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Abstract

This paper presents a preprocess to an existing method
for offline calculation of restart states for manufacturing
systems modeled by operations. In the existing method,
placement transitions are used to model restart in restart
states from potential error states, and supervisory control
theory is used to calculate which of these transitions are
valid. With the proposed preprocess, the precedence and
the alternative dependencies between the operations are
exploited in order to reduce the number of such placement
transitions which are required in the model used by the
existing method. With such a reduced model, the valid
restart states for larger and more complex systems can be
calculated.

1 Introduction

Error recovery in manufacturing systems is a compli-

cated task [2], often divided into three major activities

[10]: detection of discrepancies between the intended be-
havior and the actual behavior of the system, diagnosis to
find the original fault causing the observed error, and re-
covery of the system to continue the nominal production.
Recovery is often partitioned into error correction to re-
move underlying faults and restart to resynchronize the
control function in the control system and the resources

such that the nominal production can be resumed [12].

The control function for a manufacturing system is of-

ten modeled by a set of operations that are to be executed
in order to refine a product [3, 9]. Possible operation se-

quences emerge through dependencies between the oper-
ations. These dependencies may arise both due to product

as well as manufacturing requirements [3].

When restarting a manufacturing system, considera-

tion has to be made for the possible reexecution require-
ments on the operations [4]. An operation can be non-
reexecutable or its reexecution ability may depend on the

progress of other operations [1, 11].

Each operation is typically modeled by three states;

an executing state is preceded and succeeded by states
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to model that the operation has not started and is com-

pleted, respectively. The control function can then be seen

as a set of control function states, where each state mod-
els that some operations have not started, some operations

are executing, and that the rest of the operations are com-

pleted. Moreover, a physical state of the manufacturing
system may be seen as a composition of internal resource

states. Since resources are used when the operations are

executed, several physical states correspond to each con-
trol function state.

An error in the system can now be seen as a physical

state that does not correspond to the current control func-

tion state. This control function state is often referred to

as the error state [11, 21].
The objective in most error recovery methods, pre-

sented in the literature, is then to restart the system such

that the nominal production can continue from an earlier,

later, or the current control function state with respect to

the error state. Recovery in an earlier or a later state is

often referred to as backward and forward error recov-
ery, respectively. The state from which the control func-
tion is restarted is often called restart state [1,4] or restart
point [12].

The restart methods presented in the literature are ei-

ther online methods, such as [7, 19–21], or offline meth-
ods, such as [1, 4, 5, 12, 16]. For online methods, one or

more restart states are calculated at the time of the error

in contrast to offline methods where the restart states are

precalculated. Typically, online methods require heavier

calculations to be performed during the actual restart than

offline methods. Offline methods, on the other hand, en-

able evaluation of the calculated restart states beforehand,

which allows much more elaborate calculations than can

typically be performed on industrial computing hardware

on the shop-floor.

Moreover, the beforehand calculation enables different

restart alternatives to be analyzed already when the pro-

duction in the manufacturing system is planned, such that

undesirable situations can be resolved if possible. The re-

sult of the analysis can then be (automatically) refined into

comprehensible operator instructions to use during the on-

line restart phase. This beforehand analysis is a big advan-

tage for the offline methods.

With the restart states precalculated, the online restart

phase of an offline method, can be reduced to four



straightforward steps. First, the operator selects a restart

state from the precalculated restart states. The restart

states can for example be stored in a data base connected

to the control system. Second, the active state of the con-

trol system is update to the selected restart state. It is thus

assumed that a mechanism for state transitions is avail-

able in the control function. Third, the operator places the

manufacturing system in a physical state that corresponds

to the selected restart state. The operator is beneficially

guided by instructions for how to reach this physical state.

Finally, the nominal production can be (re)started by the

operator.

In earlier work [4], an offline method for calculation

of restart states is proposed. By aiming at backward error

recovery, it is possible to compensate for unsatisfactory

refinement as a consequence of an error and keep exten-

sions to the control function at a minimum.

