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Application of first-order Generalised Beam Theory on open thin-walled members 

 

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology 

GUSTAF GELL 

HENRIC THOMPSSON 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Steel and Timber Structures 

Chalmers University of Technology 

 

ABSTRACT 

The aim of the project has been to study and apply the fundamental parts of first-order 

Generalized Beam Theory (GBT) for open thin-walled cross-sections. A literature 

survey has been performed to document the development of the theory until today. 

Based on the acquired knowledge, computational algorithms were established and 

implemented as MATLAB routines in order to verify GBT in comparison to ordinary 

finite shell-elements. The algorithms analysed one single structural member and 

enclosed information about internal displacements and stresses. Further, the results 

were verified and compared to conventional finite element software regarding 

accuracy, convergence, and computational effort. GBT provides accurate values 

compared to the reference shell-models. No singularities are occurring in the GBT 

solution and the extraction of results is easy compared to the finite elements. The 

GBT boundary conditions that were possible to mimic with shell-elements have been 

tested and verified. The computational efficiency was found to be higher for GBT 

than for the reference model, due to lower total number degrees of freedom. The 

commonly used assumption of an uncoupled GBT equation system was verified to be 

correct, since the coupling terms did not contribute noticeable. It was also found 

important to verify the discretization of the cross-section in order to capture the real 

behaviour of the member. If the analysis is performed correctly, GBT provides a fast, 

pedagogical and elegant approach to understand more of the underlying factors 

influencing the response of a beam subjected to a different set of applied loads. 

 

Key words: amplitude functions, boundary conditions, cross-section analysis, 

deformation modes, displacements, discretization, finite element method, 

FEM, Generalized Beam Theory, GBT, MATLAB, member analysis, 

normal stress, shear stress, technical beam theory, warping function.   
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Tillämpning av första ordningens Generalised Beam Theory på öppna tunnväggiga 

strukturelement 

Examensarbete inom Structural Engineering and Building Technology 

GUSTAF GELL, HENRIC THOMPSSON 

Institutionen för bygg- och miljöteknik 

Avdelningen för Konstruktionsteknik 

Stål och träbyggnad 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Syftet med examensarbetet var att undersöka och tillämpa de grundläggande delarna 

inom första ordningens Generalized Beam Theory (GBT) för öppna tunnväggiga 

tvärsnitt. En litteraturstudie har genomförts där teorins utveckling fram till idag har 

dokumenterats. Genom den funna informationen har beräkningsgångar etablerats och 

implementerats i MATLAB för att kunna verifiera teorin och jämföra med vanliga 

finita skalelement. Implementeringen analyserade ett strukturelement och returnerade 

värden på förskjutningar och spänningar. Resultaten verifierades och jämfördes med 

resultat från ett kommersiellt finita elementprogram gällande exakthet och 

beräkningseffektivitet. Teorin stämde bra överens i jämförelse med de finita 

referensmodellerna. De randvillkor som var möjliga att efterlikna med skalelement 

har testats och verifierats. Beräkningseffektiviteten var högre för GBT än för 

referensmodellen beroende på det lägre antal frihetsgrader som krävs. Det allmänt 

vedertagna antagandet om ett okopplat ekvationssystem i GBT har verifierats som 

korrekt eftersom kopplingstermerna inte ger några nämnvärda bidrag. Under projektet 

uppmärksammades vikten av att verifiera diskretiseringen av tvärsnittet för att fånga 

balkens riktiga beteende. Om analysen genomförs på ett korrekt sätt så möjliggör 

GBT ett snabbt, pedagogiskt och elegant sätt för att förstå mer av de underliggande 

faktorerna som avgör hur en balk reagerar vid olika typer av belastning. 

Nyckelord:  amplitudfunktion, deformationsmod, diskretisering, FEM, finita element 

metod, förskjutning, GBT, Generalized Beam Theory, MATLAB, 

normalspänning, randvillkor, skjuvspänning, strukturanalys, teknisk 

balkteori, tvärsnittsanalys, välvfunktion. 
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Notations 

The following variables and notations are used throughout the report. 

Roman upper case letters 

𝐴 Area of the cross-section [length
2
] 

𝑩 GBT basic matrix defined by the 𝐵𝑖𝑘 -term [force / length
2
] 

𝐵𝑖𝑘  Stiffness term defining the GBT basic matrix 

𝑩 
[force / length

2
] 

𝐵 1,𝐵 2 ,𝐵 3 ,𝐵 4 ,𝐵 𝑘>4 
The diagonal terms in the diagonal 

transformed GBT basic matrix 𝑩  

corresponding to deformation mode 𝑘 

[force / length
4
], 

[force / length
2
], 

[force / length
2
], 

[force], 

[force / length
2
] 

𝑪 GBT basic matrix defined by the 𝐶𝑖𝑘
𝐼 - and 𝐶𝑖𝑘

𝐼𝐼-

terms 
[length

4
] 

𝐶𝑖𝑘
𝐼 ,𝐶𝑖𝑘

𝐼𝐼 ,𝐶𝑖𝑘
𝐼𝐼𝐼 , 𝐶𝑖𝑘

𝐼𝑉  Stiffness terms defining the GBT basic matrix 

𝑪 
[length

4
] 

𝐶 1 ,𝐶 2,𝐶 3 ,𝐶 4 ,𝐶 𝑘>4 
The diagonal terms in the diagonal 

transformed GBT basic matrix 𝑪  

corresponding to deformation mode 𝑘 

[length
2
], 

[length
4
], 

[length
4
], 

[length
6
], 

[length
4
] 

𝐶𝑀 Warping stiffness constant [length
6
] 

𝐶1 ,𝐶2,𝐶3 ,𝐶4 Integration constants [various] 

𝑫 GBT basic matrix defined by the 𝐷𝑖𝑘
𝐼 -, 𝐷𝑖𝑘

𝐼𝐼 - 

and 𝐷𝑖𝑘
𝐼𝐼𝐼-terms 

[length
2
] 

𝐷𝑖𝑘
𝐼 ,𝐷𝑖𝑘

𝐼𝐼 ,𝐷𝑖𝑘
𝐼𝐼𝐼 , 𝐷𝑖𝑘

𝐼𝑉  Stiffness terms defining the GBT basic matrix 

𝑫 
[length

2
] 

𝐷 1,𝐷 2 ,𝐷 3, 𝐷 4,𝐷 𝑘>4 
The diagonal terms in the approximate 

diagonal transformed GBT basic matrix 𝑫  

corresponding to deformation mode 𝑘 

[ - ], 

[length
2
], 

[length
2
], 

[length
4
], 

[length
2
] 

𝐸 Young’s modulus of elasticity [force / length
2
] 

𝑭𝑣  𝑢 − 𝑣  relation matrix [1 / length] 
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𝑭𝑤   𝑢 − 𝑤  relation matrix [1 / length] 

𝑭𝑤1  𝑢 − 𝑤1  relation matrix [1 / length] 

𝑭𝑤2  𝑢 − 𝑤2  relation matrix [1 / length] 

𝑭𝜗   𝑢 − 𝜗  relation matrix [1 / length
2
] 

𝐺 Shear modulus [force / length
2
] 

𝐼𝐷 Saint-Venant torsion stiffness constant [length
4
] 

𝐼𝑦 , 𝐼𝑧  Second moment of inertia about 𝑦- and 𝑧-axis 

respectively 
[length

4
] 

𝐾, 𝐾𝑟  Plate stiffness, Plate element stiffness [force ∙ length] 

𝐾𝑖𝑘  
Terms involving nonlinear terms (used in 

second order analysis which is not used within 

this thesis) 

[ - ] 

𝑲3𝑥3 Matrix defined by the 𝐾𝑖𝑘  [ - ] 

𝑴  𝑢 − 𝑚𝑠  relation matrix 
[force ∙ length / 

length
2
] 

𝑀𝑦 ,𝑀𝑧  Bending moments about the principle axis 𝑦 

and 𝑧 
[force ∙ length] 

𝑁 Normal force [force] 

𝑃𝑥 ,𝑃𝑦 , 𝑃𝑧  Point forces in 𝑥-, 𝑦- and 𝑧-direction 

respectively 
[force] 

𝑆𝑘 .𝑟  Shear force in plate element 𝑟 [force] 

𝑈, 𝑉, 𝑊 Displacement components, defined in global 
 𝑋, 𝑌, 𝑍 -coordinate system 

[length] 

𝑼  
Matrix containing the warping values 

according to unit displacements one degree of 

freedom at the time. 

[length] 

𝑼  Cross-sectional modal matrix containing all 

deformation modes 𝒖 𝑘 . 
[varies with 𝑘] 

𝑊 Bi-moment [force ∙ length
2
] 
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𝑊 1 ,𝑊 2 , 𝑊 3 ,𝑊 4 ,𝑊 𝑘>4 The GBT sectional force for mode 𝑘 

[force], 

[force ∙ length], 

[force ∙ length], 

[force ∙ length
2
], 

[force ∙ length] 

 𝑋, 𝑌, 𝑍  Global coordinate system [ - ] 

𝑿  
Matrix containing unit displacement modes 

according to unit displacement one degree of 

freedom at the time 

[length] 

𝑿  Eigenmatrix or transformation matrix 

containing all normalized eigenvectors 𝒙 𝑘  
[varies with 𝑘] 

 

Roman lower case letters 

𝑏, 𝑏𝑟 ,𝑏𝑟 .𝑖  
Width, width of plate element 𝑟, width of sub-

plate 𝑟𝑖  
[length] 

𝑚𝐷 Distributed torsion moment 
[force ∙ length / 

length] 

𝑚𝑠.𝑟  
Transverse distributed nodal bending 

moments 

[force ∙ length / 

length] 

𝑚 𝑠.𝑟 , 𝑚 𝑠.𝑟  

Average transverse bending moments for 

plate element 𝑟 (The bar notation do not 

denote unit bending moment in this case) 

[force ∙ length / 

length
2
] 

𝑞 𝑥, 𝑠  General distributed surface load [force  / length
2
] 

𝑞𝑖  
Loading term containing 𝑠 and 𝑧 load 

components 
[force / length] 

𝑞 𝑘  The GBT load along the member associated 

with the 𝑠 and 𝑧 load components 
[force  / length] 

𝑞𝑥 ,𝑞𝑠 , 𝑞𝑧  Surface load components of 𝑞 𝑥, 𝑠  in 𝑥-, 𝑠- 

and 𝑧- direction respectively 
[force  / length

2
] 

𝑞𝑥 ,𝑞𝑦 ,𝑞𝑧  Distributed loads in 𝑥-, 𝑦- and 𝑧-direction 

respectively 
[force  / length] 

𝑞𝑥 ,𝑥 .𝑖  
Loading term containing the 𝑥 load 

component 
[force / length] 

𝑞 𝑥 ,𝑥 .𝑘  The GBT load along the member associated 

with the 𝑥 load component 
[force  / length] 

𝑡, 𝑡𝑟  Thickness,  thickness of plate element 𝑟 [length] 
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𝑢, 𝑣, 𝑤 Displacement components, defined in local 
 𝑥, 𝑠, 𝑧 -coordinate system 

[length] 

𝑢 𝑠 ,𝑣 𝑠 ,𝑤 𝑠  Mid-line displacement profiles [ - ] 

𝑢 𝑠𝑟 , 𝑢 𝑟  Nodal unit warping at node 𝑟 [length] 

𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖  
Cross-sectional 𝑠-dependent deformation 

functions  associated with virtual 

displacement mode 𝑖 
[ - ] 

𝑢𝑘 ,𝑣𝑘 ,𝑤𝑘  
Cross-sectional 𝑠-dependent deformation 

functions  associated with deformation mode 

𝑘 

[ - ] 

𝑢𝑟  Warping value at node 𝑟 [length] 

𝒖 1 , 𝒖 2 ,𝒖 3 , 𝒖 4 ,𝒖 𝑘>4 Cross-sectional deformation modes 

[ - ], 

[length], 

[length], 

[length
2
], 

[length] 

𝑣𝑟  
Local transverse and in-plane plate element 

displacement parallel to the mid-plane of 

plate element 𝑟 
[length] 

𝑤1.𝑟 ,𝑤2.𝑟  

First and second end local displacement 

components perpendicular to the mid-plane of 

plate element 𝑟 

[length] 

𝑤𝑟  

Local transverse plate element displacement 

perpendicular to the mid-plane of plate 

element 𝑟 

[length] 

 𝑥, 𝑠, 𝑧  Local coordinate system [ - ] 

𝒙 Degrees of freedom vector [length] 

𝒙 1 ,𝒙 2 , 𝒙 3 ,𝒙 4 ,𝒙 𝑘>4 Normalized eigenvectors 

[1 / length], 

[ - ], 

[ - ], 

[length], 

[ - ] 

𝒙 𝑘
𝐼 ,𝒙 𝑘

𝐼𝐼 , 𝒙 𝑘
𝐼𝐼𝐼  

Eigenvectors obtained in the first, second and 

third eigenproblem in the diagonalization 

process before normalization. 

[ - ] 
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Greek letters 
 

𝛼𝑟  Angle before deformation for plate element 𝑟 [rad, - ] 

𝛿𝑟  (𝜃𝑟 − 𝑚𝑠.𝑟) relation term which defines the 

𝚫𝑖𝑘 -matrix 
[1 / force] 

𝛿𝜀𝑥𝑥 ,𝛿𝜀𝑠𝑠 , 𝛿𝛾𝑥𝑠  Virtual strain components [ - ] 

𝛿Π Total variation in the virtual work due to 

external forces 
[force ∙ length] 

𝛿𝑈 Total variation in the virtual work due to 

internal forces 
[force ∙ length] 

𝛿𝑈𝑥𝑥 ,𝛿𝑈𝑠𝑠 , 𝛿𝑈𝑥𝑠  Internal virtual work components in 𝑥-, 𝑠- and 

𝑥𝑠-direction respectively 
[force ∙ length] 

𝛿𝑉 Total potential energy of a member [force ∙ length] 

𝛿𝜙𝑖 𝑥  Virtual amplitude function component [length] 

𝚫𝑖𝑘   Δ𝜗𝑟 − 𝑚𝑠.𝑟  relation matrix [1 / force] 

Δ𝛼𝑟  Angle difference between plate element 𝑟 and 

𝑟 − 1 at node 𝑟 
[rad, - ] 

Δ𝑭𝜗   𝑢 − Δ𝜗  relation matrix [1 / length
2
] 

Δ𝜗𝑟  Rotation at node 𝑟 [rad, - ] 

𝜀𝑥𝑥
𝐵 , 𝜀𝑠𝑠

𝐵 , 𝛾𝑥𝑠
𝐵  Bending strain components [ - ] 

𝜀𝑥𝑥
𝑀 , 𝜀𝑠𝑠

𝑀 ,𝛾𝑥𝑠
𝑀  Membrane strain components [ - ] 

𝜂 Local plate element coordinate [ - ] 

𝜗 Cross-sectional rotation  [ rad, - ] 

𝜗𝑟  Plate element rotation of plate element 𝑟 [rad, - ] 

𝜃𝑟  “Support rotation” at node 𝑟 due to the nodal 

transverse bending moment 𝑚𝑠.𝑟  
[rad, - ] 

𝜆𝑘
𝐼 ,𝜆𝑘

𝐼𝐼 ,𝜆𝑘
𝐼𝐼𝐼  Eigenvalues obtained in the diagonalization 

process 
[various] 

𝜈 Poisson’s ratio [ - ] 

𝜍𝑠𝑠  Normal stress along local 𝑠-direction [force / length
2
] 
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𝜍𝑥 ,𝜍𝑥𝑥 ,𝜍𝑥 .𝑘  Normal stress along local 𝑥-direction, normal 

stress associated with deformation mode 𝑘 
[force / length

2
] 

𝜏𝑥𝑠 , 𝜏𝑥𝑠 .𝑘  Shear stress in  “𝑥𝑠-direction”, shear stress 

associated with deformation mode 𝑘 
[force / length

2
] 

𝜙𝑖 𝑥  
Amplitude function associated with virtual 

displacement mode 𝑖 
[length] 

𝜙𝑘 𝑥  
Amplitude function associated with 

deformation mode 𝑘 
[length] 

𝜙 1 ,𝜙 2 ,𝜙 3 ,𝜙 4 , 𝜙 𝑘>4 Amplitude functions corresponding to 

deformation mode 𝑘 

[length
2
], 

[length], 

[length], 

[ - ], 

[length] 

𝜓𝑘 𝑥  
Amplitude function associated with 

deformation mode 𝑘 
[ - ] 

Ψ1−4 Integration helping functions or shape 

functions  
[ - ] 

𝜔 Warping ordinate [length
2
] 

 

Other notations 

 ∙ ,𝑥 ,  ∙ ,𝑠 Partial derivative with respect to 𝑥, partial derivative with respect 

to 𝑠 

 ∙ 𝑀 ,  ∙ 𝐵 𝑀 represents membrane components, 𝐵 represents bending 

components 

 ∙ 𝑟  Plate numbering or node numbering 

 ∙     Bar notation denotes that the variable correspond the unit 

displacement of a degree of freedom 

 ∙   Tilde notation denotes the transformed variable into the 

eigenvector coordinate system 

 ∙ 𝑛×𝑚  This subscript denotes the submatrix containing the first 𝑛 rows 

and the first 𝑚 columns of the corresponding matrix. 

𝑭𝑣 Bold notation for matrix and vector notations 
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1 Introduction 

The usage of cold-formed steel profiles have gradually increased throughout the 

years. Some of the reasons for this are structural efficiency, manufacturing versatility 

and low production and erection costs. The structural efficiency is defined as a large 

strength-to-weight ratio, hence the possibility to produce thin-walled cross-sections. If 

structural elements consist of these kinds of profiles their behaviour when subjected to 

load is rather complex to analyze and predict. Especially for open cross-sections 

which are rather sensitive to torsion and non-uniform torsion, since their capacity for 

this sort of action is poor [1]. 

For structural members consisting of thin-walled profiles loaded in compression the 

ultimate strength is greatly influenced by the buckling capacity [2]. Three kinds of 

buckling can occur in the member; local, distortional and global [3]. In case of local 

or distortional buckling there exists a post-buckling reserve capacity, which allows 

extra load to be applied. If the member buckles globally there is no allowance for 

additional load and the member collapses [2]. Hence it’s of great importance to 

understand and analyze the behaviour so that the real capacity of the member can be 

determined. 

At present time the Euler-Bernoulli and Timoshenko beam theories are widely used in 

calculations due to their simplicity and accuracy in describing bending and deflection 

behaviour. The theories are based upon assumptions such as plane cross-sections 

remain plane, and in the case of Euler-Bernoulli theory, even perpendicular to the 

neutral axis.  

Consequently, these theories are not applicable when local effects, such as local and 

distortional buckling, should be investigated. Therefore, there is a need for other 

theories to capture this kind of phenomena, primarily in thin-walled structural 

members. Today, finite plate elements are the most used method to model thin-walled 

structures. The drawback with this method is the large computational effort needed to 

carry out such stability analysis due to the large number of degrees of freedom and 

modal identifications are very ineffective in finite element methods (FEM) [4]. 

When calculating the load bearing capacity of thin-walled steel beams subjected to 

both bending and axial compression where the cross-section is not double-symmetric 

and the boundary conditions are not fork-like Eurocode 3 refers to FEM. The 

drawback of this is argued about above, further the FEM-programs are expensive. 

Therefore, a compliment to the FEM analysis is of interest. A modal based method 

was developed by Richard Schardt and is called Generalized Beam Theory (GBT). 

This beam theory includes local effects and is applicable on thin-walled structural 

elements. The subject of this Master’s project will be to investigate the derivation of 

the theory and also apply it on some structural cases. 

 

1.1 Aim 

The aim of the Master’s project was to study the applicability and benefits of GBT. 

This method was evaluated in terms of versatility, accuracy and computational effort 

with the objectives defined as: 

 Application of first-order GBT on thin-walled steel members 

 Verification and evaluation of the first-order theory 
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1.2 Method 

In order to reach the goal, the project was divided into three major steps, namely a 

literature study, application and verification. 

Firstly, the literature study was performed in order to collect important information as 

well as documenting the development of the theory from its start up until present date. 

Also important additions to the theory were highlighted and existing implementations 

were identified. 

Later, the GBT formulas were derived for a thin-walled and open cross-sectioned 

member. Based on those formulas, computational algorithms were implemented as 

MATLAB routines. The acquired results were then compared to those of a 

commercial FE-software in order to verify the validity of the application, but also to 

verify the whole concept of GBT. 

Finally, a parametric study was performed in order to evaluate the GBT method 

further. This step involved different loadings and boundary conditions but also 

different cross-sectional discretizations. 

Based on the results from the verification and the evaluation of GBT, conclusions 

were drawn regarding the validity, versatility and computational effort. 

 

1.3 Limitations 

The field of GBT is rather broad; hence limitations were needed to narrow it down 

into this project. Introduced restrictions are presented below:  

 First order theory (displacements and stresses) 

 Static analysis 

 One single member 

 Open cross-sections 

 Isotropic material conditions 

Furthermore, the theory was applied on members where no cross-sectional restraints 

were considered, i.e. no restraints along the member.  

 

1.4 Outline of the thesis 

Chapter 2 encloses the development of the GBT, from its start until present time. 

Chapter 3 contains a short summary of prerequisite knowledge about classic beam 

theories. This is written to enhance the readers understanding of similarities between 

GBT and other beam theories. Chapter 4 presents all derivations in the context of 

GBT. This involves both the derivation of the fundamental equilibrium equation and 

the establishment of the cross-sectional deformation modes. In Chapter 5 the 

implementation of the theory is presented in terms of flow charts and calculation 

algorithms. Chapter 6 shows the application procedure of GBT on a Z-profile beam. 

This member is also analysed using the commercial FE-software ABAQUS. A 

comparison between the results is performed. Chapter 7 encloses a parametric study 

where some conditions of the solved member are changed. The response of the beam 

is then compared to ABAQUS values in order to verify GBT. Chapter 8 and 9  

contains the final discussion and conclusions along with identified areas of further 

research. 
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2 The development of Generalised Beam Theory 

In this chapter the historical development of the Generalised Beam Theory (GBT), 

until present time, will be presented.  

 

2.1 Origin 

GBT was first presented in the 1960:s by a German professor named Richard Schardt. 

