its radial derivative is not quite that small. It actually enters the calculations
already at O (ϵ), and must therefore be taken properly into account e.g. in
the description of toroidal Alfvén eigenmodes in Chapter 4, since the existence
of such modes relies intrinsically on toroidal effects. For the following dis-
cussion of tokamak particle guiding center trajectories, however, the proposed
”cylindrical” approximation with concentric flux surfaces suffices well.

2.2.4 Tokamak Guiding Center Trajectories

Guiding center motion in axisymmetric, toroidal equilibria is governed by the
phase space Lagrangian (2.52). With magnetic flux coordinates (rf , θf , ζ) the
phase space coordinates are

(
rf , θf , ζ, v∥, pα, α

)
, and one should substitute into

the general form (2.52) the field structure discussed in the previous section,
i.e. A and B as given in equations (2.89) and (2.97), and ϕ = 0. However,
as shown in [19], it is always possible to choose the flux coordinate θf so that
the covariant component Brf vanishes (in addition to Brf , which vanishes as
a means of how flux coordinates were defined in Section 2.2.2). Then, the
guiding center Lagrangian (2.52) becomes particularly simple,

Lgc =
[
Mv∥

Bθf

B
+ eΨT

]
θ̇f +

[
Mv∥

Bζ

B
− eΨP

]
ζ̇ + pαα̇−Hgc , (2.112)
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with

Hgc =
M

2
v2∥ ∓ pαωc . (2.113)

From the symplectic part of (2.112), i.e. the first three terms Lgc +Hgc, it is
clear that the angular coordinates θf , ζ and α are canonical, with conjugate
momenta

pθf =Mv∥
Bθf

B
+ eΨT , pζ =Mv∥

Bζ

B
− eΨP , pα =

M

e
µ . (2.114)

Generally, the ratio Bθf/Bζ is small in axisymmetric toroidal devices,

Bθf

Bζ

=
1

qR2

∣∣∣∣∇ζ ×∇rf
Jf

∣∣∣∣2 ∼ r2f
R2

, (2.115)

so the first term in pθf is negligible as compared with the first term in pζ . On
the other hand, the first term in pζ represents the effect of deviations in the
guiding center orbits from the magnetic flux surfaces, due to the cross field
drift velocity (2.61). As such, it is in itself small as compared to the second
term in pζ , except for highly energetic particles (especially those close to the
magnetic axis, with rf small). With these remarks taken into account, the
guiding center Lagrangian for particle motion in a large aspect ratio, low β
tokamak becomes, to first order in ϵ,

Lgc = pθθ̇ + pζ ζ̇ + pαα̇−Hgc . (2.116)

Here,

pθ = eΨT (r) , pζ =MR (r, θ) v∥ − eΨP (r) , pα =
M

e
µ , (2.117)

and the form of H remains as given in (2.113),

Hgc =
M

2
v2∥ ∓ pαωc (r, θ) . (2.118)

We have written these expressions explicitly in terms of their dependencies
on the guiding center coordinates, which have now been chosen as the usual
toroidal coordinates (r, θ, ζ), assuming that the flux surfaces are circular and
concentric. It is noteworthy that these simple coordinates indeed satisfy ∇r ·
∇θ = 0, and thus have Br = 0.

The equations of motion for the guiding centers are found via the Euler-
Lagrange equations for each phase space coordinate. In reverse order, they
give

ṗα = 0 , α̇ = ∓ωc , ζ̇ =
v∥
R
, ṗζ = 0 , (2.119)

e
dΨT

dr
ṙ = −r sin θ

R

[
E +

M

2
v2∥

]
, e

dΨP

dr

[
qθ̇ − ζ̇

]
+

cos θ

R

[
E +

M

2
v2∥

]
= 0 .
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Here, E denotes the instantaneous value of the guiding center Hamiltonian
Hgc, which is a constant of motion since the time variable t is cyclic. Upon
substitution of the magnetic fluxes (2.106), we obtain

ṙ = ∓ sin θ

ωcAR

[
E

M
+

1

2
v2∥

]
, (2.120a)

θ̇ =
v∥
qR

∓ cos θ

ωcArR

[
E

M
+

1

2
v2∥

]
, (2.120b)

ζ̇ =
v∥
R
. (2.120c)

These equations can, in principle, be integrated to give expressions for the
particle guiding center position. In practice, however, the integrations can
only be carried out analytically if the right hand side of (2.120a) and the
second term in (2.120b), representing the drifts across the magnetic field, are
both small. Such an analysis is presented at the end of this section.

A more intuitive and direct approach, one that does not rely on the ”small
drift assumption”, is to utilize directly the constancy of E, pζ and pα, or rather

v ≡
√

2E/M , pζ and µ = −epα/M . To this end, we define the dimensionless
invariants

λ ≡ µBA

E
=

R

RA

[
1− χ2

]
, (2.121a)

J ≡ − pζ
MvRA

= ψ − R

RA

χ , (2.121b)

w ≡ ± 2qAv

ωcARA

, (2.121c)

where χ ≡ v∥/v ≤ 1 is the inverse ratio of total guiding center speed to
that along the magnetic field, the dimensionless poloidal magnetic flux is ψ ≡
eΨP/MvRA and the ± applies for ions/electrons, respectively. Note that the
so called pitch-angle variable λ always satisfies 0 ≤ λ ≤ BA/Bmin, where Bmin

denotes the minimum magnitude of the magnetic field strength in the device,
attained at the very outboard edge of the outermost flux surface, i.e. at r = a,
θ = 0. Hence, to first order in ϵ, 0 ≤ λ ≤ 1 + a/RA. If we now define the
dimensionless radial variable x ≡ R/RA, J and λ may be combined to give(

J − ψ
)2

= x (x− λ) , (2.122)

which can be written as

(
x− λ/2

)2 − (
ψ − J

)2
=
λ2

4
. (2.123)
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Given values for J and λ, equation (2.123) describes a hyperbola in the (x, ψ)-
plane. Examples of such hyperbolas are shown in Figures 2.4 – 2.6, alongside
the parabola

ψ =
1

w
(x− 1)2 , (2.124)

obtained from equation (2.111). Since equation (2.124) depicts values for ψ at
which z = 0, the intersections of these two types of curves represent radii where
particles pass the vertical midplane of the cross section. The corresponding
guiding center orbits are given by solving (2.122) for ψ, and combining the
result with equation (2.110). Solving for the dimensionless vertical coordinate
ξ = z/RA gives

ξ = ±
{
w
[
J ±

√
x (x− λ)

]
− (x− 1)2

}1/2

. (2.125)

Such trajectories are plotted in the complementary, lower graphs in Figures
2.4 – 2.6.

As seen in Figures 2.4 – 2.6, there are several different types of orbits.
The simplest category consists of particles that encircle both the toroidal and
magnetic axis, so called passing particles. They are in majority in a large
aspect ratio tokamak, and have a relatively small value of λ,6

0 ≤ λ ≤ BA

Bmax

= 1− a/RA +O
(
ϵ2
)
. (2.126)

Here, Bmax is the maximum magnitude of the magnetic field strength, attained
at r = a, θ = π. A typical passing particle orbit is on display to the left in
Figure 2.4. Note that the guiding center of a passing particle always remain
fairly close to the same magnetic flux surface. Larger values of λ result in
entirely different types of orbits. In particular, particles that satisfy

BA

Bmax

< λ ≤ BA

Bmin

= 1 + a/RA +O
(
ϵ2
)

(2.127)

do not revolve all the way around in the poloidal direction. As their guiding
centers approach the inboard, large field side of the torus, they slow down
due to the decelerating mirror force −µ∇∥B, much like the confined particle
population in a mirror machine, cf. Section 2.1.3. They eventually come to
a halt when v∥ = 0, at which point the motion parallel to the magnetic field
reverses. Such trapped orbits are often called bananas, due to their charac-
teristic shapes when projected on a cross section with constant toroidal angle
ζ, see e.g. the graphs on the right in Figure 2.4. The parallel velocity v∥ is
positive (along ∇ζ and ∇θ) on the outside and negative on the inside of the

6Alternatively, a relatively large ratio v∥/v.
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x
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Figure 2.4: Left: Passing particle orbits with J = 2, λ = 0.5, w = 0.1. The
upper branch of the hyperbola (2.123) bounded by the parabola (2.124) corre-
sponds to a co-passing particle, whereas the lower branch is a counter-passing
particle. The corresponding orbits in the (R, z)-plane encircle the magnetic
axis anti-clockwise and clockwise, respectively. Right: Deeply trapped banana
orbit with J = 2, λ = 1.1, w = 0.1.

orbit. Other examples of trapped orbits are shown in Figure 2.5: The orbit
to the left corresponds to a moderately trapped particle, while the one on the
right is just barely trapped (it has a value of λ very close to BA/Bmax). It is
noteworthy that, under normal conditions, the trapped particles constitute a
minority fraction, O (

√
ϵ), of the total number of plasma particles, whose or-

bits most often exhibit a relatively small shift from the magnetic flux surfaces.
However, for high-energy ions close to the magnetic axis, the banana width can
become comparable to the average radius of the orbit, see e.g. Figure 2.6. The
trajectory to the right in this figure has so large banana width that it encircles
the magnetic axis.

The poloidal angles ±θB at which trapped particles bounce (the banana
tips) can be deduced by solving equation (2.121a) for the parallel velocity
component χ as a function of r, θ and normalized adiabatic invariant λ. One
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Figure 2.5: More examples of trapped orbits. Left: Moderately trapped
banana particle with J = 2, λ = 0.7, w = 0.1. Right: Barely trapped orbit
with J = 3, λ = 0.46, w = 0.1.

obtains, neglecting systematically terms O (ϵ2) and smaller,

χ (r, θ;λ) = ±
√
2ϵλ

√
κ2 (r;λ)− sin2 (θ/2) , (2.128)

where the trapping parameter is defined as

κ2 (r;λ) ≡ 1− λ (1− ϵ)

2ϵλ
. (2.129)

Trapped particles satisfy 0 < κ2 < 1, or, equivalently, 1/ (1 + ϵ) < λ <
1/ (1− ϵ), which agrees with (2.126) and (2.127) to first order in ϵ. Thus,
θB is found by setting χ = 0 and solving for θ, giving

θB = 2arcsinκ . (2.130)

Note that equation (2.130) has no real roots for κ > 1. From now on, we
will supress the argument λ in e.g. χ and κ, simply because it is an adiabatic
invariant that does not change along the guiding center trajectory.

We now explore the complementary approach of directly integrating of
equations (2.120a) - (2.120c). The method consists of rewriting equation
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Figure 2.6: Trapped orbits sometimes exhibit large orbit widths, which may
even encircle the magnetic axis. Left: So called fat banana with J = 0.5,
λ = 0.85, w = 0.1. Right: So called potato orbit with J = 0.35, λ = 0.84,
w = 0.1.

(2.120b) in terms of the dimensionless invariants λ, J and w, and the co-
ordinates r and θ, as

dt =
qR

vχ

[
1− w

2ϵ

q

qA

cos θ

χ

(
1 + χ2

)]−1

dθ , (2.131)

so that time integrals may be transformed into integrals over θ. In principle,
this means that averages over the poloidal orbits may be calculated as

⟨. . . ⟩B =
1

τB

τB∫
0

(. . . ) dt (2.132)

=
1

τB

2π∫
0

(. . . )
qR

vχ

[
1− w

2ϵ

q

qA

cos θ

χ

(
1 + χ2

)]−1

dθ , (2.133)

where

τB =

τB∫
0

dt =

∮
qR

vχ

[
1− w

2ϵ

q

qA

cos θ

χ

(
1 + χ2

)]−1

dθ (2.134)
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is the temporal period of the poloidal orbit and the θ-integrals are to be taken
around one such period. A problem with these integrals is that q, R, χ and ϵ
are all functions of r.7 Since the guiding center radius varies over the poloidal
orbit as the particles drift across the magnetic flux surfaces, we are therefore
in need of an additional relation r = r (θ) in order to evaluate the integrals.
Formally, such an equation can be derived by combining equations (2.120a)
and (2.120b) into the following differential relation,

dr

dθ
=
w

2ϵ

q

qA

∂

∂θ
(χR)

[
1− w

2ϵ

q

qA

∂

∂r
(χR)

]−1

. (2.135)

If the drift induced radial shift from the average orbital radius r̄ is assumed
small, one may perform an expansion in (r − r̄/) /r̄,

ϵ ≈ ϵ̄ ≡ r̄/RA , q ≈ q (r̄)

[
1 + s (r̄)

r − r̄

r̄

]
, (2.136)

where the magnetic shear is defined as

s (r) ≡ r

q

dq

dr
. (2.137)

To lowest order in the expansion parameters, the resulting expression for dr/dθ
is given by

dr

dθ
≈ wRA

2ϵ̄

q (r̄)

qA

∂χ

∂θ

∣∣∣∣
r=r̄

, (2.138)

which may be directly integrated to give

r − r̄ ≈ wRA

2ϵ̄

q (r̄)

qA

[
χ (r̄, θ)− ⟨χ (r̄, θ)⟩B

]
. (2.139)

It is important to remember that equation (2.139) is lowest order in both ϵ and
(r − r̄) /r̄, and that a more accurate expression can be derived by going to next
order in both parameters. Such a cumbersome analysis is most often avoided
though, since, by assumption, the radial shift is already small. If not, the
approximations used would simply be invalid. A fair question to ask, however,
is how large the radial shift is allowed to be within the current framework. A
posteriori, it can be shown from (2.139) that the expansion in (r − r̄) /r̄ is valid
whenever the Larmor radius is small enough, namely when rL ≪

√
ϵ̄ holds.

Therefore, a more accurate model (in the line of what was presented earlier
in this section, but including a radial variation in the safety factor profile)
is needed for realistic modeling of particle orbits with large radial excursions
from their average flux surface, e.g. potatoes.

7Note that we no longer assume q to be constant.
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In order to proceed, we need to evaluate the poloidal transit period (2.134)
and learn how to calculate averages of the form (2.132). Starting with the
former, one often neglects the drifts alltogether and simply writes

τB =

τB∫
0

dt ≈ q (r̄)RA

v

θ(τB)∫
θ(0)

dθ

χ (r̄, θ)
. (2.140)

For passing particles, the integral should be taken from 0 to 2π. Then, one
obtains

τB ≈ q (r̄)RA

v
√
2ϵ̄λ

2π∫
0

dθ√
κ2 (r̄)− sin2 θ

2

=
4q (r̄)RA

vκ (r̄)
√
2ϵ̄λ

π
2∫

0

dϕ√
1− κ−2 (r̄) sin2 ϕ

=
4qRA

vκ
√
2ϵλ

K (1/κ) , (2.141)

where K is the complete elliptic integral of the first kind. In the final line, we
have suppressed the argument r̄. From now on it will be understood that q,
κ, ϵ and s are to be evaluated at r = r̄. The corresponding poloidal frequency
then becomes

ωB =
2π

τB
=

πvκ
√
2ϵλ

2qRAK (1/κ)
. (2.142)

For trapped particles that bounce at θ = ±θB, the so called bounce period (the
time it takes to complete a banana orbit) evaluates to

τB ≈ qRA

v
√
2ϵλ

2

θB∫
−θB

dθ√
κ2 − sin2 θ

2

=
8qRA

v
√
2ϵλ

arcsinκ∫
0

dϕ√
κ2 − sin2 ϕ

=

= {sinϕ = κ sinφ} =
8qRA

v
√
2ϵλ

π
2∫

0

dφ√
1− κ2 sin2 φ

=
8qRA

v
√
2ϵλ

K (κ) , (2.143)

and the associated bounce frequency becomes

ωB =
2π

τB
≈ πv

√
2ϵλ

4qRAK (κ)
. (2.144)

We are now in a position to evaluate the orbit average of the normalized parallel
velocity component χ. Once again neglecting drift excursions and terms linear
and higher order in ϵ, we obtain

⟨χ⟩B ≡ 1

τB

τB∫
0

χdt ≈ qRA

vτB

θ(τB)∫
θ(0)

dθ =

{
πκ

√
2ϵλ

2K(1/κ)
Passing particles

0 Trapped particles
(2.145)
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Thus, the midplane width of the banana orbit for trapped particles becomes

∆t = 2
∣∣r (θ = 0)− r̄

∣∣ = 2vq

ωcA

√
1− λ (1− ϵ)

ϵ
. (2.146)

This is an important quantity in so called neo-classical transport theory, where
the step size of diffusing trapped particles is ∆t (which is much larger than the
ion Larmor radius rL – the step size of diffusing passing particles).