In the method, placement transitions are used to model
restart of the control function in restart states from poten-

tial error states. Thus, a graph based model can be built up

from a given set of operations, their dependencies, possi-

ble reexecution requirements, and the full set of placement

transitions. This model is referred to as the restart model.
This full set of placement transitions contains all place-

ment transitions that are required in order to connect each

potential error state with all of its restart states.

The name placement alludes to the operator action to
place the manufacturing system in a physical state as part
of the online restart phase. A placement transition accom-

plish a similar action, but in the control function.

Due to the dependencies and the reexecution require-

ments, not all of the placement transitions model restart in

valid restart states. A valid restart state is a control func-
tion state from which the nominal production can continue

and eventually complete such that all dependencies and re-

execution requirements are always satisfied. Therefore, a

supervisor [15] is synthesized for the restart model. The

valid restart states will then correspond to the target states

for the placement transitions which are enabled by the su-

pervisor.

To guarantee that all valid restart states are calculated

for a set of operations, the full set of placement transitions

for the set of operations can in theory be included in the

restart model. The synthesis algorithm assures that none

of the transitions that violate any dependency or reexecu-

tion requirement are enabled by the supervisor.

From a practical point of view, the problem is, however,

that this full set of placement transitions grows exponen-

tially with the number of operations that are included in

the restart model. Therefore, the number of placement

transitions to include in the restart model has to be sig-

nificantly lower to cope with systems of industrial sizes.

Thus, to enable error recovery for industrial systems it is

critical to enhance the method to increase the upper limit

for the number of operations that can be included.

Therefore in this paper, the precedence and the alter-

native dependencies between the operations are exploited

in order to decrease the number of placement transitions

in the restart model, still guaranteeing that all valid restart

states are calculated in the succeeding synthesis. The idea

is that the placement transitions to use in the restart model

are preprocessed, based on a compact model, such that

only the transitions that satisfy the precedence and alter-

native dependencies are included. This preprocessing will

increase the upper limit for the number of operations that

can be included in the restart model such that all valid

restart states can be derived.

This paper is organized as follows: in Section 2 back-

ground is given to the formal models and methods used

and to the restart method proposed in [4], respectively. An

overview of the main idea for this paper is given in Section

3 and presented in detail in Section 4. Finally, in Section

5 quantitative studies on three manufacturing systems are

performed and in Section 6 conclusions and suggestions

for future work are provided.

2 Preliminaries

This section presents the premises for this paper. First

the modeling formalism is presented. Thereafter, this for-

malism is used to model the control function in a control

system for a manufacturing system. Finally, it is described

how restart states are calculated for such a model of the

control function according to the method presented in [4].

2.1 Automata
A deterministic finite automaton, in the following just

automaton, is a 4-tuple A :=
〈
QA,ΣA, δA, q

0
A

〉
where

QA is the non-empty finite set of states; ΣA is the non-

empty finite set of events, the alphabet for the automaton;
δA : QA×ΣA → QA is the partial transition function and

q0A ∈ QA is the initial state.
Let δA(q, e)! denote that an event e is defined from a

state q in an automaton A. A transition 〈q, e, p〉 ∈ δA
is said to be enabled from the state q. When the tran-
sition is fired the active state of the automaton A is up-
dated to the target state p. The active event function re-
turns the set of events defined from q in A, ΓA(q) :=
{e ∈ ΣA|δA(q, e)!}.
The set of all finite sequences of events over an alpha-

bet ΣA including the empty sequence, ε, is denoted Σ
∗
A.

An element s ∈ Σ∗
A is called a string. The suffixes to a

string s are given as
{
u|s = tu, t ∈ Σ∗

A, u ∈ Σ∗
A

}
.

A language, denoted L(A), is the set of strings gen-
erated by the automaton A from the initial state q0A. The
suffix closure of a language L(A) is the set of all suffixes
to all strings in the language L(A).

