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Cooperative Wireless Sensor Network Positioning

via Implicit Convex Feasibility
Mohammad Reza Gholami, Luba Tetruashvili, Erik G. Ström, and Yair Censor

Abstract—We propose a distributed positioning algorithm to
estimate the unknown positions of a number of target nodes,
given distance measurements between target nodes and between
target nodes and a number of reference nodes at known positions.
Based on a geometric interpretation, we formulate the positioning
problem as an implicit convex feasibility problem in which some
of the sets depend on the unknown target positions, and apply
a parallel projection onto convex sets approach to estimate
the unknown target node positions. The proposed technique is
suitable for parallel implementation in which every target node
in parallel can update its position and share the estimate of its
location with other targets. We mathematically prove convergence
of the proposed algorithm. Simulation results reveal enhanced
performance for the proposed approach compared to available
techniques based on projections, especially for sparse networks.

Index Terms– Positioning, Cooperative wireless sensor net-
work, Parallel projections onto convex sets, Convex feasibility
problem, Implicit convex feasibility.

I. INTRODUCTION

For many applications in wireless sensor networks (WSNs),

position information is a vital requirement for the network

to function as intended. Due to drawbacks of using global

positioning system (GPS) receivers in sensor nodes, mainly

due to limited access to GPS satellites, e.g., in an indoor

scenario, the position recovery from the network, called po-

sitioning or localization, has been extensively studied in the

literature [1]–[4]. It is usually assumed that there are a number

of reference sensor nodes at known positions that can be

used to estimate the location of a number of sensor nodes at

unknown positions, henceforth called target nodes. To estimate

the position of target nodes, some types of measurements

are taken between different nodes such as received-signal-

strength, angle-of-arrival, or time-of-arrival [1], [2], [5]. A

popular technique in the positioning literature is to estimate

distances between sensor nodes from measurements and then

to apply a suitable positioning algorithm [1], and this is also

the approach taken in this study.

From one point of view, positioning algorithms can be

categorized into two groups: cooperative and noncoopera-

tive [5]. In a noncooperative network, measurements taken

between a target and reference nodes are used to estimate the

position of the target node, while in a cooperative network,
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besides the measurements made between target nodes and

reference nodes, measurements collected between target nodes

are also used in the positioning process [5]. For low density

networks, the cooperation technique can effectively improve

the performance of the position estimate [5]. Compared to

noncooperative scenarios, the positioning problem in a coop-

erative network is more challenging and it is not clear how

to effectively use the distance measurements between target

nodes for the positioning process. During the last few years,

various cooperative positioning algorithms have been proposed

in the literature. Classic estimators such as the maximum

likelihood (ML) estimator and nonlinear least squares (NLS)

estimator derived for the positioning problem are often too

complex and pose difficult global optimization problems [2],

[5], [6]. In the literature, a number of suboptimal techniques

have been proposed to avoid the difficulty in solving the ML

or the NLS problems, such as convex relaxation techniques,

e.g., based on second order cone programming [7], [8], sum

of squares [9], and semidefinite programming [10]–[12], and

linearization techniques [6], [13]–[15].

From an implementation point of view, positioning algo-

rithms can be categorized into two classes: centralized and

distributed. In a centralized approach, all measurements gath-

ered in the sensor nodes are transferred to a central unit, and

a positioning algorithm is applied to find the locations of the

target nodes. In a distributed approach, however, every target

is allowed to locally process the measurements to obtain an

estimate of its own position. To get benefits from cooperation,

target nodes can share their estimates with other targets, e.g.,

by broadcasting the estimates. For example, algorithms based

on weighted-multidimensional scaling [16] and distributed

belief propagation [17] have been proposed to solve the

positioning problem in distributed fashion. In addition to the

need for a distributed implementation, another important factor

in designing a positioning algorithm is the robustness against

non-line-of-sight (NLOS) conditions, in which distances are

measured with a large, normally positive, errors.

It is well-known that in the noncooperative case, a particular

target node can be found in the intersection of a number of

balls centered around the reference nodes, if the measurement

errors are positive. In this case, it makes sense to formu-

late the positioning problem as a convex feasibility problem

(CFP), i.e., the target position is estimated as a point inside

the intersection of the appropriate balls. We can approach

this by finding a point that minimizes the sum of squared

distances to the balls. In case the intersection is nonempty, a

minimizing point is obviously a solution to the CFP. In case the

intersection is empty (i.e., when the CFP is inconsistent), the

minimizing points are still reasonable estimates of the target
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node positions. There exist algorithms based on projection

methods that are proven to find a minimizer to the above-

mentioned objective function, see, e.g., [5], [18] and references

therein.