We conclude this section by presenting expressions for the toroidal transit
frequency, ωζ . Usually, such expressions include terms up to linear order in ϵ
and (r − r̄) /r̄, the reason being that trapped particles would not circulate the
toroidal axis, were it not due to the drifts that introduce a slow precession of
the entire banana orbit. For passing particles, the relevant expression is

ωζ = qωB + ωD

{
1− 2κ2

[
1− E (1/κ)

K (1/κ)

]
(2.147)

+
4

3

ϵ̄κ2

1 + 2ϵ̄κ2

[
1− κ2 −

(
1

2
− κ2

)
E (1/κ)

K (1/κ)

]
+ 4s

κ2

1 + 2ϵ̄κ2
E (1/κ)

K (1/κ)

[
1− π2

4E (1/κ)K (1/κ)

]}
,

where the toroidal drift frequency is

ωD =
q (r̄) v2

2r̄ωcARA

. (2.148)

The similar expression for trapped particles is given by

ωζ = ωD

{
2
E (κ)

K (κ)
− 1 +

2ϵ

3

[
1− κ2 −

(
1− 2κ2

) E (κ)

K (κ)

]

+ 4s

[
κ2 − 1 +

E (κ)

K (κ)

]}
. (2.149)

As stated at the outset, this expression includes no components of the paral-
lel transit velocity (which effectively averages out for the bouncing, trapped
particles). Rather, it represents a slow precessional drift of the entire banana
around the torus.

Finally, we note that the obtained orbital frequencies, ωB and ωζ , are both
functions only of the orbit invariants. That is, depending on ones taste, one
of the sets (λ, J, v) or (µ, pζ , E). In the expressions given above, it may seem
as if the relevant dependencies are λ, r̄ and v rather than the ones just stated.
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However, the average radius r̄ is actually also a function of the orbit invari-
ants, defined via the functional form of the toroidal momentum. For trapped
particles, this relation is easily found simply by using for the orbit constant
J (or pζ) its value at the banana tips ±θB, where χ vanishes and r = r̄,
i.e. J = ψ (r̄). For passing particles, the relation is more involved. One has
to use that the average of J during a poloidal transit (which of course equals
its instantaneous, constant value) provides the desired relation. To very high
accuracy, it reads

J = ψ (r̄)−
√
1− λ (1− ϵ̄) , (2.150)

which should then be inverted to obtain the desired relation r̄ = r̄ (λ, J, v).

2.3 Statistical Description of Energetic Particles

The single particle orbits considered so far do not properly describe tokamak
plasmas. Their main deficiency lies in that the particle trajectories were de-
rived for given magnetic fields, whereas in real plasmas the particles certainly
alter the externally generated electromagnetic field structure. The ultimate de-
scription of plasmas would be one in which all particle orbits were calculated
simultaneausly, taking into account the electromagnetic interactions with all
other charged particles as well as the externally applied fields. Such a de-
scription is not plausible, however, since it implies solving, simultaneausly, the
equations of motion for each particle together with Maxwell’s equations for
self-consistently evolving fields. The number of particles, and therefore equa-
tions, is simply way too large for that approach. A more realistic, but still
very challenging, task, is to resort to statistical physics. In such theories, the
plasma is modeled as a fluid in six-dimensional phase space, whose density
function f is determined through the Boltzmann equation

∂f

∂t
+ q̇

∂f

∂q
+ ṗ

∂f

∂p
= C + S + L (2.151)

Here, (p,q) are generalized phase space coordinates, C is a collision operator
that describes the effects of small-angle, binary Coulomb collisions and the
terms S and L represent particle sources and losses. Note that in the absence
of collisions, sources and losses (with the right hand side equal to zero), the
Boltzmann equation is usually referred to as the Vlasov equation. The Vlasov
equation is, in fact, a continuity equation that describes an incompressible
phase space fluid (the plasma). It is easy to see that when the motion is
integrable, any function that only depends on the constants of motion is a
solution to the Vlasov equation. Consider, e.g., a set of action-angle variables
(J,Θ), designed as to satisfy

J̇ = 0 , Θ̇ = Ω (J) . (2.152)
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Then, any function g (J) satisfies

∂g

∂t
=

∂g

∂Θ
= 0 , (2.153)

which means that g is automatically a solution to the Vlasov equation.
Typical sources of fast particles include external heating schemes such as

NBI and RF heating, but of course also thermonuclear fusion reactions, which
feed the plasma with highly energetic alpha particles. Fusion generated alphas
are born primarily in the tokamak core, where the density and temperature
both peak. Their nominal birth energy is 3.5 MeV, around which a statisti-
cal spread is observed due to Doppler broadening. The two complementary
categories of fast ions discussed here (NBI and RF generated ions) are quite
different in that their distributions are strongly anisotropic. NBI produces en-
ergetic ions in the tokamak center, whose kinetic energies are primarily algined
with the beam injection angle. On the contrary, RF heating can deposit power
and heat ions at any chosen resonance layer, and the resulting acceleration of
the particles occurs mainly perpendicularly to the magnetic field. Neverthe-
less, throughout this thesis we will (for reasons of simplicity) assume that the
source of fast particles is isotropic, like it is for the alphas, and that the fast
ions are generated at some definite velocity vb, with little spread in energy.
We therefore model the fast particle source as [20]

S =
S0 (r, t)

4πv2b
δ (v − vb) , (2.154)

where S0 is the alpha particle birth rate per unit volume (which is allowed to
vary with radius and time) and δ is the Dirac delta function.

Fast particle losses are usually modeled by an exponential loss time τL,
which in principle should be regarded as a function of v and χ, but most often
is taken as constant. Under these assumptions, the loss term becomes

L = − f

τL
. (2.155)

The exponential loss time τL generally depends on a number of effects [21].
These include direct losses due to particle orbits that intersect the cavity wall,
e.g. as a result of large Larmor radii or drift induced shifts, which may both
vary when the equilibrium magnetic field is not perfectly axisymmetric. There
is also a strong dependence in τL on so called indirect losses, arising as a result
of nonlinear interaction between fast particles and thermonuclear instabilities.
The latter have the capacity to redistribute and transport the fast particles in
phase space, which in many situations is expected to enhance the losses [8].
Usually, however, τL is not calculated from first principle in the presence of
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these effects, but rather the form (2.155) is assumed and used to evaluate τL
from a measured distribution of fast ions.

The relevant collision operator for fast particles consists of a combination
of a slowing-down term, a diffusive random walk in energy and so called pitch-
angle scattering. It is given by [7, 20]

C =
1

τs

{
1

v2
∂

∂v

[(
v3 + v3c

)
f
]
+

1

2v2
∂

∂v

[
v2

(
v2e
Me

Mα

+ v2i
v3c
v3
Mi

Mα

)
∂f

∂v

]

+
Mi

Mα

v3c
v3

∂

∂χ

[(
1− χ2

) ∂f
∂χ

]}
. (2.156)

Here, vi and ve are the thermal speeds of the bulk ions and electrons. The
characteristic collision frequency 1/τs, with τs the so called Spitzer slowing-
down time, is that of drag-like collisions between the fast ions and thermal
electrons. We shall not give an expression for τs here. It suffices to know
that it is large as compared with the characteristic period τB of the particle
orbits. The critical speed vc defines the fast ion energy at which the friction
forces due to collisions with thermal electrons and ions are equal. At velocities
larger than vc, electron drag predominates: The fast ions do not change their
pitch-angles during such collisions, but like an elephant running through a sea
of tennis balls, they experience a deceleration. The relevant collision operator
for such energetic ions consists of merely the first piece in (2.156). At lower
velocities, collisions with thermal ions are more likely. In this regime energy
diffusion (the second term) and pitch-angle scattering (the third term) are
both appreciable. It should be noted that the energy diffusion term includes
contributions from collisions with both thermal electrons and fast ions.

A huge simplification is readily available if one notes that, in the guiding
center approximation, the modifications of the fast ion distribution due to the
right hand side of equation (2.151) usually occurs on a time scale much longer
than the orbital periods of the particle motion. The Larmor gyration, e.g., is
unquestionably much faster than the operational time of C, S ad L, and can
therefore safely be averaged over.8 Likewise, averaging over the poloidal and

8However, in the case of RF heating, one must take into account that the particles are
accelerated via cyclotron resonances with externally generated wave fields that oscillate on
the time scale of the Larmor rotation. Nevertheless, since the gyration frequency scales
as one over the major radius, the resonant interaction will mainly occur in thin layers
somewhere along the particles trajectories. Due to Coulomb collisions, the particles will
enter each resonant layer with decorrelated gyration phases, so the interaction effectively
results in random kicks in energy. Such wave-particle interaction is usually described in
terms of so called quasi-linear theory, in which one simply adds to the gyro-averaged kinetic
equation a quasi-linear operator Q that describes the overall effect of the kicks in terms of
a diffusive random walk.
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toroidal transit periods as well, eventually generates an equation of the form

∂f

∂t
= C + S + L . (2.157)

Equation (2.157) seems almost too simple to be true, and indeed it represents
an oversimplification. To be perfectly stringent, one should perform an analysis
in which the time scales of the various periodic motions are ordered and then
carefully averaged out by expanding the distribution function in associated
small parameters, one for each pair of ordered time scales. In order to carry
out such calculations, it is convenient to transform to action-angle coordinates
for the guiding center motion, in which the averages are evaluated by simply
integrating over one period of the angles. The result will differ slightly from
that given in equation (2.157), but for our purposes the simpler model works
just fine.

In the following, we will assume that the losses are negligibly slow, τL → ∞,
and derive the so called slowing-down distribution of a fast ion population that
is so energetic that it evolves only under the influence of decelerating Coulomb
collisions (mainly with thermal electrons) and the source term (2.154),

∂f

∂t
=

1

τs

1

v2
∂

∂v

[(
v3 + v3c

)
f
]
+
S0 (r, t)

4πv2b
δ (v − vb) . (2.158)

The long-term equilibrium solution to equation (2.158) is found by setting
∂f/∂t = 0 and integrating the resulting equation

∂

∂v

[(
v3 + v3c

)
f
]
= −S0 (r, t) τs

4π

v2

v2b
δ (v − vb) (2.159)

from some v < vb to ∞. Noting that f = 0 for v > vb, one obtains

f (r, v, t) =
S0 (r, t) τs (t)

4π (v3 + v3c (t))
, (2.160)

where we have included time dependencies in both τs and vc, since, in principle,
the outlined solution allows them to evolve (slowly) in time.
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3
Plasma Waves and their
Interaction with Particles

Plasma waves are oscillating perturbations from an equilibrium state that are
usually described in terms of their electric and magnetic fields. On the other
hand, these oscillating fields of course interact with the charged particles that
constitute the plasma, so the perturbations persist in the charge density, cur-
rent, pressure and temperature as well. Due to the long reaching range of
the Coulomb potential, which effectively couples the motion of each plasma
particle to that of many others, plasma waves are truly collective phenomena
in which entire populations of particles oscillate coherently.

In general, plasmas support multiple types of waves, ormodes of oscillation,
which all correspond to some or another characteristic motion of the plasma
particles. For example, there are high frequency waves in which only the
electrons are rapid enough to partake in the oscillations, while lower frequency
oscillations involve the ions as well. In magnetized plasmas, where particles
gyrate around the magnetic field lines, the particles respond extra vividly to
circularly polarized waves. It also makes a difference as to whether the plasma
is warm or cold: Finite thermal speeds introduce dispersive effects where the
oscillation frequency becomes dependent on the wave number (or, equivalently,
the wavelength).

In the following section, we will first outline in Section 3.1 the general ap-
proach to kinetic linear wave theory in a uniform and static plasma. We will
see that there is a certain group of particles, the resonant ones that move in
sync with the wave field, that essentially dominate the wave-particle interac-
tion. Next, we go on to study this intricate interaction in the simplest possible
setup: A one-dimensional equilibrium, in which the bulk plasma supports a
high frequency oscillation that only interacts with a small group of fast elec-

45
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trons. Section 3.2 is devoted to this interaction, which is found to result in
an exponential damping (or growth, depending on statistical aspects of the
fast particles) of the wave amplitude that goes under the name Landau damp-
ing. In Section 3.3, we then generalize the geometry by considering linear
wave-particle interaction in toroidal geometry. The final section is devoted
to nonlinear wave-particle interaction, which is studied, once again, via the
simple setup of a one-dimensional plasma.

3.1 Kinetic Theory of Linear Plasma Waves

At heart of the theoretical treatment of plasma waves lies the issue of relating
the particle density and current to the electromagnetic wave field. The two
Maxwell equations

∇× E = −∂B
∂t

, ∇×B = µ0J+
1

c2
∂E

∂t
(3.1)

can be combined into the wave equation

∇ · ∇E−∇ (∇ · E)− 1

c2
∂2E

∂t2
= µ0

∂J

∂t
. (3.2)

In order to solve equation (3.1) for the electric field E, we need first to somehow
relate J to E. Such a relation goes beyond Maxwell’s equations. In principle, it
involves solving, simultaneously, the equations of motion for many interacting
plasma particles under the influence of the electric wave field E. In reality,
however, one resorts to simplified plasma models that describe the plasma in
statistical terms. In that spirit, by far the easiest approach is to treat the
plasma as a conducting fluid: Either a two-fluid model in which electrons
and ions are modeled as separate entities, or a single-fluid model (like e.g. the
magnetohydrodynamic model we will present in the following chapter) in which
the ions and electrons are considered to comprise a single fluid. However, in
the present chapter we will pursue the more ambitious task of treating the
plasma as a six-dimensional phase space fluid rather than an ordinary, three-
dimensional fluid, and tackle the problem by means of the kinetic equation
given in Section 2.3 of Chapter 2.

Before embarking on a brute force kinetic calculation, we can make some
simplifying observations. For small wave amplitudes, a linear approach is
reasonable in which J ∝ E. The motivation for this approximation comes
from the particle equation of motion (2.7), repeated here in slightly different
notation,

M
dv

dt
= e

[
E+ v ×B

]
. (3.3)



3.1 Kinetic Theory of Linear Plasma Waves 47

Equation (3.3) suggests that when E and B are both small, then J ∝ v ∝ E,
and the magnetic field enters only as a second order correction. If indeed
J ∝ E, then the wave equation is a linear PDE in space and time. Therefore, if
we assume, as outlined in the chapter introduction, that the system is uniform
and static, it is highly advantageous to Fourier transform E and J according
to

Qα (x, t) =
1

(2π)2

∫ ∫
Q̃α (k, ω) e

i(k·x−ωt) d3k dω . (3.4)

Here, we have introduced Einstein’s tensor notation in order to simplify the
subsequent analysis. Upon application of (3.4), the wave equation (3.2) be-
comes [(

1− k2c2

ω2

)
δαβ +

c2

ω2
kαβ

]
Ẽβ = −i µ0

c2ω
J̃α , (3.5)

where repeated indices are to be summed over and δαβ is the Kronecker delta.
Now, the most general linear response that can be imagined has the form

Jα (x, t) =

∫ ∫
σαβ (x, t;x

′, t′)Eβ (x
′, t′) dx′dt′ . (3.6)

This expression allows the current at some space time position (x, t) to depend
on the electric field at other space time locations (x′, t′), and is valid as long as
causality and special relativity are not violated. In essence, therefore, solving
the Fourier space wave equation (3.5) really comes down to the problem of
evaluating the conductivity tensor σαβ. However, when the plasma is uniform
and static, as assumed here, the conductivity tensor cannot be just any func-
tion of x, x′, t and t′. Rather, it must depend only on the differences x − x′

and t− t′,
σ (x, t;x′, t′) = σ (x− x′; t− t′) . (3.7)

Hence, equation (3.6) becomes a convolution, whose Fourier transform is sim-
ply the product

J̃α (ω,k) = σ̃αβ (ω,k) Ẽβ (ω,k) . (3.8)

Substituting (3.8) into the Fourier transformed wave equation (3.5), one ob-
tains [

c2

ω2
kαkβ −

k2c2

ω2
δαβ + ϵαβ

]
Ẽβ = 0 , (3.9)

where the so called dielectric tensor relates to the conductivity tensor as

ϵαβ = δαβ +
i

ϵ0ω
σ̃αβ . (3.10)