Interaction of two automata may be modeled by full

synchronous composition [6]. The full synchronous com-
position (FSC) of two automata A and B is defined as

C := A||B where QC := QA × QB ; ΣC := ΣA ∪ ΣB ;

q0C :=
〈
q0A, q

0
B

〉
and δC

(〈qA, qB〉, e
)
:=



⎧⎪⎪⎨
⎪⎪⎩

〈δA (qA, e) , δB (qB , e)〉 e ∈ ΓA (qA) ∩ ΓB (qB)
〈δA (qA, e) , qB〉 e ∈ ΓA (qA) \ ΣB

〈qA, δB (qB , e)〉 e ∈ ΓB (qB) \ ΣA

undefined otherwise

2.2 Modeling the control function with operations
In this paper, a manufacturing system contains a set of

resources. The production is supervised by a control sys-
tem that executes a control function. The processes and
tasks that are to be executed by the control function are

modeled by operations. The set of operations modeled
for a system is denoted Ω and the number of operations

in this set as |Ω|. An operation requires a subset of the
resources in order to execute.

The basic assumption is that all operations are running

in parallel. To model the nominal production, this paral-
lel execution between the operations can be restricted by

dependencies. Example of such dependencies are prece-
dence, alternative, and arbitrary order.
A straight operation sequence, in the following just op-

eration sequence, can be split up into its subsequences.
For three operations A, B, and C one possible operation

sequence is ABC with non-empty subsequences: ABC,
AB, BC, A, B, and C. The last operation in any non-
empty operation (sub)sequence is called last operation
whilst the the set of preceding operations are called init
operations. Thus, a sequence with a single operation has
no init operations.

An operation k ∈ Ω may formally be modeled by an
automaton Ak with three states and two unique events [3,

9], see Figure 1. The three states, denoted i, e, and c,
model that the operation is initial (not started), executing,
and completed, respectively. The start event, denoted ↑k,
labels the transition from the initial state to the executing

state and similarly the complete event, denoted ↓k, labels
the transition from the executing state to the completed

state.

i ce
↑k ↓k

Figure 1. Automaton model of an operation
k.

Given the automaton for a single operation, the control

function may be modeled by FSC of all operations in Ω
denoted AΩ, where AΩ := ||k∈Ω Ak. Each state in AΩ

is therefore a combination of local operation states. Thus,

in each state q ∈ QAΩ
, the operations in Ω can be parti-

tioned into three disjoint sets, where the operations in each

set are in their initial, executing, and completed states, re-

spectively. The distribution of operations between the dif-

ferent sets may be seen as a measurement of the overall

progress of the production.
To be able to relate this progress for any two states

in QAΩ
, the concept of upstream is introduced. For two

states p, q ∈ QAΩ
, q is upstream of p if there exists a non-

empty set of non-initial operations in p, denoted O, such
that all these operations are initial in q and the remaining
operations, Ω\O, keep the same local operation state in q
as in p. Thus, all states in AΩ have at least one upstream

state except the initial state q0AΩ
, where all operations are

initial.

An operation is reset when its active state is updated
from a non-initial state to the initial state. Note that, ad-

ditional transitions have to be included in the operation

model in order to reset the operation. Such transitions will

be introduced in the next subsection.

When restarting a system, there can be additional con-

straints, other than the dependencies, between the oper-

ations that have to be satisfied, so called reexecution re-
quirements [4]. An operation can for example be non-
reexecutable or its reexecution ability can be based on the

progress of the production [1, 11].

2.3 Calculation of restart states
In [4] a method for calculation of restart states is pro-

posed. The method is based on supervisory control the-

ory [15]. For a set of operations, their dependencies, and

reexecution requirements, it is shown how restart states

can be derived through synthesis of a supervisor.

In the method, it is assumed that an error can occur

when any of the resources in the manufacturing system are

used. That is, at least one operation is executing. Thus, a

state in the control function is a potential error state if at
least one of the operations is in its executing state.

To compensate for unsatisfactory refinement as a con-

sequence of an error, the method aims for backward error

recovery. To have a well defined notion of backward, a

restart state is always upstream of an error state.

An upstream state is a valid restart state if the nominal
production can be restarted from this state and eventually

complete, such that none of the dependencies nor any of

the reexecution requirements are violated.

