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I 

Active Muscle Control in Human Body Model Simulations 

Implementation of a feedback control algorithm with standard 

keywords in LS-DYNA 
 

Master’s Thesis in the Automotive Engineering programme 

SAMUEL ANDERSSON 

Department of Applied Mechanics 

Division of Vehicle Safety 

Chalmers University of Technology 

 

ABSTRACT 

Simulation of occupant responses in scenarios involving low load levels requires the 

addition of active muscles to add posture control and muscular response to the human 

body. A model for active muscle control has previously been implemented in the 

Chalmers Active Human Body Model (Chalmers AHBM) using subroutines written in 

the FORTRAN programming language. In order to decrease conflicts with future 

software updates and increase the usability of the model, the possibility to build the 

model using standard LS-DYNA keywords has been investigated in this thesis. The 

keywords need to perform signal retrieval, addition of a time delay, implementation of 

feedback control algorithms and solution of differential equations for activation 

dynamics. In addition to the approach already existing as a subroutine to LS-DYNA, 

alternative ways to implement the areas of functionality has been reviewed in 

literature and scientific papers. A proposed solution using standard keywords called 

the Load Curve Method (LCM) has been developed. For basic mathematical 

operations *DEFINE_CURVE_FUNCTION keyword and its built in functions are 

used. To solve differential equations a mechanical representation of the equations 

together with the ability in LS-DYNA to simulate kinetic and kinematic properties of 

single and multiple nodes is proposed. All areas of functionality except a true time 

delay have been implemented using standard LS-DYNA keywords. Since it is not 

possible to retrieve data from earlier time steps a first order low pass filter has been 

implemented to model the effect of a time delay. Even though it does not exactly 

replicate the input signal, the filter provides a phase shift and can be used to model 

closed loop instability. The standard keyword solution has been implemented with the 

Chalmers AHBM as well as on an elbow joint model using LS-DYNA V971, R5.1.1 

or 6.1.0 standard binary. It has been validated against the implementation that uses a 

subroutine to LS-DYNA; the elbow joint model in a situation similar to the 

ARMANDA haptic equipment (de Vlugt et al., 2003) and Chalmers AHBM in a 

seated position under influence of gravity and 1G forward acceleration. In simulations 

with the Chalmers Active Human Body Model a decrease in computational time of 

about 14% has been seen for the LCM solution compared to the user defined uctrl1 

FORTRAN sub-routine. 

Keywords: THUMS; LS-DYNA; active human body model; active muscle; reflexive 

response; feedback control 
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SAMMANFATTNING 

För att undersöka hur gravitation och muskelkraft påverkar skaderisken hos 

passagerare i fordon under inverkan av låga yttre krafter pågår arbete i att bygga in 

aktiv muskelstyrning i humanmodeller. Tidigare arbete inom detta område har 

innefattat en på förhand bestämd mängd muskelaktivitet (Iwamoto et al., 2009; Choi 

et al., 2005). En modell har tagits fram av Tekn. Lic. Jonas Östh (Östh, 2010) där 

muskelaktiviteten är självreglerande och återkopplad baserat på positionen hos vissa 

delar av kroppen. Fördröjningen i tid på grund av neural aktivering via sensorisk 

förnimmelse samt biokemiska aktiveringsprocesser i muskeln ingår. Modellen finns 

implementerad som en användarspecificerad subrutin till LS-DYNA programmerad i 

FORTRAN som kräver kompilering av en användarbinär. Denna rapport beskriver 

arbetet med att överföra ovan nämnda funktioner, programmerade så att simuleringen 

kan exekveras med LS-DYNA standard-binär. Utöver Jonas Ösths modell har en 

undersökning gjorts i litteratur relaterad till biomekanik, muskelaktivering och 

humanmodeller för simulering av skaderisk-bedömning i fordon. Den resulterande 

programmeringen, kallad ”Load Curve Method” (LCM), använder enbart funktioner 

som finns i LS-DYNAs grundutförande, version 971, utgåva 5.1.1 och 6.1.0. 

Muskelstyrningen har kunnat implementeras med bibehållen grundfunktionalitet, där 

endast fördröjning av neural respons har fått en implementering som inte lyckas 

uppfylla koherens gentemot Jonas Ösths lösning. Frånvaron i LS-DYNA att kunna 

spara information från ett beräkningssteg till ett senare under en och samma 

simulering komplicerade implementeringen av fördröjd neural respons. 

Grundläggande matematiska uttryck har implementerats via 

*DEFINE_CURVE_FUNCTION programkortet. Differentialekvationer för dödtid 

och muskelaktivering har tolkats kinetiskt och kinematiskt där LS-DYNAs förmåga 

att lösa rörelsen hos noder i mekaniska system utnyttjas. Den framtagna lösningen har 

implementerats på Chalmers Active Human Body Model (Chalmers AHBM) samt på 

en armbågs-modell. Validering har skett gentemot Jonas Ösths lösning för 

armbågsmodellen i en uppställning liknande ARMANDA (de Vlugt et al., 2003). För 

Chalmers AHBM i en sittande position under inverkan av gravitation samt 1G 

framåtriktad acceleration. Resultaten visar på goda möjligheter att kunna använda den 

utvecklade modellen men framförallt implementering av muskelaktiveringsdynamik 

samt fördröjning behöver vidareutvecklas och ytterligare justeras. En minskning i 

beräkningstid om 14% har noterats vid användande av LS-DYNA standardbinär. 

Nyckelord: THUMS; LS-DYNA; aktiv humanmodell; muskel aktivitet; 

muskelreflex; återkopplad reglering 
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1 Introduction 

The amount of fatalities in vehicle accidents has steadily decreased due to the on-

going work of understanding the mechanisms of, and reducing, high loads inflicted on 

a vehicle occupant in vehicle accidents. However, there is still much to be learnt 

concerning low-load injury inducing mechanisms. Chronic pain caused by vehicle 

accidents has become a growing concern, leaving many vehicle accident victims with 

a crippled life caused by an untreatable and sometimes undetectable injury (Örtengren 

et al., 1996). A large part of injuries causing chronic pain are inflicted in accidents 

with comparable low loads, far below the expected chronic injury inducing load levels 

(Örtengren et al., 1996). An essential part of reducing chronic injuries caused in a 

vehicle accident is therefore improving the ability to understand low load injury 

inducing mechanisms. The cause of low load injuries is not only external forces in a 

vehicle accident but could also be the forces generated by the muscles in the body 

(Iwamoto et al., 2009; Choi et al., 2005). The ability to model muscle activities will 

therefore greatly contribute to the validity in simulations of humans in vehicle 

accident. The addition of pre-crash intervention systems in accident simulations also 

gives a demand to keep a biofidelic response throughout the duration of the 

simulation. One way of keeping biofidelity is to include muscle activity in the Human 

Body Models (HBM) used to simulate vehicle occupants. HBMs with active muscles 

added are referred to as Active Human Body Models (AHBM).  

At the Vehicle Safety Division at Chalmers University of Technology, a project has 

resulted in an HBM with muscle activity (Östh, 2010). Muscles controlling posture in 

the sagittal plane for lumbar-, cervical and head rotation was implemented on the 

Total HUman Model for Safety v3.0 (THUMS; see Section 2.1). A feedback control 

algorithm that determines the level of muscular activity based on the angle of the 

body region has been developed. During validation of the control algorithm an elbow 

model constituting of parts of the THUMS upper body, especially the right arm was 

constructed (see Section 4). The feedback loop used in the subroutine incorporates 

models for the neural delay of somatic reflexes (Section 2.2.3; Section 4.1.2) as well 

as a model for the dynamics of muscle activation mechanisms (Section 2.2.2; Section 

4.1.4). The feedback is a proportional-, integrative- and derivative (PID) control 

algorithm (Equation 4.10) commonly used in industrial control applications for its 

stable and customizable performance. The implemented control algorithm monitors 

the angle of a certain body region and calculates an activation level for the muscles 

controlling flexion and extension for that region accordingly (Section 4.1; Östh, 

2010). The AHBM resulting from the work by Östh will from here on be referred to 

as the Chalmers Active Human Body Model (Chalmers AHBM). The THUMS HBM 

and Chalmers AHBM is modelled using the Finite Element (FE) software LS-DYNA. 

LS-DYNA is a widely spread FE computational solver software developed by 

Livermore Software Technology Corporation (LSTC, Livermore CA). The feedback 

loop developed by Östh is in this report referred to as the uctrl1 subroutine.  

The developed method presented in this report, called the Load Curve Method 

(LCM), is a result of breaking down the programming for the muscle activity of  the 

Chalmers AHBM and reviewing keywords in LS-DYNA able to perform the same 

functionality. The LCM relies on the functionality provided by defining mathematical 

functions and operations as load curves by the keyword 

*DEFINE_CURVE_FUNCTION (LSTC, 2012a). For differentiation and integration, 

when not provided by load curve functions, the ability to define and monitor the 
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placement, velocity and acceleration of nodes is used. Differential Equations have 

been given a mechanical interpretation as defined by kinetic relations based on a 

mass-damper system (Lennartsson, 2002). 

1.1 Aim 

The aim of this work has been to investigate if it is possible to implement a control 

algorithm using the programming language and functionality in the conventional FE 

software LS-DYNA. The work has used the algorithm developed by Jonas Östh at the 

division of Vehicle Safety at Chalmers University of Technology. The algorithm is 

used in the modelling of muscular activity in AHBMs for vehicle accident 

simulations. 

The validation of the controller model using standard LS-DYNA keywords was made 

through a comparison with the control algorithm implemented in the, FORTRAN 

programmed and user defined, uctrl1 subroutine to LS-DYNA. The control algorithm 

as a result from this work will be able to be used in exchange of the subroutine to give 

activation level for the muscles in the Chalmers AHBM. 

1.2 Limitations 

The work will not involve any modification to the THUMS-model or to the muscles 

added in the work by Östh (2010). No change is made to the Chalmers AHBM other 

than to convert the controller for muscle activity into standard LS-DYNA keywords. 

This means that the same muscle geometry and muscle strength model is used as in 

previous work. Since the control functions of the present AHBM are restricted to 

motions in the sagittal plane, the same limitation is applied for validation of the 

developed model. The result of the work is implemented in the elbow model and in 

the Chalmers AHBM trunk model. The model resulting from the work is not validated 

against data from in vivo human experiments but only against the performance of the 

uctrl1 subroutine implementation of the control algorithm. Work was carried out at 

Chalmers SAFER Lindholmen using LS-DYNA version 9.7.1, releases 5.1.1 and 

6.1.0 and double precision. The project involves calculating a level of muscle activity 

in accordance with previous work (Östh, 2010).  
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2 Background 

HBMs as defined for this thesis work are used in computer simulations of vehicle 

accidents. The reason to use numerical HBMs is a continuation of the work done in 

simulating load levels inflicted on the human body in vehicle accidents. Previously 

such tests could only be done using real cars in various accident-like conditions where 

the human body was estimated by using Anthropomorphic Test Devices (ATDs) 

(Fressmann et al., 2007). 

2.1 Finite Element Human Body Models 

Due to computers becoming increasingly powerful and, amongst other, a wish to 

increase biofidelity of the HBMs, research has been done in building numerical 

models of the human body. Two examples of numerical HBMs are multi-body HBMs 

(MB-HBMs) and finite-element HBMs (FE-HBMs). An MB-HBM is constructed 

using rigid, non-deformable parts in a deformable structure. FE-HBM is modelled 

using deformable elements in a deformable structure which results in a greater level of 

biofidelity but also increased computational time. By using FE calculations, complex 

geometries and load paths can be simulated in great detail. The THUMS FE-HBM 

was developed based on ex vivo data by the Toyota Research and Developments Labs 

(Iwamoto et al., 2002). Validation was done for each part of the body and the model 

was compared to the Hybrid III ATD (Fressmann et al., 2007). The THUMS model 

incorporates several hundreds of thousands of elements with the goal of being able to, 

in great detail, predict the loads exerted on the human body. One aspect of further 

increasing bio-fidelity in simulations has been the inclusion of muscular tissue and 

muscular activity in HBMs, see Section 2.3 and Section 3. The modelling of muscle 

activity can primarily be divided into predetermined level of activation and an 

activation level based on feedback from sensory information, see Section 2.3.  

2.2 The Musculoskeletal system 

The musculoskeletal system plays a vital part in the morphology and functionality of 

the human body. It serves three main purposes; to maintain the posture, to provide 

mobility and exertion of power, and to protect vital organs from injury. 

Neuromuscular control is performed by a complex system constituted of nerve pattern 

pathways and execution control regimes located in the brain, the spinal cord and 

throughout the body. Central to the challenge of implementing active muscular 

control is the amount of neural excitation and activation to each muscle depending on 

time and sensory input (van Leeuwen and Spierts, 2002). A brief introduction to 

skeletal muscles and neuromuscular control is given. 

2.2.1 Morphology of the skeletal muscles 

A cross-Section of a skeletal muscle reveals a repeated pattern of groups and 

subgroups of muscle fibres surrounded by a connective tissue as seen in  Figure 2-1. 

Skeletal muscles are part of the striated muscle group which is signified by the 

lengthwise repeated constitution of sarcomeres, the basic contractile unit of the 

striated muscles. Several sarcomeres stacked around and after each other form the 

myofibril. The myofibril together with the connective tissue called sarcolemma and a 

surrounding tissue sheath called endomysium form the muscle cell, also called muscle 

fibre. Several muscle cells, surrounded by the perimysium, a connective tissue sheath, 

form a fascicle which in turn is surrounded by the epimysium. Surrounded by the 
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fascia and several other collagenous, reticular and elastic fibres, several fascicles form 

a muscle (Epstein et al., 1999).  