The theory could be interpreted as a combination the folded plate theory and the 

Vlasov’s theory for thin-walled beams [5]. Schardt and his associates at the Technical 

University of Darmstadt continued the development of the basic theory during almost 

three decades without any notable attention from the rest of the research world. The 

main reason for this was probably that most of the published results were written in 

German, and hence the English speaking researcher’s didn´t intercept the theory. One 

of the most important references, concerning the basic GBT, is the book 

Verallgemeinerte Technische Biegetheorie [6] published by the mentioned professor 

Schardt. As suspected from the name, the book is written in German, and no known 

translation of the text exists [7]. 

The lack of recognition of the theory during this period had probably mostly linguistic 

and communicative reasons; if research databases had been around, the information 

could have reached its designated crowd faster. Perhaps also increasing use of FEM 

analysis made the theory a bit neglected, since acceptable results could be modelled in 

this fashion. 

 

2.2 Development from the 1990:s until today 

During the 1990:s the work carried out by the research team in Germany became 

available to the English speaking community through a series of publications by J. 

Michael Davies, at the time a researcher at the University of Salford in the United 

Kingdom. Not only did Davies and his colleagues translate the theory, but they also 

contributed with the extension of the theory to the buckling behaviour of cold-formed 

steel members. They also showed that GBT can be more efficient than Finite Element 

Analysis (FEA) or Finite Strip Analysis (FSA) [8].   

After the publications of the groups at Salford and Dortmund, the rate of progress for 

the theoretical advances decreased. During the years 1995-2000, the numbers of 

articles published in the field were few. The reason for this is unknown to the authors, 

but throughout the research there’s definitely a gap and no references to articles of 

great importance written during this period has been found. Since the early 2000:s the 

rate of articles increased again with contributions from researchers in USA, Hungary, 

Romania, Spain, France, Denmark and Portugal among others.  

Throughout the last decade, a research group at the Technical University of Lisbon, 

Portugal, has by far published the largest number of scientific articles in the field of 

GBT. From this team Nuno Silvestré and Dinar Camotim are the most frequently 

occurring authors, together with various co-authors. They have explored and 

expanded the theory in a number of different areas, and are still publishing interesting 

articles at a fast rate. In the next section their research contribution, among others, are 

described.  
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2.3 Research fields 

In this section, a review of the research of GBT in different fields of structural 

analysis is given. The intention is to give the reader an idea about how the theory has 

developed and been applied in a way that is easy to grasp. The authors refer to the 

given references for deeper knowledge.  

 

2.3.1 First order theory 

This theory is linear and generally based on the assumptions that Hooke’s law is valid, 

there are no imperfections, and that the deformations are small. Hence the equilibrium 

systems are given for the undeformed structure [9]. Deformations, internal forces and 

stresses are calculated according to this theory. 

The earliest publications by Schardt et al. concerned the first order structural analysis 

in the framework of GBT. By combining the predetermined modes of deformation 

with the solution of the pertinent linear differential equation for each mode, the 

deflections, rotations and internal forces could be determined. Throughout this 

analysis the assumption of isotropic material was used. Davies (mentioned in previous 

section) published an article [7] on first order GBT. This document is recommended 

by the authors to the reader who wants to know how the member analysis is 

performed, after that the cross-sectional deformations modes have been determined. It 

shows the theory on a level that is possible to follow by using hand calculations. It 

also shows the relations between the cross-sectional deformation modes and the cross-

section constants. 

In its infancy, GBT concerned thin-walled open-cross sections. The lack of possibility 

to analyse common profiles like I-beams and H-beam made, of course, the theory a bit 

restrained. The references [10] and [8] are the earliest found articles on the topic of 

how to expand the theory into analyses of arbitrarily shaped sections. Figure 2.1 

below shows the categorization of the properties of cross-sections when discussing 

profiles in the analysis. To the left is a pair of open-sections, which were possible to 

analyse with the early theory. Next are pairs of branched, boxed and branched-boxed 

sections. With these developments the versatility of the GBT method increased, and 

now all the common thin-walled profiles are able to undergo GBT analysis. 

 

 

Figure 2.1: This figure illustrates 𝑎) open sections, 𝑏) branched sections, 𝑐) boxed 

sections and 𝑑) branched and boxed sections. 

 

Orthotropic analysis for first-order GBT was introduced by Silvestre et al. and this 

enabled calculations on various types of composites and other profiles assembled 

having different material properties in different plates and directions. The same 

researchers also published an article [11] about the effects from shear, which had been 
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neglected earlier. By performing the typical GBT cross section modal analysis 

including the assumption of shear, an additional set of modes were identified. In the 

basic theory global, local and distortional modes are obtained; hence the extra set of 

modes represents the effects of shear. By using these modes in the analysis the effect 

of the phenomena are determined, and a better structural understanding is achieved. 

The Portuguese group has furthermore expanded the theory from single members into 

frames. Paper [1] is devoted to this topic, and paper [12] deals entirely with how to 

model the joints in the frame. Warping transmission in joints is the crucial part, and is 

discussed and modelled. This is performed to incorporate the phenomena in a 

representative manner. 

Common for all the research carried out after year 2000 is that there’s a main focus 

not on the first-order theory, but rather on the higher order theory. The calculation of 

e.g. critical buckling loads and the buckling shapes are of a greater interest to 

scientists than only the determination of internal forces, stresses and moments. A 

trend toward this had started earlier, and after the year of 2000 articles about first 

order GBT specifically are rare. 

 

2.3.2 Higher order theory 

As opposed to first order theory, higher order theories are by definition nonlinear and 

include terms that otherwise were neglected. These assumptions could be divided into 

physical and geometrical categories. Physical nonlinearity concerns the actual 

behaviour of the material used in the analysis, where there e.g. exists a yield limit and 

plastic deformation may occur. Geometrical nonlinearity mainly concerns stability 

issues for the analysed structure, where assumed initial imperfections can be included. 

The calculation result from higher order theory aims at achieving an economically 

efficient structure, with satisfactory structural capacity regarding critical buckling 

load and known buckling shapes [9]. 

The basic equation for GBT theory is expanded with additional terms when 

formulated for second order analysis. With the aid of these terms the stability 

eigenvalue problem can be formulated and solved to investigate the structural 

integrity of the construction. Already in the early 1990:s methods and examples on 

second order theory for GBT were published in [13] and [14]. The articles are written 

by Davies & Leach, which at the time worked in the UK.  

As mentioned earlier, a lot of the research the last decade has been performed by the 

researchers at the Technical University of Lisbon, Portugal. Apart from improving the 

theory into e.g. arbitrarily shaped cross-sections, orthotropic material, several 

boundary conditions and loads, their main focus has been to investigate the buckling 

behaviour. At a fast rate, they have published articles dealing with nonlinear analysis 

of members showing elastic and elastic-plastic material properties, geometrically 

imperfections and having intermediate supports. References [2], [10], [15], [16] and 

[17] are some of the publications regarding second order theory. The authors specially 

recommend paper [10] as an adequate summary of their research progress up until the 

year of 2004. 

 

Schardt, and colleagues, have extended the theory for the case of dynamic analysis, 

with isotropic linear elastic material conditions. Furthermore the research group in 

Lisbon has improved the formulation to include arbitrary orthotropic material 
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behaviour also for this kind of analysis. Note that also the latter formulation holds 

only for linear elastic material properties [10]. 

 

2.3.3 Interesting areas of application 

For structural engineers the applicability of the theory into real structural situations is 

of great importance. Therefore the authors in this section are trying to give some 

indications on how the theory has been evolved to become more practical and 

multifaceted.  

It is important to be able to model intermediate actions along the length of the beam, 

for example a purlin restraining the beam from warping freely or buckling at the 

connection. The original book [6] and the paper [18] are dealing with this issue, still 

on a very theoretical level. By using rigid supports, translational springs and rotational 

springs at specific points along the member they are showing a methodology how to 

model such situations. In this fashion, numerical results are obtained and results 

compared to shell models in ANSYS are promising. The earliest found reference on 

this topic is [19] where a calculation is performed for the case of a beam on several 

supports and restrained by a metal sheet roof. 

Another interesting field of application of GBT is for non-prismatic beams. The usage 

of tapered (non-prismatic) beams is common in the steel-construction industry and 

therefore it is of importance that the theory of GBT applies to this kind of problems. 

Mihai Nedelcu has written articles in the field and in [20] he shows a theoretical 

procedure and some numerical examples on how to obtain results. If the slope of the 

tapering is uniform, and can be describe by a function along the member length, the 

effect can be taken into account during the derivation of equations. Note that this 

holds true if the thicknesses of the plate walls are constant. For arbitrary differences in 

the cross-section along the member he proposes a rougher numerical calculation. The 

basic idea in this procedure is to perform the calculation of the modes, as in ordinary 

GBT, for every coordinate along the member length. As a result the ordinary beam 

equation constants start to depend on the location along the axis and the response for a 

tapered beam can be determined.  

During the calculation according to Nedelcu the cross-sectional analysis is performed 

for each point (read cross-section) along the member length, hence the variation of 

constants. In other words the stiffness along the beam will vary with the coordinate in 

the longitudinal direction of the beam. Since the calculation is performed for every 

part of the beam it’s possible to calculate the response for a beam with varying wall 

thickness. The article is arguing for the theory by comparison of numerical examples 

to standard calculation procedures.  

 

2.3.4 Calculation efficiency 

In paper [21] a comparison of buckling analysis performed using GBT and an 

ordinary FEA using shell elements was performed, both for the linear and non-linear 

case. The examined structural member was a simply supported beam, modelled both 

with and without intermediate restraints. When the results were compared, the 

maximum difference was determined to approximately 3.4%. The number of degrees 

of freedom used in the GBT analysis was 108 and in the traditional FEA model 6750. 

By only using 1.6% of degrees of freedom and still perform this accurate, if handled 

properly, the power of GBT was exposed. 
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2.4 Existing implementations 

The explicitly GBT based software applications are few, where CUFSM and GBTUL 

are the frequent examples [22]. Common for the calculations in the programs are that 

they are designed and intended to provide the cross-section modal information and 

also to describe the buckling behaviour of one single member. None of the different 

software’s tested by the authors has provided any information about deflections, 

stresses or forces in the member. Hence they are intended to focus on higher order 

theory to provide buckling loads, buckling shapes and the modal participation into the 

result. 

CUFSM is a MATLAB implementation of some GBT concepts into FSM theory. 

FSM theory is similar to FEM theory, but only discretizes the cross-section along the 

member length, not transversally. By constraining the FSM mesh to buckle in a 

specific, GBT based, mode the buckling load can be calculated. The modes are 

selected in an interface where, for the first time, the user is able to view and select 

global, local or distortional modes to include in the analysis. The creators of the 

application have made the MATLAB code open-source, which makes it possible for 

everyone to download, use and modify the behaviour. The name of the program 

originally originates from cFSM which is an acronym for the description Constrained 

Finite Strip Method.  

GBTUL is developed as a separate windows application and also performs buckling 

analyses in the context of GBT. Also in this implementation the user is free to choose 

which modes to include in the analysis. However, the modal decomposition into 

global, local and distortional modes is not present, as for CUFSM [22].  

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:86 8 

3 Prerequisites 

In the context of technical beam theory there are mainly four basic phenomena that 

are present, namely the axial extension, major and minor principle axis bending and 

torsion. The intention of this chapter is to give some short background to these 

theories. 