The class of projection methods is understood here as the

class of methods that have the property that they can reach

an aim related to the family of sets {C1, C2, . . . , Cm}, such

as, but not only, solving the CFP, or solving an optimization

problem with these sets as constraints, by performing pro-

jections (orthogonal, i.e., least Euclidean distance, or others)

onto the individual sets Ci. The advantage of such methods

occurs in situations where projections onto the individual sets

are computationally simple to perform. Such methods have

been in recent decades extensively investigated mathematically

and used experimentally with great success on some huge and

sparse real-wold applications, consult, e.g., [19], [20] and the

books [18], [21]–[27]. For further applications of projection

methods, see, e.g., [28].

In this paper, we extend the projection ideas to the co-

operative case. This leads to a new type of CFP, which we

henceforth call an implicit CFP (ICFP), since some of the

convex sets (balls) actually depend on the target positions.

We formulate an algorithm that minimizes the sum of the

square distances to a number of convex sets. We also present a

mathematical analysis to support the validity of our approach

in terms of convergence. Simulation results show an improved

performance for the proposed algorithm compared to available

techniques based on projection approaches.

It should be noted that projection techniques have been used

in the past for cooperative positioning, see, e.g., [29], [30].

In fact, our proposed scheme can be viewed as an extension

of the parallel projection method (PPM) proposed in [30].

However, our method is different from the one in [30] in terms

of convergence. The approach proposed in [30] needs good

initial points to provide good estimates of the targets positions,

while for the proposed technique in this paper, convergence

to an optimal solution is always guaranteed for any arbitrary

initialization point. There are no convergence proofs for the

algorithms proposed in [29], [30] and one aim of this study

is to provide a framework for studying the convergence of a

class of optimization problems with applications in wireless

sensor network positioning.

The paper is organized as follows. In Section II, we describe

the positioning problem based on a geometric notion. The pro-

posed algorithm is defined in Section III, and a mathematical

model of the ICFP problem is provided in Section IV. Some

properties of the objective function and the convergence proof

are found in Sections V and VI, respectively. In Section VII,

the performance of the proposed algorithm is evaluated by

computer simulations.

II. PROBLEM STATEMENT

A. System model

We consider a d-dimensional cooperative network, d = 2
or d = 3, consisting of a number of sensor nodes at known

positions, called as reference nodes, and a number of target

nodes at unknown positions. In this study, we assume that

every target node can estimate the distance to nearby sensor

nodes, e.g., using a two-way time-of-arrival technique. We

also assume that sensor nodes are perfectly synchronized,

meaning that measurements are no longer affected by clock

imperfections. It is also assumed that target nodes can share

the estimates of the positions by broadcasting the estimates to

neighboring target nodes (without any round-off errors).

Let us consider a WSN consisting of n+m sensor nodes dis-

tributed in a space. Let xi ∈ R
d for i ∈ I := {1, 2, . . . , n} be

the position of target nodes whose locations xi are unknown,

and let aj ∈ R
d for j ∈ J := {n + 1, n + 2, . . . , n + m}

be the position of reference nodes whose locations aj are

a priori known. To formulate a geometric positioning problem,

we further define the following sets. For every i ∈ I, let

Ai = {j ∈ J | target node i can communicate with

reference node j} (1)

and let

Bi = {q ∈ I | target node i can communicate with target

node q}. (2)

The distance measurement between a pair of nodes (target,

reference) or (target, target) is modeled as in [3], [31],

d̂ij = dij + εij , j ∈ Ai, i ∈ I (3a)

l̂iq = liq + εiq, q ∈ Bi, i ∈ I (3b)

where εij and εiq are measurement errors drawn from some

distributions, and dij = ‖xi − aj‖ and liq = ‖xi − xq‖ are

the actual Euclidean distances between reference node j and

target node i and between target node q and target node i,
respectively. We also define the following convex sets. For

i ∈ I, define for each j ∈ Ai,

Cij = {z ∈ R
d | ‖z − aj‖ ≤ d̂ij} (4)

and for i ∈ I, define for each q ∈ Bi,

Xiq = {z ∈ R
d | ‖z − xq‖ ≤ l̂iq}. (5)

For convenience, we assume that the measurements are

symmetric in the sense that if q ∈ Bi then i ∈ Bq and

furthermore that l̂iq = l̂qi. That is, if target i can measure

the distance to target q then the opposite is also true. This

simplifying assumption can be motivated by extending the

traditional two-way time-of-arrival (TOA) ranging procedure

to a four-way TOA process in which

1) Node i sends a message to node q
2) Node q immediately returns the message to node i
3) Node i can now compute the initial estimate l̂′iq from

the TOA measurements recorded from the two first

transmissions

4) Node i transmits l̂′iq to node q

5) Node q can now compute the initial estimate l̂′qi from

the TOA measurements from the second and third

transmissions, and the final estimates are computed as

l̂qi = l̂iq = (l̂′iq + l̂′qi)/2

6) Node q transmits the final estimate l̂iq to node i.
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A1 = {3, 4}, A2 = {5, 6}, B1 = {2}, B2 = {1}

Fig. 1. An example of a cooperative network consisting of two target nodes
and four reference nodes.
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Fig. 2. Deriving the intersections for target node one and target node two.
Balls with dashed boundaries are used to derive the intersection for target node
one and balls with solid boundaries are used to determine the intersection for
target node two. The boundary of intersections for target node one and target
node two are red and blue colored, respectively. Here, we assume that X12

and X21 are available for finding the red and blue areas. In a practical setting,
however, X12 and X21 are not available from the start.