According to the sliding filaments model, the tension and contraction generated in a 

muscle comes from the activity in the sarcomere, more specifically the interplay 

between the thick filament and the thin filament (Marieb and Hoehn, 2010). The 

filaments are primarily built up of the proteins myosin, actin, troponin, tropomyosin 

and titin. In the thick filament several myosin molecules group together by attaching 

alongside each other to form a kind of stem from which upon globular heads are 

situated, like several stumps of branches on a tree (Epstein et al. 1999). The globular 

head is often referred to as a cross-bridge. The thin filament surrounds the thick 

filament in an isotropic manner. It constitutes of two chains of serially linked actin 

globules. In between the actin globules are strands of tropomyosin and upon these 

twisted strands lay troponin molecules. Titin act both as a spring and as a structural 

element to keep the thick filament in place and centred between the thin filaments 

during sarcomere elongation (Epstein et al., 1999; Marieb and Hoehn, 2010). 

 
Figure 2-1 Morphology of a human striated muscle showing the constituents of a skeletal muscle down to the 
smallest contractile unit, the thin and thick filaments of the sarcomere. Image adapted from 
http://damiane.wikispaces.com/11+Muscle+Physiology. 
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The filaments are fitted into a structure built up of protein. The thick filament is in the 

M-line interlinked by accessory proteins, while there is a gap at the same place of the 

thin filament. The opposite end of the thin filament is in the z-disc attached to a rigid 

structure. The distance between the thin filament and the M-line as well as the 

distance between the thick filament and the z-disc stipulates the margin necessary to 

allow contraction (Marieb and Hoehn, 2010; see  Figure 2-1). The tension and 

contraction is generated by chemical reactions that affect the proteins in the filaments. 

The cross-bridge in the thick filament bonds with the actin in the thin filament. At the 

same time energy is released, that causes the cross-bridge to move the thin filament 

towards the M-line (Epstein et al., 1999). The cross bridge detaches and gets ready to 

perform a new bonding with actin. These processes provide the basis for either a 

contraction of the muscle or a static rigidness (Marieb and Hoehn, 2010).  

2.2.2 Neuromuscular control 

The overall appearance of the sensory-neuromuscular system is that of a feedback 

loop where activities in the brain constantly try to adapt every motion to the current 

situation (van Leeuwen and Spierts, 2002). An action conducted by the 

musculoskeletal system also relies on feed forward control in the form of learned 

behaviour, but the feedback loop can improve the control of the action if the result is 

not what was expected. The musculoskeletal system is an undetermined set of 

variables and Equations, since several muscles can be connected to control a single 

joint movement (Marieb and Hoehn, 2010). 

The Central Nervous System (CNS), where integration of sensory input and 

commands for control output are generated, consists of the brain and spinal cord. The 

communication from the CNS to the body is carried out by the Peripheral Nervous 

System (PNS) which consists of cranial- and spinal nerves. Somatic and visceral 

sensory nerve fibres are part of the sensory (afferent) division and connect to the PNS. 

The somatic nervous system conducts commands from the CNS to skeletal muscles, 

and is part of the motor (efferent) division which in turn is part of the PNS (Marieb 

and Hoehn, 2010). 

Muscle fibres in skeletal muscles are activated by somatic motor neurons, part of the 

PNS, which via an axon attach to the muscle fibre at the neuromuscular joint. The 

muscle fibres are grouped into motor units, and each unit is controlled by a motor 

neuron (Epstein et al., 1999; Marieb and Hoehn, 2010). Apart from the extrafusal 

fibres, the muscle fibre where the tension and contraction is generated, there are 

intrafusal fibres that form the muscle spindle and act as a sensory part. Muscle 

spindles are embedded in between the extrafusal muscle fibres and register the 

elongation and rate of contraction of the muscle fibre. Golgi tendon organs register 

the tension in the tendons attached to the muscle in order to limit the overall stress of 

the muscle and protect the tendinous tissue it is attached to (Epstein et al., 1999; 

Marieb and Hoehn, 2010). The number of muscle fibres in each motor unit depends 

on what purpose each unit has. Units with a large number of fibres are slow to react 

on a nerve impulse but are able to produce a high force. Smaller units react quicker to 

the nerve impulse but are not able to deliver as high amount of force as the larger 

groups. This distribution of unit size, among other parameters, makes it possible for 

the muscle to have a smooth response to the task it needs to perform and do it in an 

energy efficient way (Epstein et al., 1999).  

The muscle response to a single action potential can be separated into the latent 

period, the period of contraction and the period of relaxation. Muscle activation 
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dynamics (the latent period up until being fully contracted) are governed by the 

mechanisms initiated by the action potential at the neuromuscular joint (Marieb and 

Hoehn, 2010). These mechanisms control the flux of potassium,    and sodium, 

     ions in and out of the muscle fibre membrane in response to impulses from the 

motor neuron. The flux of    and      ions causes an action potential to propagate 

along the muscle fibre which in turn initiates a release of calcium,     , ions 

throughout the muscle fibre. The release of calcium ions into the sarcomeres initiates 

the chemical reactions involved in the sliding motion of the filaments in the sarcomere 

(Marieb and Hoehn, 2010). During the first milliseconds after stimulation, due to the 

activation dynamics, tension builds up but do not cause any noticeable movement. 

After these first milliseconds the cross-bridge activity increases, causing contraction, 

and lasts from 10-100ms. After the peak of contraction the muscle enters a period of 

relaxation for 10-100ms (Marieb and Hoehn, 2010). The neural control signal is only 

binary but the amount of tension in a muscle fibre is controlled by the amplitude and 

frequency of the neural signal. The latency of the muscle fibres reacting to a neural 

impulse makes it possible to superimpose the response of a series of neural signals. 

This averts the muscle response from being binary but being smoothly controlled over 

time in amount of tension and contraction (Marieb and Hoehn, 2010).  

The muscle can contract in a number of ways, depending on load and purpose. An 

isotonic contraction occurs when the load is small enough for the muscle to be able to 

move it. In contrast, an isometric contraction occurs when the load is greater than the 

maximum force the muscle is able to generate, thus the muscle can´t contract. An 

isotonic contraction can either be concentric, thus shorten the muscle while producing 

force, or an eccentric and produce force while the muscle lengthens. During an 

eccentric contraction the muscle is able to produce more force compared to a 

concentric contraction (Marieb and Hoehn, 2010). 

2.2.3 Reflex activity 

Reflexes concerning skeletal muscles are called somatic reflexes and if they only 

involve the spinal cord, are called spinal reflexes. Reflexes can be either inborn or 

learned but the basic concept of a reflex is to perform a motor response where higher 

CNS activity is unnecessary (Marieb and Hoehn, 2010; van Leeuwen and Spierts, 

2002). Actions driven by reflexes can for example be: breathing, staying upright, 

avoiding a suddenly appearing obstacle or to some extent driving a car (Pick, 2004; 

Gandevia and Burke, 1992). A reflex is the shortest neural reaction to a certain 

stimuli. Via the integration centre in the spinal cord, the motor neuron causes the 

muscle to react on impulses generated by a receptor, such as stimulus from the skin, 

transmitted by the sensory neuron to the spinal cord, the pathway of the signal is also 

known as the reflex arc (Figure 2-2; Marieb and Hoehn, 2010). This does not mean 

that a reflex cannot be intervened and altered by a higher brain activity. In an acute 

situation the primary stimulus is often followed by several other stimuli which may 

add up in complexity so that higher brain activity is inevitable in order to adapt, 

facilitate or inhibit the primary reflex signal response (Marieb and Hoehn, 2010; van 

Leeuwen and Spierts, 2002). In the same manner, local feedback loops may intervene 

on the nerve signals coming from the CNS, acting on impulses from the Golgi tendon 

organs or afferent fibres situated in proximity of the actuated muscle (Epstein et. al, 

1999). Studies conducted on living human subjects concerning cervical musculatures 

reaction to sudden perturbation made to the head concluded a mean reflex time for 

flexor and extensor muscles in the cervical region of 55-90 ms depending on gender 

and age (Wittek, 2000). Experiments made on multijoint arm movement concluded a 
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neural delay of 34ms for muscles surrounding the elbow joint (de Vlugt et al., 2003). 

The results are in line with the works done by Matthews (1994) where the frequency 

response of human stretch reflexes was studied by using surface electromyography to 

measure level of activation in biceps brachii and human abductor digiti minimi . The 

stretch varied from 0.5 to 2mm for abductor digiti minimi and 0.1 to 1 mm for biceps 

brachii with a frequency ranging from 10Hz to 50Hz. The resulting measured phase 

lag and amplitude modulation is, because of placement of electromyographic 

measurments, over the main belly of the muscle, a combination of neural delay, 

muscle neurochemical activation dynamics and the activation scheme of different 

muscle fibres in the muscle. Depending on site of measurement the jerk response time 

could differ by 10ms. Matthews concluded a reflex time of 30ms for biceps brachii 

and 60ms for abductor digiti minimi (Matthews, 1994).   

 

 

 

As with general human motion, much of the primary behaviour when driving a car is 

done with either inborn or learned reflexes. Sitting upright and keeping your hands on 

the steering wheel are controlled by adapted inborn reflexes (Pick, 2004). Every move 

needs to be coordinated between several different muscles and even different motor 

units within muscles in order to be able to handle the driving tasks. Still the 

coordination between the muscles referring to posture of body and limbs is no 

conscious action, but only initiated by a higher motor command (van Leeuwen and 

Spierts, 2002; Pick, 2004). 

2.3 Biomechanics of the Musculoskeletal System and 

Neuromuscular Control 

Biomechanics deals with the mechanical modelling of the human body and human 

motion. It concerns physical, mechanical, kinetic and kinematic properties in order to 

understand and numerically explain the human body and human motion. It is a 

fundamental part in trying to implement computer simulations of how the human 

body moves and responds to the forces exerted on it, for instance in a car accident.  

2.3.1 Hill muscle model 

The Hill muscle model was a result from thermodynamic experiments conducted by 

A.V. Hill in the 1930’s (Hill, 1938) when trying to establish principles concerning the 

energy relations in muscles. Though several mathematical approaches for modelling 

the force exerted by a muscle exist, because of the relative simplicity of the model it is 

still widely used as a model for muscular force based on the level and rate of 

contraction. The main criticism of the first proposed Hill model has been its inability 

to replicate the transient behaviour of muscles and the lack of detail when trying to 

determine the force in separate parts of a single muscle (Winters, 1990). However, for 

Figure 2-2 Schematic represention of a reflex arc from stimulus to effector (based on information taken from 
Marieb and Hoehn, 2010). GTO, IF and EF is abbreviations for, respectively, golgi tendon organs, intrafusal muscle 
fibres and extrafusal muscle fibres. 
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modelling of movement with multiple numbers of muscles, the Hill model is still 

frequently used (Williams, 2011; Winters, 1990). 

The properties of the sarcomeres are modelled with a contractile element (CE) in 

conjunction with two non-linear elastic models. The passive properties of the muscle 

fibres and surrounding tissues are modelled with a parallel damping element (DE) 

while the elastic properties of the tendon are modelled with a parallel elastic element 

(PE) (Wittek, 2000; Winters, 1990, see Figure 2-3). 

 

Figure 2-3 Schematics of a Hill-type muscle model as studied by Wittek (2000). 

The currently exerted muscle force is determined by the properties of the passive 

element as well as the current length of the muscle, the muscle activation level and the 

current rate of contraction, see Equation 2.1. The force-length relationship of the Hill-

model stipulates that the maximum force possible by the muscle depends on the 

elongation of the same, due to the possible number of actin-myosin connections 

decreasing at the extreme ends of muscle elongation. Though the relationship can alter 

on individual basis and even alter in one individual depending on exercise level or 

physical aspects. Thus, in order to mathematically and accurately determine the force-

length dependency, the lengths of the thick and thin myofilaments of the muscle fibre 

concerned must be known (Epstein, et al., 1999). The Hill muscle model has been 

further developed and used in the works of Winters and Stark (1985) and Zajac 

(1989). Both in terms of improving the Equations for the force-length, the force-

contraction rate relationships and the inclusion of activation dynamics into the Hill 

proposition of active state (Zajac, 1989). In LS-DYNA a Hill-type approach towards 

calculating muscle force as described in this Chapter are used in the material model 

nr. 156, *MAT_MUSCLE (LSTC, 2012b). The muscle properties for the contractile 

element, the force-length and force-rate of contraction relationships are implemented 

as dimensionless and normalized. The force vs. length relationship is in 

*MAT_MUSCLE identified as a tensile stress vs. stretch ratio relationship, see Figure 

2-4. The tensile stress vs. strain rate is equivalent to the relationship between force vs. 

rate of contraction (Figure 2-4).  