 

3.1 The four technical beam theories 

When evaluating the behaviour of a beam there are four main theories involved, 

namely the axial extension, major and minor axis bending and torsion. The theories of 

interest in the context of GBT are the rod-theory, Euler-Bernoulli beam theory and 

non-uniform torsion or Vlasov torsion theory, see Figure 3.1. 

 

 

Figure 3.1: A description of and notations used in the four main beam theories where 

𝑎) rod-action 𝑏) major axis bending 𝑐) minor axis bending and 𝑑) non-uniform 

torsion. 

 

The fundamental differential equations in the four beam theories and the 

corresponding sectional forces are stated below and they are stated in the same order 

as in Figure 3.1: 

𝑎) 𝐸𝐴𝑢′′ = −𝑞𝑥  𝑁 = 𝐸𝐴𝑢′ 

(3.1) 

𝑏) 𝐸𝐼𝑦𝑤′′′′ = 𝑞𝑧  𝑀𝑦 = −𝐸𝐼𝑦𝑤′′ 

𝑐) 𝐸𝐼𝑧𝑣′′′′ = 𝑞𝑦  𝑀𝑧 = −𝐸𝐼𝑧𝑣′′ 

𝑑) 𝐸𝐶𝑀𝜗′′′′ − 𝐺𝐼𝐷𝜗
′′ = 𝑚𝐷  𝑊 = −𝐸𝐶𝑀𝜗′′ 
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In general the stress state, distortions and deformations can be determined in each 

point  𝑥, 𝑦, 𝑧  along the member from the solutions to the differential equations (3.1) 

and knowing its derivatives. Due to the orthogonality between the main coordinate 

axes the cross-sectional distribution and the longitudinal distributions are uncoupled 

and independent of each other. The stress and displacement distributions can therefore 

be seen to be expressed in to different functions, one that describes the cross-sectional 

distributions (in 𝑦- and 𝑧-direction) and one that prescribes the variation along the 

member in 𝑥-direction [6]. 

So, for instance looking on the longitudinal 𝑢-displacements for the four beam 

theories stated above the separation of variables might look like: 

𝑎) 𝑢 𝑥, 𝑦, 𝑧 = 𝑢 𝑥  

(3.2) 
𝑏) 𝑢 𝑥, 𝑦, 𝑧 = −𝑧 ∙ 𝑤 ′ 𝑥  

𝑐) 𝑢 𝑥, 𝑦, 𝑧 = −𝑦 ∙ 𝑣 ′ 𝑥  

𝑑) 𝑢 𝑥, 𝑦, 𝑧 = 𝜔 𝑦, 𝑧 ∙ 𝜗′ 𝑥  

Where 𝑦 and 𝑧 are the coordinates defined from the centre of gravity of the cross-

section and 𝜔 𝑥, 𝑦  is the warping ordinate. The variation in 𝑢-displacements over the 

cross-section is described in Figure 3.2 below. 

 

 

Figure 3.2: The variation in 𝑢-displacements for the four beam theories 𝑎) rod action 

𝑏) major axis bending 𝑐) minor axis bending and 𝑑) non-uniform torsion. 

 

3.1.1 Stresses 

In the longitudinal direction or 𝑥-direction normal stresses will arise due to the 𝑢-

deformations and are denoted with 𝜍𝑥 . The stresses for the different beam theories 

above and for linear elastic materials can be stated through the kinematic relations and 

Hook’s law as: 

𝑎) 𝜍𝑥 𝑥, 𝑦, 𝑧 = 𝐸 ∙ 𝑢′ 𝑥  

(3.3) 
𝑏) 𝜍𝑥 𝑥, 𝑦, 𝑧 = −𝐸 ∙ 𝑧 ∙ 𝑤 ′′  𝑥  

𝑐) 𝜍𝑥 𝑥, 𝑦, 𝑧 = −𝐸 ∙ 𝑦 ∙ 𝑣 ′′  𝑥  

𝑑) 𝜍𝑥 𝑥, 𝑦, 𝑧 = 𝐸 ∙ 𝜔 𝑥, 𝑦 ∙ 𝜗′′  𝑥  
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Since the beam theories are decoupled due to orthogonality the total stress in a 

member subjected to several loading types is obtained by summation of each 

contribution as: 

 𝜍𝑥 𝑥, 𝑦, 𝑧 =  𝜍𝑥 .𝑘

𝑘

 𝑥, 𝑦, 𝑧  (3.4) 

In addition the normal stresses, shear stresses will also arise and are denoted 𝜏𝑠𝑥 . The 

expression for the shear stresses are derived from equilibrium conditions of an 

arbitrary infinitesimal cut-out from a wall element, see Figure 3.3. 

 

 

Figure 3.3: An infinitesimal cut out part from one plate element in the cross-section 

which has the thickness 𝑡, length 𝑑𝑥 and a height 𝑑𝑠. The normal stresses 𝜍𝑥  acts in 

the longitudinal direction parallel to the 𝑥-axis and the shear stresses are denoted 

with 𝜏𝑠𝑥 . 

 

The infinitesimal part must be in equilibrium and the shear stresses can out of that 

condition be determined in terms of the longitudinal normal stresses as: 

 

→ :    𝜍𝑥 + Δ𝜍𝑥 𝑡𝑑𝑠 − 𝜍𝑥𝑡𝑑𝑠 +  𝜏𝑥𝑠 + Δ𝜏𝑥𝑠 𝑡𝑑𝑥 − 𝜏𝑥𝑠𝑡𝑑𝑥 = 0 

𝑑𝜍𝑥 ∙ 𝑡𝑑𝑠 + 𝑑𝜏𝑥𝑠 ∙ 𝑡𝑑𝑥 = 0 

𝑑𝜍𝑥

𝑑𝑥
∙ 𝑡 +

𝑑𝜏𝑥𝑠 ∙ 𝑡

𝑑𝑠
= 0 

 

 𝜏𝑥𝑠 = −
1

𝑡 𝑠 
 𝑡 ∙ 𝜍𝑥

′ 𝑑𝑠

s

0

 (3.5) 

Insert the expression for the normal stresses (3.3) into the derived expression for the 

shear stress (3.5) gives the following expressions for the four beam theories: 

𝑎) 𝜏𝑥𝑠 =
1

𝑡 𝑠 
 𝑡 ∙ 𝐸 ∙ 𝑢′′  𝑥 𝑑𝑠

s

0

 

(3.6) 

𝑏) 𝜏𝑥𝑠 =
1

𝑡 𝑠 
 𝑡 ∙ 𝐸 ∙ 𝑧 ∙ 𝑤 ′′′  𝑥 𝑑𝑠

s

0
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𝑐) 𝜏𝑥𝑠 =
1

𝑡 𝑠 
 𝑡 ∙ 𝐸 ∙ 𝑦 ∙ 𝑣 ′′′  𝑥 𝑑𝑠

s

0

 

𝑑) 𝜏𝑥𝑠 = −
1

𝑡 𝑠 
 𝑡 ∙ 𝐸 ∙ 𝜔 𝑥, 𝑦 ∙ 𝜗′′′  𝑥 𝑑𝑠

s

0

 

The total shear stress for a member subjected to several loading types is obtained in 

the same manner as the normal stresses, namely by simply adding them together as: 

 𝜏𝑥𝑠 𝑥, 𝑦, 𝑧 =  𝜏𝑥𝑠 .𝑘

𝑘

 𝑥, 𝑦, 𝑧  (3.7) 

 

3.1.2 Sectional forces and cross-sectional parameters 

The sectional forces in the different beam theories are defined as an integral of the 

longitudinal stresses 𝜍𝑥  over the cross-sectional area 𝐴. When talking about rod action 

the sectional force is the normal force 𝑁, for major and minor axis bending are the 

corresponding bending moments 𝑀𝑦 , 𝑀𝑧  and for the non-uniform torsion the sectional 

force is the bimoment 𝑊. The integrals are defined as: 

 𝑁 =  𝜍𝑥𝑑𝐴

𝐴

 𝑀𝑧 =  𝜍𝑥𝑦𝑑𝐴

𝐴

 𝑀𝑦 =  𝜍𝑥𝑧𝑑𝐴

𝐴

 𝑊 = − 𝜍𝑥𝜔𝑑𝐴

𝐴

 (3.8) 

Out of the expressions of cross-sectional forces the definition of the cross-sectional 

parameters can be obtained by simply insert the expressions for the normal stresses 𝜍𝑥  

(3.3) into the expression for sectional forces (3.8), one gets: 

 𝐴 =  1𝑑𝐴

𝐴

 𝐼𝑧 =  𝑦2𝑑𝐴

𝐴

 𝐼𝑦 =  𝑧2𝑑𝐴

𝐴

 𝐶𝑀 = − 𝜔2𝑑𝐴

𝐴

 (3.9) 

If the sectional forces and the cross-sectional properties are known the normal stresses 

can be determined as: 

 𝜍𝑥 𝑥, 𝑦, 𝑧 =
𝑁 𝑥 

𝐴
 𝜍𝑥 𝑥, 𝑦, 𝑧 =

𝑀𝑧 𝑥 

𝐼𝑧
𝑦 

(3.10) 

 𝜍𝑥 𝑥, 𝑦, 𝑧 =
𝑀𝑦 𝑥 

𝐼𝑦
𝑧 𝐶𝑀 = −

𝑊 𝑥 

𝐶𝑀
 𝜔 𝑦, 𝑧  

A summary of the four beam differential equations and the corresponding stresses, 

internal forces and cross-sectional parameters and also the analogies to GBT are 

tabulated in Appendix E. 
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4 Derivations within the context of GBT 

This chapter contain all derivations within the context of first order GBT with linear 

elastic materials. The derivation involves the GBT fundamental equilibrium equation, 

cross-sectional discretization where the transverse displacements are expressed in 

terms of the longitudinal warping function, extension of the theory to include 

intermediate nodes, the transformation into an eigenvector coordinate system 

(diagonalization of the GBT-matrices) and also an application of finite element 

method to solve the GBT fundamental equation. 

 

4.1 The GBT fundamental equilibrium equations 

The following derivation is for a prismatic member consisting of an arbitrary open 

thin-walled cross-section which consists of rectangular plate element with constant 

thickness. In order to carry out this derivation some preliminary definitions must be 

set. The global coordinate system is a right-handed orthogonal system  𝑋, 𝑌, 𝑍  where 

the 𝑋-coordinate is defined parallel to the member axis. The corresponding global 

displacements are denoted as  𝑈, 𝑉, 𝑊  where 𝑈 is defined in the 𝑋-direction, 𝑉 in 𝑌-

direction and 𝑊 in the 𝑍-direction. 

As a complement to the global system a local coordinate system is introduced. This is 

also an orthogonal system  𝑥, 𝑠, 𝑧  where 𝑥-coordinate is defined parallel to the global 

𝑋-coordinate, the 𝑠-coordinate is defined along the cross-sectional midline and the 𝑧-

coordinate is defined perpendicular to the cross-sectional mid-plane. The local 

displacements  𝑢, 𝑣, 𝑤  are defined in the local coordinate system where 𝑢 is defined 

in 𝑥-direction, 𝑣 in 𝑠-direction and 𝑤 is defined in the 𝑧-coordinate direction, see 

Figure 4.1. 