In general, therefore, finding σ̃αβ gives a so called dispersion relation, a func-
tional relation of the form ω = ω (k). Note that the dielectric tensor is es-
sentially ic2/ω times the Fourier transform of the right hand side of Ampére’s
law, ∂E/∂t+ J/ϵ0.
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As already mentioned, various models can be employed for the evaluation
of σ̃αβ, and depending on what physics these models include, various modes
of oscillations will be found. The current investigation focuses on the effects
due to deviations in the particle distributions from their equilibrium velocity
profiles. We therefore commence a study in which the conductivity tensor is
calculated by means of kinetic theory. We describe the plasma particles in
terms of a distribution function f (x,v, t) that evolves in the 6-dimensional
(non-canonical) phase space (x,v) according to the Vlasov equation

∂f

∂t
+ v · ∂f

∂x
+
dv

dt
· ∂f
∂v

= 0 , (3.11)

and we restrict the investigation to the special case of an unmagnetized plasma
whose particles are isotropically distributed in v-space. The inclusion of an
equilibrium magnetic field certainly complicates the analysis, but the under-
lying physics mechanism we want to highlight is present even in the simpler
setup. Under these assumptions, we may substitute the particle equation of
motion (3.3) into the Vlasov equation, yielding

∂f

∂t
+ v · ∂f

∂x
+

e

M

∂f

∂v
·
[
E+ v ×B

]
= 0 . (3.12)

Here, it is understood that E and B are both wave quantities, and thus have no
unperturbed components. On the contrary, the distribution function of course
has an unperturbed equilibrium part, which we denote F0. By definition, F0

is taken to be static, ∂F0/∂t = 0. Hence, it must satisfy ∂F0/∂x, which means
that F0 = F0 (v), where v = |v| and we have invoked the assumption that
the unperturbed equilibrium configuration is isotropic in velocity. We note
that when the plasma is unmagnetized, there are only two second rank tensors
available, δαβ and kαkβ. We therefore construct ϵαβ according to

ϵαβ = ϵ∥
kαkβ
k2

+ ϵ⊥

(
δαβ −

kαkβ
k2

)
, (3.13)

where ϵ∥ and ϵ⊥ are defined as

ϵ∥ ≡
kαkβ
k2

ϵαβ , ϵ⊥ ≡ 1

2

(
δαβ −

kαkβ
k2

)
ϵαβ . (3.14)

Then, the wave equation becomes[
ϵ∥
kαkβ
k2

+

(
ϵ⊥ − k2c2

ω2

)(
δαβ −

kαkβ
k2

)]
Ẽβ = 0 . (3.15)

From (3.15), we see that there are essentially two modes of oscillation: A
longitudinal wave with k ∥ E and a transverse wave with k ⊥ E. Their
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respective dispersion relations read

ϵ∥ = 0 , ϵ⊥ =
k2c2

ω2
. (3.16)

We shall only be concerned with the former type of wave, described by ϵ∥ = 0.
The treatment of the transverse wave is simply more complicated, but provides
no further insights.

Since the amplitudes of E and B are both assumed small, we can construct
a perturbative solution to the kinetic equation by expanding the distribution
function according to

f = F0 + δf , (3.17)

where δf ≪ F0 represents a small deviation from the unperturbed equilibrium
distribution F0. Due to the isotropy, we have that dF0/dv is parallel to v, so

dF0

dv
· v ×B = 0 . (3.18)

We then obtain

∂δf

∂t
+ v · ∂δf

∂x
= −eE

M
· dF0

dv
+O

(
E2

)
, (3.19)

where the final term on the right hand side represents terms that are dou-
bly small in the wave amplitude. In the present linear approach, with the
goal to establish a linear connection J̃α = σ̃αβẼβ, we completely neglect such
corrections and write

∂δf

∂t
+ v · ∂δf

∂x
= −eE

M
· dF0

dv
. (3.20)

Just like the wave equation, equation (3.20) also constitutes a linear PDE in
space and time, and can therefore be similarly Fourier transformed according
to the recipe in (3.4). The procedure results in a simple algebraic expression

for δ̃f in terms of Ẽ,

δ̃f = i
e

M

Ẽ · dF0/dv

k · v − ω
. (3.21)

Hence, the total current and the conductivity tensor become

J̃α =
∑

Species

e

∫
vαf̃ d

3v =
∑

Species

e

∫
vαδ̃f d

3v

= i
∑

Species

e2

M

∫
vαdF0/dvβ
k · v − ω

Ẽβ d
3v (3.22)
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and

σ̃αβ = i
∑

Species

e2

M

∫
vαdF0/dvβ
k · v − ω

d3v . (3.23)

With the solution (3.23), the dispersion relation ϵ∥ = 0 for the longitudinal
wave becomes

1− 1

ϵ0ωk2

∑
Species

e2

M

∫
(k · v) (k · dF0/dv)

k · v − ω
d3v = 0 . (3.24)

We note that the integrand in (3.24) has a singularity at ω = k ·v. The singu-
larity reflects the fact that only a small fraction of the total number of particles
interact heavily with the wave, namely those that move in resonance with the
wave and therefore have velocities close to the resonant velocity defined by
k · v = ω.

From a quantum point of view, similar conclusions can be drawn. In such
theories, charged particles interact with waves via emission and absorption of
light quanta: Massless particles, called photons, that move with the speed of
light c. Consider, e.g., the interaction between a wave (with angular oscillation
frequency ω and wave vector k) and a charged particle via the emission of a
photon, the energy and linear momentum of which are given by

Eph = ℏω , pph = ℏk . (3.25)

Conservation of energy and momentum during the emission gives

Mv2

2
=
Mv′2

2
+ ℏω , Mv =Mv′ + ℏk , (3.26)

where v and v′ are the particle velocities before and after the emission, re-
spectively. The second relation immediately reveals that

|v − v′| = |k| ℏ
M

, (3.27)

so that, due to the smallness of the ratio ℏ/M , v must be close to v′. Then,
the energy conservation relation can be rewritten as

ω =
M

2ℏ
(
v2 − v′2

)
=
M

2ℏ
(v + v′) · (v − v′) =

v + v′

2
· k ≈ v · k , (3.28)

which shows that, indeed, the interacting particles are those that move in sync
with the wave oscillations, i.e. the resonant ones for which ω ∼ k · v.
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3.2 Landau Damping

The natural question that arises is how, exactly, the resonant particles move
in the presence of the wave, and how they affect, in return, the wave field.
It turns out that within the linear framework presented above, the effect of
the particles is to damp (or drive) the wave amplitude exponentially via so
called Landau damping. Although a formal derivation of the Landau damping
rate is complicated, [22], qualitative understanding can be gained through the
following picture: In essence, the resonant particles are nothing but a large set
of coupled objects that oscillate back and forth in the wave field. Therefore,
as the energy initially contained in the wave spreads in time, via resonant
interaction, over the coupled oscillators, it is extremely unlikely that it can
ever be extracted again.

As an illustration of the Landau damping phenomenon, we consider a sim-
ple one-dimensional plasma, and investigate the effect of a group of resonant
electrons on an electrostatic plasma wave that oscillates with angular frequency
ω = ωp. We assume that the resonant velocity v = ωp/k is high in the tail
of the electron distribution and that the ions are essentially immobile. The
wave can then be viewed as being established by the non-resonant majority
of the plasma, the so called bulk, whereas the resonant interaction involves a
much smaller electron population. Within the linear theory presented in the
preceding section, we can take the wave field as given,

E = E0 cos (kx− ωpt) , (3.29)

whereas the distribution f (x, v; t) of resonant electrons must be evolved by
means of a one-dimensional version of (3.20),

∂δf

∂t
+ v

∂δf

∂x
=

|e|E0

M
cos (kx− ωpt)

dF0

dv
. (3.30)

In what follows, we present a real space solution to equation (3.30) rather
than the sort of Fourier space solution outlined in the previous section. The
particular solution to (3.30) is

δfP (x, v; t) =
|e|E0

M

sin (kx− ωpt)

kv − ωp

dF0

dv
. (3.31)

It is however singular for highly resonant particles with ωp = kv. For that
reason, we choose the homogeneous solution as to cancel the singularity,

δfH (x, v; t) = −|e|E0

M

sin [k (x− vt)]

kv − ωp

dF0

dv
, (3.32)

so that the total solution becomes

δf (x, v; t) =
|e|E0

M

sin (kx− ωpt)− sin [k (x− vt)]

kv − ωp

dF0

dv
. (3.33)



52 Chapter 3 Plasma Waves and their Interaction with Particles

Note that δf is bounded at v = ωp/k.
With the composite solution in equation (3.33), we can go on and evaluate

the average work done on the particles by the wave, per wavelength λ. It is
given by

Q =
1

λ

λ∫
0

JE dx , (3.34)

where the current reads

J = − |e|
∞∫

−∞

vf (v) dv = − |e|
∞∫

−∞

v [F0 (v) + δf (v)] dv = − |e|
∞∫

−∞

v δf (v) dv

= −e
2E0

M

∞∫
−∞

v
sin (kx− ωpt)− sin [k (x− vt)]

kv − ωp

dF0

dv
dv . (3.35)

Note that the one-dimensional equivalent of the velocity space isotropy as-
sumed in the preceding section is to let F0 be even with respect to v, thus
allowing the final step on the first line in the calculation above. Inserting this
J into Q, it can be shown that

Q = −e
2E2

0

2M

∞∫
−∞

v
dF0

dv

sin [(kv − ωp) t]

kv − ωp
dv . (3.36)

For t > 0, the factor sin [[kv − ωp) t] / (kv − ωp) in the integrand oscillates
rapidly. Then, since v dF0/dv is assumed smooth, the main portion of the in-
tegral will average to zero, the exception being for those v in the very proximity
of ωp/k. In the spirit of the stationary phase method, we therefore approxi-
mate vdF0/dv as constant over the narrow interval that actually contributes
to the integral, so that

Q ≈ −e
2E2

0

2M

[
v
dF0

dv

]
v=ωp/k

∞∫
−∞

sin [(kv − ωp) t]

kv − ωp
dv . (3.37)

Since ωp/k is finite, the substitution x = v − ωp/k is helpful. It gives

Q = −e
2E2

0

2Mk

[
v
dF0

dv

]
v=ωp/k

I , (3.38)

where

I =

∞∫
−∞

sinxt

x
dx = 2

∞∫
0

sin z

z
dz = π . (3.39)
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Hence,

Q ≈ −πωp
e2E2

0

2Mk2
dF0

dv

∣∣∣∣
v=ωp/k

(3.40)

is our final expression for the work done on the resonant particles by the wave.
We now consider Poynting’s theorem, which states that in media with no

dispersion, the total energy density of an electromagnetic field,

W =
ϵ0
2
|E|2 + 1

2µ0

|B|2 , (3.41)

changes due to the energy density flux carried by the Poynting vector

S = E×B (3.42)

and as a result of dissipation according to

∂W

∂t
+∇ · S = −E · J . (3.43)

In our simple 1D example, S = 0 and W = ϵ0E
2/2, so we find that

1

λ

λ∫
0

∂W

∂t
dx = −1

λ

λ∫
0

JE dx = −Q , (3.44)

where

∂W

∂t
=
ϵ0
2

[
2E0

dE0

dt
cos2 (kx− ωpt) (3.45)

+ωpE
2
0 cos (kx− ωpt) sin (kx− ωpt)

]
.

The second term within the bracket averages to zero when performing the
integration in (3.44). Hence,

ϵ0
2
E0
dE0

dt
= −Q , (3.46)

so that
dE0

dt
= γLE0 , (3.47)

with

γL ≡ − 2Q

ϵ0E2
0

=
πe2ωp
Mϵ0k2

dF0

dv

∣∣∣∣
v=ωp/k

. (3.48)
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The solution for the amplitude is thus an exponential increase/decay in time,
depending on the sign of dF0/dv at the resonance v = ωp/k. E.g., if the
resonant velocity is high in the tail of a Maxwellian distribution, the fast
electrons will give an exponentially weak linear damping. On the other hand,
if the wave resonates with a low density electron beam, i.e. a small population
of fast electrons with a distribution centered around a maximum at some speed
vmax, the linear interaction will depend on whether vmax is larger or smaller
than the resonant velocity. When ωp/k < vmax, the gradient dF0/dv is positive
at the resonance, so the wave will be linearly driven by the beam electrons
rather than damped.

A more intuitive understanding of the Landau damping/drive can be gained
through studying the motion of single particles in the given wave field (3.29).
The charged particle equation of motion is

Mẍ = eE0 cos (kx− ωpt) , (3.49)

but a change of variables can transform it into the pendulum equation. Indeed,
the following dimensionless wave frame variables,

z = kx− ωpt−
π

2
, τ =

t

τB
, (3.50)

defined as to remove the rapid oscillations described by the argument kx−ωpt,
give

d2z

dτ 2
= 2π sin 2πz . (3.51)

Here, the bounce period τB is defined in terms of the bounce frequency ωB as

ω2
B =

(2π)2

τ 2B
≡ ekE0

M
. (3.52)

The analytic solution to equation (3.51) is well known, and is best visualized as
a phase space plot of the particle trajectories, cf. Figure 3.1. In this figure, the
gray trajectories with dz/dτ > 0, i.e. those in the upper half plane, describe
phase space flows in the direction of increasing z, i.e. to the right in the figure.
Such trajectories are called co-passing, whereas the gray ones in the lower half
plane, with dz/dτ < 0, are called counter-passing. The black trajectories inside
the so called separatrix (the red curve) are called trapped. They correspond
to bounded oscillations.

Consider first the siutation with dF0/dv < 0 at the resonant velocity
v = ωp/k at time t = 0. Initially, there are more particles in the lower half
of the phase space plot, where dz/dτ < 0, so as the trapped particles start to
circulate within the separatrix, there is a net transport of particles to higher
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Figure 3.1: Phase space trajectories for the pendulum equation (3.51). The
separatrix is highlighted in red.

velocities, or a flux of energy from the wave to the particles. This is the physi-
cal reason for the initial, exponential amplitude decrease presented above, and
it is known as linear Landau damping. Of course, since the trapped particle
motion in the wave field is periodic, the particles will eventually deposit the
gained energy back into the wave as their velocities decrease. Therefore, linear
Landau damping refers to the very initial phase, during the first or so bounce
period. On the other hand, if the trapped particles manage to momentarily
steal enough energy during the linear phase, there is the possibility of extin-
guishing the wave entirely. Such an obliteration requires that the wave lifetime
τL during the linear damping phase is essentially shorter than one half bounce
period,

τL < τB/2 = π/ωB . (3.53)

Hence, it is at least required that

ω2
B < γ2L . (3.54)

However, by looking at deeply trapped particles with small z, we see that

z̈ =
eE0

M
sin kz ≈ eE0k

M
z , (3.55)

so that the bounce frequency of such particles is simply

ω2
B =

eE0k

M
. (3.56)
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Thus, wave effacement via linear Landau damping is only relevant when E0 is
small enough,

E0 <
M

ek
γ2L . (3.57)

If, on the contrary, E0 is so large that the wave outlives the first bounce period,
linear Landau damping is no longer applicable and a nonlinear investigation
will have to be carried out. Such an analysis has been performed by several
authors [23–25], but is way outside the scope of this section. The general
conclusions, however, are that the wave amplitude is indeed exponentially
damped when t ≪ τB, but oscillates for t ∼ τB and finally saturates as t
becomes large. The saturation mechanism in the long run is due to so called
phase mixing : Since trapped particles that bounce back and forth within the
separatrix move at different speeds, the distribution inside the trapping area
will eventually have stirred to a smooth plateau, upon which energy can no
longer be extracted from, nor deposited into, the trapped particle population.

3.3 Kinetic Instabilities in Tokamak Plasmas

In toroidal systems, the situation is somewhat similar to what was presented
above, but the fully three-dimensional, curved geometry complicates the analy-
sis. As before, we will consider the case when the resonant interaction involves
only a small group of particles (energetic ions) whose density is small compared
to that of the bulk plasma. The situation thus involves a true eigenmode of
the background plasma, with an eigenfrequency that is insensitive to the total
number of fast particles. On the other hand, the fast particles interact reso-
nantly with tiny seeds of such eigenmodes, and if there is free energy available
among the fast particles, a flow of energy from the particles to the eigenmode
can be expected to drive the modes unstable. Initially, the resulting exponen-
tial growth of the wave amplitude must naturally occur on time scales much
longer than that of the mode oscillations (otherwise the fast particles would
influence the eigenmode existence and structure as well), which means that the
imaginary part of the total linear frequency ω = ωr + iγL satisfies γL ≪ ωr.