From Eq. (3) it is clear that in the absence of measurement

errors, i.e., when εij = 0 and εiq = 0, the position of target

node i belongs to the intersection of a number of closed balls

centered at aj and xq with radii dij and liq , respectively. As-

suming positive measurement errors, we use the balls defined

in Eqs. (4) and (5), and formulate a feasibility problem (CFP)

aimed at solving the cooperative sensor network positioning

problem as follows.

Problem 1: Find a set of vectors xi ∈ R
d, i ∈ I, such that

xi ∈





⋂

j∈Ai

Cij





⋂





⋂

q∈Bi

Xiq



 . (6)

Note that when the problem is formulated, the target nodes

xi ∈ R
d for i ∈ I, are not known, and thus the sets Xiq

are also unknown. For more details and other examples of

geometric positioning problems, see [5], [29].

We clarify the formulation of Problem 1 with the fol-

lowing example. Consider Fig. 1 in which a 2-dimensional

cooperative network consists of four reference nodes, i.e.,

ai ∈ R
2, i ∈ {3, 4, 5, 6}, and two target nodes, xi ∈ R

2, i ∈
{1, 2}. The sets A1, A2, B1, and B2 for this network are shown

in the figure. The sets Cij and Xiq are defined as

C13 = {z ∈ R
2 | ‖z − a3‖ ≤ d̂13},

C14 = {z ∈ R
2 | ‖z − a4‖ ≤ d̂14},

C25 = {z ∈ R
2 | ‖z − a5‖ ≤ d̂25},

C26 = {z ∈ R
2 | ‖z − a6‖ ≤ d̂26},

X12 = {z ∈ R
2 | ‖z − x2‖ ≤ l̂12},

X21 = {z ∈ R
2 | ‖z − x1‖ ≤ l̂21}. (7)

Suppose that distance estimates between different nodes are

greater than the actual distances, i.e., d̂ij ≥ dij for i ∈ {1, 2}

and j ∈ {3, 4, 5, 6}, and l̂iq ≥ liq for i ∈ {1, 2} and q ∈ {1, 2}.

Such a situation happens when the measurement errors are

positive [32], [33]. The intersection involving target node one

and the intersection involving target node two are shown in

Fig. 2. Hence, we can write

x1 ∈
(

C13
⋂

C14

)

⋂

X12, (8)

x2 ∈
(

C25
⋂

C26

)

⋂

X21. (9)

Remark 2: In practical applications, some of the measure-

ment errors ǫij and ǫiq in (3) can be negative. In this case, the

intersection (6) might not contain the target node locations,

even if the intersection is nonempty. However, there are also

practical situations when the measurement errors are positive.

For example, errors in two-way time-of-arrival (TW-TOA)

measurements tend to be positive in practice, even for line-

of-sight conditions (as clarified in recent work on localiza-

tion based on practical Ultra-wideband (UWB) measurements,

please see [33]). Time-of-arrival is typically measured by

computing the cross-correlation of the received signal with a

copy of the transmitted signal and finding the first peak of the

cross-correlation that exceeds a certain threshold. Even if the

threshold is carefully adjusted, the detected peak rarely occurs

before the true arrival time, especially for UWB signals. For

more details of this phenomenon, see [33]. Finally, note that

we have here considered positive errors to justify the ICFP as

a means to estimate the target node positions. However, the

algorithm proposed later in this paper does not rely on this

assumption. It will function well even if errors are allowed to

be negative.

B. On the “implicit convex feasibility problem”

Problem 1 is not a standard CFP because, as can be seen

from (6), the sets Xiq are not determined only by the data, but

also on the, yet unknown, target node positions.

For CFPs with fixed feasible sets that are not dependent

on the solution there exits a broad literature, see, e.g., [18]

or [34].

This leads us to formulate a new class of CFPs that we call

implicit CFP (ICFP). To start, let Qt for t = 1, 2, . . . , T be

subsets of Rp defined for given convex functions ft : R
p → R

by their zero-level-sets:

Qt := {z ∈ R
p | ft(z) ≤ 0}. (10)
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The convex feasibility problem (CFP) in the finite-

dimensional Euclidean space R
p is defined in the next Prob-

lem 2:

Problem 2: Find a point z∗ in the set Q := ∩T
t=1Qt.