 

 

Figure 4.1: The definitions of the global coordinate system  𝑋, 𝑌, 𝑍 , the global 

displacements  𝑈, 𝑉, 𝑊 , the local coordinate system  𝑥, 𝑠, 𝑧  and the local 

displacements  𝑢, 𝑣, 𝑤  are here defined for a prismatic member with an arbitrary 

open thin-walled cross-section. 
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The cross-section is discretized into a number of plate elements defined by nodes. 

There are two types of nodes handled within this derivation, namely natural nodes and 

intermediate nodes. The natural nodes are defined at the intersection between two 

plate elements where the mutual angle difference is non-zero. The natural nodes also 

include the two end nodes, even though they differ from the definition. The 

intermediate nodes are nodes defined within a plate element between two natural 

nodes, see Figure 4.2. 

 

 

Figure 4.2: The cross-section is descetized in terms of natural nodes and intermediate 

nodes. Filled dotes are representing natural nodes (node 1, 3 and 𝑛 + 1) and rings 

are representing the intermediate nodes (node 2 and 𝑛). 𝑛 do in this figure stand for 

the total number of sub-plates. The node numbering is defined such that the node 

number increases with the increasing 𝑠-coordinate. 

 

4.1.1 Separation of variables procedure 

The locally defined displacement components 𝑢 𝑥, 𝑠 , 𝑣 𝑥, 𝑠  and 𝑤 𝑥, 𝑠  must be 

expressed as a product of two single-variable function in order to have an 

displacement representation compatible with the classical beam theories. This give: 

 𝑢 𝑥, 𝑠 = 𝑢 𝑠 ∙ 𝜓𝑘 ,𝑥 𝑥  𝑣 𝑥, 𝑠 = 𝑣 𝑠 ∙ 𝜓𝑘 𝑥  𝑤 𝑥, 𝑠 = 𝑤 𝑠 ∙ 𝜓𝑘 𝑥  (4.1) 

Where 𝑢 𝑠 , 𝑣 𝑠  and 𝑤 𝑠  are mid-line displacement profiles and 𝜓 𝑥  is a 

dimensionless displacement amplitude function defined along the member. The 

comma subscript  ∙ ,  stands for partial derivatives and the reason to the derivative on 

the 𝑢-displacements will be derived in Section 4.2 so within this section the first 

derivative is just stated and accepted as it is. 

Assuming that 𝑢 𝑠  vary linearly
1
 within each plate element, i.e. that 𝑢 𝑠  is 

completely defined by its nodal values. Thus the displacement 𝑢 𝑠  can be written as: 

                                                 
1
This assumption is proofed in Section 4.2.2. 
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 𝑢 𝑠 = 𝑢𝑘 𝑠 ∙ 𝑢(𝑠𝑟) (4.2) 

Where 𝑢𝑘 𝑠  is a linear function of 𝑠 which has unit value at the corresponding node 

𝑟 and are zero at all other nodes and 𝑢(𝑠𝑟) is the nodal warping value
2
 at node 𝑟, also 

referred as 𝑢𝑟 . The summation convention applies to subscript 𝑘 (number of modes) 

and the discretization of the deformed cross-section amounts to configure it into a 

number of deformation modes equal to the number of degrees of freedom. The 

number of degrees of freedom depends if intermediate nodes are included or not. If 

they are excluded the numbers of degrees of freedom is the same as the number of 

natural nodes (nodal warping values) but if they are included the number of degrees of 

freedom is the same as the total number of nodes plus two extra degrees of freedom 

associated with the two boundary nodes, see Section 4.3.1. 

The displacement fields are then obtained by combining (4.1) and (4.2) and can be 

written as: 

 𝑢 𝑥, 𝑠 = 𝑢𝑘 𝑠 𝜙𝑘 ,𝑥 𝑥  𝑣 𝑥, 𝑠 = 𝑣𝑘 𝑠 𝜙𝑘 𝑥  𝑤 𝑥, 𝑠 = 𝑤𝑘 𝑠 𝜙𝑘 𝑥  (4.3) 

Where 𝑢𝑘 𝑠 , 𝑣𝑘 𝑠  and 𝑤𝑘 𝑠  are cross-section deformation modes and 𝜙𝑘 𝑥  is the 

corresponding amplitude function defined as: 

 𝜙𝑘 𝑥 = 𝑢 𝑠𝑟 ∙ 𝜓𝑘 𝑥  (4.4) 

The behaviour of the member is obtained as a summation over the cross-sectional 

deformation modes 𝑘 and the more modes included the more accurate results will be 

obtained. This is an advantage where the user can choose which modes that should be 

accounted for and also easily sees how large influence different deformation modes 

have on the total behaviour of the member. 

 𝑢 𝑥, 𝑠 =  𝑢𝑘 𝑠 𝜙𝑘 ,𝑥 𝑥 

𝑘

 

(4.5)  𝑣 𝑥, 𝑠 =  𝑣𝑘 𝑠 𝜙𝑘 𝑥 

𝑘

 

 𝑤 𝑥, 𝑠 =  𝑤𝑘 𝑠 𝜙𝑘 𝑥 

𝑘

 

 

4.1.2 Assumptions 

The formulation of the GBT is based on the following simplifying assumptions. Thin 

plate theory is adopted which means that the Kirchoff-Love hypothesis is valid for all 

plate elements forming the member. Thus, fibres normal to the mid-plane remains 

straight, normal and inextensional to the mid-plane after deformation. This more 

precisely expressed in strain components give: 

                                                 
2
 Warping is a commonly used expression in the context of GBT. This is somewhat disconcerting due 

to its immediate association with non-uniform torsion. Here warping is a representation for the axial 

deformation and not only associated with the torsion deformation mode (mode 4). 
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 𝜀𝑧𝑧 = 𝛾𝑥𝑧 = 𝛾𝑠𝑧 = 0 (A4.1) 

The other assumption is that membrane transverse extensions and shear strains are 

neglected, thus the only retained membrane strains are the longitudinal strains. 

Expressed in strain components one have: 

 𝜀𝑠𝑠
𝑀 = 𝛾𝑥𝑠

𝑀 = 0 (A4.2) 

 

4.1.3 Kinematic relations 

The strains consist of two parts, namely the uniform axial membrane strains and the 

strains corresponding to bending of the plate elements. Following the Kirchoff-Love 

hypothesis stated above the strains can be determined according to Figure 4.3.  

 

 

Figure 4.3: Kinematic relations for a plate element. Here the plate in 𝑥-direction is 

depicted but the same applies in 𝑠-direction. 

 

The membrane strains are expressed and defined as the first derivative in 𝑥- and 𝑠-

direction respectively, which give: 

 𝜀𝑥𝑥
𝑀 = 𝑢,𝑥  𝜀𝑠𝑠

𝑀 = 𝑣,𝑠 𝛾𝑥𝑠
𝑀 = 𝑣,𝑥 + 𝑢,𝑠 (4.6) 

The strains corresponding to bending of the plate element are defined as: 

 𝜀𝑥𝑥
𝐵 = −𝑧 ∙ 𝑤,𝑥𝑥  𝜀𝑠𝑠

𝐵 = −𝑧 ∙ 𝑤,𝑠𝑠 𝛾𝑥𝑠
𝐵 = −2𝑧 ∙ 𝑤,𝑥𝑠  (4.7) 

Note: The comma subscript  ∙ , stands for partial derivatives, the superscripts  ∙ 𝑀 

and  ∙ 𝐵 indicates membrane and bending terms respectively. Using the assumptions 

(A4.1) and (A4.2) together with the kinematic relations (4.6) and (4.7) the strain-

displacement relations can be expressed in terms of the mid-plane displacement 

components as: 
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𝜀𝑥𝑥 = 𝜀𝑥𝑥
𝑀 + 𝜀𝑥𝑥

𝐵 = 𝑢,𝑥 − 𝑧 ∙ 𝑤,𝑥𝑥  

𝜀𝑠𝑠 = 𝜀𝑠𝑠
𝑀 + 𝜀𝑠𝑠

𝐵 = 0 − 𝑧 ∙ 𝑤,𝑠𝑠 = −𝑧 ∙ 𝑤,𝑠𝑠 

𝛾𝑥𝑠 = 𝛾𝑥𝑠
𝑀 + 𝛾𝑥𝑠

𝐵 = −2𝑧 ∙ 𝑤,𝑥𝑠  

(4.8) 

 

4.1.4 Constitutive relation 

Linear elastic materials are to be used which means that the relation between stresses 

and strains are defined in terms of the Young’s modulus 𝐸, the shear modulus 𝐺 and 

the Poisson’s ratio 𝜈. The relation is defined as: 

 𝜍𝑥𝑥
𝐵 =

𝐸

1 − 𝜈2
 𝜀𝑥𝑥

𝐵 + 𝜈𝜀𝑠𝑠
𝐵   𝜍𝑠𝑠

𝐵 =
𝐸

1 − 𝜈2
 𝜀𝑠𝑠

𝐵 + 𝜈𝜀𝑥𝑥
𝐵   𝜏𝑥𝑠

𝐵 = 𝐺𝛾𝑥𝑠
𝐵  

(4.9) 

 𝜍𝑥𝑥
𝑀 = 𝐸𝜀𝑥𝑥

𝑀    

Note: 𝜍𝑧𝑧  is not written out here since, according to (A4.1), 𝜀𝑧𝑧 = 0 and therefore it 

will not contribute to the virtual work. 

Introduce the kinematic relations (4.8) into the constitutive relation (4.9) the stress 

components are given as: 

 

𝜍𝑥𝑥 = 𝐸𝜀𝑥𝑥
𝑀 +

𝐸

1 − 𝜈2
 𝜀𝑥𝑥

𝐵 + 𝜈𝜀𝑠𝑠
𝐵  = 𝐸𝑢,𝑥 − 𝑧

𝐸

1 − 𝜈2
 𝑤,𝑥𝑥 + 𝜈𝑤,𝑠𝑠  

𝜍𝑠𝑠 = 𝐸 𝜀𝑠𝑠
𝑀 

=0

+
𝐸

1 − 𝜈2
 𝜀𝑠𝑠

𝐵 + 𝜈𝜀𝑥𝑥
𝐵  = −𝑧

𝐸

1 − 𝜈2
 𝑤,𝑠𝑠 + 𝜈𝑤,𝑥𝑥   

𝜏𝑥𝑠 = 𝐺 𝛾𝑥𝑠
𝑀 

=0

+ 𝐺𝛾𝑥𝑠
𝐵 = 𝐺𝛾𝑥𝑠

𝐵    = −2𝐺𝑧𝑤,𝑥𝑠  

(4.10) 

Finally, insert the displacement field notation (4.3) into (4.10) the expression for the 

stress components are defined as: 

 

𝜍𝑥𝑥 = 𝐸 𝑢𝑘𝜙𝑘 ,𝑥 ,𝑥
− 𝑧

𝐸

1 − 𝜈2
  𝑤𝑘𝜙𝑘 ,𝑥𝑥 + 𝜈 𝑤𝑘𝜙𝑘 ,𝑠𝑠 

=  𝐸𝑢𝑘 − 𝑧
𝐸

1 − 𝜈2
𝑤𝑘 𝜙𝑘 ,𝑥𝑥 − 𝑧

𝜈𝐸

1 − 𝜈2
𝑤𝑘 ,𝑠𝑠𝜙𝑘  

𝜍𝑠𝑠 = −𝑧
𝐸

1 − 𝜈2
  𝑤𝑘𝜙𝑘 ,𝑠𝑠 + 𝜈 𝑤𝑘𝜙𝑘 ,𝑥𝑥  

= −𝑧
𝐸

1 − 𝜈2
𝑤𝑘 ,𝑠𝑠𝜙𝑘 − 𝑧

𝜈𝐸

1 − 𝜈2
𝑤𝑘𝜙𝑘 ,𝑥𝑥  

𝜏𝑥𝑠 = −2𝐺𝑧 𝑤𝑘𝜙𝑘 ,𝑥𝑠 = −2𝐺𝑧𝑤𝑘 ,𝑠𝜙𝑘 ,𝑥  

(4.11) 
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4.1.5 Formulation of the virtual work 

The GBT fundamental equilibrium equations are derived by means of the principle of 

the virtual work. The total potential energy of the member is defined by the virtual 

work due to the internal forces and the external loads and the equilibrium condition is 

defined when the total potential energy is zero. This give: 

 𝛿𝑉 = 𝛿𝑈 + 𝛿Π = 0 (4.12) 

Where 𝛿𝑉 is the total potential energy of the member, 𝛿𝑈 the virtual work of internal 

forces and 𝛿Π is the virtual work related to the external loads. 