The excitation of a plane, electromagnetic wave, driven unstable by fast
ions in a large aspect ratio, low-β tokamak with circular flux surfaces was
considered in [26]. It was shown that, quite generally, the linear growth rate
is given by an expression of the form

γL ∝
∫

(. . . ) δ (Ω− ωr)

[
ωr

∂

∂E
+
lωcA
BA

∂

∂µ
+

m

rωcA

∂

∂r

]
F0 dE dµ . (3.58)

Here, F0 is the unperturbed distribution of energetic ions, i.e. their statistical
distribution in the absence of any wave, which has been taken as a function of
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the orbit invariants E, µ and pζ . The ∂/∂r-term stems from the r-dependence
in pζ . The delta-function ensures that only resonant particles, those with

Ω ≡ n ⟨ωζ⟩B − (m+ p)ωB + l ⟨ωc⟩B ≈ ω , (3.59)

contribute significantly to the wave excitation. Note that n and m are the
toroidal and poloidal mode numbers, while p is just an integer. Much like the
Landau damping discussed in Section 3.2, we see that the linear growth rate
(3.58) depends on the slope of the unperturbed energetic particle distribution.
However, in the present, three-dimensional geometry, three slopes has to be
evaluated in three different directions across the resonance, and then averaged
over the entire resonance, which in three spatial dimensions is a surface in
velocity space rather than a single point.

3.4 Nonlinear Wave-Particle Interaction within a
One-Dimensional Bump-On-Tail Model

The nonlinear evolution of fast particle driven modes is important for many
reasons. For starters, much like diagnostic tools based on linear mode and
frequency determination, measurements of nonlinear mode behavior can serve
as probes and yield information about the equilibrium conditions in the in-
accessible hot core of a burning plasma environment. Moreover, fast particle
losses [27] and redistribution due to such wave-particle interaction are essen-
tially nonlinear features that are currently far from understood. Of course,
global calculations of particle and energy transport would require general mul-
timode models that incorporate the full tokamak geometry. Nevertheless, the
evolution of single, isolated fast particle driven instabilities1 remains an impor-
tant concept on its own (as well as for the general understanding of nonlinear
wave-particle physics).

It has been suggested that in the proximity of such isolated resonances,
particle motion is effectively 1D, once expressed in proper action-angle vari-
ables [28]. Therefore, a simple one-dimensional model, much like the one pre-
sented in Section 3.2, with a low density fast electron beam destabilizing an
electrostatic plasma wave by means of the free energy available in its positive
velocity gradient, should give at least qualitative understanding of nonlinear

1With the term isolated, we refer to waves that are sufficiently separated in phase space
that their regions of influence on the particle orbits do not significantly overlap. In such
situations, mode-mode interactions may be safely neglected, and the impact of the fields may
be independently treated in the particle trajectory analysis. In fact, when the spectrum of
modes is not too dense, small wave amplitudes usually suffices: The electric field amplitude
can really be used as a measure of the phase space separatrix width, which roughly indicates
the extensions of the resonances.
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wave-particle interaction in more general configurations. In fact, if one extends
such a simple configuration just slightly to include a phenomenological linear
damping rate γd, due to dissipation in the background plasma, the system
turns out to show great disparity with regards to the relative rates of drive
and dissipation.

Away from the excitation threshold (i.e., when the linear drive γL from the
fast electrons by far exceeds the linear damping rate γd), the nonlinear wave
evolution consists of an initial linear phase with exponential growth of the mode
amplitude, during which a finite width plateau is formed in the driving species
distribution function. The fast growth is followed by an oscillatory saturation
stage, and then a gradual decay due to the dissipation in the background
plasma. However, just above the instability threshold, when

0 < γL − γd ≪ γd ≲ γL , (3.60)

the characteristic initial growth time 1/γ, with γ ≡ γL − γd the effective,
near-threshold linear growth rate, may become comparable to the relaxation
time of the driving species distribution due to collisions and particle sources.
The resulting wave evolution unveils a rich spectrum of interesting nonlinear
scenarios [29,30].

Experimentally, there have been many observations of nonlinear mode evo-
lution in the weakly driven regime (3.60). On JET, ICRH accelerated ions
excite TAEs that display so called soft nonlinear behavior, in the sense that
their wave fields quickly evolve into one of several possible steady states. The
Fourier signals of the steady states range from nicely saturated, well-defined
spectral lines that evolve merely with the plasma equilibrium, to modulated
signals that include closely situated sidebands (so called pitchfork splitting) [?]
and blurry indications of chaotic wave evolution [31]. On the contrary, on
the spherical tokamak MAST, NBI generated fast ions drive the TAEs into a
strongly nonlinear, hard regime, with bursting mode amplitudes and rapid fre-
quency chirping [32]. Modes with extended frequency sweeping have also been
observed [33], sometimes actually covering frequency ranges several orders of
magnitude larger than their initial, linear eigenfrequencies [34].

The model considered in this section describes an electrostatic plasma wave,
with prescribed wavelength λ (so that the wave number is k = 2π/λ) and
linear frequency ωp, in a uniform, one-dimensional plasma that contains three
different particle species:

• A population of static ions that do not contribute to the dynamics, except
that they keep the unperturbed plasma neutral.

• A fluid background of cold electrons that respond linearly to the wave
field. These electrons are taken to be subject to a phenomenological
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linear friction force, which provides a definition for the linear damping
rate γd in terms of an unspecified dissipation among the cold electrons. In
essence, however, γd is nothing but an adjustable input parameter with
the purpose of mocking up whatever ways real plasma configurations
damp their eigenmodes.

• A low density beam of highly energetic electrons. The fast electrons are
described kinetically in terms of their phase space distribution f (x, v; t),
whose equilibrium part F0 (v) has a positive slope at the initial resonant
velocity v = ωp/k. The fast electrons thus provide free energy that drives
the eigenmode with a linear growth rate γL ∝ dF0/dv. Moreover, they
are subject to weak collisions, which act to relax f to F0 on a time scale
long compared to that of the dissipation in the bulk plasma.

The particle species interact with each other and the wave field nonlinearly
through the following set of equations for f , the electrostatic potential ϕ (x; t)
and the cold electron perturbed fluid velocity and density, ve and δne:

• A kinetic equation for the fast electrons,

∂f

∂t
+ v

∂f

∂x
+

|e|
Me

∂ϕ

∂x

∂f

∂v
= C (f) . (3.61a)

• Linearized fluid momentum and continuity equations for the cold elec-
trons,

∂ve
∂t

=
|e|
Me

∂ϕ

∂x
− 2γdve (3.61b)

and
∂δne
∂t

+ ne0
∂ve
∂x

= 0 . (3.61c)

• The Poisson equation,

∂2ϕ

∂x2
= −|e|

ϵ0

[
δne +

∫
(f − F0) dv

]
. (3.61d)

In these expressions, ne0 is the unperturbed cold electron density and the phe-
nomenological linear friction force on the cold electrons, due to the dissipation
in the background, is −2γdve. Note that most authors have preferred to de-
scribe the wave in terms of its electric field E (x; t) = −∂ϕ/∂x rather than
the electrostatic potential, and used, instead of the cold electron linearized
continuity equation and the Poisson equation, the one-dimensional Ampére’s
law

∂E

∂t
=

|e|
ϵ0

[
ne0ve +

∫
v (f − F0) dv

]
. (3.62)
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The fast electron collision operator C (f) is written as superposition of three
idealized operators, namely:

• Velocity space diffusion: These collisions generate a diffusive random
walk process in velocity space, and they act to smoothen out any gra-
dients in the perturbed fast particle distribution f − F0. The diffusion
operator is given by

CDiffusion (f) =
∂2

∂v2
(f − F0) . (3.63)

• Krook type collisions: Krook collisions act to relax f into the unper-
turbed distribution F0 via the simple operator

CKrook (f) = − (f − F0) . (3.64)

Such collisions are often employed as a simpler alternative capable of
mimicking the more realistic, but also more demanding, diffusion op-
erator. Krook collisions can however be of true interest, e.g. to model
large-angle Coulomb collisions that immediately scatter fast particles out
of resonance.

• Drag: The drag operator is given by

CDrag (f) =
∂

∂v
(f − F0) , (3.65)

and it represents the effect of slowing-down due to small-angle Coulomb
collisions with the slower particle species. From the perspective of the ki-
netic equation (3.61a), the first term acts as a constant, DC, electric field
that generates a flow of fast electrons towards lower velocities, whereas
the second term constitutes a sink that preserves the equilibrium distri-
bution function F0.

The total fast electron collision operator is thus given by

C (f) = −β (f − F0) +
α2

k

∂

∂v
(f − F0) +

ν3

k2
∂2

∂v2
(f − F0) , (3.66)

where k = 2π/λ is the wave number and β, α and ν are effective rates for the
various types of collisions considered. Note that, quite generically, all authors
have assumed that α, β, and ν are small as compared to γd.

The near threshold limit of the presented model has been thoroughly inves-
tigated throughout the years. Under the assumption of a small nonlinearity,
which enables the construction of an analytical perturbative solution, it was
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Figure 3.2: Amplitude evolution as predicted by the weakly nonlinear, per-
turbative solution. The effective collision rate is decreased in the sequence of
figures a) - d). Axis labels have been omitted for simplicity. They should read
’γt’ (x-axis) and ’Normalized amplitude’ (y-axis).

found that the fast particle effective collision rate determines the wave evo-
lution in a manner that essentially replicates the observations from JET and
MAST discussed previously: In the presence of the idealized Krook operator
(3.64), [29], and/or the velocity space diffusion operator (3.63), [35], the elec-
tric field amplitude evolves into one of four possible regimes, depending on the
ratio between the effective linear growth rate γ ≡ γL − γd and the relexation
time of the fast particle distribution. With a sufficient rate of fast electron
collisions, the amplitude evolves into a nicely saturated steady state. Then, as
the collisionality is gradually lowered, the amplitude evolution is characterized
by the following sequence (cf. Figure 3.2): A steady state regime with a peri-
odic amplitude modulation that generates closely situated sidebands (pitchfork
splitting); a regime with chaotic, but bounded, amplitude evolution; a regime
characterized by a fast, explosive blow-up of the electric field amplitude in a
finite time. On the contrary, with enough drag collisions the initial amplitude
evolution was found to be unavoidably explosive [36]. Within this framework,
the bursting tendency for TAEs observed on MAST was explained in terms of
a relatively higher fraction of slowing-down collisions experienced by NBI gen-
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erated fast ions as compared to those in ICRH heated JET discharges, which
undergo a quasilinear, diffusive random walk due to the interaction with the
RF field.

Figure 3.3: Left: Spectrogram obtained from the BOT code [38] in the col-
lisionless limit. Right: Phase space plot of the hole corresponding to the first
excited mode on the left. The snapshot is taken at the end of the simulation.
Note how well phase mixed the fast electron distribution function is. This is in
fact a robust statement which applies to almost the entire hole evolution, with
the actual formation of the hole as the only exception.

The amplitude blow-up in the explosive regime leads to a breakdown of the
perturbative approach and clearly motivates a nonlinear numerical investiga-
tion. In fact, a fully nonlinear analysis is needed, since during the blow-up,
nonlinearities of all orders can be shown to be equally large. The nonlinear
regime was probed in [30,37,38], where it was established that the initial explo-
sive stage in the drag dominated and weakly collisional scenarios is associated
with the formation of coherent structures in the fast particle distribution, so
called hole-clump pairs. These entities extend in configuration as well as veloc-
ity space, and their Fourier signals correspond to slightly up- and down-shifted
sidebands (with respect to the linearly unstable frequency). During the subse-
quent evolution, the holes and clumps undertake a voyage through fast particle
phase space as they seek lower energy states in order to compensate for the
dissipation in the background plasma. Quite generically (at least for the initial
evolution), this implies that the holes shifts towards larger velocities, whereas
the clump shifts towards lower velocities. Meanwhile, the associated nonlin-
ear frequencies of the sidebands shift up and down, respectively, as seen in
the spectrogram in Figure 3.3. Analytically, it can be shown that the initial
frequency shift evolves according to

δω ∝ ±
√
t . (3.67)

On a somewhat longer time scale, fast particle collisions can actually influence
the frequency shift. For instance, interesting hole sweeping patterns, including
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so called hooks and steady states holes (see Figure 3.4), were obtained for
certain combinations of drag and diffusion collision rates. Similar features
have, in fact, been observed experimentally [39].

Figure 3.4: Left: Spectrogram displaying so called hooked frequency sweep-
ing. Right: Spectrogram showing a hole reaching a steady state frequency.
Note the assymetry between holes and clumps in these simulations, which is
due to the presence of drag. These plots were both obtained using the BOT
code [38].
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4
Toroidal Alfvén Eigenmodes

Alfvén waves are the basic low frequency modes of magnetized plasmas [40].
They were discovered theoretically in 1942 by Hannes Alfvén [41], and are
of high importance in tokamak, space and astrophysical plasmas. In toroidal
devices, there is an entire zoo of Alfvén waves. There are toroidicity, ellip-
ticity and triangularity induced Alfvénic eigenmodes supported by the device
geometry itself, as well as global modes associated with off-axis currents and
current holes in the lplasma core. In addition, a spectrum of non-ideal modes
exists, which can be found theoretically only once small wavelengths on the
order of the thermal ion Larmor radius are taken into account.

In typical tokamak experiments, Alfvén waves oscillate with frequencies in
the range of a few hundred kHz. As already discussed in Chapter 1, they are
therefore very prone to interact resonantly with super-thermal ions, and ac-
cordingly earned much attention during the 1980s and 1990s, when tokamaks
first started to probe regimes with non-negligible populations of energetic ions.
Early on, global Alfvénic modes were found to be destabilized by circulating,
NBI produced fast ions in the Wendelstein W7-AS stellarator. Somewhat later,
NBI [42,43] and ICRH [44,45] generated fast ions proved capable of destabiliz-
ing so called toroidal Alfvén eigenmodes (TAEs) on TFTR, JET and DIII-D.
These observations led to the widespread notion that Alfvénic activity may
result in large radial fluxes of fast ions due to increased transport. Indeed, a
70 % loss of the total beam power was observed, and attributed to the TAEs,
on DIII-D during the experiments with high-power NBI [43]. However, even
during the D-T campaigns, where record high concentrations of alpha particles
were produced in experiments on JET and TFTR, unambiguous identification
of alpha particle-driven TAEs proved difficult. The most succesful attempts
occured on TFTR. They include indirect measurements of the alpha particle
contribution to the TAE linear growth rate [46], and direct observations of

65
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TAEs during the so called afterglow phase, 100 - 200 ms following the end of
NBI [47]. An additional remark on the future importance of Alfvénic eigen-
modes concerns their stability in future, high-β devices: Alfvén waves tend to
become more stable as the plasma pressure rises.

In this chapter, we start by introducing in Section 4.1 the magnetohy-
drodynamic (MHD) model usually employed to analyze plasma equilibrium
configurations and linear perturbations with low oscillation frequencies. Then,
in Section 4.2, we apply this model to derive and comment on the Alfvén
wave dispersion relation in a static and uniform plasma. In Section 4.3, we
generalize the geometry and consider Alfvénic waves in cylidrical and toroidal
plasmas. We also discuss the role of non-ideal effects, in particular those as-
sociated with first order finite thermal ion Larmor radius and parallel electron
dynamics corrections to the MHD equations.