The muscle force in the Hill muscle model is based on the dynamic active and passive 

response of the muscle (Wittek, 2000). As described the tension in the CE depend on 

force-length, force-rate of contraction and activation state, see Figure 2-4. In addition 

to this the tension is limited by the maximum tension exerted by the muscle, see 

Equation 2.1-2.5: 

                        (2.1)  

CE 

PE 

DE 
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In addition to the active properties, the passive kinetic properties of muscle tissue are 

modelled with the PE and calculated as: 

        {     [ 
     ]}{ [(         )(        )]   } (2.4)  

       (      )  (2.5)  

Where, 

      Hill force-length relationship 

      Hill force-velocity relationship  

  Instantaneous muscle length 

      Muscle activation level  

       Stress Equation for parallel elastic element 

      Stress Equation for parallel damping element 

  Instantaneous muscle velocity/rate of contraction 

   Muscle cocontraction level 

     Asymptotic value for increased eccentric muscle lengthening 

     Transition between concentric and eccentric muscle shortening 

    Passive elastic muscle stiffness 

    Shape of rate of contraction curve for concentric shortening 

  Passive damping muscle stiffness 

     Optimal muscle length for maximum isometric contraction 

      Maximum force from the passive elastic element, measured at      

     Maximum isometric contraction 

   Lowest level of muscle excitation 

 

Figure 2-4 Force vs length and force vs rate of contraction equivalent curves as used for Biceps 
Brachii long head muscle in the Chalmers AHBM elbow model. 
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2.3.2 Feedback Control Models of CNS Activity 

As stated in Section 2.2.2. The CNS relies on feedback control by using sensory 

information in the process of determining movement of the human body. It plays a 

vital role in the ability of the human body to act and react in relation to the current 

environment (Marieb and Hoehn, 2010; van Leeuwen and Spierts, 2002). Also to note 

is that the parameters in the feedback system show signs of non-linear properties, thus 

ruling out linear control theory, according to van Leeuwen and Spierts (2002). Several 

models exist in trying to determine the operational features of the CNSs feedback 

regime. The main parameters the models try to establish is which sensory information 

should be used and what approach to use in amplifying the sensory feedback 

information before activating the muscles (Kistemaker et al., 2013; Feldman and 

Levin 1995; Winter, 1995; de Vlugt, 2003). The equilibrium point theory builds on 

the idea that muscular feedback control can be modelled by the use of equilibrium 

positions as reference points in limb movement. The level of muscular force is 

generated with a spring-like behaviour in proportion to the distance between actual 

state and reference state (Feldman and Levin, 1995; Latash 2011). It has been widely 

used in biomechanics when modelling movements of slow to moderate speed. 

However, it is not able to accurately model the exact behaviour of limb movement for 

rapid movement (Bizzi et al. 1992). Modelling rapid movement involves increasing 

the gain in the feedback control or adding parameters in the control algorithm. When 

modelling rapid movement, several models have included the integrative- and 

differential part of the control signal apart from the proportional gain (de Vlugt et al., 

2006; Kou 2005). The notion of control parameters other than proportional may be 

seen for example in the ability in GTOs to perceive not only the amount of force in 

the tendon but also the length of the muscle the tendon is attached to during 

contraction (Gandevia and Burke, 1992). There has also been work done in combining 

feedback- and internal models (Stroeve, 1997; Gandevia and Burke, 1992; Bamford 

and Marteniuk, 1988) in order to model both in-learned behaviour as well as sensory 

feedback based behaviour.  

2.3.3 Internal models of CNS activity 

Internal models deal with modelling in-learnt behaviour and knowledge, gained by the 

CNS through experience, concerning properties for human body movement (Kawato, 

1999). The concept of internal models comes from the need to accurately model rapid 

and coordinated body movements. It is stated that the gain in feedback control models 

is too low to replicate such movements (Kawato, 1999; Gerdes and Happee, 1994). 

According to Haith and Krakauer (2013), in their work concerning models of the CNS 

learning behaviour, the rapid response in human body movement is due to forward 

models predicting future positions of body parts and the muscular actions involved in 

making it happen. The source of rapid movements can therefore not come from a 

response in a feedback model but be based on inborn or learned forward models. 

Experiments have shown that evidence supporting the internal model theory can be 

found in the neural activity of the CNS concerning movement (Kawato, 1999; van 

Leeuwen and Spierts, 2002; Kuo, 1994). Also, experiments have shown that 

musculoskeletal movement can be generated in parts of the body without the presence 

of a feedback loop (Kawato, 1999; van Leeuwen and Spierts, 2002). The construction 

of internal models in the CNS through a learning period can be studied by altering the 

force field in which a certain movement task is to be performed. In an established 

force field through iteration the CNS adapts and movements become progressively 

smoother and more accurate for each iteration. However, if the force field is changed, 
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a new series of iterations is needed in order to achieve the same amount of 

smoothness and accuracy of movement as before (Kawato, 1999; van Leeuwen and 

Spierts, 2002; Bamford and Marteniuk 1988). There is still some uncertainty in what 

paradigm is used as means of improvement of the movement, whether it be reducing 

jerkiness or cost in energy or some other parameter (van Leeuwen and Spierts, 2002; 

Kawato, 1999; Kuo, 1994). Internal models may involve the concept of inverse 

dynamics as well as neural networks. Through inverse dynamics the amount of 

muscular force to be applied is calculated based on knowledge of mechanical 

properties of the body and the proposed trajectory of the movement (Kawato, 1999).  
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3 Literature review - Muscle Control in Human 

Body Models 

In order to accurately model occupant movement in pre-crash situations and as a 

means to increase the bio fidelity of HBMs, the need to incorporate muscle elements 

and its activity has emerged. The field of biomechanics and its models for muscular 

activity provide strategies and techniques for modelling of human body movement. 

What differs is the need to mostly model the muscular response on rapid changes on 

the force field resulting in forces and moments of inertia acting on the body that is 

normally not inflicted upon it. 

3.1 Predetermined Muscle Activation Level 

Predetermined activation level builds on the notion of internal models of CNS 

activity. It also provide means to implement muscle activation in HBMs without 

having to in real time model CNS activity. In order to capture rapid movement of the 

human body, activation levels for the muscles are defined prior to the simulation. The 

methods studied are optimization algorithms, simulating the learning protocols of the 

CNS (Section 3.1.1), electromyography-data from in vivo human subjects 

experiments (Section 3.1.2) and muscle activation level based on a validated 

trajectory of the controlled body region (Section 3.1.3). 

3.1.1 Internal Model based Muscle Activation 

Iwamoto (Iwamoto et al., 2012) used the THUMS and reinforcement learning written 

in C++ code, a neural network optimization technique in order to reduce either usage 

of time or energy. The approach demands several simulations for each run in which 

the model learns how to move according to some parameter set on a general basis or 

towards some validation data. Their muscles were modelled with passive and active 

force-elongation curves and force-velocity curves. 25 neck muscles were 

implemented with 104 muscle bar elements in a test setup. For each step, after 

calculating which muscle to contract and using the muscle curves to calculate the 

force exerted by the muscle on the joint, LS-DYNA was called to calculate the energy 

and resulting displacement in the nodes of the model. The underlying theory is that 

this reinforcement learning is able to simulate the behaviour in the basal ganglia 

where posture control functionality is situated. The outcome of this approach is said to 

be a muscle activation function that can be used for a multiple type of impact 

situations. Once muscle activation functions are determined, computational time is 

decreased by using pre-determined activation curves in the simulations. The model 

tries to reduce the overall energy consumption as a scheme to handle the muscle 

redundancy around body joints. Through iteration the energy consumption is 

optimized and in a way tries to replicate the learning scheme that the human mind and 

body uses in order to design appropriate activation patterns for certain tasks. 

Choi et al. (2005) describes an incorporation of active muscles in the H-model, an FE-

model similar to THUMS (Choi et al., 2005). The implementation was done with Hill-

type bar elements where the overall level of activation was partly determined from 

volunteer experiment data of joint torques and partly determined via an optimization 

algorithm when muscle redundancy was present. The optimization algorithm was to 

determine the likely distribution of muscle forces by minimizing the active muscle 

energy for static equilibrium. The authors conclude that the approach as stated works 
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“quite well” but that further research and implementation of a dynamic muscle 

activation model is needed. 

3.1.2 Electromyography based Muscle Activation 

An approach, studied and validated for the upper arm of the THUMS model, 

implements established force-length and force-velocity relationships for Hill-type 

muscle elements (Iwamoto et al., 2009). Proper level of muscle activity in the model 

was set according to validation data. In addition to the active implementation, passive 

solid elements with rubber-like material models were implemented. Based on 

experiments suggesting that muscle activity increased the risk of injury on lower and 

upper extremities (Choi et. al, 2005), the model was built in order to investigate 

whether this relationship could be detected in simulations. The validation was done by 

mainly recording the properties of biceps brachii in human experiments.  Properties 

investigated were stiffness versus muscle activity and elbow flexion versus muscle 

activity on a 50
th

 percentile male human subject. The model was used in simulations 

of lateral impact with and without muscle activity in order to simulate bracing 

behaviour of a car driver. The conclusion was that the FE model showed signs to 

indicate that bracing significantly affects the behaviour of the arm and increase the 

risk of injury. 

In an attempt to model active- and passive- mechanical and physical properties of the 

cervical skeletal-musculature, work has been done (Hedenstierna, 2008) at The Royal 

Institute of Technology in Stockholm, KTH, where the model incorporates both 

passive solid muscle elements and active discrete muscle elements.  The passive and 

active elements were added to an existing head and neck model. The muscle geometry 

is based on MRI-scans of a 50
th

 percentile male, and muscle material properties are 

based on published data concerning human cervical muscles and validated against 

experimental data from rabbit muscle tissue.  The active biomechanics is based on the 

Hill muscle model, see Section 2.3.1. The elements have been separated from the 

solid mesh, divided, serially linked and embedded in a parallel pattern in the solid 

elements. The activation schemes of the muscles were based on electromyography 

measurements done on volunteers in experiments as part of the validation of the 

model. Hedenstierna (2008) concludes that incorporating solid muscular elements 

increases biofidelity but that further research is needed in order to establish a robust 

model for the level of muscle activation. 

3.1.3 Trajectory based Muscle Activation 

Nissan car-corporation has been part in developing a finite element human body 

model with active and passive muscular characteristics (Murakami et al., 2004). Hill-

type muscle elements were applied and the active behaviour was modelled by 

predefined constants that determined the state of muscle activity, the actual magnitude 

of force produced versus elongation and versus rate of contraction. A sled test setup 

experiment was conducted on a living human subject. Movement of the head together 

with accelerometer data were registered for runs where the subjects cervical muscles 

were perceived to be in a relaxed state. Based on the data, constants for the muscle 

activity, force versus rate of contraction and force versus elongation functions was 

determined for the model. Murakami et al. (2004) concludes that the result of the 

simulations fit within the corridor of data established from the validation runs.   
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3.2 Feedback Control Models in FE-simulations 

The feedback control model is a way to model part of the CNS activity (Section 2.2.2; 

Section 2.3.2) and based on that model determine the level of muscular activity. 

Creating a biofidelic model for CNS activity may lead to the ability to accurately 

simulate human body movement in pre-crash and crash situations. If there is a lack of 

experimental data, this may improve the accuracy in the simulations of pre-crash and 

crash situations and in the end improve the safety for the vehicle occupant. 

3.2.1 Matlab Simulink coupled to LS-DYNA 

Via an interface that couples LS-dyna to Matlab Simulink, active control based on an 

online connection that updates the muscle force in real-time was presented (Prüggler 

et al., 2012). The controller was successfully implemented on an FE-model 

incorporating a single Hill muscle element connected between two parts made up of 

shell elements representing the humerus and ulna. When simulating more complex 

structures the Matlab Simulink functionality was substituted by a C++ coded sub-

routine. This approach was implemented on a simplified THUMS model and 

compared with in vivo human subject sled tests with a maximum acceleration of 2g. 

The presented results are unfortunately inconclusive due to lack of presenting the load 

case used and lack in describing what control algorithm is implemented.  

3.2.2 Multi Body Model with PID-controller for Muscle Activity 

Meijer et al. (2008) describe a MB model with added Hill-type muscle elements used 

in the MADYMO software. In addition to the muscle elements, sensors, controllers 

and joint torque actuators were added. Posture control is modelled without neural 

delay in order for posture maintenance to work during short time periods (<200ms). 

For longer periods of time and for movements not maintaining posture, neural delay is 

added, 40ms for neck muscles, 70ms for spine and arm muscles and 100ms for leg 

muscles. The neural delay is also frequency dependent, allowing lower order 

frequencies to travel faster than higher frequencies. For each actuator there are six 

degrees of freedom, three translational and three rotational. The control signal is 

based on the joint angle that passes through a PID control algorithm. The model gives 

the opportunity to involve other than posture maintenance, by altering the reference 

state for the joint angle in the control algorithm, so that motions such as the turning of 

a steering wheel or the pressing of the brake pedal can be modelled (Cappon et al. 

2007; Meijer et al. 2012). The model was evaluated based on in vivo human volunteer 

experiments. The result show that the response of the MB-HBM thorax maximum 

deflection is less than for the volunteers, but the feedback model is able to maintain 

posture of the MB-HBM. 
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4 Chalmers Active Human Body Model 

The Chalmers Active Human Body Model utilizes a feedback control approach, 

controlling Hill-type muscle elements that are implemented in the user control 

subroutine, uctrl1, in the user material version of LS-DYNA (Östh et al., 2012). A 

PID-controller is used to generate muscle activation levels, Figure 4-1.  

 

Figure 4-1 Model schematics for Chalmers Active Human Body Model. Figure adapted from Östh et 
al. (2010) with permission. 