 

4.1.5.1 Virtual work of internal forces 

The variation in the virtual work due to internal forces is defined as stress times a 

virtual strain component denoted with a 𝛿-sign. According to the simplifying 

approximations and assumptions the internal virtual work only involves terms related 

to normal longitudinal stresses 𝜍𝑥𝑥 , normal transverse stresses 𝜍𝑠𝑠  and the in-plane 

shear stresses 𝜍𝑥𝑠 . The virtual work due to internal forces are defined as: 

 𝛿𝑈 =   𝜍𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜍𝑠𝑠𝛿𝜀𝑠𝑠 + 𝜏𝑥𝑠𝛿𝛾𝑥𝑠 𝑑𝑧𝑑𝑠𝑑𝑥

𝐿,𝑏 ,𝑡

= 𝛿𝑈𝑥𝑥 + 𝛿𝑈𝑠𝑠 + 𝛿𝑈𝑥𝑠  (4.13) 

Insert the displacement components (4.3) into the kinematic relations (4.8) and 

differentiate with respect to 𝑥, then the virtual strain components are obtained as: 

 

𝛿𝜀𝑥𝑥 = 𝛿𝜀𝑥𝑥
𝑀 + 𝛿𝜀𝑥𝑥

𝐵 = 𝛿 𝑢,𝑥 − 𝑧𝑤,𝑥𝑥  = 𝛿   𝑢𝑖𝜙𝑖 ,𝑥 ,𝑥
− 𝑧 𝑤𝑖𝜙𝑖 ,𝑥𝑥  

=  𝑢𝑖 − 𝑧𝑤𝑖 𝛿𝜙𝑖 ,𝑥𝑥  

𝛿𝜀𝑠𝑠 = 𝛿𝜀𝑠𝑠
𝑀 + 𝛿𝜀𝑠𝑠

𝐵 = 𝛿 −𝑧𝑤,𝑠𝑠 = 𝛿 −𝑧 𝑤𝑖𝜙𝑖 ,𝑠𝑠 = −𝑧𝑤𝑖 ,𝑠𝑠𝛿𝜙𝑖  

𝛿𝛾𝑥𝑠 = 𝛿𝛾𝑥𝑠
𝑀 + 𝛿𝛾𝑥𝑠

𝐵 = 𝛿 −2𝑧𝑤,𝑥𝑠 = 𝛿 −2𝑧𝑤𝑖 ,𝑠𝛿𝜙𝑖 ,𝑥 = −2𝑧𝑤𝑖 ,𝑠𝛿𝜙𝑖 ,𝑥  

(4.14) 

Insert the stresses (4.11) and virtual strain components (4.14) into the expression for 

internal virtual work (4.13) gives the total variation in internal strain energy. This will 

in the following be evaluated in one direction at the time, i.e. 𝛿𝑈𝑥𝑥 , 𝛿𝑈𝑠𝑠  and 𝛿𝑈𝑥𝑠 . 

Furthermore the Einstein’s summation rule is applied in order to reduce the length of 

the expressions. The general expression is defined as: 

 𝑎𝑖𝑏𝑖 ≡  𝑎𝑖𝑏𝑖

𝑖

  

 

Internal strain energy in 𝒙-direction 

The contribution to the internal virtual work in 𝑥-direction is defined as: 
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𝛿𝑈𝑥𝑥 =  𝜍𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝑧𝑑𝑠𝑑𝑥 =

𝐿,𝑏 ,𝑡

=    𝐸𝑢𝑘 − 𝑧
𝐸

1 − 𝜈2
𝑤𝑘 𝜙𝑘 ,𝑥𝑥 − 𝑧

𝜈𝐸

1 − 𝜈2
𝑤𝑘 ,𝑠𝑠𝜙𝑘  𝑢𝑖

𝐿,𝑏 ,𝑡

− 𝑧𝑤𝑖 𝛿𝜙𝑖 ,𝑥𝑥𝑑𝑧𝑑𝑠𝑑𝑥 =

=    𝐸𝑢𝑘𝑢𝑖 + 𝑧2
𝐸

1 − 𝜈2
𝑤𝑘𝑤𝑖 − 𝑧

𝐸

1 − 𝜈2
𝑤𝑘𝑢𝑖

𝐿,𝑏 ,𝑡

− 𝑧𝐸𝑢𝑘𝑤𝑖 𝜙𝑘 ,𝑥𝑥

+  𝑧2
𝜈𝐸

1 − 𝜈2
𝑤𝑘 ,𝑠𝑠𝑤𝑖 − 𝑧

𝜈𝐸

1 − 𝜈2
𝑤𝑘 ,𝑠𝑠𝑢𝑖 𝜙𝑘 𝛿𝜙𝑖 ,𝑥𝑥𝑑𝑧𝑑𝑠𝑑𝑥

=   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥

𝐿

+ 𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘 𝛿𝜙𝑖 ,𝑥𝑥𝑑𝑥 

 

Since the virtual displacement components 𝛿𝜙𝑖 ,𝑥𝑥  and 𝛿𝜙𝑖 ,𝑥  are expressed in its 

derivatives, integration by parts is necessary to have them in the original state. 

Perform integration by parts for the two involved terms gives: 

 

 

 𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝛿𝜙𝑖 ,𝑥𝑥𝑑𝑥

𝐿

=

=  𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝛿𝜙𝑖 ,𝑥 0

𝐿

−  𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝑥 𝛿𝜙𝑖 0

𝐿

+  𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝑥𝑥 𝛿𝜙𝑖𝑑𝑥

𝐿

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:86 19 

 

 𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘𝛿𝜙𝑖 ,𝑥𝑥𝑑𝑥

𝐿

=  𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘𝛿𝜙𝑖 ,𝑥 0

𝐿
−  𝐺 𝐷𝑖𝑘

𝐼𝐼 − 𝐷𝑖𝑘
𝐼𝑉 𝜙𝑘 ,𝑥𝛿𝜙𝑖 ,𝑥𝑑𝑥

𝐿

=  𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘𝛿𝜙𝑖 ,𝑥 0

𝐿
−  𝐺 𝐷𝑖𝑘

𝐼𝐼 − 𝐷𝑖𝑘
𝐼𝑉 𝜙𝑘 ,𝑥𝛿𝜙𝑖 0

𝐿

+  𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝛿𝜙𝑖𝑑𝑥

𝐿

 

 

Put the expressions for the two terms together, the variation in internal work in the 𝑥-

direction is finally obtained as: 

 

𝛿𝑈𝑥𝑥 =   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝑥𝑥

𝐿

+ 𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥  𝛿𝜙𝑖𝑑𝑥

+   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥

+ 𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘 𝛿𝜙𝑖 ,𝑥 0

𝐿

−   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝑥

+ 𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥 𝛿𝜙𝑖 0

𝐿
 

(4.15) 

 

Internal strain energy in 𝒔-direction 

The virtual displacement component 𝛿𝜙𝑖  is already expressed in its original state. 

Therefore no integration by parts is needed, hence the contribution to the internal 

virtual work in 𝑠-direction is defined as: 
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𝛿𝑈𝑠𝑠 =  𝜍𝑠𝑠𝛿𝜀𝑠𝑠𝑑𝑧𝑑𝑠𝑑𝑥 =

𝐿,𝑏 ,𝑡

=   −𝑧
𝐸

1 − 𝜈2
𝑤𝑘 ,𝑠𝑠𝜙𝑘

𝐿,𝑏 ,𝑡

− 𝑧
𝜈𝐸

1 − 𝜈2
𝑤𝑘𝜙𝑘 ,𝑥𝑥   −𝑧𝑤𝑖 ,𝑠𝑠𝛿𝜙𝑖 𝑑𝑧𝑑𝑠𝑑𝑥 =

=   𝑧2
𝜈𝐸

1 − 𝜈2
𝑤𝑘𝑤𝑖 ,𝑠𝑠𝜙𝑘 ,𝑥𝑥

𝐿,𝑏 ,𝑡

+ 𝑧2
𝐸

1 − 𝜈2
𝑤𝑘 ,𝑠𝑠𝑤𝑖 ,𝑠𝑠𝜙𝑘 𝛿𝜙𝑖𝑑𝑧𝑑𝑠𝑑𝑥 

 

The internal work in s-direction can then be written as: 

 𝛿𝑈𝑠𝑠 =   𝐺𝐷𝑖𝑘
𝐼𝐼𝐼𝜙𝑘 ,𝑥𝑥 + 𝐵𝑖𝑘𝜙𝑘 𝛿𝜙𝑖𝑑𝑥

𝐿

 (4.16) 

 

Internal strain energy 𝒙𝒔-terms 

The contribution to the internal work in “𝑥𝑠-direction” or due to the shear components 

are defined as: 

 

𝛿𝑈𝑥𝑠 =  𝜏𝑥𝑠𝛿𝛾𝑥𝑠𝑑𝑧𝑑𝑠𝑑𝑥
𝐿,𝑏 ,𝑡

=   −2𝐺𝑧𝑤𝑘 ,𝑠𝜙𝑘 ,𝑥  −2𝑧𝑤𝑖 ,𝑠𝛿𝜙𝑖 ,𝑥 𝑑𝑧𝑑𝑠𝑑𝑥 =
𝐿,𝑏 ,𝑡

=   4𝐺𝑧2𝑤𝑘 ,𝑠𝑤𝑖 ,𝑠𝜙𝑘 ,𝑥 𝛿𝜙𝑖 ,𝑥𝑑𝑧𝑑𝑠𝑑𝑥
𝐿,𝑏 ,𝑡

=  𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝛿𝜙𝑖 ,𝑥𝑑𝑥

𝐿

 

 

The virtual displacement component 𝛿𝜙𝑖 ,𝑥  is expressed in its first derivative, so 

integration by parts is necessary in order to have a representation in its original state. 
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  𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝛿𝜙𝑖 ,𝑥𝑑𝑥

𝐿

=  𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝛿𝜙𝑖 0

𝐿
−  𝐺𝐷𝑖𝑘

𝐼 𝜙𝑘 ,𝑥𝑥𝛿𝜙𝑖𝑑𝑥

𝐿

  

The variation in internal virtual work in 𝑥𝑠-direction is then finally obtained as: 