4.1 The Magnetohydrodynamic Model

Low frequency plasma waves are usually treated within the framework of MHD,
a single-fluid description of two-species plasmas that contain ions with mass
Mi and charge number Zi, and electrons with mass Me. The model equations
are obtained by combining Maxwell’s equations with velocity moments of the
kinetic equations for each plasma species. First, a two-fluid model is formed
by truncating the series of moments with an equation of state, arising from
the second velocity moment by neglecting heat conduction and heat exchange
between the plasma species. Second, the two-fluid model is reduced to a one-
fluid description via the introduction of the following quantities:

• The total mass density

ρ =Mini +Mene ≈Mini (4.1)

• The overall charge density

ρc = (Zini − ne) (4.2)

• The centre-of-mass velocity

v =
Minivi +Meneve

ρ
≈ vi (4.3)

• The total current

J = e (Zinivi − neve) (4.4)
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• The total scalar pressure
P = Pe + Pi (4.5)

In these expressions, ni, ne, vi and ve are the number densities and individual
fluid velocities of the ions and electrons, respectively, and we have changed the
notation so that e now denotes the magnitude of the electron charge rather
than the overall charge of a particle. Finally, under the assumption of quasineu-
trality, meaning that Zini = ne = n and ρc = 0, the MHD set of equations can
be summarized as follows:

• The equation of continuity (expressing mass density conservation)

∂ρ

∂t
+∇ · (ρv) = 0 , (4.6a)

• The momentum equation

ρ
dv

dt
= J×B−∇P , (4.6b)

• The adiabatic equation of state

d

dt

(
P

ργ

)
= 0 , (4.6c)

• The resistive Ohm’s law

E+ v ×B = ηJ , (4.6d)

• The non-relativistic Ampére’s law

∇×B = µ0J (4.6e)

• Faraday’s law

∇× E = −∂B
∂t

. (4.6f)

Here, E and B are the electric and magnetic fields, η is the plasma resistivity
and the adiabatic index γ is the ratio of specific heats, or heat capacities, taken
at constant pressure and volume. Note that the Ampére’s law (4.6e) implies
that

∇ · J = 0 . (4.7)

Therefore, multiplying both sides of the continuity equation (4.6a) with the
charges of the respective particle species, and subsequently adding the resulting
equations gives the charge conservation condition

∂ρc
∂t

= −∇ · J = 0 , (4.8)
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which is a reminder that MHD describes a quasineutral system.
Since the displacement current is neglected in the non-relativistic version

(4.6e) of Ampére’s law, the MHD equations presented above are restricted to
describe phenomena that occur on time scales much longer than the time it
takes light to traverse the plasma. Indeed, the dominant fluid velocity in equa-
tions (4.6) is that of the E×B-drift, which means that MHD theory describes
relatively low frequency oscillations. In many cases, the MHD set of equations
can be simplified even further by assuming that the plasma conducitivity is
so high that the right hand side of Ohm’s law (4.6d) can be neglected. The
resulting model is called ideal MHD, and it contains no parallel electric field.
In that spirit, the equations given above are sometimes called resistive MHD.
It has been pointed out that tokamak fusion plasmas actually do not satisfy
all the criteria for ideal MHD theory to be valid. In particular, they are not
sufficiently collisional to relax the various plasma species distribution functions
into local Maxwellians on a fast enough time scale. Nevertheless, ideal MHD
seems to provide an accurate description of macroscopic fusion plasma behav-
ior [48], and has been extensively used in the modeling of plasma equilibria
and for stability predictions. For those reasons, we will use ideal MHD for the
basic analysis of low frequency Alfvén waves throughout this thesis. When
parallel dynamics and non-ideal effects are needed, we will simply introduce a
posteriori a parallel current via the quasineutrality condition ∇ · J = 0.

4.1.1 Equilibrium Analysis

The ideal MHD framework is well suited for the description of static plasma
equilibria. That is, time independent configurations (whose one-fluid quanti-
ties all satisfy ∂/∂t = 0) with no overall plasma flow (v = 0). Under these
assumptions, the remaining, non-trivial ideal MHD equations (4.6) are

J×B = ∇P , ∇×B = µ0J , ∇ ·B = 0 , (4.9)

where the ∇ · B = 0 has been added by hand to the usual ideal MHD set in
order to close the system of equilibrium equations. We will not say more about
MHD equilibria here. However, we note that (4.9) is the set that was used for
the equilibrium analysis in Section 2.2.2 of Chapter 2.
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4.1.2 Linear Stability

In order to assess the stability of ideal MHD configurations, we consider small
perturbations from static equilibria of the type described in the preceding
section. In the analysis, equilibrium quantities are denoted with the subscript
0, while the perturbations are denoted with the subscript 1,

B = B0 +B1 , J = J0 + J1 , v = v1 , E = E1 ,

P = P0 + P1 , ρ = ρ0 + ρ1 . (4.10)

The set of ideal MHD equations can then be expanded order by order in
the perturbed quantities. To lowest order, the equations that describe the
equilibrium configuration are those in (4.9),

J0 ×B0 = ∇P0 , ∇×B0 = µ0J0 , ∇ ·B0 = 0 . (4.11)

The next order equations, linear in the perturbations, are given by

∂ρ1
∂t

+∇ · (ρ0v1) = 0 , (4.12a)

ρ0
∂v1

∂t
= J0 ×B1 + J1 ×B0 −∇P1 , (4.12b)

∂P1

∂t
+ v1 · ∇P0 − γ

P0

ρ0

(
∂ρ1
∂t

+ v1 · ∇ρ0
)

= 0 , (4.12c)

E1 + v1 ×B0 = 0 , (4.12d)

∇×B1 = µ0J1 , (4.12e)

∂B1

∂t
+∇× E1 = 0 . (4.12f)

Since the equilibrium quantities are independent of time and the stability equa-
tions (4.12) are linear, we can represent the perturbations as normal modes,

Q1 (r, t) = Q1 (r) e
−iωt , (4.13)

where the frequency ω may be complex. If we now introduce the perturbed
displacement x via the definition

v1 =
∂x

∂t
= −iωx , (4.14)

the perturbed quantities may be eliminated one by one, until the system (4.12)
has been reduced to a single, vectorial equation for x:

− ω2ρ0x = F (x) , (4.15)



70 Chapter 4 Toroidal Alfvén Eigenmodes

where the so called force operator F has the form

F (x) =
1

µ0

(∇×B0)×
[
∇× (x×B0)

]
+

1

µ0

{
∇×

[
∇× (x×B0)

]}
×B0

+∇ (x · ∇P0 + γP0∇ · x) . (4.16)

Equation (4.15) consitutes an eigenvalue problem for ω, to be solved in a cer-
tain equilibrium configuration (magnetic field structure and geometry), given
initial values for and boundary conditions on x. It is important to note that F
is Hermitian. This means that ω2 ∈ R, which allows for two types of solutions:
When ω2 > 0, the perturbation is an eigenmode with frequency ω ∈ R. On the
contrary, when ω2 < 0, then iω ∈ R, and the perturbation is a pure instability
with Re (ω) = 0 that grows exponentially.

4.2 Alfvén Waves in a Uniform Plasma

As a first application of ideal MHD stability analysis, we derive the dispersion
relation for Alfvén waves in the simplest possible setup: An infinite, static and
homogeneous plasma. In such a configuration, there are only two non-zero
terms in F: That in the middle and the second within the bracket. The mode
equation can then be put on the form

− ω2x = v2A

{
∇×

[
∇×

(
x× b

)]}
× b+ c2s∇ (∇ · x ) , (4.17)

where we have defined the Alfvén and sound speeds as

v2A ≡ B2
0

µ0ρ0
, c2s ≡

γP0

ρ0
. (4.18)

Equation (4.17) is a second order, linear ODE with constant coefficients. It is
therefore advantageous to normal mode expand x in space too, all in all giving

x (r, t) = x exp [i (k · r− ωt)] , (4.19)

where k is the wave vector. We then get

ω2x = v2A

{
k×

[
k×

(
x× b

)]}
×b+ c2s k

(
k · x

)
. (4.20)

Aligning the coordinate system so that the perpendicular wave vector k⊥ points
along a certain direction with unit vector e⊥ (and with ea = e⊥×e∥), equation
(4.20) can be represented as ω2 − k2∥v

2
A 0 0

0 ω2 − k2v2A − k2⊥c
2
s −k⊥k∥c2s

0 −k⊥k∥c2s ω2 − k2∥c
2
s


 xa

x⊥

x∥

 = 0 . (4.21)
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Two nontrivial solutions exists to this matrix equation:

• The shear Alfvén wave has x⊥ = x∥ = 0, with xa ̸= 0, and it satisfies
the dispersion relation

ω2 = k2∥v
2
A . (4.22)

Since ka = 0, we have ∇ · x = 0, meaning that P1 = ρ1 = 0. Hence, the
shear Alfvén wave is said to be incompressible: It has neither density
nor pressure fluctuations. Furthermore, Faraday’s law combined with
the ideal Ohm’s law shows that B1 ∥ xa, so that B1 ⊥ B0, which is the
reason it is called the shear wave.

• The compressional Alfvén wave has xa = 0, and its dispersion relation
is found by setting the bottom right 2× 2 subdeterminant of the matrix
in (4.21) to zero. After some algebra, one obtains

ω2 =
k2

2

(
v2A + c2s

)1±

[
1−

4k2∥v
2
Ac

2
s

k2 (v2A + c2s)
2

] 1
2

 , (4.23)

where k2 = k2⊥ + k2∥. The plus sign in (4.23) corresponds to the so called
fast magnetosonic wave, which involves perturbed motion perpendicular
to the equilibrium magnetic field, while the minus sign corresponds to
the slow magnetosonic wave, which in the limit cs ≪ vA is a sound wave
whose perturbed motion is dominated by pressure fluctuations along the
equilibrium magnetic field.

4.3 Alfvén Waves in Toroidal Plasmas

In toroidal configurations, the experimental geometry requires the Alfvén waves
to be periodic with respect to the poloidal and toroidal angles θ and ζ. The
modes are therefore characterized poloidally and toroidally by some integer
wave numbers m and n, while the radial mode structure must be solved for
by means of the ideal MHD equations. The linearization procedure depicted
in the previous section leads to the equation [49]

∇ ·
[
ω2

v2A
∇⊥ϕ

]
+B0 · ∇

[
1

B2
0

∇ ·
{
B2

0∇⊥

[
B0 · ∇ϕ
B2

0

]}]
= 0 , (4.24)

for normal modes with high toroidal mode number, n, of the shear Alfvén wave
electrostatic potential. Here, the zero pressure limit β → 0 has been adopted
in order to simplify the analysis.

An essential ingredient in the derivation of equation (4.24) is that the
shear waves are assumed to be described by a single scalar potential Φ (r; t) =
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ϕ (r) e−iωt. This is somewhat counter-intuitive, since, quite generally, all three
types of modes described in Section 4.2 couple when the magnetic field is non-
uniform [50]. However, when the equilibrium flow is subsonic and vA ≫ cs,
displacements along the magnetic field, the slow magnetosonic mode, effec-
tively decouple from the shear and fast magnetosonic modes, and moreover do
not interact with the equilibrium flow. In fact, we are assuming throughout
the present section that there is no equilibrium flow at all, v0 = 0, which
means that we can certainly neglect the parallel component x∥. Moreover, in
the limit of low β, it can be shown, [51], that the shear and compressional
waves also, more or less, decouple. The resulting equation for the shear wave
takes exactly the form (4.24) when written in terms of the scalar potential ϕ.
However, one must remember that shear waves in non-uniform plasmas always
have a small compressional part with a small but finite group velocity across
the magnetic field lines.

Equation (4.24) is most easily analyzed by assuming that the aspect ratio
is large and that the flux surfaces are circular. However, as previously men-
tioned, we can no longer rely on the further simplifying assumption that the
flux surfaces are also concentric. A consistent treatment of toroidal effects
must necessarily include the Shafranov shift discussed in Section 2.2.2, simply
because the effects of the shift enter the calculations at O (ϵ), and are therefore
equally important as purely toroidal effects due to the scaling B ∝ 1/R. From
now on, we will use the term ”toroidal effects” as a common label for both
the Shafranov shift and the poloidal variation in the magnetic field strength.
If we introduce straight field line, flux-type coordinates (r, θf , ζ), cf. Section
2.2.3 and [52],1 and Fourier expand the periodic function ϕ in the variables θf
and ζ according to

ϕ (r, θf , ζ, t) =
∑
m,n

ϕmn (r) e
i(nζ−mθf−ωt) , (4.25)

we can form a set of equations for ϕmn by multiplying (4.24) with orthogonal
phase functions of the type appearing in (4.25), and integrating in both θf and
ζ from 0 to 2π. In these calculations, the toroidal mode number n is a good
”quantum number” due to the symmetry along the ζ direction, so toroidal har-
monics of ϕ, i.e. ϕmn with different n, never mix in the resulting equations. On
the contrary, due to the toroidal effects, there is no analogous symmetry along
the θf direction, which results in couplings between the poloidal harmonics of
ϕ, i.e. ϕmn with different m. In general, many such harmonics are involved

1Here, r and ζ are the radial coordinate and toroidal angle in the usual toroidal coordinate
system. However, θf does not equal the usual poloidal angle θ. Instead, it is a function of
r and θ, much similar to equation (2.103), but also including the effects of the Shafranov
shift.
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and the situation is most difficult to assess analytically. However, under cer-
tain conditions (which we will come back to and discuss more exhaustively
later on), the modes are well localized around certain radial positions in the
plasma, and involve mainly two neighboring poloidal harmonics, say the m:th
and m−1:th. To first order in ϵ, the set of equations that describe such modes
consists of two coupled, second order ODEs for ϕm and ϕm−1, [53],[

Lm L1

L1 Lm−1

] [
ϕm
ϕm−1

]
= 0 , (4.26)

with

Lm =
d

dr

[(
ω2

v2A
− k2∥m

)
d

dr

]
− m2

r2

(
ω2

v2A
− k2∥m

)
, (4.27a)

L1 =
ϵ̂

4q2R2
A

d2

dr2
. (4.27b)

Here, the Alfvén speed is defined as to contain no toroidal effects and therefore
acquires its radial dependence merely through the equilibrium density profile,

v2A (r) =
B2
A

µ0ρ0 (r)
, (4.28)

the parallel wave number is given by

k∥m (r) =
nq (r)−m

q (r)R0

(4.29)

and the parameter ϵ̂ is a small, ϵ̂ ≪ 1, effective coupling coefficient that
includes contributions due to both types of toroidal effects in our analysis.
In [52], it is shown that ϵ̂ ≈ 5r/2R0. Note that since equation (4.26) holds
for any large enough toroidal mode number n, we have changed the notation
by suppressing n in ϕmn. Similarly, k∥m is labeled only with m, although its
definition (4.29) contains an n.

4.3.1 Cylindrical Limit

In the cylindrical limit r/R0 → 0, the magnetic field strength can be ap-
proximated as constant throughout the plasma. There is then an additional
translational symmetry along the poloidal direction, and the equations (4.26)
that describe the neighboring poloidal harmonics effectively decouple into

Lmϕm =
d

dr

[(
ω2

v2A
− k2∥m

)
dϕm
dr

]
− m2

r2

(
ω2

v2A
− k2∥m

)
ϕm = 0 (4.30)
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for each poloidal harmonic. For a wave that oscillates with a fixed frequency ω,
the solutions to (4.30) are logarithmically divergent along the curves defined
by ω = ±k∥m (r) vA (r) in (r, ω)-space. The solutions on each side of such
a singularity are related by analytic continuation, which results in complex
solutions whose imaginary parts represent resonant absorption. Therefore,
such modes are resonantly damped throughout the plasma, and the damping
has been shown to be almost complete [54]. The logarithmically divergent
modes are called continuum modes and the associated damping is known as
continuum damping. The radial spectrum of the continuum modes, called the
Alfvén continuum, coincides with the positive branch of ω = ±k∥m (r) vA (r)
in the cylindrical limit, cf. Figure 4.1. As seen in the figure, these cylindrical
Alfvén continua typically decrease along the branch ω = −k∥m (r) vA (r) from
r = 0 until k∥m = 0, upon which they increase monotonically along ω =
k∥m (r) vA (r) all the way to the plasma edge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized minor radius, r/a

A
lf
v
e
n
c
o
n
ti
n
u
u
m

 

 
m = 7
m = 8
m = 9
m = 10

Figure 4.1: Qualitative radial profiles for Alfvén continua, the positive branch
of ±k∥m (r) vA (r), in the cylindrical limit. The toroidal mode number is n = 5
and m ranges from 7 to 10.

To investigate in detail what happens when a wave resonates with the
local Alfvén frequency, finite ion Larmor radius effects and parallel electron
dynamics need to be added [55]. As already noted, ideal MHD theory on
its own does not allow the shear wave to propagate across the equilibrium
magnetic field. But as the logarithmically singular solution to the MHD mode
equation (4.30) starts to blow up, the radial gradients will eventually hit the
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ion Larmor radius scale where the ions can no longer be viewed as tied to
the magnetic field lines. The MHD singularity is thus resolved in the very
proximity of the resonance via mode conversion of the MHD wave into a kinetic
wave that is allowed to propagate across the equilibrium magnetic field. The
propagating kinetic wave is then absorbed by the plasma through both linear
and nonlinear, collisional and collisionless damping processes. In Section 4.3.4,
we will discuss kinetic Alfvén waves in more detail and show specifically how
to make the mode equations account for first order finite ion Larmor radius
effects and parallel electron dynamics.
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Figure 4.2: The toroidal effects induce gaps in the cylindrical Alfvén contin-
uum, which is given by the dashed green lines. For definitions of g and x, see
equations (4.38) and (4.37). The solid, black lines represent eigenmodes: The
lower is the usual TAE; The upper is an analogue of the lower TAE, found in
the very low shear limit.