Now let us consider the implicit convex feasibility problem

(ICFP), that generalizes the CFP, and which can be used to

describe the cooperative positioning problem.

Assume that ht : R
p × R

p → R (t = 1, 2, . . . , T ) are

some given functions, such that for any point u ∈ R
p, the

function ht(z, u) is convex in the variable z. For any given

point u ∈ R
p and t = 1, 2, . . . , T we define the sets

Q̂t(u) := {z ∈ R
p|ht(z, u) ≤ 0}, (11)

and look at the following ICFP:

Problem 3: Find a point z∗ in the set Q̂(z∗) := ∩T
t=1Q̂t(z

∗).
In the ICFP problem we are seeking a common point z∗

of sets which are defined by the unknown point z∗. Choosing

hij(z, aj) = ‖z − aj‖ − d̂ij , for all i ∈ I and j ∈ Ai, and

hiq(z, xq) = ‖z − xq‖ − l̂iq, for all i ∈ I and q ∈ Bi, the

ICFP translates the cooperative positioning problem into the

following problem.

Problem 4: Find a point (x1, x2, . . . , xn) in R
dn such that

it satisfies following relations for all i = 1, 2, . . . , n:

xi ∈





⋂

j∈Ai

{z ∈ R
d | ‖z − aj‖ − d̂ij ≤ 0}





⋂





⋂

q∈Bi

{z ∈ R
d | ‖z − xq‖ − l̂iq ≤ 0}



 . (12)

III. THE ALGORITHM

To solve Problem 4, as described in the previous section, we

propose a distributed algorithm based on projections onto sets

Cij and Xiq , defined in (4) and (5). The notation PΩ(u) stands

for the orthogonal (least Euclidean distance) projection of the

point u onto the set Ω. We use boldface to denote vectors

in the product space R
dn (d = 2 or d = 3), and denote the

number of elements in a set D by |D|.
Algorithm 1:

Initialization: Choose an arbitrary initial point

x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ R

dn.
General Iterative Step: Given a current vector

xk = (xk
1 , x

k
2 , . . . , x

k
n) ∈ R

dn,

1) for every i = 1, 2, . . . , n, define

X k
iq :=

{

{z | ‖z − xk
q |≤ l̂iq}, for i < q,

{z | ‖z − xk+1
q |≤ l̂iq}, for i > q,

(13)

and calculate

xk+1
i =

1

2
xk
i +

1

2(|Ai|+ |Bi|)

(

∑

j∈Ai

PCij
(xk

i )

+
∑

q∈Bi

PX k
iq
(xk

i )

)

, (14)

2) set

xk+1 = (xk+1
1 , xk+1

2 , . . . , xk+1
n ). (15)

Stopping criterion: If ‖xk+1−xk‖ is small enough then stop.

Note that in the general iterative step there are n update-

steps (14) inside the k-th iteration, leading from xk to xk+1. In

the ith update step, we determine a new approximate location

xk+1
i of the unknown target xi by computing projections onto

balls around reference points and around target points for q 6= i
and then taking the mid-point on the line segment between the

average of projections and the old approximate location xk
i of

the target xi.

IV. THE MATHEMATICAL MODEL OF THE PROBLEM

Let us consider the mathematical model of the problem that

is obtained by unconstrained minimization
{

minimize f(x)
subject to x ∈ R

dn (16)

of the objective function f : Rdn → R given by:

f(x) :=
n
∑

i=1

∑

j∈Ai

(max{‖xi − aj‖ − d̂ij , 0})
2

+
1

2

n
∑

i=1

∑

q∈Bi

(max{‖xi − xq‖ − l̂iq, 0})
2 (17)

for x = (x1, x2, . . . , xn) and xi ∈ R
d for all i = 1, 2, . . . , n.

The factor 1/2 in (17) is motivated by the fact that each

term in the sum is repeated twice, due to the symmetry of

the measurements (q ∈ Bi ⇒ i ∈ Bq and l̂iq = l̂qi).
The objective function f is the sum of convex functions

and is therefore convex. Obviously, the optimal value of

this optimization problem is zero if we assume that there

exists a point which satisfies all distance requirements. Under

the last mentioned existence assumption, the motivation for

introducing the optimization problem (16) is that any optimal

solution of the problem (16)-(17) is a solution of the ICFP

Problem 4.

Note that the objective function can also be rewritten

equivalently in the following form:

f(x)

=
n
∑

i=1

∑

j∈Ai

‖xi − PCij
(xi)‖

2 +
1

2

n
∑

i=1

∑

q∈Bi

‖xi − PXiq
(xi)‖

2,

(18)

where P is the orthogonal projection operator and the sets Cij
and Xiq are defined in (4) and (5), respectively.