 𝛿𝑈𝑥𝑠 = − 𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝑥𝛿𝜙𝑖𝑑𝑥

𝐿

+  𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝛿𝜙𝑖 0

𝐿
 (4.17) 

Now all the terms in each direction have been determined in (4.15), (4.16) and (4.17) 

respectively. The total variation in internal virtual work is obtained as the sum of the 

three terms as: 

 

𝛿𝑈 = 𝛿𝑈𝑥𝑥 + 𝛿𝑈𝑠𝑠 + 𝛿𝑈𝑥𝑠

=   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝑥𝑥

𝐿

+ 𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥  𝛿𝜙𝑖𝑑𝑥

+   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥

+ 𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘 𝛿𝜙𝑖 ,𝑥 0

𝐿

−   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 − 𝐶𝑖𝑘
𝐼𝐼𝐼 − 𝐶𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥𝑥𝑥

+ 𝐺 𝐷𝑖𝑘
𝐼𝐼 − 𝐷𝑖𝑘

𝐼𝑉 𝜙𝑘 ,𝑥 𝛿𝜙𝑖 0

𝐿

+   𝐺𝐷𝑖𝑘
𝐼𝐼𝐼𝜙𝑘 ,𝑥𝑥 + 𝐵𝑖𝑘𝜙𝑘 𝛿𝜙𝑖𝑑𝑥

𝐿

−  𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝑥𝛿𝜙𝑖𝑑𝑥

𝐿

+  𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝛿𝜙𝑖 0

𝐿
 

(4.18) 

In the derived expression for the internal strain energy (4.18) each 𝐵𝑖𝑘 -, 𝐶𝑖𝑘 - and 𝐷𝑖𝑘 -

term can be evaluated further, i.e. integration over the thickness 𝑡. These terms are 

defined below and also the result after integration and introduction of the plate 

stiffness 𝐾 is shown. See all steps in the integration process in Appendix A. 

 𝐵𝑖𝑘 =
𝐸

1 − 𝜐2
 𝑧2𝑤𝑘 ,𝑠𝑠𝑤𝑖 ,𝑠𝑠𝑑𝑧𝑑𝑠

𝑏 ,𝑡

= 𝐾 𝑤𝑘 ,𝑠𝑠𝑤𝑖 ,𝑠𝑠𝑑𝑠

𝑏

 (4.19) 

 𝐶𝑖𝑘
𝐼 =  𝑢𝑘𝑢𝑖𝑑𝑧𝑑𝑠

𝑏 ,𝑡

= 𝑡  𝑢𝑘𝑢𝑖𝑑𝑠

𝑏

 (4.20) 
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 𝐶𝑖𝑘
𝐼𝐼 =

1

1 − 𝜈2
 𝑧2𝑤𝑘𝑤𝑖𝑑𝑧𝑑𝑠

𝑏 ,𝑡

=
𝐾

𝐸
 𝑤𝑘𝑤𝑖𝑑𝑠

𝑏

 (4.21) 

 𝐶𝑖𝑘
𝐼𝐼𝐼 =

1

1 − 𝜈2
 𝑧𝑤𝑘𝑢𝑖𝑑𝑧𝑑𝑠

𝑏 ,𝑡

= 0 (4.22) 

 𝐶𝑖𝑘
𝐼𝑉 =  𝑧𝑢𝑘𝑤𝑖𝑑𝑧𝑑𝑠

𝑏 ,𝑡

= 0 (4.23) 

 𝐷𝑖𝑘
𝐼 = 4  𝑧2𝑤𝑘 ,𝑠𝑤𝑖 ,𝑠𝑑𝑧𝑑𝑠

𝑏 ,𝑡

=
𝑡3

3
 𝑤𝑘 ,𝑠𝑤𝑖 ,𝑠𝑑𝑠

𝑏

 (4.24) 

 𝐷𝑖𝑘
𝐼𝐼 =

1

𝐺

𝜈𝐸

1 − 𝜈2
 𝑧2𝑤𝑘 ,𝑠𝑠𝑤𝑖𝑑𝑧𝑑𝑠

𝑏 ,𝑡

=
𝜈𝐾

𝐺
 𝑤𝑘 ,𝑠𝑠𝑤𝑖𝑑𝑠

𝑏

 (4.25) 

 𝐷𝑖𝑘
𝐼𝐼𝐼 =

1

𝐺

𝜈𝐸

1 − 𝜈2
 𝑧2𝑤𝑘𝑤𝑖,𝑠𝑠𝑑𝑧𝑑𝑠

𝑏 ,𝑡

=
𝜈𝐾

𝐺
 𝑤𝑘𝑤𝑖 ,𝑠𝑠𝑑𝑠

𝑏

 (4.26) 

 𝐷𝑖𝑘
𝐼𝑉 =

1

𝐺

𝜈𝐸

1 − 𝜈2
 𝑧𝑤𝑘 ,𝑠𝑠𝑢𝑖𝑑𝑧𝑑𝑠

𝑏 ,𝑡

= 0 (4.27) 

Where the plate stiffness 𝐾 is defined as: 

 𝐾 =
𝐸𝑡3

12 1 − 𝜈2 
 (4.28) 

 

4.1.5.2 The virtual work of external loads 

A general applied external load 𝑞 𝑥, 𝑠  acting at the mid-surface of a plate element 

and the load consists of the three components 𝑞𝑥 , 𝑞𝑠 and 𝑞𝑧  defined in the local 

coordinate system  𝑥, 𝑠, 𝑧 . The 𝑞𝑥  and 𝑞𝑠 components are distributed in-plane loads 

and the 𝑞𝑧-component is the out of plane load, see Figure 4.4. 

 

 

Figure 4.4: A general applied external load 𝑞 𝑥, 𝑠  consist of the three components 

𝑞𝑥 𝑥 , 𝑞𝑠 𝑠  and 𝑞𝑧 𝑥, 𝑠 . 

 

The general applied load is defined by its local components as: 
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 𝑞 𝑥, 𝑠 = 𝑞𝑥 𝑥 + 𝑞𝑠 𝑠 + 𝑞𝑧 𝑥, 𝑠  (4.29) 

The expression for the external virtual work is defined as the load component times 

the corresponding virtual displacement as: 

 𝛿Π = −   𝑞𝑥𝛿𝑢 + 𝑞𝑠𝛿𝑣 + 𝑞𝑧𝛿𝑤 

𝐿,𝑏

𝑑𝑠𝑑𝑥 (4.30) 

Note that integration over the thickness 𝑡 is already incorporated in the definition of 

𝑞 𝑥, 𝑠 . The virtual displacements are defined and obtained by inserting the 

displacement field notation (4.3) as: 

 𝛿𝑢 = 𝑢𝑖𝛿𝜙𝑖 ,𝑥  𝛿𝑣 = 𝑣𝑖𝛿𝜙𝑖  𝛿𝑤 = 𝑤𝑖𝛿𝜙𝑖  (4.31) 

Insert the virtual displacements (4.31) into the expression for the external virtual work 

(4.30) gives: 

 𝛿Π = −   𝑞𝑥𝑢𝑖𝛿𝜙𝑖 ,𝑥 + 𝑞𝑠𝑣𝑖𝛿𝜙𝑖 + 𝑞𝑧𝑤𝑖𝛿𝜙𝑖 

𝐿,𝑏

𝑑𝑠𝑑𝑥 (4.32) 

The virtual displacement on the load component 𝑞𝑥  is expressed in the first order 

derivative, hence integration by parts is necessary to obtain its ordinary state: 

  𝑞𝑥𝑢𝑖𝛿𝜙𝑖 ,𝑥𝑑𝑠𝑑𝑥

𝐿,𝑏

=   𝑞𝑥𝑢𝑖𝛿𝜙𝑖𝑑𝑠

𝑏

 

0

𝐿

−  𝑞𝑥 ,𝑥𝑢𝑖𝛿𝜙𝑖𝑑𝑠𝑑𝑥

𝐿,𝑏

 (4.33) 

Insert 𝑞𝑥 -terms (4.33) into (4.32) gives the total variation in external virtual work: 

 

𝛿Π = −   −𝑞𝑥 ,𝑥𝑢𝑖 + 𝑞𝑠𝑣𝑖 + 𝑞𝑧𝑤𝑖 𝛿𝜙𝑖

𝐿,𝑏

𝑑𝑠𝑑𝑥 −   𝑞𝑥𝑢𝑖𝛿𝜙𝑖𝑑𝑠

𝑏

 

0

𝐿

= − 𝑞𝑖

𝐿

𝛿𝜙𝑖𝑑𝑥 +  𝑞𝑥 ,𝑥 .𝑖

𝐿

𝛿𝜙𝑖𝑑𝑥 −   𝑞𝑥𝑢𝑖𝛿𝜙𝑖𝑑𝑠

𝑏

 

0

𝐿

 

(4.34) 

Where: 

 𝑞𝑖 =   𝑞𝑠𝑣𝑖 + 𝑞𝑧𝑤𝑖 𝑑𝑠

𝑏

 𝑞𝑥 ,𝑥 .𝑖 =  𝑞𝑥 ,𝑥𝑢𝑖𝑑𝑠

𝑏

 (4.35) 
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4.1.5.3 Total potential energy of the member 

The total potential energy of the member is obtained by putting the expressions for 

variation in internal virtual work (4.18) and the external virtual work (4.34) into the 

expression of the total potential energy (4.12). This give: 

 

𝛿𝑉 =   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 𝜙𝑘 ,𝑥𝑥𝑥𝑥 + 𝐺𝐷𝑖𝑘
𝐼𝐼𝜙𝑘 ,𝑥𝑥  𝛿𝜙𝑖𝑑𝑥

𝐿

+   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 𝜙𝑘 ,𝑥𝑥 + 𝐺𝐷𝑖𝑘
𝐼𝐼𝜙𝑘 𝛿𝜙𝑖 ,𝑥 0

𝐿

−   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 𝜙𝑘 ,𝑥𝑥𝑥 + 𝐺𝐷𝑖𝑘
𝐼𝐼𝜙𝑘 ,𝑥 𝛿𝜙𝑖 0

𝐿

+   𝐺𝐷𝑖𝑘
𝐼𝐼𝐼𝜙𝑘 ,𝑥𝑥 + 𝐵𝑖𝑘𝜙𝑘 𝛿𝜙𝑖𝑑𝑥

𝐿

−  𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝑥𝛿𝜙𝑖𝑑𝑥

𝐿

+  𝐺𝐷𝑖𝑘
𝐼 𝜙𝑘 ,𝑥𝛿𝜙𝑖 0

𝐿
−  𝑞𝑖

𝐿

𝛿𝜙𝑖𝑑𝑥 +  𝑞𝑥 ,𝑥 .𝑖

𝐿

𝛿𝜙𝑖𝑑𝑥

−   𝑞𝑥𝑢𝑖𝛿𝜙𝑖𝑑𝑠

𝑏

 

0

𝐿

=   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 𝜙𝑘 ,𝑥𝑥𝑥𝑥 − 𝐺  𝐷𝑖𝑘
𝐼 −  𝐷𝑖𝑘