The activation model was first implemented on a part of the THUMS model, 

constituting of the right arm and shoulder complex. The model was used to validate 

elbow joint flexion and the force exerted by the muscles in the right upper arm (Östh 

et al., 2012). The model was validated against a 50
th

 percentile living human subject 

in the validation method denoted Arm Movement and Disturbance Analysis 

(ARMANDA) developed by de Vlugt (2003; Östh et al., 2011a). Muscular activity 

was further implemented on the trunk of the THUMS model to give active muscular 

control and control movement in sagittal plane of the lumbar-, cervical- and head 

region. Experiments conducted on living human subjects in scenarios involving 

autonomous braking were used to evaluate the model (Östh et. al, 2011b). Based on 

the controller output and a muscle activation dynamics model activation levels are 

provided to flexor and extensor muscles.  

For the control of the head angle, the angle of a vector between the head centre of 

gravity and the occipital condyles and a vector spanning the cervical spine is used. 

Muscles are implemented using beam elements and a Hill type muscle material model 

and are grouped according to the body part on which they act. The initial angular 

relationship between the nodes acts as the reference state for the system. The model 

allows for a delay to be imposed on the control signal that models the neural delay 

present in the CNS concerning somatic reflexes when retrieving and processing 

sensory information (de Vlugt et al., 2003). Delays are also present in the activation 

dynamics of the muscles that models the neurochemical processes described in 

Section 2.2.2.  

Time constants have been defined based on experimental data (Östh et al., 2011b). 

The files needed to run the model is separated depending on functionality. The 

THUMS human body model is used to model the geometry and mechanical properties 

of the 50
th

 percentile male body. A more detailed representation of the various steps in 

the uctrl1 subroutine can be found in Appendix B. 
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4.1.1 Calculating the angle of a joint 

The measured body region angle,     , is calculated through vector algebra. For the 

elbow model two vectors are defined, as shown in Figure 4-2. For the trunk model 

three vectors are defined based on the location of chosen nodes to control rotation in 

the sagittal plane for the lumbar-, cervical- and head region (see Table 4-1, Table 4-2 

and Figure 4-3).  

 

Figure 4-2 View on the right side of the elbow model showing placement of the nodes and vectors 
used in calculating the elbow joint angle. 

The calculations for      can be seen in Equation 4.1-4.6 for the elbow model and 

4.7-4.9 for the seated trunk model. In the elbow model the angle is calculated as the 

angle between two vectors representing the humerus and ulna of the right arm.  

Notation of the nodes in the elbow model, defining the humerus and ulna vectors in 

Equation 4.1-4.2 is, 

            (4.3)  

            (4.4)  

            (4.5)  

the vectors are defined in the global coordinate system of the elbow model and the 

angle of the elbow joint is calculated according to, 

           
         

|    ||    |
 

(4.6)  

      (                         ) (4.1)  

      (                         ) (4.2)  

  

   

   Humerus 

Ulna 
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For the trunk model, vectors are only defined in the sagittal plane. The vectors are 

defined based on the location of five nodes, the angle is calculated by defining a 

vector between two nodes and calculating its angle to the global vertical axis 

(Equation 4.7 - 4.9, Figure 4-3 and Table 4-1). The nodes are for each region used in 

the calculations according to table 4-2. 

 

Figure 4-3 Schematic view of the placement of the nodes and vectors used to calculate the lumbar-, 
cervical- and head rotation. The nodal point in the thorax region is only used to calculate rotation of 
the lumbar region. 

            (4.7)  

            (4.8)  

           (
  

  
)     (4.9)  

Where, 

    Initial angle between the vertical axis and the body region vector. 

43300071 

43900141 

43900131 

43700121 

43700101 



CHALMERS, Applied Mechanics, Master’s Thesis 2013:62 
18 

 

Table 4-2 Notation and the nodes used in the calculations of body region angle for the trunk model 
according to Equations 4.7 to 4.9. 

 Lumbar Cervical Head 

   43900141 43700121 43700101 

   43300071 43900131 43700121 

4.1.2 Neural Delay 

The neural delay implements a circular storing function to sample and hold      in a 

vector in accordance with the stated time delay,     (Figure 4-4).  At time   ,       is 

stored at position   in the vector. At the same time, if       ,           is 

retrieved at position       from the vector and further used as       , input signal 

to the controller. The function is circular in the sense that the positions in the vector is 

reused and only samples values in accordance with the time period set by    , with a 

resolution of      set by the user. The concept of a neural delay is described in 

Section 2.2.3. The delay is due to the time it takes for a signal to travel from a sensor 

through the integration centre to an effector (Figure 2-2). Numerical values for     

depending on model can be seen in Table 4-4. 

 

 

  

Table 4-1 Listing the location of the nodes used for the trunk model to define the angle of a body 
region. See Figure 4-3 

Nodal number Location 

43300071 Center of Sacrum 

43900141 Center of T10 

43900131 Center of T1 

43700121 Center of Atlanto-Occipital Joint, on top of C1 

43700101 Head center of gravity (HCoG) 

 

 

 

 

                        

Figure 4-4 The angle of the joint is stored at      in a vector where it, at        , is retrieved 
and used as          a delayed output of the angle of the joint.  
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4.1.3 PID control algorithm 

The Equations used in the controller to calculate the control signal,       is presented 

in Equations 4.10-4.17. Equation 4.10 is the general description of a PID-control 

algorithm while Equations 4.12 - 4.16 show the discrete approximations of the 

analytic error function, its integration equation 4.14 and differentiation equation 4.16. 

Numerical values for the variables used can be seen in table 4-3 and 4-4. A PID 

controller is commonly used in order to get a reliable and stable control system output 

that can react on sudden changes without any error remaining (Lennartsson, 2002). 

       (        ∫       
  

  

   
  

  
  )      

(4.10)  

Each error function is numerically implemented as 

                    
(4.11)  

 ∫       
  

 

                 
             

 
   

(4.12)  

          
(4.13)  
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) 

(4.14)  

                  
(4.15)  

            
(4.16)  

    , is a constant, either 1 or -1 depending on the environment of which the THUMS 

model is to be simulated in, to ensure that the action of the controller is counter-acting 

external disturbances and not amplifying them. If the model is facing forward in the 

positive x-direction       , if the model is facing forward in the negative direction, 

which typically can happen in a simulation with a complete vehicle model,      
  . The controller variables and constants used are summarized in Table 4-3 and 4-4. 

In addition to Equation 4.10 the controller signal is adapted to each muscle depending 

on specified cocontraction level and whether it during contraction causes flexion or 

extension of the joint: 

                ̅        ̅        ̅           | ̅ |     | ̅ |     | ̅ |  

 
(4.17)  

Where,  

       control signal for each body region, 

 ̅   vector defining the direction for each muscle in the body region with respect to 

how it affects the joint angle when contracting, 

     cocontraction level (user specified, see Table 4-4). 
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Cocontraction level is introduced to dampen the oscillations of the controlled body 

region, it is a comparatively small level of activation used for both flexor and extensor 

muscles. 

Table 4-3 Load curve ID for variables used in the control algorithm and activation dynamics of the 
seated trunk and elbow flexion simulations 

 Seated Trunk Model Elbow model 

Control 
Parameter 

Lumbar control Cervical control Head control Elbow control 

   3100000 7100000 8100000 200000 

     3100001 7100001 8100001 200001 

     3100002 7100002 8100002 200002 

     3100003 7100003 8100003 200003 

      3100004 7100004 8100004 200004 

      3100005 7100005 8100005 200005 

     3100006 7100006 8100006 200006 

      3100007 7100007 8100007 200007 

      3100008 7100008 8100008 200008 
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Table 4-4 Load curve ID and corresponding value for constants used in the PID controller. 

 Seated Trunk Model Elbow Model 
C

o
n

tr
o

ll
e

r 

co
n

st
a

n
ts

 Lumbar control Cervical control Head control Elbow control 

Load 
Curve ID 

Value Load 
Curve ID 

Value Load 
Curve ID 

Value Load 
Curve ID 

Value 

   3200001 0.03 7200001 0.03 8200001 0.03 200011 0.05 

       3200002 0 7200002 0 8200002 0 200012 0 

   3200003 1.25 7200003 1.5 8200003 1 200021 0.307 

   3200004 0.625 7200004 0.75 8200004 0.5 200022 0 

   3200005 0.15625 7200005 0.2 8200005 0.133 200023 0.068625 

   3200006 0.005 7200006 0.005 8200006 0.005 200024 0.005 

    3200007 0.025 7200007 0.02 8200007 0.02 - 0.02 

    1100001 0.035 1100001 0.035 1100001 0.035 - 0.030 

     1100002 0.01 1100002 0.01 1100002 0.01  0.005 

     1100003 0.04 1100003 0.04 1100003 0.04  0.03 

4.1.4 Activation dynamics 

The neurochemical reactions taking place after an action potential, see Section 2.2.2, 

is described by two low-pass first order filters in series (Winters and Stark, 1985), 

Equation 4.18 and 4.19:  

    
   

  
          , 

(4.18)  

     
   

  
            ,  

(4.19)  

where     is the muscle activation dynamics time constant for neural excitation 

and     is the muscle activation dynamics time constant for activation or deactivation. 

      
    

    
 

(4.20)  

      Maximum moment of extension or flexion about the joint 

Numerically implemented through discretization in the uctrl1 sub-routine this equates 

to a series of two Equations (Equations 4.21 and 4.22). 
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            (   (         (      
        

      
)     )   ) (4.21)  

            (   (         (       
        

       
)    )   ) 

(4.22)  

      behaves differently depending on if the activity is increasing or decreasing. If 

      is increasing, the time constant is six times lower than if       is decreasing 

(see Table 4-4). The level of neural excitation and activation is limited according to, 

               (4.23)  

 
              (4.24)  

4.1.5 Executing the Sub-Routine 

The uctrl1 sub-routine is one of many sub-routines present in the dyn21.f file. The 

uctrl1 code found in the dyn21.f file after unpacking a downloaded LS-DYNA binary 

package performs no functionality of its own but lets a user add functionality (LSTC, 

2012a). The ability to add functionality in the uctrl1 part of dyn21.f is used to add the 

algorithms and functions needed to calculate the muscle activity level according to 

Equations 4.10-4.17 and 4.18-4.22. In order to let the uctrl1 run as a sub-routine to the 

simulation, a binary need to be compiled that incorporate the uctrl1 sub-routine of the 

dyn21.f file. When moving between different versions of LS-DYNA, experience 

during the work of this thesis has shown that it is advised to only replace the uctrl1 

sub-routine and leave other parts of the dyn21.f file unaltered in order to avoid any 

conflicts or incompatibilities. 

4.1.6 Analyzing the result 

The load curves generated in the sub-routine cannot be logged in a curvout file. 

Instead data is written to comma separated text files, .csv-format, (listed and 

explained in Table 4-5). Post processing was achieved in Matlab (The Mathworks, 

Natick MA), Excel (Microsoft, Redmond WA), or LS-PREPOST (LSTC, Livermore 

CA) which have tools to interpret the text file into identifiable numbers arranged in 

rows and columns from where the result could be further plotted and analysed. 

Table 4-5 Table of files and their content, that contain the result from the uctrl1 sub-routine. Lhs 
stands for left hand side, rhs stands for right hand side. 

Seated Trunk model 

ctrl_var.csv yd(t), r(t), e(t), ie(t), de(t)/dt, u(t) for each controller 

mctrl.csv (_lhs, _rhs) u(t) for each muscle 

mexc.csv (_lhs, _rhs) Ne(t) for each muscle 

mact.csv (_lhs, _rhs) Na(t) for each muscle 

mlen.csv (_lhs, _rhs) Muscle length 

mstr.csv (_lhs, _rhs) Muscle strain 
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5 Method 

The main part of this thesis has involved breaking down the functionality inside the 

uctrl1 subroutine or inside the .key-files associated with the muscle activation model 

of the Chalmers AHBM. For each functionality, existing LS-DYNA keywords have 

been reviewed in the manuals for the LS-DYNA software (LSTC, 2012a) in order to 

find the same functionality as in the user defined uctrl1 subroutine. The process of 

deconstructing the functionality and searching for keywords has been an iterative 

process where possible candidates for performing the functionality has been 

conceptualized and tested.  

Early on it became apparent that the ability to define load curves that can take input 

data and perform a mathematical operation on that data would solve much of the 

functionality needed or otherwise be helpful when used as part of the functionality. 

The ability to prescribe the motion of a single node was another LS-DYNA feature 

very helpful in solving the muscle activation model differential Equations. 

Mechanical representations of the differential Equations were used in order to use the 

solution capacity of LS-DYNA. Differentiation and integration can be performed by 

letting LS-DYNA solve kinematic Equations of the freely moving, or dynamically-

constrained, nodes with prescribed motion. Much of this functionality was solved by 

defining node movements as variables to Equations, defined by standard keywords. 

The solution was implemented both in the Elbow model as well as in the Seated 

Trunk model. Though the functionality involved is basically the same, in some areas 

they vary and are therefore when needed presented in separate Sections.  

5.1 Calculating the joint angle 

Although the standard input deck/cards in LS-DYNA provides the possibility to 

define coordinate nodes that can be used to determine the rotational displacement of a 

node, a vector algebra approach is used in the proposed solution, similar to that in the 

uctrl1 subroutine (Section 4.1.1). The keyword *DEFINE_CURVE_FUNCTION 

contain the functionality needed to represent the mathematical expressions covering 

Equations 4.1-4.6 for the elbow model and 4.7-4.9 for the seated trunk model. The 

initial angle of the joint is retrieved by initializing a simulation and used as reference 

value for the controller. An alternative method is to define a local coordinate system 

and by using a load curve function, measure the rotational angle of a joint. When 

evaluating the LCM, vector calculation was used in order to minimize unnecessary 

differences between the LCM and the uctrl1 subroutine model. 