Given these prerequisites, the overall aim of the

method is then to derive all valid restart states for all po-
tential error states. With such an open approach, different

postprocesses can be applied on the result to meet differ-

ent desires. As two examples, Andersson et. al. aim to

minimize the set of valid restart states with the constraint

that all potential error states have at least one valid restart

state [2]. For other systems it can be desirable to select

one valid restart state for each potential error state, such

that the operator action to place the manufacturing sys-

tem in a corresponding physical state becomes as simple

as possible, according to some appropriate metric.

In the method, the derivation of valid restart state is

accomplished through synthesis of a supervisor for a set

of automata that model the operations, their dependen-

cies, reexecution requirements, and restart in all upstream

states for all potential error states. Each operation is mod-

eled by an automaton as given in Figure 1. The depen-

dencies and reexecution requirements are modeled by au-

tomata [4], the details are outside the scope of this pa-



per. The restart is modeled by placement transitions, as

described below. These automata together are termed the

restart model.
A placement transition models restart in an upstream

restart state from a set of potential error states. Each tran-

sition models reset of one error operation k and a set of re-
set operationsO, labeled by the unique controllable event
σk:O. Note that O can be the empty set. The transition

is enabled from all states in the synchronous product of

the restart model where k is executing and each of the op-
erations in O is executing or completed. The target state

for the transition is the upstream state in the synchronous

product where k and all operations in O are initial.
This modeling of placement transitions is illustrated by

a simple example with two operations B and D. With-
out dependencies and reexecution requirements, the syn-

chronous product of the corresponding restart model is as

shown in Figure 2. For clarity of presentation, only the

placement transitions for D are considered. Since there

are two operations in the example system, there will be

two unique events with D as error operation, σD and

σD:B . The event σD models reset of just D and σD:B

models reset of both D and B. Note the simplification in
the indexes, when O is the empty set it is not written out,
and for non-empty O the operations are simply written as
a sequence.

ie

ei ee ec

ce

ii ic

ci cc

↑B ↓B

↑B ↓B

↑B ↓B

↑D

↓D

↑D

↓D

↑D

↓D

σD

σD
σD

σD:B

σD:B

Figure 2. Parallel execution of the two oper-
ations B and D. Placement transitions for
D are dashed.

Operation D executes in the three states in the mid-

dle row of the automaton in Figure 2. Reset of just D is

enabled in all three executing states, the placement tran-

sitions labeled by σD. Reset of both D and B is only

enabled when B has started. Thus, the placement transi-

tions labeled by σD:B are enabled from the two rightmost

executing states for D.
Due to the dependencies and the reexecution require-

ments, not all of the placement transitions model restart

in valid restart states. Thus, a supervisor [15] is synthe-

sized for the restart model. The valid restart states will

then correspond to the target states for the placement tran-

sitions that are enabled by the supervisor. Note that the

method formulates a general synthesis problem that is in-

dependent of the solver. Thus, efficient algorithms such

as compositional synthesis [14] and/or symbolic synthe-

sis [13] can be used.

Finally, in the worst case all operations are executing in

parallel. A state in the synchronous product of the restart

model that contains an executing state for an operation

will then have up to 2|Ω|−1 upstream states. Since there

are |Ω| operations, the number of transitions in the full set
of placement transitions for the restart model is then given
as |Ω| × 2|Ω|−1.

Due to the modular modeling of the operations, the

same placement transition will occur in multiple transi-

tion functions. In the above calculation, each placement

transitions is, however, only calculated once. From Figure

2, the placement transition where D and B are error and

reset operations, respectively, will for example occur as

three transitions in the two transition functions δAD
and

δAB
, such that 〈e, σD:B , i〉 ∈ δAD

, 〈e, σD:B , i〉 ∈ δAB
,

and 〈c, σD:B , i〉 ∈ δAB
.

3 The overall idea

As outlined in Section 2, in [4] the full set of placement

transitions is included in the restart model. By applying

synthesis on the restart model, the valid restart states are

derived through the target states of the enabled placement

transitions.

The major drawback with the method is the exponential

growth of placement transitions for each additional oper-

ation that is included in the restart model. This disadvan-

tage makes the method intractable for large systems. Al-

ready for a moderate system where |Ω| = 20 the number
of placement transitions is in the order of 107.
To overcome this problem, this paper suggests that the

set of placement transitions to include in the restart model

is correlated with the dependencies. Only the placement

transitions that are valid with respect to the precedence
and the alternative dependencies are to be included in the
restart model. A placement transition is valid with respect

to these two types of dependencies if the nominal pro-

duction can be restarted in the restart state that the tran-

sition models and eventually complete, such that none of

the precedence nor any of the alternative dependencies are

violated.