We will later show that any sequence {xk}∞k=0
generated

by Algorithm 1 is such that its accumulation points solve (16)

with the objective function (18). This convergence property

holds regardless if the ICFP in (12) is consistent or not.

Remark 3: There are related approaches in the literature to

solve the positioning problem. For example, the authors in [35]

consider a mini-max approach and obtain a positioning prob-

lem based on convex relaxation. The nonconvex problem orig-

inating from the least squares criterion can be transformed to

a convex problem by adopting, e.g., a convex relaxation [12].

For sparse networks, the author of [9] formulated a positioning

algorithm based on sum of squares and derived a convex
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optimization problem. The main difference between most of

the available methods in the literature and the algorithm

developed in this paper, is that the algorithm proposed here is

a projection method that has several advantages as discussed,

e.g., in [28, Subsection 3.2].

V. SOME PROPERTIES OF THE OBJECTIVE FUNCTION

The following proposition contains some important prop-

erties of the objective function f that are required for the

convergence analysis in the sequel.

Proposition 4: The function f of (18) is convex, continu-

ously differentiable, and its gradient is block-coordinate-wise

Lipschitz continuous with constants Li , 4(|Ai| + |Bi|) for

all i = 1, 2, . . . , n.
Proof: Convexity of the function f follows from its

representation in (17) where each summand is a composition

of a square function and a nonnegative convex max-type

function and thus f is convex. Let us consider the following

equivalent representation of (18):

f(x) =

n
∑

i=1

∑

j∈Ai

‖xi − PCij
(xi)‖

2 +
∑

q∈Bs

‖xs − PXsq
(xs)‖

2

−
1

2

∑

q∈Bs

‖xs−PXsq
(xs)‖

2+
1

2

n
∑

i=1,i6=s

∑

q∈Bi

‖xi−PXiq
(xi)‖

2.

(19)

Note that for each pair of target neighbours i, q the following

identity is satisfied:

‖xi − PXiq
(xi)‖ = ‖xq − PXqi

(xq)‖. (20)

Substituting (20) into (19) we get:

f(x) =

n
∑

i=1

∑

j∈Ai

‖xi − PCij
(xi)‖

2 +
∑

q∈Bs

‖xs − PXsq
(xs)‖

2

+
1

2

n
∑

i=1,i6=s

∑

q∈Bi,q 6=s

‖xi − PXiq
(xi)‖

2. (21)

Thus, the partial derivative of f at (x1, x2, . . . , xn) with

respect to the variables in the subvector xs is given by:

∇sf(x1, x2, . . . , xn) =
∑

j∈As

2(xs − PCsj
(xs))

+
∑

q∈Bs

2(xs − PXsq
(xs)), (22)

and the gradient of f is then given by

∇f(x1, x2, . . . , xn)

=
(

∇1f(x1, x2, . . . , xn), . . . ,∇nf(x1, x2, . . . , xn)
)

. (23)

From continuity of ∇sf(x1, x2, . . . , xn) for all

s = 1, 2, . . . , n, we conclude that the gradient of f is

continuously differentiable.

It remains to show that gradient is block-coordinate-

wise Lipschitz continuous. Let us take two vectors

(x1, x2, . . . , yi, . . . , xn) and (x1, x2, . . . , xi, . . . , xn). These

two vectors are identical except for elements which correspond

to the i-th subvector and we have

‖∇if(x1, x2, . . . , yi, . . . , xn)−∇if(x1, x2, . . . , xi, . . . , xn)‖

≤ 4(|Ai|+ |Bi|)‖xi − yi‖,

where in the last inequality, we used the nonexpansivity of the

projection operator P , i.e.,

‖P (x)− P (y)‖ ≤ ‖x− y‖.

Thus, we have shown that the gradient of f is block-

coordinate-wise Lipschitz continuous with constants

4(|Ai|+ |Bi|) for each block.

VI. CONVERGENCE ANALYSIS

In Proposition 4 we have shown that many, but not all,

assumptions required for the convergence analysis of the Block

Coordinate Gradient Descent (BCGD) algorithm in [36] are

satisfied. In what follows, we present an alternative and self-

contained proof of convergence of Algorithm 1, which does

not require Lipschitz continuity of the gradients of the function

f , as required in the proof of the BCGD algorithm in [36]. In

our analysis we will make use of following results.

Lemma 5: (Descent Lemma, Appendix A in [37]) If

g : Rp → R is a continuously differentiable function whose

gradient ∇g is Lipschitz continuous with constant L then

g(y) ≤ g(x)+〈∇g(x), y−x〉+(L/2)‖x−y‖2 for all x, y ∈ R
p.