5.2 Neural delay 

A time delay, that only delays and does not distort the input signal, is the most 

challenging function to implement with the standard LS-DYNA keywords. The goal 

is to have a sample and hold mechanism without affecting the sampled signal during 

the hold sequence. Since no keywords or method has been found that can perform 

such functionality the delay is modelled, using the ability to simulate latency in the 

kinematics of mechanical systems in LS-DYNA. A delay is implemented through the 

use of a low pass filter, similar as for the activation dynamics (see Figure 5-1). The 

filter is interpreted as a mechanical low-pass filter that establishes a phase shift of the 

signal related to the viscous properties of a discrete linear damper connecting two 

nodes. As described in Section 5.4, two nodes with one degree of translational 

freedom are separated by a distance of 10mm and connected using a discrete element 
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with purely viscous material properties. The viscous properties are in turn related to 

the defined time constant of the filter (Equation 5.4; Figure 4-3; Table 4-4). A low 

pass filter is defined in the frequency domain by the laplacian transfer function: 

      
 

    
 (5.1)  

where, the time constant,  , defines the cut off frequency,   , of the low pass filter, 

    
 

 
  

(5.2)  

The time constant also defines the time it takes for the output signal to reach 63% of 

the input signal so that              , when subjected to a step function defined 

as (Lennartson, 2002): 

      {
    
    

 (5.3)  

The transfer function, Equation 5.1, give an understanding of the effect on the output 

of the model based on the angular frequency,  , of the input signal. The response of 

the system depends on the cut-off frequency (Equation 5.2). The cut-off frequency 

defines the frequency at which a negative gain of -3dB is achieved. For the Elbow 

model, where          ,         
   

 
               . The resulting delay 

is calculated according to, 

 
       

    

 
 

(5.4)  

where,      is the phase shift in relation to input angular frequency,  , of the filter. 

A plot was made in Matlab (The Mathworks, Natick MA), using Equation 5.1 and 

Equation 5.4 that can be seen in Figure 7-3. 

5.3 Control Algorithm 

The control algorithm works in the same way as presented in Section 4.1.3, Equation 

4.10, with the exception that no separate discrete approximation is defined but relies 

on the discrete differential Equations solver built into LS-DYNA. The control 

algorithm was implemented using load curves that perform the mathematic operations 

needed as well as receiving input from the calculations of the angle of the joint being 

controlled (see Appendix A).  The mathematic operations available in 

*DEFINE_CURVE_FUNCTION in LS-DYNA incorporates no method for 

integration of a signal other than that it is possible to retrieve and use kinematic and 

kinetic properties of nodes as input. The method chosen is that a node is used as 

holder of the error signal,        This is done by creating a node only used for  the 

controller, which velocity is defined through *BOUNDARY_PRESCRIBED_ 

MOTION_NODE. The node is allowed to move in x-direction only. Integration of 

error,        is defined as the position of the node, which is retrieved as a curve 

function. In the same manner, the differentiation of the error,      , is defined as the 

acceleration of the node, also retrieved as a curve function using 

*DEFINE_CURVE_FUNCTION. 
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5.4 Activation Dynamics 

Solving the Equations of activation dynamics differs from the sub-routine since 

retrieval of data from former time steps is not possible. To define the differential 

equations in a physical sense that is simulated by LS-DYNA, the solution to the 

differential equation is modelled as a mechanical system with two nodes connected by 

a discrete beam with purely viscous material properties (Figure 5-1, Equation 5.5-

5.13). Via *BOUNDARY_ PRESCRIBED_MOTION_NODE, the controller output, 

     defines the one-dimensional velocity of node    in the excitation model (see 

Figure 5-1). The velocity of node    is read as       which in turn defines the input 

to the activation model. Material used for       and       is the simplest possible 

viscous material, where only viscosity is defined. The non-linear viscous material 

incorporates the possibility to define different viscosity properties depending on if the 

material is experiencing loading or unloading. A force equilibrium Equation of the 

system described in Figure 5-1 translates into Equation 5.2. By substituting x and y 

into the variables    and    (Equation 5.11, 5.13) this representation is able to 

represent the first order low pass filter described in Section 4.1.4 (Equation 4.18, 

4.19). As this approach is also used for the neural delay, the same frequency 

dependency applies for the activation dynamics according to Equations 5.1-5.4, with a 

cut off frequency in relation to the time constant used and thus the viscous properties 

chosen for the discrete element (Equation 5.14-5.16). 

  

Figure 5-1 Design of two nodes connected with a truss element with viscous material properties in 
order to model a first order low pass filter 
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       ̇       

   

  
            (5.11)  

  ̇         ̇        (5.12)  

        ̇       

   

  
             (5.13)  

The viscous properties of the material used in the modelling of       is different 

depending on if the excitation level,      , is increasing or decreasing. The non-

linearity is defined by a tabulated list of relational values that translates into the curve 

seen in Figure 5-2. The resulting response of the system depending on level of input 

signal is presented in Section 7. With    ,      and      defined in Table 4-4 and 

with the mass of   ,       -  [   ], the viscous material property,  , is calculated 

according to Equation 5.9, as seen in Equation 5.14-5.16. The viscous material 

property becomes, in the simulations, relationships relating velocity,   [    ], and 

force,   [ ]. 

 
    

 

   
           [     ] (5.14)  

 
     

 

    
        [     ]         (5.15)  

 
     

 

    
         [     ]         (5.16)  

 

Equation 5.15 and 5.16 describes a non-linear viscous relationship that is visualized in 

Figure 5-2. 

 

 

Figure 5-2 Force versus velocity response curve for non-linear viscous material properties used in 
modeling of       (taken from the elbow model). 
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Due to the implementation of cocontraction, the neural excitation level has to be 

allowed to be negative and is therefore defined as, 

                        
(5.17)  

5.5 Signal Output 

Since the muscle activation level in the Hill-type muscle material is defined as, 

                      
(5.18)  

the same has to be true for the output from the activation dynamics. When an initial 

cocontraction level is desired, as in the elbow model, it has to be initiated after the 

output from the activation dynamics,                , such that, 

This implementation of cocontraction initiation is done in order to avoid the initial 

step response of             from a level of zero activation to the level of 

cocontraction. An initial step response might interfere with the response of the 

muscles and increase instability of the model. When             is defined as in 

Equation 5.19, it means that in order for             to reach an activation level 

below the cocontraction level,                 must be allowed to be negative. 

Thus, 

                                  
(5.20)  

      is given to the *MAT_MUSCLE material model, defined by a load curve 

function representing the instantaneous velocity of node    in the calculation of 

               . If cocontraction is used,                 is added to that level of 

activation. If no cocontraction is used,                 correlates with the muscle 

activation level (Equations 4.23-4.24). Muscles are selected for performing flexion or 

extension of the body regions as described by Östh (2010).  

                                (5.19)  



CHALMERS, Applied Mechanics, Master’s Thesis 2013:62 
28 

6 Simulations 

Simulations has mainly been done using LS-DYNA release V971 R5.1.1 and R6.1.0 

on a Red Hat based computer system equipped with Intel Xeon processors. Post 

processing has been done in LS-PREPOST version 4.0 and Matlab (The Mathworks, 

Natick MA). Unit set used during simulation of the elbow model and of the trunk 

model was mm, s, ton, N. Apart from simulating all parts of muscle activity feedback 

loop together with the Elbow model or the Trunk model, simulations have also been 

done in order to reassure that each part of the feedback loop is working as intended. 

This was done as part of the Elbow model simulation. When comparing the 

calculation of joint angle and the calculation of control signal, the LCM was run in the 

background of the simulation. Activity level was calculated by the uctrl1 subroutine, 

thus the LCM calculated an activity level based on the instantaneous elbow joint 

angle. This approach was used to reduce a cumulative error between the two methods 

and to exclude the errors imposed from implementation of the neural delay and 

activation dynamics equations. When modelling a step behaviour, for evaluation of 

the response of the low pass filter, in LS-DYNA (Equation 5.3), in order to minimize 

any transient behaviour, the step was introduced at           and a slight ramping 

with a duration of                 of the function. The result from the simulations 

are taken from the curvout-logfile, concerning the control algorithm and the elout-

logfile concerning muscle force properties. 

6.1 Elbow Model 

The Elbow Model, comprising of parts of the trunk with muscles added for the elbow 

and wrist of the right arm is used in the simulations. The initial constrained elbow 

motion, seen in Figure 6-1, and setup is denoted as simulation 31 in the works of Östh 

(Östh, 2010; 2011). The simulation setup is based on an in vivo human experiment 

using the ARMANDA haptic manipulator (de Vlugt et al., 2003, Östh et. al, 2011a). 

Since a neural delay in the sense of a sample and hold mechanism was not 

implemented in the LCM two simulations were made, one in which modelling of the 

neural delay was excluded. The results of the simulations are presented in Section 7.1, 

Figure 7-6 to Figure 7-11. 

 

Figure 6-1 Initial constrained rotation of the elbow joint as used in simulation 31 of the ARMANDA 
volunteer experiment (Östh, 2010;2011). 
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6.2 Trunk Model 

The validation of the Trunk model is done by measuring the response of the Chalmers 

AHBM with muscular activity level determined either by the LCM or the user defined 

uctrl1 subroutine. Simulation setup with the defined coordinate system is shown in 

Figure 6-2. The AHBM is positioned slightly above a seat construction comprised of 

two flat rigid surfaces that act as support for the back, hip and thigh of the AHBM. 

During the simulation a gravity load was applied to the AHBM in the z direction, 

denoted g in Equation 6.1, and the seat was accelerated according to Equation 6.2 in x 

direction, where positive x is defined in the forward facing direction of the AHBM.  

              
(6.1)  

 
 ̈        {

        
                      

        
 

(6.2)  

The  gravity load is applied to the Chalmers AHBM while the x-directional load is 

applied to the rigid seat. Since there are no muscles implemented in the arms or 

shoulders, the hands are locked in position relative to the rigid seat. The results of the 

simulations are presented in Section 7.2, divided in accordance to each body region 

controller and compared with a simulation using the uctrl1 subroutine. 

 

Figure 6-2 Isometric view of the Chalmers AHBM placed on a rigid seat and used in simulations of 
the performance of the trunk model. Also shown is the directions of the global coordinate system 
used for the Chalmers AHBM. 
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7 Results 

As can be seen in Figure 7-1 there is a minor difference between calculating the angle 

between two vectors using load curve functions and monitoring node rotation in a 

locally defined coordinate system though the overall result is almost identical. The 

measured nodal rotation is able to deliver a higher maximum rotational angle than the 

calculated vector angle.  

Figure 7-1 Comparison between the angle calculation for the elbow joint in the LCM using defined 
vectors as described in Section 4.2.1 and measuring the rotation of a node defined by a local 

coordinate system. 

By defining a low pass filter, a cut-off frequency is being defined at the same time. 

For frequencies below the cut-off frequency the phase shift is constant and the signal 

strength is unaffected. Above the cut-off frequency, signal strength is decreasing with 

frequency and the time delay decreases (Figure 7-2). With      34 (corresponding 

to           [ton/s] for a nodal mass of 1e-6 ton), the frequency response and 

time delay versus frequency is plotted in Figure 7-2. The resulting time delay and 

signal gain is approximately constant for frequencies below 1Hz (see Figure 7-2). The 

frequency response of the neural delay is valid for frequencies below 1Hz, where the 

delay is constant and signal level is preserved. As seen in Figure 7-2 signal amplitude 

is reduced by 50% at 8Hz, consistent with the calculations in Section 5.4. 
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Figure 7-2 Time delay versus frequency (dashed line, right Y-axis) and gain versus frequency (solid 
line, left Y-axis) for the first order low pass filter where T=0.034, used for modeling neural delay in 
the elbow model. Logarithmic X-axis. 

In Figure 7-3 the calculation of joint angle with defined vectors and the output from 

the control signal is compared between the uctrl1 subroutine and the LCM. The 

comparative curves in Figure 7-3 are close to identical, showing that the calculations 

performed concerning the control algorithm in the LCM give the same result as the 

uctrl1 subroutine. 

 
Figure 7-3 Comparison plot of the calculated elbow joint angle and resulting controller signal from 
the LCM and the uctrl1 sub-routine. The simulation is made without neural delay added. 

In Figure 7-4 the same method is used but with neural delay added. The difference in 

signal peak level for       and      is due to the negative gain imposed by the neural 

delay in the LCM, as seen in Figure 7-2. It is also noted in Figure 7-4 the difference at 

the start of the simulation between the sample and hold delay used in the uctrl1 

subroutine and the delay filter used in the LCM. Since the neural delay in the LCM is 

a dynamic filter, the delay is defined by the time constant, referring to the time it takes 

for the output signal to reach 63% of the input signal as described in Section 5.2. The 
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smoother result of     , when using the LCM, is due to the low pass filtering 

characteristics of the neural delay. 

 

Figure 7-4 Comparison plot, as Figure 7-2 but with the different approaches to neural delay added 

The step response for the mechanical representation of the activation dynamics system 

is as expected. There is a clear distinction in the response time for       depending 

on whether the response is to a positive or negative step. In Figure 7-3 the response 

for       is 63% at           which is         after the step, and in accordance 

with           . For the negative step, at      , the response of       is slower, 

63% of the response occurring at       , equivalent to          .       has a 

constant response time of          , 63% response is achived at           and 

         . 