With fewer placement transitions in the restart model,

the upper limit for the number of operations to include in

the calculation can be increased. Thus, systems of indus-

trial sizes can be handled.

In this paper, these valid placement transitions are iden-

tified through traversing a more compact model than the

restart model itself. Thus, the identification can be per-

formed more efficiently than in the synthesis.

It is important to stress that, the presented method is

a preprocess to the synthesis of the restart model as de-

scribed in [4] and not a substitute. The succeeding syn-

thesis guarantees that none of the placement transitions

that violate other types of dependencies than precedence

and alternative and any of the reexecution requirements

are enabled. Note however that in the special case with



only precedence and alternative dependencies and no re-

execution requirements between the operations, this pre-

process is enough for derivation of the valid restart states

and the synthesis can be skipped.

The next section shows how to construct the compact

model and how to derive the valid transitions from travers-

ing this model.

4 Valid placement transitions

This section shows how to derive the placement transi-

tions that are valid with respect to the precedence and the

alternative dependencies. These valid transitions are de-

rived from a compact model of all the topological order-

ings of operations that are possible with respect to the de-

pendencies. The derivation is first performed on a model

only with precedence dependencies. Thereafter, the alter-

native dependencies are included in the model.

4.1 Precedence dependencies
A first approach to derive the set of precedence-valid

placement transitions is to start with the full set of place-
ment transitions and simply remove those that do not sat-

isfy the precedence dependencies. The approach is illus-

trated by an example system with three operations: A, B,
and C, and two precedence dependencies: A precedes B
and B precedes C.

The placement transitions where A is the error op-

eration and B is among the reset operations are not

precedence-valid and can be removed. From the defi-

nition of placement transitions, these transitions are en-

abled from states where A is executing and B is exe-

cuting or completed. From the dependency that A pre-

cedes B, A has to complete before B can execute. So

following the dependency, the states where the transitions

are enabled will never be reached. Thus, the transitions

are not precedence-valid and can therefore be removed.

Similarly, the placement transitions where B is the er-

ror operation and C is among the reset operations are not

precedence-valid.

From the two dependencies, it is quite straightforward

to see thatAwill precedeC. Removal of additional place-
ment transitions due to such transitive dependencies, in-

direct relations, is however not covered in this first ap-

proach. Thus, more non-precedence-valid placement tran-

sitions can be identified and removed if these transitive

dependencies are exploited.

Given the precedence dependencies, to fully exploit

these transitive dependencies all topological orderings,

sorting arrangements, [8] of the operations can be stud-

ied. In this context, a topological ordering is an order-

ing of the operations, such that if the operations are exe-

cuted sequentially all precedence dependencies are satis-

fied. Thus, a placement transition is then precedence-valid

if and only if there is an ordering where all of the reset op-

erations precede the error operation.

Thus, the second approach to derive the set of

precedence-valid placement transitions is then to identify

all topological orderings and thereafter derive the transi-

tions from these orderings. Once again from the definition

of placement transitions, a placement transition is enabled

when its corresponding error operation is executing and

each of the reset operations are either executing or com-

pleted. Since each ordering is an operation sequence, the

ordering can be split up into its non-empty set of subse-

quences. From the requirement of sequential execution,

all init operations in a subsequence are completed before

the last operation in the subsequence can execute. This

last operation and these init operations will then corre-

spond to the error operation and the reset operations in

a precedence-valid placement transition.

Some remarks, the subsequences with a single opera-

tion correspond to placement transitions without reset op-

erations, these transitions will model reset of a single (er-

ror) operation. No precedence-valid placement transitions

are missed, due to the requirement of sequential execu-

tion. Since all topological orderings are evaluated, all or-

derings of any parallel operations are eventually consid-

ered. Moreover, since the ordering of the reset operations

is unimportant, some subsequences will correspond to the

same placement transition.