(24)

Proposition 6: For any x0 ∈ R
dn and for the function f of

(18) the level set

S = {x | f(x) ≤ f(x0)} (25)

is bounded.

Proof: The function f of (18) is coercive, i.e., for all x

such that ‖x‖ → ∞ we have f(x) → ∞. Thus, all level sets

of f are bounded.

In the next proposition we show that any sequence generated

by Algorithm 1 entails a non-increasing sequence of function

values {f(xk)}∞k=0.

Proposition 7: Let {xk
i }

∞
k=0 for all i = 1, 2, . . . , n, be

sequences generated by Algorithm 1 and let {f(xk)}∞k=0

be the associated sequences of function values. Denote, for

0 ≤ i ≤ n,

xk,i := (xk
1 , x

k
2 , . . . , x

k
i , x

k−1
i+1 , . . . , x

k−1
n ). (26)

Then, for every k = 1, 2, . . . , we have

f(xk) ≤ f(xk−1) (27)

and

lim
k→∞

‖∇if(x
k,i−1)‖ = 0, for all i = 1, 2, . . . , n, (28)

and

lim
k→∞

‖xk,i − xk,i−1‖ = 0, for all i = 1, 2, . . . , n. (29)

Proof: Obviously, we have xk = xk,n and xk−1 = xk,0.

In Proposition 4, we have shown that the gradient of f
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is block-coordinate-wise Lipschitz continuous with constants

Li = 4(|Ai| + |Bi|) for all i = 1, 2, . . . , n. Thus, by Lemma

5, we have for all i = 1, 2, . . . , n,

f(xk,i) ≤f(xk,i−1) + 〈∇if(x
k,i−1), xk

i − xk−1
i 〉

+ (Li/2)‖x
k
i − xk−1

i ‖2, (30)

where we used the equality

‖xk,i − xk,i−1‖ = ‖xk
i − xk−1

i ‖ (31)

and

〈∇f(xk,i−1),xk,i−xk,i−1〉 = 〈∇if(x
k,i−1), xk

i −xk
i 〉. (32)

From the construction of the iterative sequence in Algorithm

1 we have, for all i = 1, 2, . . . , n and for all k > 0,

xk
i − xk−1

i = −(1/Li)∇if(x
k,i−1). (33)

Plugging (33) into (30) yields

f(xk,i−1)−f(xk,i) ≥ (1/2Li)‖∇if(x
k,i−1)‖2, i = 1, . . . , n.

(34)

Summing over all inequalities and denoting

τ := max{Li | i = 1, 2, . . . , n} we get

f(xk−1)− f(xk) ≥ (1/2τ)

n
∑

i=1

‖∇if(x
k,i−1)‖2, (35)

thus, proving (27). From (35) it follows that

f(x0) ≥ (1/2τ)

∞
∑

k=0

n
∑

i=1

‖∇if(x
k,i−1)‖2, (36)

which yields (28), since by interchanging the summation, an

infinite sum of positive values in the right-hand side is bounded

from above by f(x0). Note that (33) can be equivalently

rewritten in the form
∥

∥xk,i − xk,i−1
∥

∥ =
∥

∥(1/Li)∇if(x
k,i−1)

∥

∥ (37)

which can be combined with (28) to yield the desired result

(29).

Corollary 8: Any sequence {xk}∞k=0 generated by Algo-

rithm 1 is bounded.

Proof: From Proposition 7, it follows that the

sequence {xk}∞k=0 belongs to the bounded level set

S = {x | f(x) ≤ f(x0)}, thus, by Proposition 6, it is

bounded.

Now we are ready to present and prove the main result.

Theorem 9: Let {xk}∞k=0
be any sequence generated by

Algorithm 1. Then every limit point of {xk}∞k=0
is an optimal

solution of the problem (16) with the objective function (18)

and the sequence {f(xk)}∞k=0
converges to the optimal value

f∗ of (16).

Proof: From Corollary 8, it follows that there exist con-

verging subsequence of the sequences {xk}∞k=0. Let {xkj}∞j=0

be such a convergent subsequence and denote by x∗ its limit

point. We show that ∇f(x∗) = 0, thus proving the optimality

of the point x∗.

Consider the sequence {xkj}∞j=0∪{{x
kj ,i}ni=1}

∞
j=0 obtained

by combining these two sequences and denote it by {yℓ}∞ℓ=0.
From (29) in Proposition 7, it follows that the sequence

{yℓ}∞ℓ=0
also converges to the point x∗. The sequence of

gradients {∇f(yℓ)}∞ℓ=0
then converges to ∇f(x∗) and so does

every subsequence of it.

For the subsequence {∇f(xkj ,1)}∞j=0, we conclude, from

(28) of Proposition 7, that it converges to a vector that has

zeros in all its components that refer to the part that comes

from the partial derivatives with respect to components of

x1. Thus, ∇f(x∗) contains zeros in the same components.