 

Figure 7-5 Simulated step response of the activation dynamics model in LS-DYNA. The difference in 
response time for       depending on if the step is positive or negative is as expected relative to 
      and     . 
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7.1 Simulation of Elbow Model 

The comparative simulations show a great deal of resemblance between the LCM and 

the sub-routine method in the performance of the functions and in the overall angle of 

the elbow joint. In Figure 7-6 and 7-7, activation level sent to the flexor and extensor 

muscles are displayed. Figure 7-6 is taken from a simulation using the uctrl1 

subroutine as provider of muscle activity. As seen in Figure 7-6 to 7-11, the addition 

or absence of a neural delay affect the number of overshoots before the signal is 

stabilizing. Due to the smoothening effect of the low pass filter used as neural delay in 

the LCM, this behaviour is reduced in that approach. 

7.1.1 Neural Delay Excluded 

As seen in Figure 7-3, the calculation of the angle of the joint and the calculation of 

control angle results in similar results for the LCM and sub-routine when using the 

same joint motion as input to the calculations. In Figure 7-6 to 7-9, results are 

presented from simulations as described in Chapter 6.1 without the implementation of 

a neural delay filter.  

 

Figure 7-6 Resulting joint angle and controller signal when simulating the elbow response in the 
ARMANDA setup. 

The difference in neural excitation in Figure 7-7 is due to the difference in the 

definition of       according to Equation 4.24 and Equation 5.12. Still it is seen that 

the LCM reacts slower in excitation when switching from extensor to flexor activity. 

In some part due to extensor peak excitation occurring later for the LCM than for the 

uctrl1 subroutine and due to the de-excitation being slower for the LCM than for the 

subroutine. 

As described in Section 4.1.3 and Section 5.4. The neural de-excitation of the flexor 

muscles is much more rapid for the subroutine than in the LCM. This difference is 

due to the control signal being limited in the LCM not to be negative. If the control 

signal was allowed to be negative, the de-excitation of the muscles in the LCM would 

probably be faster.   
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Figure 7-7 Level of Neural excitation during simulated elbow motion in the ARMANDA simulation 
setup. The apparent difference of signal level is due to cocontraction being added later for the LCM 
signal. 

The level of extensor activity seen in Figure 7-8 differs between the LCM and the 

uctrl1 subroutine, similar to the difference in calculated final angle of the elbow joint 

(Figure 7-6). The LCM achieves a somewhat slower response but with a reduced 

overshoot, in part due to the reduced peak level and smoothening effect of the neural 

delay low pass filter. 

 

Figure 7-8 Level of muscle activation simulated to resemble the results from the uctrl1 subroutine 
based on simulation of the ARMANDA haptic test setup. 

The total force in Figure 7-9 is based on the passive and active forces in the muscle. 

When comparing the shape of the curves in Figure 7-8 and 7-9 it is seen that the level 

of muscular activity plays a vital part in the production of muscle force, as seen in the 

Hill-model, Equation 2.1.  
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Figure 7-9 Total force exerted by Biceps Brachii long head and Triceps long head comparing the LCM 
with the uctrl1 subroutine with neural delay excluded. 

The results show that even though the neural delay low pass filter is excluded from 

the LCM, the result still differs from the uctrl1 subroutine.  

7.1.2 Neural Delay Included 

Neural delay adds a further level of complexity in the model. The effect of the 

different approaches to model the neural delay is seen in Figure 7-10 to 7-13. The 

LCM has a slower response with reduced peak level and therefore less over-shoot, 

especially seen in the result of     ,       and      . 

 

Figure 7-10 Calculated joint angle and control signal with delay added to the uctrl1 and LCM 
models. 



CHALMERS, Applied Mechanics, Master’s Thesis 2013:62 
36 

The faster de-excitation of the uctrl1 subroutine is seen in Figure 7-11 concerning 

flexor activity. This response is attributed to           for the uctrl1 subroutine 

while          was used for the LCM, resulting in an increased negative 

gradient for the uctrl1 subroutine de-excitation. 

 

Figure 7-11 Neural excitation level with neural delay added in the LCM, compared to the uctrl1 
subroutine. 

The difference shown in Figure 7-11 is further enhanced in Figure 7-12, showing 

activation level sent to the flexor and extensor muscles in the elbow model. Though, 

since basically the same gradient is used as input, the difference is much less than for 

the level of excitation. The LCM appears to show a slightly enhanced stability.  

 

Figure 7-12 ARMANDA simulation of muscle activity level with neural delay model added. Flexion 
on the left and extension on the right. 

Concerning the force exerted by the muscles in the LCM when delay is included 

(Figure 7-13), the behavior resembles that of no delay present, that is, it is closely tied 

to the muscle activity level (Figure 7-12). As the muscle activity level differs from the 

result from the uctrl1 subroutine so does the total exerted force.  
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Figure 7-13 Total force produced by Biceps Brachii long head and Triceps long head in the elbow 
model simulation with neural delay included in both methods. 
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7.2 Simulation of seated Active Human Body Model 

The test setup is described in Section 6.2. Presented are the results according to each 

body region controller (Figure 7-16 to 7-21). Due to the Chalmers AHBM being 

supported by the backrest, the lumbar rotation is much less than the cervical- and head 

rotation. This results in a much lower level of muslce activity, perhaps also attributed 

to the size of the muscles controlling lumbar rotation compared to the muscles 

controlling cervical- and head rotation. Since the backrest is in level with the clavicle 

(Figure 6-2), the cervical region may have some support from the backrest while the 

head has none. The motion of head centre of gravity relative to T1 vertebrae can be 

seen in Figure 7-14 (see Figure 4-3 for reference to placement of head centre of 

gravity and T1 vertebrae). In Figure 7-15 the rotation along the global y-axis for the 

head centre of gravity is seen. 

 
Figure 7-14 X- and Z-displacement of head centre of gravity relative to T1 vertebrae displacement 
using geometrical data provided in LS-PrePost. 

 

Figure 7-15 Rotational displacement of head centre of gravity around the global Y axis of the 
Chalmers AHBM 
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7.2.1 Lumbar Rotation 

The result in lumbar rotation is close to identical between the two methods compared 

in Figure 7-16 and 7-17. This show the effect of the support from the rigid backrest. 

Again, the high frequency filtering properties of the neural delay filter of the LCM is 

shown in Figure 7-16 concerning     . 

 

Figure 7-16 Input and output signal taken from the lumbar controller. Note that the axis scale is 
different when referring to plots from other controllers or from plot of Na(t). 

 
Figure 7-17 Activation level for flexor and extensor muscle in the lumbar region. Comparison 
between uctrl1 model and LCM model. Take notice of the properties of the axis scaling. 
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7.2.2 Cervical Rotation 

Rotation of the cervical region, since unsupported, show a higher level of muscle 

activity and a greater peak rotational deviation from initial state as seen in Figure 7-

18. The slight delay of the LCM compared to the uctrl1 subroutine seen at 0.6 s in 

Figure 7-19 reveals itself as a slightly increased peak rotational angle for the LCM as 

seen in Figure 7-18.  

 

Figure 7-18 Input and output signal taken from the cervical controller. Note that the axis scale is 
different when referring to plots from other controllers or from plot of Na(t). 

 

Figure 7-19 Activation level for flexor and extensor muscles in the cervical region. Comparison 
between uctrl1 model and LCM model. 
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7.2.3 Head Rotation 

Even though the level of activity is increased in peak flexor activity in Figure 7-21, 

the difference is not shown in the same regard in resulting head rotational angle in 

Figure 7-20. As for the cervical region, the peak flexor activation level for the LCM is 

slightly lagging behind the uctrl1 subroutine. Since the resulting head rotational angle 

seem to deviate less between the two methods (Figure 7-20) than for cervical rotation 

(Figure 7-18) there is a clear indication that the support from passive body structures 

are limiting the rotation of the head, perhaps in greater regard than the muscular 

activity.  

 

Figure 7-20 Input and output signal taken from the head controller. Note that the axis scale is 
different when referring to plots from other controllers or from plot of Na(t). 

 

Figure 7-21 Activation level for flexor and extensor muscles in the cervical region controlling head 
rotation in the sagittal plane. A comparison between uctrl1 model and LCM model.  
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8 Discussion 

The proposed LCM provides the means to implement feedback control using standard 

LS-DYNA keywords for the calculation of muscle activity for HBMs It may give the 

possibility for the Chalmers AHBM to be executed with the use of standard LS-

DYNA binaries. The performance of the LCM has been compared to the uctrl1 

subroutine method in simulations of elbow joint angle and Chalmers AHBM trunk 

muscle reactions. Alternative implementations together with remarks of the 

implemented LCM are discussed in this Section. 

8.1 Comments to the proposed method  

Alternatives are presented that have been considered but rejected for various reasons 

when investigating the various functions and how to model them in LS-DYNA. These 

discussions refer to the results in Section 7, where the performance of the 

functionality of the LCM is presented.  

8.1.1 Input Signal 

An alternative method of measuring the angle of a joint is present in LS-DYNA. The 

rotational displacement of a node can be read during simulation via function defined 

load curves, by defining the rotation in relation to another node or to a locally defined 

coordinate system. What proved difficult was to determine which node to use and the 

ability to define a local coordinate system that coincides with the rotation of the body 

part. The functionality in *DEFINE_CURVE_FUNCTION concerning rotation of a 

node allows to retrieve not only the rotational angle of a node but also the rotational 

velocity and rotational acceleration. This functionality might be used as means to 

implement a control algorithm without having to define a one degree of freedom node 

to perform the integrative task in the control algorithm.  

Comparative plots between the two methods can be seen in Figure 7-1. The method 

was only tested on the elbow model and not on the seated trunk model. The results 

show that measuring nodal rotation is able to show the same rotational deviation from 

initial state as the use of vector calculations. Since nodal rotation is given as 

displacement from initial position, the reference angle is zero. The benefit is that the 

initial angle does not need to be calculated manually. When using vector calculation 

the angle is given in relation to the vertical axis and is initially non-zero. 

8.1.2 Neural delay 

The proposed neural delay implementation consisting of a first order filter is signal 

gain and time delay frequency dependant. While one can wish that this is in line with 

the characteristics of the human neural signal regime no papers have been found to 

support that such is the case. Meijer et al. (2007; 2012) describe a neural delay 

consisting of a low pass first order filter, however in their work this frequency 

dependant time delay is placed as part of the activation dynamic but the 

implementation is also thought to model the delay caused by the length of the neural 

axons. The basis for the choice of frequency dependence has not been further 

investigated but may be due to the modelling of activation dynamics. More complex 

filters that model a frequency independent time delay should be able to improve on 

the performance, however, the difficulty lies in determining an appropriate 

mechanical interpretation of the filter design.  
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The negative gain imposed on the signal by the filter in the LCM is seen in lower peak 

values (Figure 7-4). The lower peak values will contribute to a slower and more 

unstable response than compared to the uctrl1 subroutine. Several concepts other than 

the proposed method have been considered but rejected, due to the lack of keywords 

providing one or several parts of the solution. Sensor keywords (*SENSOR) in LS-

DYNA provide means to determine for how long a sensor shall remain being on or 

off, however, in order to delay a semi-continuous signal, there would need to be as 

many sensors as time steps. To reduce the number of sensors, the location of a sensor 

could be defining when the magnitude of a certain node should be read or written to. 

However, since there are no means to create nodes during a simulation, all nodes 

would have to be predefined and would require as many nodes as time steps.  

A way of improvement to the model would be to add a keyword function in LS-

DYNA that defines a circle vector that can be used to store data in order to model a 

delay. The size of the vector and resolution of the data stored is to be user defined. An 

implementation possible would be to add a simple circular vector functionality to the 

*DEFINE_CURVE_FUNCTION keyword that is able to store information from load 

curves based on a defined duration of time steps or simulated time.  

When defining load curves in the form of tables an offset can be introduced to the 

abscissa and ordinate values. An easy implementation for a delay would be if this 

could be a general function independent on whether the load curve is defined in the 

form of a table or in the form of a mathematical expression. This would allow the 

offset to be used as a delay to the load curve affected by the offset. Another approach 

would be to add the definition of a delay time in conjunction to birth- and death time 

in *BOUNDARY_PRESCRIBED_MOTION. Also necessary for this implementation 

to work would be to allow any type of defined load curve to be affected by birth-, 

death- and delay time, since according to the manual only predefined in the form of 

tables load curves are allowed to be affected by birth- and death time. 

8.1.3 Control Signal 

The results from the simulations indicate that the implemented approach to calculation 

of a control signal in the LCM is able to achieve the same result as the uctrl1 

subroutine. The use of one degree of freedom nodes for       and       seem to 

impose no errors in the calculations though errors might occur if a load is applied onto 

the node in the direction of motion. This has not been modelled since loads in the 

simulations has been applied to rigid bodies only. The absence of a filter for       
has not brought any inconsistency or singularity of the control signal in the LCM, 

since higher frequencies are filtered in the current implementation of the neural delay 

filter.  

Concerning alternative models, no forward modelling, as implied by Section 2.3.3, 

has been implemented. Though, the articles in the literature review point to the fact 

that rapid and often repeated tasks such as posture stability involve an internal, 

forward model in the CNS activity.  