4.3.2 Toroidal Alfvén Eigenmodes

When the toroidal coupling terms in (4.26) are taken into account, the con-
tinuum modes will no longer diverge exactly along the cylindrical continua.
Instead, what happens is that close to the radial positions rm where the
cylindrical continua for neighboring poloidal modes cross, defined by setting
k∥m−1 = −k∥m, so that the safety factor satisfies

q (rm) =
2m− 1

2n
, (4.31)
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gaps appear that remove the crossings and therefore resolve the degeneracies
with respect to neighboring poloidal mode numbers. A qualitative example of
such a toroidicity induced Alfvén gap is shown in Figure 4.2, whereas Figure
4.3 shows the global continuum in an actual experiment. The frequency span
of the gap can be calculated by rewriting (4.26) in a form where the second
radial derivative of each poloidal harmonic is given as a function of only lower
order derivatives, r and ω,

G (ω; r)
d2ϕm
dr2

= fm

(
ω;ϕm, ϕm−1,

dϕm
dr

,
dϕm−1

dr
, r

)
, (4.32a)

G (ω; r)
d2ϕm−1

dr2
= fm−1

(
ω;ϕm, ϕm−1,

dϕm
dr

,
dϕm−1

dr
, r

)
, (4.32b)

with

G (ω; r) ≡
[
ω2

v2A
− k2∥m

] [
ω2

v2A
− k2∥m−1

]
−

(
ϵ̂

4q2R2
A

)2

. (4.33)

The actual form of the functions fm and fm−1 is irrelevant. It simply suffices to
observe that the characteristic sign of the Alfvén continuum is the logarithmic
divergence of the poloidal harmonics ϕm. In equations (4.32), such singular-
ities occur when the function G that multiplies the second order derivatives
vanishes. At the radial positions rm, where k∥m−1 = −k∥m holds, the condition
G = 0 gives the continuum frequencies

ω± ≈ vA (rm)

2q (rm)RA

[
1± ϵ̂/2

]
. (4.34)

Therefore, the gap width is given by

∆ω = ω+ − ω− ≈ ϵ̂
vA (rm)

2q (rm)RA

, (4.35)

which is seen to vanish in the cylindrical limit ϵ→ 0.
The occurence of gaps in the Alfvén continuum enables the possibility of

cavity eigenmodes with frequencies in the gap [57], since such modes would not
experience any continuum damping. In principle, the extrema at the contin-
uum tips allows for the formation of wells in the effective potentials of equations
(4.32), [58], so that radially standing waves with discrete eigenfrequencies can
be set up. Conceptually, the existence of such potentials relies on the small
compressional components of the shear wave (that are always present in non-
uniform magnetic fields), which allows the plasma at different radial positions
to communicate and synchronize enough to endorse standing waves.

In order to analyze analytically whether eigenmodes are present or not,
the system (4.26) must be tackled in a boundary layer manner, [59]. In the
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Figure 4.3: Alfvén continuum (spectrum of logarithmically divergent, ideal
MHD modes) for n = 4, shot 42976 on JET. The equilibrium was reproduced
by means of the MHD equilibrium code HELENA [56] and the continuum was
calculated with the stability code CSCAS. The x-axis label is S ∝

√
ψ.

so called outer region, far from the radial positions rm where the main part of
the mode interaction takes place, the toroidal coupling is negligable and each
poloidal mode satisfies the cylindrical mode equation (4.30). On the other
hand, close to rm, there are narrow inner layers in which the radial derivatives
in (4.26) are so large that the coupling terms between neighboring poloidal
harmonics cannot be neglected but the terms proportional to m2/r2 can.

We now have enough knowledge to go back and motivate the omission of
non-nearest neighbor couplings in the mode equations (4.26). The mode radial
width is determined by the outer region equation (4.30). Approximately, it is
given by the characteristic radial scale length in the outer region, ∆out ∼ rm/m.
Similarly, the distance between neighboring rm is approximately

|rm − rm−1| ∼
dr

dq
|qm − qm−1| ∼

rm
nq (rm) s (rm)

, (4.36)

where s is the magnetic shear, given by equation (2.137) in Section 2.2.4, Chap-
ter 2. We note that when the shear is small, s ≪ 1, the distance |rm − rm−1|
is much larger than the mode radial extension ∆out, which means that merely
two poloidal harmonics couple at each rm. Therefore, validity of the reduced
set (4.26) of two coupled equations for the two nearest neighbors ϕm and ϕm−1
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Figure 4.4: TAE mode structure for n = 4, as calculated by the stability code
MISHKA [60] for the equilibrium that corresponds to the continuum in Figure
4.3. The mode is localized around the first radial gap, but the tail of one of the
poloidal harmonics reaches into the next gap where it interacts with another
neighboring harmonic.

requires not only high n, but also low shear, s ≪ 1. If the latter requirement
were not met, more couplings would need to be accounted for, which would
result in more than two equations involving more than two poloidal harmonics.

The natural question that arises is, of course, how low s must be in relation
to the other small parameter, ϵ, involved in the problem? The answer is that
there are several possibilities, which have all been investigated analytically:

i. In the limit ϵ ≪ s2, one eigenmode exists per gap. This mode is the
well known toroidal Alfvén eigenmode (TAE). It has an eigenfrequency
close to the bottom of the gap and it consists of a symmetric, or even,
combination of the neighboring poloidal harmonics ϕm and ϕm−1, i.e. ϕ =
|ϕm|+ |ϕm−1|. An example is on display in Figure 4.4.

ii. When the shear is sufficiently low, s2 ≤ ϵ, two modes are present in the
gap: One with frequency close to the bottom of the gap, corresponding
to the previously discussed TAE, and one whose frequency lies close to
the top end of the gap. In contrast to the lower frequency, even mode,
the upper mode consists of an antisymmetric, or odd, combination of the
poloidal harmonics, i.e. ϕ = |ϕm| − |ϕm−1|. These modes are sometimes
referred to as low shear toroidal Alfvén eigenmodes (LSTAEs).
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iii. In the very low shear limit s≪ ϵ spectra of multiple TAEs are predicted
to exist within the gap. Evidence of such modes are yet to be found, and
it is very likely that their existence will be confirmed in a spherical, rather
than conventional, tokamak, since such machines have tighter aspect
ratios.

In what follows, we will adress merely the first case with ϵ≪ s2, just because
it is the simplest to analyze and provides most insight per equation. The
second ordering is treated in PAPER D, and the interesting multiple TAEs are
thoroughly discussed in [49].

In order to simplify the subsequent analysis, we observe that since the
mode numbers are high, by far the strongest radial variation in the coefficients
of equations (4.26) is that in the numerator of k∥m due to the variation in
q. Therefore, we simply evaluate all other functions of r in the coefficients of
equations (4.26) at r = rm. We also introduce a dimensionless radial variable
according to

x ≡ n [q (r)− q (rm)] ≈ ms (rm)
r − rm
rm

, (4.37)

and the dimensionless frequency parameter

g ≡ ω2 − ω2
0

ϵ̂ω2
0

, (4.38)

conveniently shifted so that g = 0 at the center of the gap, where

ω = k∥m (rm) vA (rm) =
vA (rm)

2q (rm)RA

≡ ω0 , (4.39)

and normalized so that g = ±1 at the upper/lower tips of the continuum.
With these transformations, the mode equations become

d

dx

[(
ϵ̂g

4
+ x− x2

)
dϕm
dx

]
(4.40a)

− 1

s2

(
ϵ̂g

4
+ x− x2

)
ϕm +

ϵ̂

4

d2ϕm−1

dx2
= 0

d

dx

[(
ϵ̂g

4
− x− x2

)
dϕm−1

dx

]
(4.40b)

− 1

s2

(
ϵ̂g

4
− x− x2

)
ϕm−1 +

ϵ̂

4

d2ϕm
dx2

= 0 ,

where it is understood that ϵ̂ and s are evaluated at r = rm.
In the outer region, r − rm ∼ ∆out ∼ rm/m, so there x ∼ s. We therefore

introduce a new dimensionless variable y = x/s, which is O (1) in the outer
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region, and rewrite equations (4.40) so that the ordering becomes manifest:

L0ϕm = s

[
yL0 + y

d

dy

]
ϕm , L0ϕm−1 = −s

[
yL0 + y

d

dy

]
ϕm−1 , (4.41)

where

L0 ≡
d

dy

(
y
d

dy

)
− y . (4.42)

Note that we have neglected terms proportional to ϵ̂/s2, which is equivalent to
neglecting the coupling terms in equations (4.26). Thus, equations (4.41) are
simply the cylindrical mode equation (4.30) for ϕm and ϕm−1 written in terms
of a new radial variable centered at r = rm. To lowest order in s, the solutions
that decay at |y| → ∞ have even parity,

ϕ0
m = −CmK0 (|y|) , (4.43)

where Cm are constants and K0 is the zeroth order modified Bessel function of
the second kind. The first order correction ϕ1

m turns out to have odd parity,
which results in a small jump in ϕm across the origin. To lowest order in s,
the jump can be calculated as

∆ϕm ≡ lim
δ→0

[ϕm (δ)− ϕm (−δ)] = −s
∞∫

−∞

yK0 (|y|)L0ϕ
1
m dy , (4.44)

which leads to

∆ϕm = −π
2s

4
Cm , ∆ϕm−1 =

π2s

4
Cm−1 (4.45)

if one substitutes the lowest order solutions ϕ0
m.

In the inner layer, the poloidal harmonics are highly peaked, so we keep only
the derivative terms in the mode equations (4.32). The equations can then be
integrated once, and thus become algebraic in U = dϕm/dz and V = dϕm−1/dz,
where we have defined z ≡ 4x/ϵ̂. If we also neglect the terms x2, we have

(g + z)U + V = Cm , (4.46a)

(g − z)V + U = −Cm−1 , (4.46b)

where the integration constants have been chosen so that the large z asymp-
totes matches onto the y ≪ 1, lowest order in s solutions in the outer regions.
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Solving for U and V , and integrating once gives the inner layer solutions

ϕm = −gCm + Cm−1√
1− g2

tan−1

[
z√

1− g2

]
(4.47a)

+
Cm
2

ln
∣∣z2 + (

1− g2
)∣∣+ Const.

ϕm−1 =
Cm + gCm−1√

1− g2
tan−1

[
z√

1− g2

]
(4.47b)

+
Cm−1

2
ln
∣∣z2 + (

1− g2
)∣∣+ Const.

The second pieces in these two expressions are even, and they are the ones that
match onto the lowest order, outer region solutions (4.43). The first pieces are
odd, and much smaller than the logarithmic terms. Therefore, they generate
small jumps in ϕm and ϕm−1 across the inner layer, given by

∆ϕm = −πgCm + Cm−1√
1− g2

, ∆ϕm−1 = π
Cm + gCm−1√

1− g2
. (4.48)

The TAE dispersion relation is now found by matching the jumps across the
inner layer with those across the origin of the outer regions. Thus, equating
the expressions for ∆ϕm and ∆ϕm−1 in the outer region, i.e. equations (4.45),
with those from the inner layers in equations (4.48), and subsequently adding
and subtracting the results gives

(Cm + Cm−1)

[√
1 + g

1− g
− πs

4

]
= 0 , (4.49)

(Cm − Cm−1)

[√
1− g

1 + g
+
πs

4

]
= 0 . (4.50)

In order for the square root to be positive, the only consistent solution to this
system is to have Cm = Cm−1 and

√
(1 + g) / (1− g) = πs/4, which gives the

eigenvalue

g = −1− π2s2/16

1 + π2s2/16
≈ −1 +

π2s2

8
. (4.51)

In dimensional units, the eigenfrequency becomes

ω = ω0

[
1− ϵ̂

(
1− π2s2

8

)]
, (4.52)

which is recognized to lie just above the bottom of the gap when s ≪ 1. We
also note that, as anticipated, the mode consists of an even combination of the
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Figure 4.5: Qualitative behavior of the neighboring poloidal harmonics con-
stituting the usual TAE that can be found theoretically in the limit ϵ ≪ s2.
The profiles have been normalized to their maximum values.

coupled neighboring poloidal harmonics. Qualitative plots of the profiles for
the individual poloidal harmonics of a TAE is shown in Figure 4.5.

It should be noted that the LSTAEs mentioned prior to the TAE anal-
ysis presented above, i.e. the eigenmode content when the ordering is taken
to be s2 ≲ ϵ, requires a more systematic approach in which terms of order
ϵ̂/s2 are not dropped from the outer equation. The dispersion relation in this
case is trickier to solve, but the results are easily interpreted with the knowl-
edge already gained from the TAE analysis: Apart from the usual TAE with
eigenfrequency (4.52), which persists in the LSTAE limit as well, an additional
mode can now be found whose eigenfrequency lies at the top end of the gap,

ω = ω0

[
1 + ϵ̂

(
1− π2s2

8

)]
. (4.53)

The upper mode resembles the usual TAE, with a similar eigenmode structure,
but it has Cm = −Cm−1 rather than Cm = Cm−1, so the poloidal harmonics
that couple have amplitudes of different signs, cf. Figure 4.6. A proper treat-
ment of the LSTAEs is developed and presented in PAPER D.

We finally note that similar theories have been developed for the experimen-
tally observed ellipticity and triangularity induced modes, where the coupling
between modes with mode numbers m and m ± 2 and m ± 3, respectively,
creates a similar gap structure capable of supporting eigenmodes.
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Figure 4.6: Qualitative behavior of neighboring poloidal harmonics for an
odd LSTAE, with frequency close to the top of the Alfvén gap. The profiles
have been normalized to their maximum values.

4.3.3 Alfvén Cascades

In advanced scenarios, the introduction of an off-axis minimum in the safety
factor q (reversed shear) induces an extremum in the Alfvén continuum capa-
ble of supporting a localized eigenmode that avoids continuum damping and
consists of a single poloidal harmonic, centered at the point of shear reversal.
The eigenmodes are constructed theoretically by adding to equation (4.30)
second order toroidal corrections [58], and their frequencies are found to lie
just above the tip of the Alfvén continuum, once the shear-reversal has been
taken into account. Thus, the temporal evolution of these modes and their
frequencies follow the continuum, and the experimentally observed sweeping
rates shown in Figure 4.7 are reproduced by the evolution of k∥m as q changes in
time. These modes are called Alfvén cascades (ACs) due to the characteristic
sweeping pattern they produce in the spectrograms.

4.3.4 Kinetic TAEs and Radiative Damping

To account for small scale effects (on the order of the thermal ion gyroradius)
arising e.g. in the vicinity of singular points of the cylindrical Alfvén mode
equation, first order finite ion Larmor radius (FLR) effects and parallel electron
dynamics are introduced in the MHD mode equations (4.26) by adding a fourth
order radial derivative to the operator Lm. In its simplest form, Lm can then
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Figure 4.7: Magnetic spectrum of JET shot # 49382 as presented in [61].
Multiple AC branches are observed well below the TAE frequency range. The
modes sweep up in frequency with sweeping rates proportional to their toroidal
mode numbers, which range from n = 1 to n = 6.

be written as

Lm = ω2ρ2
d4

dr4
+

d

dr

[(
ω2 − ω2

A

) d

dr

]
− m2

r2
(
ω2 − ω2

A

)
, (4.54)

where

ρ2 = ρ2i

(
3

4
+
Te
Ti

)
, (4.55)

and ρi is the ion Larmor radius. The additional term in (4.54) was first taken
into account by Rosenbluth and Rutherford, [62], and has since then been used
frequently throughout the litterature , cf. [63, 64].

The introduction of the fourth order derivative FLR term has two major
effects on the Alfvénic spectrum in a tokamak. First and foremost, it modifies
the Alfvén continuum as to support an entire set of radially standing waves
with eigenfrequencies above the top of the toroidicity induced Alfvén gap.
These modes are usually referred to as kinetic TAEs. Note that there are no
equivalent modes below the bottom of the gap.

Secondly, the FLR term modifies slightly the toroidicity induced modes
that already exist within the gap, by mediating a coupling to radially propa-
gating, short wave length kinetic waves of the type discussed in Section 4.3.1.
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Much like the mechanism discussed there, it turns out that these kinetic waves
actually carry a non-negligible fraction of the energy content away from main
mode body at the center of the gap, which is then irretrievably lost from the
eigenmode. Therefore, for TAEs, the FLR term is really nothing but colli-
sionless, linear damping. It goes under the name radiative damping and is the
main focus of PAPER D.