Repeating this argument we reach the conclusion that all

elements of ∇f(x∗) are zeros.

From (27) it follows that the sequence {f(xk)}∞k=0
is non-

increasing and, since it is also bounded from below by f∗, it

converges. Since we showed that any converging subsequence

{xkj}∞j=0 converges to the optimal solution, the subsequence

{f(xkj )}∞j=0 converges to the optimal value f∗, thus the entire

sequence {f(xk)}∞k=0
converges to f∗.

Remark 10: It is noted that Algorithm 1 converges even if

the intersection in (6) does not contain the target nodes or even

if it is empty–which could happen for negative measurement

errors. In fact, the proposed algorithm solves the optimization

problem in (16), regardless of the extent of the intersection

in (1).

VII. NUMERICAL RESULTS

In this section, we evaluate the performance of Algorithm

1 and two methods proposed in [29] and in [30] through

computer simulations. To evaluate the different methods, we

consider a 2-dimensional network consisting of a number

of reference and target nodes. We will evaluate different

algorithms ability to localize target nodes under line-of-sight

(LOS) and non-line-of-sight (NLOS) conditions.

The two algorithms of [29] and [30] as well as Algorithm

1 cycle through the networks in an ordered fashion. Although

it is possible to update the location of target nodes in an

arbitrarily ordered fashion, which may be more suitable for

a practical implementation, algorithms exchange the updated

position estimates between nodes in the order 1, 2, . . . , n,

where n is the number of target nodes. In [30] the authors

used a method based on projections (in parallel) onto spheres

(projections onto the boundary of each individual set). This

method is sensitive to the choice of the initial points and it may

converge to local minima resulting in large errors. To avoid

converging to local minima the algorithm of [30] is initialized

at a target node with the position of the closest reference node

connected to that target. However, in general, finding good

initial estimates for all target nodes is a challenging task in

positioning problems. In [29], a method based on projections

onto convex sets (POCS) was considered to localize target

nodes. Note that contrary to the algorithm proposed in

this paper, there are no formal convergence proofs for the

algorithms introduced in [29], [30].

A. Simulation setup

The methods proposed in [29], [30], and Algorithm 1, are

henceforth called cooperative parallel projection onto bound-

ary (Coop. PPB), cooperative projection onto convex sets
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Fig. 3. Layout of the network considered in simulations, where squares
denote the positions of reference nodes and target nodes are randomly
distributed inside the convex hull of the reference nodes.

(Coop. POCS), and cooperative parallel projection method

(Coop. PPM), respectively. We have conducted computer sim-

ulations for different scenarios and evaluated the algorithms

based on two metrics: convergence and accuracy. We have

considered a 100×100 m2 square area shown in Fig. 3 with a

number of reference nodes at fixed positions. In the simulation,

we randomly distributed a number of target nodes inside the

area1.

The measurement errors in (3) are modeled as

εmn =

{

εG,mn, LOS conditions,

εG,mn + bmnεU,mn, NLOS conditions,

where εG,mn are iid zero-mean Gaussian random variables

with variance σ2, bmn ∈ {0, 1} are iid Bernoulli random

variables with parameter pNLOS = Pr{bmn = 1}, and

εU,mn ∈ [0, L] are iid uniformly distributed random variables.

The validity of uniform distribution to model NLOS noise

has been considered in various works, e.g., [29], [38], [39].

In our simulations, we used σ = 1 m, pNLOS = 0.2,

and L = 20 m. The connectivity is defined based on the

actual distances between sensor nodes. Namely, if the distance

between two nodes is 40 m or less, we assume that the

nodes are connected. To assess the positioning algorithms,

we consider the cumulative distribution function (CDF) of

the position error for all target nodes. That is, we define the

position error for target node i as

Ei,m = ‖xK
i,m − xi,m‖, i = 1, 2, . . . , n, m = 1, 2, . . . , N

(38)

where xK
i,m is an estimate of target node i position, xi,m, after

K iterations for the mth network realization, and N is the total

number of network realizations. In the results below, we have

used K = 300, which is large enough to ensure convergence

and then compute the empirical CDF of the position error for

1We have also assessed the algorithms for 3-dimensional networks. The
results show similar behavior as for 2-dimensional networks.

all target nodes collected in E as

CDF(α) = Pr(position error ≤ α)

=

∑n

i=1

∑N

m=1
I(Ei,m − α)

nN
, (39)

where the indicator function I(t) is defined as

I(t) =

{

1, if t ≥ 0,
0, otherwise.