8.1.4 Activation Dynamics 

Care must be taken when defining the physical appearance of the activation dynamics 

systems. Since the element is discrete and no contact is defined between the nodes, 

they are able to move past one another which means that an unloading scenario can 

become a loading scenario if the slave node move past the master node. For level of 
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excitation this brings no errors in the calculations, while for the activation dynamics 

this characteristic affects the latency concerning loading and unloading scenarios.  

The control signal output is allowed to be negative which affects the performance of 

the speed of change in the excitation and activation level. A negative control signal 

results in faster de-excitation. 

In the current implementation,    and   , because of the cocontraction level being 

added after the       dynamics, is allowed to be negative in the LCM. The resulting 

activation level applied in the muscles is then correct but there are several ways in if 

and how to implement a cocontraction level that affect the dynamic systems of       

and      . The result is that the reaction is too slow for the resulting level of muscle 

activation. A solution would be to instead of defining Na(t) as in Equation 5.10, Na(t) 

is defined between zero and one. The tension in the damper connecting the nodes 

should have an initial level of stress according to the level of cocontraction, and that 

the stress should not be allowed to be below 0,5% as set in the uctrl1 subroutine for 

Ne and Na, seen in Figure 7-7. In the activation dynamics system, an initial velocity 

of the Na node can also be used to initiate a cc level, however, the cc level should be 

maintained throughout the simulation, as a raised ground level, but allowed to 

decrease for one set of muscles if the other set is increasing.  

8.2 Elbow Model simulation 

In Figure 7-4 it can be seen that the calculations referring to joint angle and controller 

output coincide with the result of the uctrl1 subroutine. This stands in contrast to the 

results presented in Figure 7-6 to 7-8, where activation dynamics where included and 

muscle activation was determined for each method accordingly, without a neural 

delay. Therefore, part of the reason to the different response of the LCM is probably 

found in the activation dynamics and the implementation of cocontraction. Even 

though the same time constants have been used, it might be needed to use different 

time constants in order to get the same response and appearance as for the subroutine. 

The deactivation of       seem to be slower for the LCM than for the uctrl1 method. 

The reason for this is not clearly understood but shows that the model would require 

further adjustments. Figure 5-4 show that the implemented method is working for a 

step function but when comparing the output from the LCM and uctrl1 subroutine 

method the output differs. There are differences present in the way the cocontraction 

level is implemented and how the excitation and activation level is calculated but in 

theory the methods should achieve the same functionality. As described in Section 

8.1.4 and seen in Appendix A, the input and output signal to and from the   - and    

calculations are filtered as to allow different ranges for the signals. This filtering can 

be done in a number of ways to achieve similar output of muscle activation and it is 

probably this filtering that causes the muscle activation in the LCM and the uctrl1 

subroutine to differ. Apart from difference in muscle activation it was seen that the 

computational time was decreased with approximately 30% when using the LCM 

compared to uctrl1 computation with neural delay modelled.  

8.3 Seated Chalmers AHBM simulation 

Due to the model being exposed to a greater level of applied external load, the 

calculation of the level of muscle activity contributions to the overall motion of the 

body part is less than for the elbow model. Still, because of the different approaches to 

neural delay and implementation in how the signals are filtered and handled in the 
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activation dynamics, there are some differences in the LCM and the uctrl1 subroutine. 

As in the elbow model the response of the LCM show decreased peak level and partly 

therefore a slower response in the activation level. A benefit from using a low pass 

filter as a model for neural delay is that signal transients are effectively smoothened 

which makes it unnecessary  to add a filter to the derivative part of the control 

algorithm,      . Elapsed computational time was decreased by 14% when using the 

LCM. 
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9 Conclusion 

The aim of this work has been to investigate the possibility to implement a feedback 

control algorithm using standard keywords, specifically for simulation of AHBM 

muscle activity in pre-crash situations. The resulting approach, called the LCM show 

some differences compared to the uctrl1 sub-routine controlled model. The 

differences are in the modelling of neural delay in LS-DYNA with the use a low-pass 

filter and in the model of the activation dynamics. A suggestion of how to implement 

a set of keywords that could provide a time delay functionality, similar to that in the 

uctrl1 model has been made. Such a feature would benefit the functionality in the 

LCM. Further work is needed in order to have the LCM model perform as the uctrl1 

subroutine in the current Chalmers AHBM especially concerning the modelling of 

muscle activation dynamics, specifically in the modelling of muscle deactivation. The 

LCM show a great promise in decreasing elapsed computational time compared to the 

uctrl1 method. In the simulations made a decrease of 30% for the elbow model and 

14% for the seated Chalmers AHBM model has been seen. 
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Appendix A 

Code used for calculation of muscular activity level for flexor- and extensor muscles 

controlling elbow motion based on the elbow joint angle. The code is referred to as 

the LCM for the elbow model in the report. 

*KEYWORD 

*DATABASE_CURVOUT 

$#      dt    binary      lcur     ioopt 

  0.000100         1         0         1 

*DATABASE_BNDOUT 

$#      dt    binary      lcur     ioopt 

  0.000100         0         0         1 

*DATABASE_NODOUT 

$#      dt    binary      lcur     ioopt   option1   option2 

  0.000100         0         0         1     0.000         0 

*DATABASE_HISTORY_NODE 

$#     id1       id2       id3       id4       id5       id6       id7       id8 

    200501    200503    200504    200021    200022    200601    200603    200604 

$Controller node whos velocity is equal to e(t) 

*BOUNDARY_PRESCRIBED_MOTION_NODE_ID 

$#      id                                                               heading 

         1Controller node 

$#     nid       dof       vad      lcid        sf       vid     death     birth 

    200020         1         0    200003  1.000000         01.0000E+28     0.000 

*BOUNDARY_SPC_NODE 

$#     nid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 

    200021         0         0         1         1         1         1         1 

$Local coordinate system measuring the flex of the lower arm versus upper arm initial 

flex=0.0 

*DEFINE_COORDINATE_NODES 

$#     cid        n1        n2        n3      flag       dir 

    200090   8530167   8530355   8530169         1         X 

$------------------------------------------------------------------------------  

$----------------------------Calculation of y(t)------------------------------- 

$#Vector calculation of angle between humerus and ulna of arm 

*DEFINE_CURVE_FUNCTION_TITLE 

U_humX 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200041         0  1.000000  1.000000     0.000     0.000         0 

$# function 

CX(8530167)-CX(8540955) 

*DEFINE_CURVE_FUNCTION_TITLE 
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U_humY 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200042         0  1.000000  1.000000     0.000     0.000         0 

$# function 

CY(8530167)-CY(8540955) 

*DEFINE_CURVE_FUNCTION_TITLE 

U_humZ 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200043         0  1.000000  1.000000     0.000     0.000         0 

$# function 

CZ(8530167)-CZ(8540955) 

*DEFINE_CURVE_FUNCTION_TITLE 

U_ulnX 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

   200044         0  1.000000  1.000000     0.000     0.000         0 

$# function 

CX(8530319)-CX(8530167) 

*DEFINE_CURVE_FUNCTION_TITLE 

U_ulnY 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200045         0  1.000000  1.000000     0.000     0.000         0 

$# function 

CY(8530319)-CY(8530167) 

*DEFINE_CURVE_FUNCTION_TITLE 

U_ulnZ 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200046         0  1.000000  1.000000     0.000     0.000         0 

$# function 

CZ(8530319)-CZ(8530167) 

*DEFINE_CURVE_FUNCTION_TITLE 

L_hum 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200047         0  1.000000  1.000000     0.000     0.000         0 

$# function 

SQRT((lc200041*lc200041)+(lc200042*lc200042)+(lc200043*lc200043)) 

*DEFINE_CURVE_FUNCTION_TITLE 

L_uln 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200048         0  1.000000  1.000000     0.000     0.000         0 

$# function 

SQRT((lc200044*lc200044)+(lc200045*lc200045)+(lc200046*lc200046)) 
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*DEFINE_CURVE_FUNCTION_TITLE 

sp_hum_uln 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200049         0  1.000000  1.000000     0.000     0.000         0 

$# function 

lc200041*lc200044+lc200042*lc200045+lc200043*lc200046 

*DEFINE_CURVE_FUNCTION_TITLE 

Theta 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200050         0  1.000000  1.000000     0.000     0.000         0 

$# function 

ACOS(lc200049/(MAX(1.0E-20,lc200047*lc200048))) 

*DEFINE_CURVE_FUNCTION_TITLE 

Theta 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200052         0  1.000000  1.000000     0.000     0.000         0 

$# function 

AY(8530167) 

*DEFINE_CURVE_FUNCTION_TITLE 

Check if activation dynamics for extension is ok 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200053         0  1.000000  1.000000     0.000     0.000         0 

$# function 

cx(200503)-cx(200504) 

*DEFINE_CURVE_FUNCTION_TITLE 

Check if activation dynamics for flexion is ok 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200054         0  1.000000  1.000000     0.000     0.000         0 

$# function 

cx(200603)-cx(200604) 

$----------------------------------------------------------------------- 

$------------------------------DELAY, yd(t)----------------------------- 

$ Delay is implemented in the same way as the activation dynamics, a first order 

filter 

$ The initial position is turned to reference by subtracting the reference angle. 

Otherwise 

$ the muscle will react on the initial error of y(t) and yd(t) instead of the 

difference  

$ between y(t) and r(t) 

*DEFINE_CURVE_FUNCTION_TITLE 

Theta 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
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    200051         0  1.000000  1.000000     0.000     0.000         0 

$# function 

lc200050-lc200031 

*BOUNDARY_PRESCRIBED_MOTION_NODE_ID 

$#      id                                                               heading 

         0y(t) 

$#     nid       dof       vad      lcid        sf       vid     death     birth 

    200021         1         0    200051  1.000000         01.0000E+28     0.000 

*BOUNDARY_SPC_NODE 

$#     nid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 

    200021         0         0         1         1         1         1         1 

    200022         0         0         1         1         1         1         1 

*SECTION_SPRING_DAMPER 

$#   secid       dro        kd        v0        cl        fd 

         5         0     0.000     0.000     0.000     0.000 

$#     cdl       tdl 

         0         0 

*ELEMENT_DISCRETE 

$#   eid     pid      n1      n2     vid               s      pf          offset 

       9       5  200021  200022       0        1.000000       0           0.000 

*ELEMENT_MASS 

$#   eid     nid            mass     pid 

      10  200022   1.000000e-006       5 

*MAT_DAMPER_VISCOUS_TITLE 

c_yd(t) 

$#     mid        dc 

         5   2.00E-5 

$ c=m/Td, Td=50E-3 [s] m=1E-6 [kg]=> c=2E-5, Td=100E-3 m=1E-6 => c=1E-5 

*PART 

$# title 

yd(t) 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         5         5         5         0         0         0         0         0 

$----------------------------------------------------------------------- 

$-----------------------------PID CONTROLLER---------------------------- 

$ 

$---Reference signal r(t) 

$ 

*DEFINE_CURVE 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200031         0  1.000000  1.000000     0.000     0.000         0 
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$#                a1                  o1 

               0.000           1.5383000         

          10.0000000           1.5383000         

$ 

$---Controller gains and initial conditions 

$          

$ 200032 - Cocontraction excitation 

*DEFINE_CURVE_FUNCTION 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200032         0  1.000000  1.000000     0.000     0.000         0 

$# function 

0.0500000 

$ 

$ 200033 - Controller gain kp 

*DEFINE_CURVE_FUNCTION 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200033         0  1.000000  1.000000     0.000     0.000         0 

$# function 

$1.000 

0.307000000 

$ 

$ 200034 - Controller gain ki 

*DEFINE_CURVE_FUNCTION 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200034         0  1.000000  1.000000     0.000     0.000         0 

$# function 

$0.700 

0.000000000 

$     

$ 200035 - Controller gain kd    

*DEFINE_CURVE_FUNCTION 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200035         0  1.000000  1.000000     0.000     0.000         0 

$# function 

$0.200 

0.06865285 

$---------------------------------------------------------------------- 

$------------------------CONTROL ALGORITHM----------------------------- 

$y(t) is defined as positive for flexion and negative for extension from initial 

position 

*DEFINE_CURVE_FUNCTION_TITLE 



CHALMERS, Applied Mechanics, Master’s Thesis 2013:62 
55 

yd(t) 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200001         0  1.000000  1.000000     0.000     0.000         0 

$# function 

$lc200050 

vx(200022) 

$AY(8530167) 

*DEFINE_CURVE_FUNCTION_TITLE 

r(t) 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200002         0  1.000000  1.000000     0.000     0.000         0 

$# function 

lc200031 

$0.0 

*DEFINE_CURVE_FUNCTION_TITLE 

e(t)=r(t)-y(t) 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200003         0  1.000000  1.000000     0.000     0.000         0 

$# function 

-lc200001 

$lc200002-lc200001 

*DEFINE_CURVE_FUNCTION_TITLE 

ie(t) 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200004         0  1.000000  1.000000     0.000     0.000         0 

$# function 

dx(200020) 

*DEFINE_CURVE_FUNCTION_TITLE 

de/dt 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200005         0  1.000000  1.000000     0.000     0.000         0 

$# function 

accx(200020) 

*DEFINE_CURVE_FUNCTION_TITLE 

u(t)=Kp*e(t)+Ki*ie(t)+Kd*de/dt 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200006         0  1.000000  1.000000     0.000     0.000         0 

$# function 

lc200033*lc200003+lc200034*lc200004+lc200035*lc200005 

$-----------------------------END OF PID CONTROLLER---------------------------- 

$------------------------------------------------------------------------------ 
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$-----------------------------ACTIVATION DYNAMICS------------------------------ 