4.4 Interaction between TAEs and Fast Ions

The theory presented above only gives criteria for the possibility, or existence,
of TAEs. The actual excitation, and subsequent evolution, of such waves is an
entirely different story, for which some type of driving force must be considered
that can pump energy into and destabilize the modes. As already pointed out,
the Alfvén speed in tokamaks lies between the thermal velocities of the bulk
ions and electrons, i.e. in the range attained by the various types of energetic
ions discussed in this thesis. Such particles are therefore very prone to interact
resonantly with Alfvénic modes. The interaction is usually discussed under
the assumption that the wave amplitude is relatively small, so that the fluid
response remains linear. The effect of the fast particles can then be taken into
account by adding to the linearized MHD mode equation (4.24) a drive term
in the shape of a fast particle current [65], which needs to be calculated within
the framework of kinetic theory. Nonlinearly, however, quantitative knowledge
is lacking and most progress has been made via extensively reduced models,
such as e.g. the one-dimensional toy model presented in Section 3.4.

4.4.1 Energetic Particle Drive

The most discussed, and by far best understood, aspect of resonant fast ion-
wave interaction is the process whereupon TAEs are linearly destabilized due
to the free energy available for the modes to tap from fast ion distributions
that are not in thermodynamic equilibrium. Energy transfer between an ion
and a wave generally requires that the ion velocity and wave electric field
satisfy v ·E ̸= 0. However, shear Alfvén waves have no component of E along
the background magnetic field. Therefore, in tokamaks, the change in the ion
kinetic energy is essentially

dE

dt
= evD · E , (4.56)

where vD is the drift across the magnetic surfaces due to the field inhomogene-
ity and curvature. For eigenmodes in the TAE frequency range, the energy
transfer rate set by equation (4.56) is very small compared to the wave oscilla-
tion frequency. Therefore, it is appropriate to consider the net energy change
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∆E after many periods of the fast ion orbits. As depicted in the formal treat-
ment presented in PAPER A, it turns out that due to the oscillating nature of
E, the integral on the right hand side of equation (4.56) essentially averages
to zero, except for particles in orbital motion such that the harmonics of their
poloidal and toroidal transit frequencies resonate with the phase velocity of
the wave. That is, only highly resonant particles satisfying

ω = n ⟨ωζ⟩B − (m+ p)ωB (4.57)

contribute to the wave excitation. Here, n and m are the toroidal and poloidal
wave numbers, whereas p can be any integer. Most often, however, the only
appreciable harmonics are the p = ±1-terms. Note that the resonance condi-
tion (4.57) contains no cyclotron resonance (l = 0). In general, shear Alfvén
waves have too low oscillation frequencies to resonate with the rapid gyromo-
tion, which has important consequences that will be discussed in more depth
in the following section.

A general expression for the linear growth rate of fast particle driven in-
stabilities in toroidal plasmas was given in Section 3.3. With l = 0, therefore,
Alfvén waves destabilize with a growth rate that scales as

[γL]TAE ∝ ω
∂F0

∂E
+

m

rωcA

∂F0

∂r
. (4.58)

However, most energetic particle distributions actually decrease with E (cf.,
e.g., the slowing down distribution (2.160)), so the first term in the linear
drive (4.58) usually damps the wave rather than driving it. Therefore, Alfvénic
modes are most often destabilized by the free energy available in the radial
gradient, the second term on the right hand side of equation (4.58).

Instability is due to occur when the linear drive exceeds the rate of total
damping due to the background plasma. The latter include contributions
from several processes, including e.g. Landau damping on passing, thermal
electrons; continuum damping (if the tail of the mode anywhere extends into
the Alfvén continuum); collisional damping due to pitch-angle scattering of
passing thermal electrons onto trapped orbits; and the previously mentioned
radiative damping, which is the subject of PAPER D. The relevant paradigm
is that of the near-threshold situation discussed in Section 3.4, i.e. when γL
just barely exceeds γd. The idea is that the energetic ion population builds up
gradually, due to auxiliary heating schemes or thermonuclear fusion reactions,
until eventually the radial gradient of their distribution is large enough to
render an overall positive effective growth rate γ = γL−γd that can destabilize
small perturbations from the equilibrium. The excitations tap energy from the
fast ions and relaxes their distribution towards the threshold gradient, at which
γL = γd and the power transfer ceases. On the other hand, while active, the
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fast particle sources act to maintain the fast particle population and thereby
steepen the radial gradient beyond the threshold. The competition between the
two is expected to keep the gradient close to, but just above, the threshold,
so that the modes are always weakly driven. Stated differently, the modes
simply can not be strongly driven, just because such violent excitation would
inevitably lead to large amplitude, bursting events, which is in strong constrast
to the relatively serene excitation most often observed experimentally.

4.4.2 Nonlinear Mode Evolution

The assertion in Section 3.4 of Chapter 3 that resonant wave-particle inter-
action is essentially one-dimensional, once expressed in variables that clearly
display that feature, is well motivated in the case of toroidal Alfvén eigen-
modes, since the motion of a resonant fast ion in the wave field of a single
TAE can be shown to preserve two constants of motion. These invariants are
most easily derived via a canonical action-angle description of the unperturbed
guiding center orbits. We therefore construct the set of action variables

J1 = pα , J2 = pζ , J3 =
1

2π

∮
pθ dθ , (4.59)

from the canonical momenta pα, pζ and pθ given in equation (2.114). Here, it
is understood that pθ can be solved for, at least implicitly (i.e., numerically),
as a function of the action variables J1 and J2, the particle kinetic energy E,
whose value can be evaluated by means of the Hamiltonian H0 for the unper-
turbed system, and the poloidal flux angle θ. Therefore, the integration in the
definition of J3 removes all dependencies on variables that evolve along the
orbits, and what remains is an invariant of the (unperturbed) particle motion.
The canonical angles Θ conjugate to these actions are more cumbersome to
find, and we shall neither use them nor derive them. However, we shall use
their corresponding orbital frequencies,

Θ̇ =
∂H0

∂J
= Ω (J) , (4.60)

which in fact are nothing but the bounce averaged orbital frequencies

Ω1 = ⟨ωc⟩B , Ω2 = ⟨ωζ⟩B , Ω3 = ωB (4.61)

for the unperturbed particle trajectories. Here, we have used that since J are
constants of the unperturbed motion, the Hamiltonian for the unperturbed
system depends only on J.

The actions are, however, not preserved in the presence of the wave field.
Nevertheless, due to their low oscillation frequencies, shear Alfvén waves do
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not resonate with the rapid Larmor gyration. As a result, the action variable
corresponding to the adiabatic invariant remains constant,

J̇1 = 0 , (4.62)

even in the presence of the Alfvénic wave field, and the resonant particles lock
with the modes merely via their guiding center motion,

ω = l2Ω2 + l3Ω3 . (4.63)

Moreover, when individual Alfvén waves do not interact, i.e., when their phase
space resonances do not overlap, the perturbed Hamiltonian that governs the
wave-particle interaction can be shown to consist of a sum of individual po-
tentials,

δH =
∑
l1,l2,l3

Ul1l2l3 (J;Θ; t) , (4.64)

which, in general, depend on all the actions, but only on a certain combination
of the angle variables,

Ul1l2l3 (J;Θ; t) = Ul1l2l3

J; l1Θ1 + l2Θ2 + l3Θ3 −
t∫
ω (t′) dt′; t

 . (4.65)

However, in view of the low frequency resonance condition (4.63), in which
no cyclotron resonances occur, the relevant expression must have l1 = 0, and
therefore simplifies to

δH =
∑
l2,l3

Ul2l3

J; l2Θ2 + l3Θ3 −
t∫
ω (t′) dt′; t

 . (4.66)

The sum over the various resonances in equation (4.66) is actually superfluous.
In fact, a single pair (l2, l3) is enough to describe the resonant particle motion
in the potential U ≡ Ul2l3 of an isolated resonance, in which case the total
Hamiltonian reads

H (J;Θ; t) = H0 (J) + U

J; l2Θ2 + l3Θ3 −
t∫
ω (t′) dt′; t

 . (4.67)

It is then easy to see that

l3
∂H
∂Θ2

= l2
∂H
∂Θ3

, (4.68)

which, in the light of Hamilton’s equations (2.17), gives

l3J̇2 = l2J̇3 , (4.69)
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i.e. a second conservation law.
The existence of the two invariants J1 and J3 − l3J2/l2 certainly indicates

that low frequency Alfvén oscillations, at least qualitatively, can be described
in one-dimensional terms. However, we can do better than that, and actually
show that the kinetic equation for the fast ions is effectively one-dimensional.
For that purpose, we perform a canonical transformation from (Θ,J) to a
new set of action-angle variables (Φ, I), by means of the following generating
function of the second kind,

F2 (Θ; I; t) = Θ1I1 +

l2Θ2 + l3Θ3 −
t∫
ω (t′) dt′

 I2 +Θ3I3 . (4.70)

From the transformation laws

J =
∂F2

∂Θ
, Φ =

∂F2

∂I
, (4.71)

we find
J1 = I1 , J2 = l2I2 , J3 = l3I2 + I3 , (4.72)

or, equivalently,

I1 = J1 , I2 =
1

l2
J2 , I3 = J3 −

l3
l2
J2 , (4.73)

and

Φ1 = Θ1 , Φ2 = l2Θ2 + l3Θ3 −
∫
t

ω (t′) dt′ , Φ3 = Θ3 . (4.74)

The transformed Hamiltonian becomes

K (I; Φ2; t) = K0 (I) + δK (I; Φ2; t) , (4.75)

with

K0 (I) ≡ H0 (J (I)) +
∂F2

∂t
= H0 (J (I))− ωI2 (4.76a)

and
δK (I; Φ2; t) ≡ U (J (I) ; Φ2; t) , (4.76b)

so that Hamilton’s equations give

İ1 = 0 , İ2 = − ∂K
∂Φ2

, İ3 = 0 , (4.77)

and

Φ̇1 = Ω1 +
∂δK
∂I1

, Φ̇2 = Ω(I)− ω +
∂δK
∂I2

, Φ̇3 = Ω3 +
∂δK
∂I3

, (4.78)
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where

Ω (I) ≡ ∂H0/∂I2 = (l2∂/∂J2 + l3∂/∂J3)H0 = l2Ω2 + l3Ω3 (4.79)

We thus see that the new action variables have been cleverly chosen so that two
of them are, in fact, the two constants of motion that exist even in the presence
of the Alfvénic wave. We also note that in the presence of the wave field, the
angle variables are no longer linear functions of time. Their frequencies are
instead shifted by functions that depend on the actions I, the angle Φ2 and
time. On the other hand, the shifts are very small for a small wave amplitude,
max [∂δK/∂Ii] ≪ min [Ωi]. As a first approximation, they can therefore be
neglected in the Hamilton equations for Φ1 and Φ3, which means that the
particle motion is constrained to straight lines in the (Φ1,Φ3)-plane. As a
result, the effective impact of the Alfvénic wave field is one-dimensional, with
the interactional particle motion in the Φ2-direction, while the invariant actions
I1 and I3 merely enter the problem as a pair of parameters that determine the
linear motion transverse to Φ2.

The Hamilton equation for Φ2 is very different from those for Φ1 and Φ3.
It involves the difference Ω − ω, which for the most interactive particles is
comparable to, or even smaller than, the shift ∂δK/∂I2 of the orbital frequency
in the Φ2-direction. Given a pair (I1, I3), the motion in the Φ2-direction of such
highly resonant particles is therefore most easily treated by Taylor expandingK
around the resonant surface given by the equation I2 = I2r, where the constant
I2r can be calculated in terms of I1, I3 and ω via the resonance condition

Ω (I1, I2r, I3) = ω . (4.80)

We expand the unperturbed part K0 to second order in δI ≡ I2 − I2r, but we
keep only the lowest order term in the perturbation δK, simply because that
term is already small due to the assumption of a small wave amplitude. We
then obtain

K ≈ 1

2
F (I1, I3) δI

2 + U (I1, I3; Φ2; t) , (4.81)

where

F (I1, I3) ≡
∂Ω

∂δI

∣∣∣∣
δI=0

, (4.82)

and the lowest order approximation for U no longer depends on I2. Note that
some constant terms have been dropped from the resonant particle Hamilto-
nian (4.81). It is easily seen that Hamilton’s equations for Φ2 and δI indeed
correspond to those of a particle that moves under the influence of an evolving
electric field E (I1, I3; Φ2; t) = −∂U/∂Φ2:

Φ̇2 =
∂K
∂δI

= F (I1, I3) δI , δ̇I = − ∂K
∂Φ2

= − ∂U

∂Φ2

, (4.83)
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which combine to give
Φ̈2 = F (I1, I3)E . (4.84)

In view of equation (4.84), the parameter function F (I1, I3) plays an important
role: It effectively fixes the value of the local bounce frequency on each resonant
surface for the particles trapped in the Alfvénic wave.

We now proceed with the final steps in the reduction from a three- to a
one-dimensional Boltzmann equation for the resonant fast ions. By means of
equations (4.78) and (4.83), we can immediately write down an approximate
kinetic equation. It is given by

∂f

∂t
+ F (I1, I3) δI

∂f

∂Φ2

− ∂U

∂Φ2

∂f

∂δI
(4.85)

+

[
Ω1 +

∂U

∂I1

]
∂f

∂Φ1

+

[
Ω3 +

∂U

∂I3

]
∂f

∂Φ3

= C + S .

As before, C and S denotes fast particles collisions and sources. An immediate
observeration is that none of the coefficients on the left hand side depend on
Φ1 nor Φ3. On the other hand, the nature of these angles is such that f must
be periodic in both. Therefore, simply integrating equation (4.85) from 0 to
2π in both Φ1 and Φ3 eliminates the fourth and fifth terms on the left hand
side, and generates a kinetic equation of the form

∂g

∂t
+ F (I1, I3) δI

∂g

∂Φ2

− ∂U

∂Φ2

∂g

∂δI
=

1

4π2

∮ [
C + S

]
dΦ1dΦ3 (4.86)

for the function

g (δI,Φ2, t; I1, I3) ≡
1

4π2

∮
f (I;Φ; t) dΦ1dΦ3 . (4.87)

Note that I1 and I3 enters g only in the form of parameters. Equation (4.86) is
obviously in one-dimensional form, except for the right hand side terms C and
S, which, in general, can have components that lie in the resonant surface (and
therefore are orthogonal to I2 and δI). However, one can show, [37], that the
dominant contribution from C + S points along the I2-direction, i.e. directly
across the resonance. Therefore, a conceptually simple projection of C+S onto
I2 constitutes a good approximation that makes the kinetic equation truly one-
dimensional. The actual projection is not carried out in this thesis, however,
due to its technically complicated nature.

Finally, we note that a one-dimensional kinetic equation is not enough to
draw the analogue between the nonlinear wave-particle interaction for shear
Alfvén waves and the one-dimensional model of Section 3.4. One also needs
to put the linearized MHD equations for the perturbation in a suitable form,
and then couple that description with the one given above for the fast ions.
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The complete framework is not presented here. We merely point out that the
way to go is to add the fast particle contribution in the form of a current to
the right hand side of equation (4.24).



5
Brief Summary of the Included

Articles

This thesis contains four articles on electromagnetic waves and their interaction
with fast ions in tokamak plasmas. The present chapter summarizes briefly
the content of each article. The role of the thesis author remained essentially
constant throughout the four included publications: I performed, or took part,
in all analytical and numerical calculations and wrote the main part of the
articles, the exceptions being parts of Section IV of PAPER A, Section I of
PAPER B, Section VI of PAPER C and Section I of PAPER D, which where
written by the co-authors.

5.1 Paper A

In PAPER A, we investigate a single tokamak particle orbit in the presence of
a plane, electromagnetic wave field. In particular, we derive a value for the
wave amplitude, above which the resonances along the particle trajectories
overlap and the motion becomes stochastic. In the stochastic regime, three-
dimensional phase space diffusion dominates the dynamics, and an appropriate
Fokker-Planck equation can be formulated and used to model the transport of
particles due to the wave-particle interaction.