(40)

To study the convergence rate, we consider the average

residual defined as

r̄k = 1/(nN)

N
∑

m=1

‖xk
m − xk−1

m ‖, (41)

where

xk
m =

(

xk
1,m, xk

2,m . . . , xk
n,m

)

. (42)

To initialize the algorithm of [30], we set the initial estimate

for a target node as the position of the closest reference node

connected to the target. For a target i which is not connected to

any reference node, we pick the position of the closest target

(already initialized) connected to the target node i.

B. Performance of algorithms

In this section, we assess the above mentioned algorithms

for LOS and NLOS scenarios. In Fig. 4 and Fig. 5, we plot

the CDF of the position error of the algorithms for various

numbers of reference and target nodes in the LOS scenario.

The figures show a superior performance for the proposed

approach Coop. PPM compared with the others, especially

with respect to Coop. PPB. Coop. PPB has poor performance

for both small number of reference nodes and large number of

target nodes. The reason is that finding good initial points is

difficult when the number of reference nodes decreases or the

number target nodes increases. From the plots, we observe

that Coop. POCS shows good performance compared with

Coop. PPB.

To further investigate the algorithms, we assume 20% of

distance measurements are NLOS. The position error CDFs

are plotted in Fig. 6 for different numbers of target nodes in

NLOS conditions. In this simulation, we used four reference

nodes a1, . . . , a4. From the plots, we observe that Coop. POCS

and Coop. PPM show better performance compared with

Coop. PPB and that they are robust against NLOS measure-

ments. The poor performance of Coop. PPB in the considered

scenario, is mainly due to poor initialization.

Based on the results presented here and on additional

simulation results that we performed, we can conclude that

the method proposed in this paper has superior performance

compared with other projection approaches available in the

positioning literature for sparse networks in which target nodes

are connected to a few other nodes.
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Fig. 4. The CDF of the position error of different algorithms in LOS scenarios for four reference nodes a1, a2, a3, a4 and (a) 20 target nodes, (b) 30 target
nodes, (c) 60 target nodes, and (d) 100 target nodes.

C. Convergence speed

In this section, we evaluate the convergence speed of the

above mentioned algorithms through simulations. We consider

the LOS scenario for the network shown in Fig. 3. The conver-

gence speed is plotted in Fig. 7 for different numbers of target

nodes. For Coop. POCS, we use 5Di iterations for locally

updating target node i, where Di is the number of sensor

nodes (reference or localized target) with known or estimated

location connected to target i. That is, for target i, we continue

sequential projection onto Di balls corresponding to the nodes

connected to target i. We first set the relaxation parameters

equal to one and then decrease them to the value used in [29]

after 3Di. In the figure, the x-axis shows the number of

iterations for updating the vector xk =
(

xk
1 , x

k
2 , . . . , x

k
n

)

. It

is observed that all algorithms converge after a few iterations.

The Coop. POCS uses more local updatings, and it shows

faster global convergence compared to the two other methods.

Finally, from this figure we also see that the convergence

rate of Coop. PPB may not be monotone, while Coop. PPM

and Coop. POCS show monotonic convergence. In fact, the

Coop. PPB, objective function is nonconvex, and we need to

ensure that the starting point is sufficently close to the global

solution, since the algorithm might otherwise converge to a

local minimum. We also note that the proposed algorithm

has relatively slow convergence after, say, 40–50 iterations.

However, monotonic convergence is guaranteed by Theorem 9.

VIII. CONCLUSIONS

In this paper, we have considered a geometric interpretation

of the cooperative positioning problem in wireless sensor

networks and formulated the position problem as an implicit

convex feasibility problem. We have then proposed a dis-

tributed algorithm based on projections approach to solve the

problem. The proposed algorithm enjoys parallel implemen-

tation capabilities and is suitable for practical scenarios. We

have also proven that the algorithm converges to the desired

minimizer of an intuitively pleasing cost function, (18), re-

gardless if the implicit convex feasibility problem is consistent

or not. Simulation results show an enhanced performance of

the proposed approach compared with available algorithms

for sparse networks. Since the proposed algorithm has low

convergence speed, one possible open problem for future

studies is to improve the convergence speed of the algorithm,

while maintaining convergence.
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Fig. 5. The CDF of the position error of different algorithms in LOS scenario for five reference nodes a1, a2, a3, a4, a5 and (a) 20 target nodes, (b) 30
target nodes, (c) 60 target nodes, and (d) 100 target nodes.
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Fig. 6. The CDF of the position error in NLOS scenario for four reference nodes and (a) 30 target nodes and (b) 60 target nodes.
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Fig. 7. Convergence speed of average residuals r̄k = 1/(nN)
∑

N

m=1
‖xk

m − x
k−1
m ‖ versus the number of iterations, k, for different algorithms in LOS

conditions for five reference nodes and (a) 20 target nodes, (b) 30 target nodes, (c) 60 target nodes, and (d) 100 target nodes.
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