$------The signal is negated since u(t)<0 when the arm flexes (thus provide positive 

signal to the extensors) 

$      lc200300 and 400 is sent to the coupled first order filters to add activation 

dynamics to the signal  

*DEFINE_CURVE_FUNCTION_TITLE 

u for extensors 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200300         0  1.000000  1.000000     0.000     0.000         0 

$# function 

-lc200006 

*DEFINE_CURVE_FUNCTION_TITLE 

u for flexors 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200400         0  1.000000  1.000000     0.000     0.000         0 

$# function 

lc200006 

$--------------------------------------------------------------------------------- 

$                     COUPLED 1ST ORDER FILTER EXTENSION                           

$--------------------------------------------------------------------------------- 

*BOUNDARY_PRESCRIBED_MOTION_NODE_ID 

$#      id                                                               heading 

         0u(t) 

$#     nid       dof       vad      lcid        sf       vid     death     birth 

    200501         1         0    200300  1.000000         01.0000E+28     0.000 

*BOUNDARY_PRESCRIBED_MOTION_NODE_ID 

$#      id                                                               heading 

         0Ne(t) 

$#     nid       dof       vad      lcid        sf       vid     death     birth 

    200503         1         0    200310  1.000000         01.0000E+28     0.000 

*BOUNDARY_SPC_NODE 

$#     nid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 

    200501         0         0         1         1         1         1         1 

    200502         0         0         1         1         1         1         1 

    200503         0         0         1         1         1         1         1 

    200504         0         0         1         1         1         1         1 

*DEFINE_CURVE_FUNCTION_TITLE 

Ne(t) 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200310         0  1.000000  1.000000     0.000     0.000         0 

$Func 

min(max(VX(200502),-lc200032-0.005),1.0) 
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*DEFINE_CURVE_TITLE 

F-v  

$function for loading and unloading scenarios of Tna, c=m/Tnaa (F>0,v>0) and c=m/Tnad 

(F<0,v<0) 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200314         0  1.000000  1.000000     0.000     0.000         0 

$#                a1                  o1 

             -1.00E4              -0.333       

                   0                   0           

              1.00E4               2.000 

*SECTION_SPRING_DAMPER 

$#   secid       dro        kd        v0        cl        fd 

         1         0     0.000     0.000     0.000     0.000 

$#     cdl       tdl 

         0         0 

*SECTION_SPRING_DAMPER 

$#   secid       dro        kd        v0        cl        fd 

         2         0     0.000     0.000     0.000     0.000 

$#     cdl       tdl 

         0         0 

*ELEMENT_DISCRETE 

$#   eid     pid      n1      n2     vid               s      pf          offset 

       1       1  200501  200502       0        1.000000       0           0.000 

       2       2  200503  200504       0        1.000000       0           0.000 

*ELEMENT_MASS 

$#   eid     nid            mass     pid 

       3  200502   1.000000e-006       1 

       4  200504   1.000000e-006       2  

*MAT_DAMPER_VISCOUS_TITLE 

TNe=M/DC 

$#     mid        dc 

         1 2.8571E-5 

*MAT_DAMPER_NONLINEAR_VISCOUS_TITLE 

TNa=M/DC 

$#     mid      lcdr 

         2    200314 

$ If time is defined in ms, the dc constants should be 2.8571E-8 and 2.0000E-7 

$ In accordance with Tne=35ms and Tnaa=5ms, Tnad=30ms 

*PART 

$# title 

TNe 
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$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         1         1         1         0         0         0         0         0 

*PART 

$# title 

TNa 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         2         2         2         0         0         0         0         0 

$--------------------------------------------------------------------------------- 

$                     COUPLED 1ST ORDER FILTER FLEXION                           

$--------------------------------------------------------------------------------- 

*BOUNDARY_PRESCRIBED_MOTION_NODE_ID 

$#      id                                                               heading 

         0u(t) 

$#     nid       dof       vad      lcid        sf       vid     death     birth 

    200601         1         0    200400  1.000000         01.0000E+28     0.000 

*BOUNDARY_PRESCRIBED_MOTION_NODE_ID 

$#      id                                                               heading 

         0Ne(t) 

$#     nid       dof       vad      lcid        sf       vid     death     birth 

    200603         1         0    200410  1.000000         01.0000E+28     0.000 

*BOUNDARY_SPC_NODE 

$#     nid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 

    200601         0         0         1         1         1         1         1 

    200602         0         0         1         1         1         1         1 

    200603         0         0         1         1         1         1         1 

    200604         0         0         1         1         1         1         1 

*DEFINE_CURVE_FUNCTION_TITLE 

Ne(t) 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200410         0  1.000000  1.000000     0.000     0.000         0 

$Func 

min(max(VX(200602)/1.73,-lc200032-0.005),1.0) 

*DEFINE_CURVE_TITLE 

F-v  

$function for loading and unloading scenarios of Tna, c=m/Tnaa (F>0,v>0) and c=m/Tnad 

(F<0,v<0) 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200414         0  1.000000  1.000000     0.000     0.000         0 

$#                a1                  o1 

             -1.00E4              -0.333       

                   0                   0           
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              1.00E4               2.000 

*SECTION_SPRING_DAMPER 

$#   secid       dro        kd        v0        cl        fd 

         3         0     0.000     0.000     0.000     0.000 

$#     cdl       tdl 

         0         0 

*SECTION_SPRING_DAMPER 

$#   secid       dro        kd        v0        cl        fd 

         4         0     0.000     0.000     0.000     0.000 

$#     cdl       tdl 

         0         0 

*ELEMENT_DISCRETE 

$#   eid     pid      n1      n2     vid               s      pf          offset 

       5       3  200601  200602       0        1.000000       0           0.000 

       6       4  200603  200604       0        1.000000       0           0.000 

*ELEMENT_MASS 

$#   eid     nid            mass     pid 

       7  200602   1.000000e-006       3 

       8  200604   1.000000e-006       4  

*MAT_DAMPER_VISCOUS_TITLE 

TNe=M/DC 

$#     mid        dc 

         3 2.8571E-5 

*MAT_DAMPER_NONLINEAR_VISCOUS_TITLE 

TNa=M/DC 

$#     mid      lcdr 

         4    200414 

$ If time is defined in ms, the dc constants should be 2.8571E-8 and 2.0000E-7 

$ In accordance with Tne=35ms and Tnaa=5ms, Tnad=30ms 

*PART 

$# title 

TNe 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         3         3         3         0         0         0         0         0 

*PART 

$# title 

TNa 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         4         4         4         0         0         0         0         0 

$----------------------------------------------- 
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$lc200105 The result from the activation dynamics is called and used to provide ALM 

for the muscles in the arm                   

$------ 

$(cocon+Na(t)>0.0) 

*DEFINE_CURVE_FUNCTION_TITLE 

Extension filter ALM 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200301         0  1.000000  1.000000     0.000     0.000         0 

$# function 

max(vx(200504)+lc200032+0.005,0.0) 

*DEFINE_CURVE_FUNCTION_TITLE 

Extension filter ALM<1.0 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200302         0  1.000000  1.000000     0.000     0.000         0 

$# function 

MIN(lc200301,1.0) 

$(cocon+Na(t)>0.0) 

*DEFINE_CURVE_FUNCTION_TITLE 

Flexion ALM 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200401         0  1.000000  1.000000     0.000     0.000         0 

$# function 

max(vx(200604)+lc200032+0.005,0.0) 

*DEFINE_CURVE_FUNCTION_TITLE 

Flexion ALM 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

    200402         0  1.000000  1.000000     0.000     0.000         0 

$# function 

MIN(lc200401,1.0) 

$------------------------END OF ACTIVATION DYNAMICS----------------------------- 

$------------------------------------------------------------------------------- 

*NODE 

$#   nid               x               y               z      tc      rc 

$  200090      61.0000229    -206.4037170     209.0350952       0       0 

  200020             0.0        1003.000           210.0       0       0 

  200021             0.0        1002.000           210.0       0       0 

  200022             1.0        1002.000           210.0       0       0   

  200501           0.000        1000.000           210.0       0       0 

  200502        1.000000        1000.000           210.0       0       0 

  200503          10.000        1000.000           211.0       0       0 

  200504        0.000000        1000.000           211.0       0       0 
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  200601           0.000        1001.000           210.0       0       0 

  200602        1.000000        1001.000           210.0       0       0 

  200603          10.000        1001.000           211.0       0       0 

  200604        0.000000        1001.000           211.0       0       0 

*END 
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Appendix B 

The uctrl1 subroutine is used to add a PID regulator for the muscular activity level in 

the Chalmers AHBM. First and foremost to add a possibility to keep the posture 

during simulations with low loads such as in evasive maneuvers and with a time 

duration greater than a few hundred milliseconds. 

The structure is as follows: 

1. Uctrl1 

1.1. Memory allocation, variable initiation 

1.2. Vector initiation. 

1.2.1. External load curve id for left and right hand side 

1.2.1.1. Reference 

1.2.1.2. Length 

1.2.1.3. Strain 

1.2.1.4. Controller signal 

1.2.1.5. Excitation 

1.2.1.6. Activation 

1.2.2. External and internal rostral and caudal node ids 

1.2.2.1. External rostral left hand side 

1.2.2.2. Internal rostral right hand side 

1.2.2.3. External caudal left hand side 

1.2.2.4. Internal caudal right hand side 

1.2.3. Initial length of each left and right hand side muscle 

1.2.4. Muscle recruitment vector 

1.3. Dump AHBM data control, to allow restart 

1.3.1. If not restart, don’t load dump data 

1.3.2. If restart, load dump data from ahbm_dump 

1.4. Calculation of control signals (r.791) 

1.4.1.  If cycle = 1 then calculate the current angles to be used as reference for the 

coming cycles 

1.4.2.  Else calculate the angular difference between current angle and the reference 

angle from first cycle 

1.5. Neural delays for controller signal 

1.5.1. Calculate the sample interval that the delayed signals are updated at. 

1.5.2.  Calculate the number of cycles that the muscles shall not react due to neural 

delay given the sample interval of the delay vector, nds=Tde in model keyword 

file. 

1.5.3. If cycle = 1, the current time is set as reference for start of counting down to 

the next update of the delayed signal. The first value in the delay vector is set 

accordingly. The delay vectors for each controller is updated with the angular 

difference as calculated in 1.4.2. 

1.5.4. If time is such that the delay sample time has passed since the last update then 

the delay vectors for each controller is updated with the difference calculated 

in 1.4.2. Delay_time is updated and the reference position in the delay vectors 

steps one step up. 
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1.5.4.1. If the current node value of the delay vector is greater than the 

delay vector length then the node value of the delay vector is set to 1.  

1.5.5. If the number of delay samples is greater than the node value of the delay 

vectors then the delayed control signal is set to the value in the delay vector 

that corresponds to length of the delayed vector plus current node value of the 

delayed vector minus number of delayed samples (as calculated in 1.5.2) 

1.5.5.1. Else the delayed control signal is set to the value in the delay vector 

that corresponds to the current node value of the delayed vector minus 

the number of delayed samples 

1.6. Calculate controller errors,                 

1.6.1. The difference between the calculated change in nodal position and the 

calculated delayed control signal value  

1.7. Set initial integral of error,       

1.7.1. Calculate and store the error for the first cycle for each controlled region 

1.8. Calculate integral of error,       

1.8.1. The error from the last calculation plus the old integration plus the new 

integration times the time step size between n and n+1. 

1.9. Calculate 
  

  
 with 1st order filter, 

 

  
     

 

  
       

  

     
(
           

  
 

 

  
      ) 

1.10. Calculate the control signal,      (               
  

  
  )      

1.10.1. For the first cycle the positive X-direction needs to be checked so that 

coming updates of nodes are done in the correct direction,      , stored as 

43999996. 

1.10.2. Update fvalold for use in the next calculation 

1.11. Compute and update muscle length and muscle strain 

1.11.1. Store initial length as reference 

1.11.1.1. Extract the muscle length from the u_*hs vectors  

1.11.1.2. Compute reference muscle length from initial vectors 

1.11.1.3. Update current muscle lengths to external muscle load curve length 

vector 

1.11.1.4. Extract vectors u_*hs between the positions of the muscle nodes 

1.11.1.5. Compute muscle length 

1.12. Compute controller signals, same for both sides of the body         

             ̅̅ ̅̅ ̅̅            ̅̅ ̅̅ ̅̅            ̅̅ ̅̅ ̅̅          |    ̅̅ ̅̅ ̅̅  |     |    ̅̅ ̅̅ ̅̅  |  

   |    ̅̅ ̅̅ ̅̅  |  

1.12.1.     ̅̅ ̅̅ ̅̅ , is the muscle recruitment vector that decide which muscle should act 

and in what direction.   , is a constant that currently is set to 0. 

1.13. Solve differential Equation for muscle excitation levels for right hand- and 

left hand side 

1.13.1. If cycle =1, excitation=controller 

1.13.2. else 

           (   (       (        
      

       
)     )   ) 

1.14. Solve differential Equation for muscle activation levels 
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1.14.1. If cycle = 1, Activation =excitation 

1.14.1.1. Else, if new activation is greater than the old, then set the activation 

level between 0 and 1 

           (   (       (       
      

       
)     )   ) 

1.14.1.2. Else, set new activation according to 

           (   (       (       
      

         
)     )   ) 

1.15. Update fvalold vectors 

1.16. Write data to files 

 

2. Csvfile_initialize 

 