After this initial motivation for how the set of

precedence-valid placement transitions can be derived, the

remainder of this subsection will focus on modeling the

operations and the dependencies in order to derive this set

in practice. The example with the operations A to C is

also revised.

The union of all the subsequences from all topological

orderings can be derived through FSC of a set of automata.

By modeling each operation as a two-state automaton with

a unique event labeling the single transition between the

two states and each precedence dependency as an automa-

ton for a constrained event sequence, the union of the sub-

sequences corresponds to the strings in the suffix closed

language generated by the synchronous product for these

automata. From the definition of FSC, the synchronized

product will contain all strings that are allowed for the

automata such that the shared events are executed simul-

taneously. In the following, this synchronous product for

derivation of the topological orderings is termed the de-
pendency automaton.
For the three operations A, B, and C, there is only

a single topological ordering: ABC. To enable a more
interesting discussion, the example is extended with an

additional operation D and the extra precedence depen-

dency that A precedes D. The addition gives three pos-
sible orderings in the example system: ADBC, ABDC,
and ABCD.

The operationsA toD are modeled by seven automata,

see Figure 3. For simplicity, let the unique event for each

operation be denoted by the operation name itself. In

the left generic automaton the label I will then take the
values I ∈ {

A,B,C,D
}
. The two rightmost automata



model the three precedence dependencies, where the label

J takes the values J ∈ {
B,D

}
. The dependency automa-

ton is shown in Figure 4.

I A

J

B

C

Figure 3. To the left, a generic automaton
for the operations A, B, C, and D. The two
rightmost automata model the three prece-
dence dependencies. The labels I and J
take the values I ∈ {

A,B,C,D
}

and J ∈{
B,D

}
.

A

D

B

B

D

C

C

D

Figure 4. The dependency automaton for
the four operations A, B, C, and D, with re-
spect to precedence dependencies.

The suffix closed language generated by the depen-

dency automaton for the example operations, given in Fig-

ure 4, contains 20 unique strings. Four of the strings with

C as the last event/operation demonstrate that multiple

strings/subsequences may correspond to the same place-

ment transitions. Both of the two strings BDC andDBC
will for example correspond to the placement transition

where C is the error operation and B and D are the re-

set operations. From the 20 strings, 18 precedence-valid

placement transitions can be derived. Thus, 4 × 24−1 −
18 = 14 placement transitions can be removed from the

restart model, still guaranteeing that all valid restart states

can be calculated.

4.2 Alternative dependencies
For any alternative in the nominal production, only

the operation(s) in one of the branches will be executed.

Placement transitions that reset operations from differ-

ent branches in an alternative are then only enabled from

states which are unreachable from the initial state in the

supervisor for the restart model. Thus, these transitions

will not be enabled in the supervisor. As for the prece-

dence dependencies, the alternative dependencies can be

exploited such that only the alternative-valid placement
transitions are included in the restart model.
It is straightforward to model these alternative de-

pendencies by automata and thereafter include these au-

tomata in the approach described for precedence depen-

dencies. The suffix closed language generated by the syn-

chronized dependency automaton will then contain strings

that correspond to the placement transitions that are both

precedence-valid and alternative-valid.

An alternative dependency between any two operations

can be modeled by an automaton with two states. The

two states are connected with two transitions labeled by

the events that model the two operations. One event is

labeled on each transition. From the definition of FSC,

only a single event/operation can be fired.

For demonstration, an alternative dependency is added

between the operations C and D in the example with

the four operations. The alternative is modeled by the

automaton to the left in Figure 5. The dependency au-

tomaton is shown to the right in Figure 5. As expected,

there are no strings that contain both C and D. The de-
pendency automaton contains twelve strings, that is, eight

fewer than for the dependency automaton without the au-

tomaton for the alternative dependency between C and

D. As before, the valid placement transitions are derived
through identification of all unique strings in the suffix

closed language generated by the dependency automaton.

Twelve both precedence-valid and alternative-valid place-

ment transitions are derived, which means that in total

4×24−1−12 = 20 placement transitions can be removed.