The analysis is performed by examining how the vector of invariants I =
(E, µ, pζ) changes in the presence of the wave field

(E1 , B1) = (Ek , Bk) e
−iωt+ik·r , (5.1)

where the Fourier amplitudes Ek and Bk are assumed small. We relate I
to its value one poloidal transit earlier by calculating the average change ∆I
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induced by the wave (5.1) during the orbit. The evaluation of ∆I is carried
out by expanding the equations for dI/dt to first order in the wave amplitude,

dE

dt
= ev · Ek e

−i(ωt−k·r) , (5.2a)

d

dt
(µB) =

e

ω

[(
ω − k∥v∥

)
v · Ek − (ω − k · v) v∥E∥

]
e−i(ωt−k·r) , (5.2b)

dpζ
dt

= e
kφR

ω

[
v · Ek + (ω − k · v) k · Ek

k2

]
e−i(ωt−k·r) . (5.2c)

The set (5.2) is integrated over the unperturbed particle orbits by transforming
from time to the poloidal angle θ according to (2.131). Due to the rapid
oscillations in equations (5.2), the interaction predominantly occurs when the
phase in the exponentials has a minimum (at the wave-particle resonances).
The integrals can then be evaluated approximately by means of a stationary
phase method in which the multiplying factors in (5.2) are assumed constant
throughout the resonant region. The resulting set of equations for I and the
phase are cast in the form of the Chirikov standard map [28]:

Aj+1 = Aj +Keiψj , (5.3a)

ψj+1 = ψj + Aj+1 . (5.3b)

The system (5.3) constitutes an intensively studied area preserving map for
two variables, whose dynamics corresponds to a sequence of free propagations
interleaved by periodic kicks. In the present case, the kicks are being executed
as the particle traverses the resonant regions where the phase ψ (corresponding
to the phase in the exponentials of (5.2)) is stationary, and the free propagation
corresponds to the rest of the orbit. The parameter K indicates the level of
chaos: For K < Kc ≃ 1, the variation of A is bounded, while for K > Kc, A is
characterized by a diffusive growth. In the article, we formulateK as a function
of the wave field amplitude, and we express A as a function of the components
of I, thus providing a condition on the wave to cause stochastic particle motion
in I-space. We also estimate the associated diffusion coefficients in the two
cases of waves interacting with passing and trapped ions by means of the
cyclotron and bounce resonance, respectively, and compare our results with
those obtained in [66] and [67].
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5.2 Papers B and C

Taken together, PAPERS B and C comprise a suite that aims at describing long
range frequency sweeping of single events in terms of evolving phase space holes
and clumps. The viewpoint taken is that of the one-dimensional bump-on-tail
model presented in Section 3.4, and the focus lies on developing a detailed,
reduced model for single hole/clump modes with frequencies that shift over
large ranges (comparable to the mode oscillation frequency). Such modeling
is bound to include a procedure to solve for the mode amplitude and spatial
structure as a function of the fast particle response, since frequency sweeping
modes quickly evolve from the sinusoidal structure of the linear instability as
their carrier frequencies shift from the original resonance, [68]. In fact, most
previous theory has assumed the mode structure to remain sinusoidal, which
limits their application to the description of small shifts.

PAPER B deals with the basics of the problem. Evolution equations are
derived and motivated for slowly evolving holes/clumps. The equations are
valid during the so called adiabatic phase, when the holes and clumps are al-
ready firmly established and evolve on time scales much longer than the bounce
periods of particles trapped in the wave field. A few example solutions are pre-
sented that highlight many generic features of long range frequency sweeping.
The considered effects include the dependence of the mode structure and am-
plitude on the frequency shift, the impact of fast particle slowing down and
idealized Krook collisions on the mode evolution and frequency sweep and the
strong dependence of the mode structure and amplitude on the velocity space
shape of the unperturbed distribution of the fast particles, F0 (v). However,
the presented solution is based on an analytic approximation, a so called wa-
terbag or top-hat model, in which the distribution of fast particles remains
well phase mixed at a constant level throughout the trapping area. There-
fore, the solution is only valid when no ambient particles enter the separatrix,
i.e. when the trapping area does not expand (which it does when the wave
amplitude increases) and when the fast particles are not subject to velocity
space diffusion (which may kick ambient particles through the separatrix). On
the other hand, the analytic top-hat model has no similar restriction on par-
ticle detrapping, even though shrinkage of the trapping area tends to generate
a strong discontinuity in the fast particle distribution at the separatrix. In
fact, interesting sweeping patterns may result when the mode amplitude de-
cays and particles detach from the trapping area, in particular when the rate
of fast particle slowing down due to Coulomb collisions is substantial. As a
rule of thumb, there is a critical slope for the unperturbed distribution of fast
particles such that the trapping area remains constant within the given solu-
tion. Any lesser slope results in particle detrapping, and can therefore be used
with confidence in the modeling. Finally, PAPER B discusses, perturbatively,
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the effect of particle trapping as a result of separatrix expansion. Somewhat
surprisingly, it is found that modest particle trapping actually amplifies the
amplitude increase and accelerates the separatrix expansion. In fact, an ap-
preciable number of passing particles need to enter the trapping area in order
to generate an amplitude decrease.

PAPER C goes futher than PAPER B and presents the complete solution to
the adiabatic equations that govern the evolution of single holes and clumps.
Unlike the semi-analytic theory in PAPER B, the presented tool solves nu-
merically for the profile of the fast particle distribution inside the separatrix,
which generally may evolve under the influence of three types of fast particle
collisions and sources (the previously discussed slowing down and Krook op-
erators, plus a more realistic velocity space diffusion operator) and as a result
of a dynamically evolving separatrix. Consequently, the presented solutions
handles perfectly well both types of particle trapping in the wave field (due
to separatrix expansion and diffusive collisions), and the effect is shown to
have an order of unity impact on the sweeping patterns. As already noted in
PAPER B, the inclusion of a small number of passing particles, deposited close
to the separatrix, tends to increase the wave amplitude (and therefore results
in even more trapping), whereas a larger number of particles, distributed more
uniformly throughout the trapping area, results in an amplitude decrease.

With regards to the relaxation rates of the fast particle distribution due to
the various types of collisions and sources considered, clumps are found to be-
have exactly as one would naively expect. They simply disappear quicker and
at smaller frequency shifts with higher collision rates, regardless of the type of
operator. Holes, on the other hand, display a rich variety of interesting behav-
iors as the collision rates are scanned. As an example, three types of distinct
sweeping patterns can be identified in the simultaneous presence of velocity
space diffusion and slowing down of the fast particles: Indefinite, monotonic
up-sweeping, asymptotic steady states and transient, hooked sweeping. Nu-
merically, steady holes are found to be linear functions of fast particle energy
inside the separatrix, which enables an analytic solution to be constructed.
Within the analytical steady state model, it turns out that monotonic sweep-
ing events correspond to values of the slowing down and diffusion rates for
which no steady states exist. Further, the short-lived hooks are shown to arise
when the steady states go unstable.
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5.3 Paper D

PAPER D concerns so called radiative damping of TAEs, which arises as a
result of small, but finite, non-ideal coupling to propagating, short wave length,
radiative waves that carry away parts of the TAE amplitude from the main
mode body. Radiative damping is thought to dominate the total damping
rate of TAEs in most cases, a view which is supported by observations of
kinetic Alfvén waves during TAE experiments on TFTR, [69], and numerical
simulations of radiative damping rates on JET, [70]. It has previously been
discussed by several authors, [71, 72], but the lack of convincing theory is
striking. E.g., previous theory predicts a scaling with the ion gyroradius, [71],
that does not agree quantitatively with experimental measurements, [73].

In PAPER D, appropriate TAE mode equations, including first order FLR
effects and parallel electron dynamics, are presented, and motivated, in the
case of an idealized large aspect ratio, low-β tokamak with circular flux sur-
faces. As discussed in Section 4.3.4, the non-ideal coupling takes the form of
a fourth order radial derivative term, multiplied by a small number related
to the thermal ion gyroradius. Much like in Section 4.3.2, the mode localiza-
tion domain is divided into outer and inner regions: In the outer domain, the
mode structure is slowly varying with respect to radius, and can be described
in terms of reduced equations that do not include the non-ideal terms. It is
recognized that the outer solution has a small, odd part (proportional to s)
that generates a jump across the origin. However, due to the ordering ϵ̂ ≳ s2

rather than ϵ̂≪ s2, the actual evaluation of the jump is more complicated than
in Section 4.3.2, since the pertinent outer equations include toroidal coupling
terms between neighboring poloidal harmonics. In the inner layer, the mode
varies much faster, so all higher derivative terms must be kept, whereas non-
derivative terms may be neglected. In contrast to the purely ideal derivation
in Section 4.3.2, the inner equations then take the form

λ2
d2U

dz2
+ (g + z)U + V = Cm (5.4a)

λ2
d2V

dz2
+ (g − z)V + U = Cm−1 , (5.4b)

where λ is a small dimensionless parameter that measures the strength of the
non-ideal coupling.

Equations (5.4) are much harder to solve than the algebraic set (4.46).
Nevertheless, since λ is small, the solutions are close to those given in Section
4.3.2, with a large even part that matches onto the asymptotes of the outer
solutions, and a much smaller odd part that generates a jump across the inner
layer (including an exponentially small correction that represents the radiative
damping due to the second order derivatives in equation (5.4)). A convenient
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Figure 5.1: Effective potentials V (k) = λ4k4 − 2gλ2k2 for g ∼ ±1.

method to calculate the inner layer jump in the presence of the second order
derivatives is to Fourier transform with regards to z. The details of the calcu-
lation are given in PAPER D. Here, we just briefly mention that the damping
corresponds to the fractional amplitude that escapes, via tunneling, from the
potential hill in the Fourier space Schrödinger equation

d2u

dk2
+
[(
g2 − 1

)
−
(
λ4k4 − 2gλ2k2

)]
= 0 , (5.5)

and becomes propagating, high-k non-ideal waves. The effective potential
V (k) = λ4k4 − 2gλ2k2 is shown for g ∼ ±1 in Figure 5.1. Note that the
eigenvalue g2 − 1 is negative for modes in the gap. It is obvious that the
tunneling of modes with g ≲ 1 must prevail longer, so that a smaller fraction
of their total amplitude escapes to high k:s. The same conclusion is drawn
from the actual calculations, namely that the upper (odd) TAE is much more
weakly damped than the more commonly observed, lower (even) TAE.



6
Summary and Conclusion

The aim of the preceding five chapters has been to prepare and enthuse the
reader for the research presented in PAPERS A – D. The text has contained
selected parts of fusion and plasma physics theory needed for the understanding
of the amended papers, but it also aspires to motivate the presented research
and put it into context. It can further be viewed as a general introduction
to the field, the referenced articles and the work in CONTRIBUTIONS 1 – 20.
Unlike Chapters 1 –5, the present one does not simply contain mathematical or
physical facts. Rather, it has been written with the intention to communicate
the author’s personal thoughts on the research in PAPERS A – D, including
possible spin-offs and future outlooks.

To some extent, the investigation in PAPER A is more of an educational
exercise. Although the actual end formulae and parts of the mathematical
method, or actually the combination of methods, are novel, the general conclu-
sions have long since been known to the theoretical community. On the other
hand, at the moment of conduction, the calculations presented in PAPER A
were intended to form the basis for a study of high frequency, compressional
Alfvén waves observed on the spherical tokamaks MAST and NSTX, [74].
Since then, long discussions with experts within the field led the authors to
the conclusion that the guiding center framework used for the description of
the particle orbits in PAPER A is not sufficiently accurate in the presence of
cyclotron resonances. Nevertheless, the study was not carried out in vain.
The calculations are currently being reused in order to apply, quantitatively,
the one-dimensional bump-on-tail model of Section 3.4 to frequency sweeping
Alfvén waves on MAST.

The development of the adiabatic framework in PAPER B and the numer-
ical tool presented in PAPER C were indeed necessary steps in the process
of adding quantitative credibility to the simple one-dimensional bump-on-tail
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model, which, throughout the years, has come to be regarded as a highly suc-
cessful paradigm for predictions of general trends and qualitative explanations
of the underlying physics of kinetic instabilities. Previous bump-on-tail the-
ory was constrained to small frequency shifts, in which the mode amplitude
remains close to that of the linear instability. In contrast, the work in PAPERS

B and C sheds light on long range effects that require the mode structure to
evolve from its initial form. The modeling also demonstrates the advantages
of the adiabatic approach, in which only time scales longer than that of the
trapped particle bounce motion need to be resolved. The presented work def-
initely forms the basis for quantitative, nonlinear modeling of Alfvénic eigen-
modes driven by energetic particles. In fact, an effort is currently made to
include the effects of realistic tokamak geometry and magnetic field topology,
as well as proper fast particle orbits, into the reduced modeling.

Currently, not much is known on the dynamics of holes and clumps in
realistic, three-dimensional toroidal geometries, even though wave-particle in-
teraction in the presence of shear Alfvén waves becomes particularly simple,
essentially one-dimensional. Some early, general comments were made in [75],
and the numerical, gyrokinetic study in [76] can be interpreted as an indica-
tion of the presence of evolving, but coherent, structures in fast particle phase
space. In the language of Section 4.4, many of the difficulties stem from the us-
age of the natural variables for the analysis, the action-angle set (4.73), which
are complicated functions of the plasma equilibrium quantities that generally
need to be evaluated numerically. As a first step, a reasonable and interesting
question to ask concerns the radial locations of the modes, which change as
the frequencies shift and the holes and clumps travel through phase space.
Since radial profiles for the fast ion distribution, and thereby profiles for the
linear drive/damping, are readily available via standard modeling tools, in-
formation on the evolution of the hole/clump average radii would certainly
indicate, e.g., the preferential direction of the frequency shifts. A first attempt
towards such an analysis was presented in CONTRIBUTION 20, where the usual
idealized-tokamak assumptions (low β, large aspect ratio etc.) were employed
for the investigation. The report largely reproduces some of the results in [75],
but also suggest a general route towards the determination of the frequency
sweeping directivity in tokamaks.

Another great challenge, but also an interesting feature, of realistic TAE
modeling is the possibility of interaction with the continuum as the modes
shift their frequencies. As discussed in Section 4.3.1, the ideal mode structure
peaks logarithmically at the position of the continuum resonance. Although
the divergence is ultimately resolved via the inclusion of small scale effects
such as, e.g., first order FLR corrections, the local amplitude increase is very
likely to go beyond linearized MHD perturbation theory. Therefore, a more
careful, nonlinear fluid treatment of the mode structure, along the lines of [77],
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might be needed in order to account for continuum crossings.

The appoximate radiative damping rates calculated in PAPER D suggest
that the odd LSTAE, with frequency close to the upper tip of the continuum,
is, in fact, undamped. The result stands in stark contrast to observations on
real experiments, where the conventional, even TAE is almost always solely ob-
served, without so much as a trace of its odd companion, even during discharges
with extended regions of low shear. However, the odd mode has antiballoon-
ing mode structure, and therefore resides on the inboard side of the torus. As
a result, it interacts weakly with trapped, energetic ions, which constitute a
major fraction of the super-Alfvénic population on, e.g., JET. The calculated
result does, nevertheless, have waste implications for the future tokamak flag-
ship ITER, since D-T experiments on ITER will ultimately contain significant
numbers of super-Alfvénic alpha particles, capable of exciting such antibal-
looning modes via parallel resonances. In fact, it is very likely that the odd
mode will destabilize prior to, and at lower fast particle pressure than, the
conventional TAE.

For the time being, however, experimental verification (or falsification) of
the suggested asymmetry in the damping rate must be regarded as highly
desired. In fact, even clear and unambiguous identification of the odd mode
would constitute an important step towards a complete understanding of the
Alfvénic spectrum. The upper mode was actually observed once alongside
the conventional mode, during discharges with extended low shear regions
on JET, [78]. In the relevant spectrograms, the odd modes have narrower
spectral lines and therefore seem more weakly driven than the even modes,
but the asymmetry was attributed to the small number of trapped, ICRH
generated ions available to drive the odd modes, even though the resonance
layer had been shifted to the high field side of the magnetic axis. However,
a clear asymmetry was observed in the temporal evolution of the saturated
mode frequencies. Whereas the lower modes evolved according to a ”tornado”
pattern, [79], the upper spectral lines were almost linear functions of time.
These results cry out for more, and similar, experiments to be performed, in
which the apparent asymmetry between the even and odd LSTAEs can be
studied in detail.

The calculations in PAPER D actually rely on a questionable assumption,
namely that the fraction of the TAE amplitude that is carried away by the
radially propagating non-ideal waves becomes irretrievably lost. More careful
modeling should really include the effects of possible reflection of the non-ideal
waves towards the plasma edge.

Other conceivable ways to extend the work presented in PAPER D includes
formulating a real space solution that yields the obtained results, and then
applying such a solution to calculate radiative damping rates in the limit of
lower and lower shear, where entire spectra of upper and lower TAEs emerge
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inside the Alfvénic gap, cf. [49]. Along similar lines, another interesting feature
is the interaction of TAEs due to the formation of two radially neighboring
potential wells, as sweeping ACs reach the Alfvén frequency range and are
transformed into TAEs. Radiative damping rates for such a, more general,
system should definitely be the aim of future research.
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