A

D

B

B

D

C

D C

Figure 5. The left automaton models alter-
native dependency between operations C
and D. To the right, the dependency au-
tomaton for the four operations A, B, C, and
D, with respect to both precedence and al-
ternative dependencies, respectively.

Finally, an alternative between a set of operations is

modeled by an alternative dependency between each pair

in the set. Thus, each of these alternative dependencies

can be modeled by a two-state automaton, as described

above, and included in the FSC to calculate the depen-

dency automaton. With such a modeling approach, the

derived placement transitions are alternative-valid for all

types of alternatives, irrespectively if the alternative con-

tains two or more operations.

5 Quantitative studies

This section presents quantitative studies on three dif-

ferent manufacturing systems where the control function

is modeled by operations. The aim of the studies is to cor-

relate the number of placement transitions that are both

precedence-valid and alternative-valid with different types

of systems. As pointed out in Sections 3 and 4, it is

enough to include these valid transitions and not the full



set of placement transitions in the restart model in order

to synthesize all valid restart states.

The results are presented in Table 1. The columns show

number of operations, |Ω|, number of topological order-
ings, |top|, the sum of precedence-valid and alternative-

valid placement transitions, |σ|, and the number of place-
ment transitions to include in the restart model without

using the method presented in this paper, |Ω| × 2|Ω|−1.

In [18] a manufacturing system for processing and as-

sembly of turbine exhaust cases for aero-engine structures

are described. Since three products can be in the manu-

facturing system simultaneously, the model contains op-

eration sequences in parallel. Due to the low number of

precedence dependencies between the operations, many

of the placement transitions are valid despite the fact that

the number of operations is low.

The system studied in [17] is a more traditional assem-

bly cell where parts are transported, fixated, and finally as-

sembled. Most of the operations are executed according to

one straight main sequence, and this main sequence con-

tains parts where subsequences of operations are executed

in parallel. The number of valid placement transitions is

of the same order as for the previous system despite the

fact that the number of operations is more than four times

higher. The single main operation sequence is the under-

lying factor.

The assembly cell presented in [3] is similar to the pre-

vious system but it contains many operations with alterna-

tive dependencies, since some processes during the man-

ufacturing can be performed by two robots. Even though

the number of topological orderings are of the same or-

der as for the first system, the number of valid placement

transitions is only one third. Thus, due to the alternative

dependencies, many strings in the dependency automaton

will correspond to the same placement transitions.

Table 1. Results from the studies.
|Ω| |top| |σ| |Ω| × 2|Ω|−1

[18] 15 4e5 6e3 2e5
[17] 64 1e6 6e3 6e20
[3] 22 5e5 2e3 5e7

6 Conclusions

A preprocess to an existing method for offline calcula-

tion of restart states has been presented. In both the pre-

process and the existing method, it is assumed that the

control function in the control system is modeled by op-

erations. The problem with the existing method is that

the number of placement transitions, the transitions that

model restart of the control function in the restart states,

grows exponentially with the number of included opera-

tions.

This problem is attacked in this paper by preprocessing

the set of placement transitions that are to be included in

the existing method, by using a compact graph model to

exploit precedence and alternative dependencies between

the operations. Only the placement transitions that are

valid with respect to these dependencies are to be included

in the succeeding calculation of restart states. By adding

the preprocess, the upper limit for the number of oper-

ations that can be included in the calculation of restart

states can be increased.

The state space in the compact model is correlated to

the dependencies between the operations. Typically more

dependencies will give a smaller state space and a faster

calculation of which placement transitions to include in

the succeeding calculation of restart states.

For prototype calculations, the composition algorithm

in Supremica1 has been used for construction of the com-

pact model. The valid placement transitions have there-

after been identified by a tweaked depth first search al-

gorithm. Typically, the time for the composition is neg-

ligible in comparison to the time required by the search

algorithm.

Future research originates from two questions. First,

can more placement transitions be removed from the

model due to other dependencies or reexecution require-

ments in order to unburden the succeeding calculation of

restart states? Second, maybe the use of monolithic place-

ment transitions is not the way to go. How can the place-

ment transitions be modeled in a more modular fashion

and still preserve the clear connection between error states

and restart states?
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