𝐼𝐼 + 𝐷𝑖𝑘
𝐼𝐼𝐼  𝜙𝑘 ,𝑥𝑥

𝐿

+ 𝐵𝑖𝑘𝜙𝑘 𝛿𝜙𝑖𝑑𝑥 −  𝑞𝑖

𝐿

𝛿𝜙𝑖𝑑𝑥 +  𝑞𝑥 ,𝑥 .𝑖

𝐿

𝛿𝜙𝑖𝑑𝑥

+   𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 𝜙𝑘 ,𝑥𝑥 + 𝐺𝐷𝑖𝑘
𝐼𝐼𝜙𝑘 𝛿𝜙𝑖 ,𝑥 0

𝐿

+   −𝐸 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼 𝜙𝑘 ,𝑥𝑥𝑥 + 𝐺 𝐷𝑖𝑘
𝐼 − 𝐷𝑖𝑘

𝐼𝐼 𝜙𝑘 ,𝑥 𝛿𝜙𝑖

−  𝑞𝑥𝑢𝑖𝛿𝜙𝑖𝑑𝑠

𝑏

 

0

𝐿

= 0 

 

 

4.1.6 The equilibrium equation and boundary conditions 

Since 𝛿𝜙𝑖  is an admissible and an arbitrary function and the expression within the 

integrals must hold any way, the system of equilibrium equations are then obtained as: 

 𝐸𝐶𝑖𝑘𝜙𝑘 ,𝑥𝑥𝑥𝑥 − 𝐺𝐷𝑖𝑘𝜙𝑘 ,𝑥𝑥 + 𝐵𝑖𝑘𝜙𝑘 = 𝑞𝑖 − 𝑞𝑥 ,𝑥 .𝑖  (4.36) 

Where: 
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 𝐶𝑖𝑘 = 𝐶𝑖𝑘
𝐼 + 𝐶𝑖𝑘

𝐼𝐼  (4.37) 

 𝐷𝑖𝑘 = 𝐷𝑖𝑘
𝐼 −  𝐷𝑖𝑘

𝐼𝐼 + 𝐷𝑖𝑘
𝐼𝐼𝐼  (4.38) 

The boundary conditions are just stated as they are obtained and will be treated more 

specific after the eigenvector transformation have been introduced, see Section 4.6.1. 

Hence, the boundary term is just stated as it is obtained here. 

 
  −𝐸𝐶𝑖𝑘𝜙𝑘 ,𝑥𝑥𝑥 + 𝐺 𝐷𝑖𝑘

𝐼 − 𝐷𝑖𝑘
𝐼𝐼 𝜙𝑘 ,𝑥 −  𝑞𝑥𝑢𝑖𝑑𝑠

𝑏

 𝛿𝜙𝑖 = 0 

  𝐸𝐶𝑖𝑘𝜙𝑘 ,𝑥𝑥 + 𝐺𝐷𝑖𝑘
𝐼𝐼𝜙𝑘 𝛿𝜙𝑖 ,𝑥 0

𝐿
= 0 

(4.39) 

Note: Summation convention over 𝑖 and 𝑘 applies in order to have the total potential 

energy of the member. 

 

4.2 Cross-sectional analysis – geometric relations 

In Section4.1the derivation of the GBT fundamental equilibrium equation (4.36) is 

carried out with arbitrary displacement functions. In this section, those displacement 

functions are defined and the relation between them will also be determined. 

The following derivation is carried out by only considering natural nodes, so within 

this chapter “nodes” referrers to natural nodes. The index 𝑘 is in the following 

skipped since the relation between the 𝑢-, 𝑣- and 𝑤-displacements must hold for all 

deformation modes 𝑘. 

 

4.2.1 Definition of coordinate systems and displacement notations 

Figure 4.5 shows the notations used in the following derivations were rings denote 

node numbering and squares denote plate element numbering. The global coordinate 

system  𝑋, 𝑌, 𝑍 , the global displacements  𝑈, 𝑉, 𝑊 , the local coordinate system 
 𝑥, 𝑠, 𝑧  and the local displacements are defined in Section 4.1. The global nodal 

displacements are denoted as 𝑈𝑟 , 𝑉𝑟  and 𝑊𝑟  for the corresponding node 𝑟. 
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Figure 4.5: Definition of cross-section entities: For plate 𝑟 the corresponding widths 

𝑏𝑟 , thickness 𝑡𝑟  and angle 𝛼𝑟  are defined. For the inner (natural) nodes  𝑟 = 2 to 

𝑟 = 𝑛 the nodal angel difference ∆𝛼𝑟  is defined as well. 

 

As shortly mentioned in Section 4.1, a plate element is defined between non-zero 

angles differences, i.e. a flat plate only consist of one plate element. The cross-

sections consists of 𝑛 plate elements and 𝑛 + 1 nodes and the cross-sectional 

dimensions for plate element 𝑟 are the thickness 𝑡𝑟  and the plate-width 𝑏𝑟 . The angel 

that each plate element 𝑟 forms with the 𝑌-axis have the notation 𝛼𝑟  and the 

difference compared to the previous plate element 𝑟 − 1 is defined as Δ𝛼𝑟 . 

 

4.2.1.1 Local displacements 

The displacement parallel to the mid-plane and in the 𝑠-direction is denoted 𝑣𝑟  and is 

defined from the mid-point 𝑚at the mid-plane and are according to assumption (A4.2) 

constant along the plate element. The displacements perpendicular to the mid-plane or 

parallel to 𝑧-axis are denoted as 𝑤1.𝑟  for the first node, 𝑤2.𝑟  for the end node and the 

element average displacement 𝑤𝑟  is defined from the mid-point. The plate element 

rotation is defined as 𝜗𝑟 , see Figure 4.6. 
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Figure 4.6: Designation of the cross-sectional displacements 

 

From assumptions (A4.1) and (A4.2) one can read that the displacements no longer 

are independent of each other. The relation between the axial 𝑢-displacements and the 

𝑣-displacements can be therefore be completely defined, wherefrom one can read that 

the 𝑢-displacements must vary linearly within each plate element. This makes it 

possible to express all displacement components 𝑣𝑟 , 𝑤𝑟  and 𝜗𝑟  in the longitudinal 

displacement 𝑢𝑟  and they therefore form the degrees of freedom in the analysis. Since 

all of these functions are “discrete” in that meaning that the nodes can describe the 

behaviour and therefore a more compact matrix notation will be introduced.  

 

4.2.2 In-plane displacements 

From assumption (A4.2) and the kinematic relations (4.6) no deformations in 𝑠-

direction will occur, i.e. 𝑣,𝑠 = 0 and therefore 𝑣-displacements must be constant 

within each plate element. One can also read that the 𝑢-displacements must vary 

linearly within each plate and the 𝑢- and 𝑣-displacements can be determined 

according to Figure 4.7. 

 

Figure 4.7: Geometric relations in longitudinal-transversal direction for an arbitrary 

flattened cross-section where the adjacent plate elements to node 𝑟 is depicted. 

The 𝑢- and 𝑣-displacement relation is defined as: 
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𝑣𝑟 ,𝑥 = −𝑢𝑟 ,𝑠 = −

𝑢𝑟+1 − 𝑢𝑟

𝑏𝑟
=

1

𝑏𝑟
𝑢𝑟 −

1

𝑏𝑟
𝑢𝑟+1 (4.40) 

This also can be written in a more compact matrix form as: 

 𝒗,𝑥 = 𝑭𝑣 ∙ 𝒖 (4.41) 

Where each matrix is of the sizes dim 𝒗,𝑥 =  𝑛 × 1 , dim 𝒖 =   𝑛 + 1 × 1  and 

dim 𝑭𝑣 =  𝑛 ×  𝑛 + 1  . A programming ready 𝑭𝑣-matrix is defined in Appendix B 

and the other two vectors are on the form: 

 𝒖 =  𝑢1 𝑢2 ⋯ 𝑢𝑛+1 𝑇 
(4.42) 

 𝒗,𝑥 =  𝑣1,𝑥 𝑣2,𝑥 ⋯ 𝑣𝑛 ,𝑥 𝑇 

Note that (4.41) only describes the relation between 𝑢-displacements and first order 

derivative of 𝑣-displacements and also that the vector 𝒗,𝑥  contains the element 

displacements while the 𝒖-vector contains the nodal displacements. 

 

4.2.3 Displacements perpendicular to the plate elements 

The𝑤𝑟-displacements perpendicular to the mid-plane of plate element 𝑟 is of interest 

to be expressed in the longitudinal displacement 𝑢𝑟 . This relation is obtained by first 

relate the 𝑤-displacements to the 𝑣-displacements, see Figure 4.8. Since the 𝑢 − 𝑣-

relations (4.40) are known also the 𝑢 − 𝑤-relation can be completely determined. 

 

 

Figure 4.8: Geometric relations between the in-plane displacements 𝑣𝑟  and the 

vertical displacements 𝑤𝑟  are defined for node 𝑟(ring) and the adjacent plate 

elements 𝑟 − 1 and 𝑟 (squares). The vertical element displacement 𝑤𝑟  is defined by 

the nodal displacements at the plate ends denoted 𝑤1.𝑟  for the first end and 𝑤2.𝑟  for 

the second end of plate element 𝑟. 
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The relations can be expressed via trigonometric functions and the angel difference 

Δ𝛼𝑟  at the node 𝑟 defined as: 

 Δ𝛼𝑟 = 𝛼𝑟−1 − 𝛼𝑟  (4.43) 

According to this the end displacements at node 𝑟 can be defined by the second end of 

plate element 𝑟 − 1 and the first end of plate element 𝑟. This give: 

 𝑤2.𝑟−1 =
𝑣𝑟

sin Δ𝛼𝑟
−

𝑣𝑟−1

tan Δ𝛼𝑟
 𝑤1.𝑟 =

𝑣𝑟

tan Δ𝛼𝑟
−

𝑣𝑟−1

sin Δ𝛼𝑟
 (4.44) 

In order to relate the nodal transverse displacements 𝑤2.𝑟−1 and 𝑤1.𝑟  to the 𝑢-

displacements, derivate (4.44) with respect to 𝑥 once and insert the 𝑢 − 𝑣-reltation 

(4.40) the transverse nodal end displacements are obtained as: 

 𝑤1.𝑟 ,𝑥 =
𝑣𝑟 ,𝑥

tan Δ𝛼𝑟
−

𝑣𝑟−1,𝑥

sin Δ𝛼𝑟

=
1

𝑏𝑟 tan Δ𝛼𝑟
𝑢𝑟 −

1

𝑏𝑟 tan Δ𝛼𝑟
𝑢𝑟+1 −

1

𝑏𝑟−1 sin Δ𝛼𝑟
𝑢𝑟−1

+
1

𝑏𝑟−1 sin Δ𝛼𝑟
𝑢𝑟

= −
1

𝑏𝑟−1 sin Δ𝛼𝑟
𝑢𝑟−1 +  

1

𝑏𝑟−1 sin Δ𝛼𝑟
+

1

𝑏𝑟 tan Δ𝛼𝑟
 𝑢𝑟

−
1

𝑏𝑟 tan Δ𝛼𝑟
𝑢𝑟+1 

(4.45) 

 𝑤2.𝑟 ,𝑥 =
𝑣𝑟+1,𝑥

sin Δ𝛼𝑟
−

𝑣𝑟 ,𝑥

tan Δ𝛼𝑟

=
1

𝑏𝑟+1 sin Δ𝛼𝑟
𝑢𝑟+1 −

1

𝑏𝑟+1 sin Δ𝛼𝑟
𝑢𝑟+2 −

1

𝑏𝑟 tan Δ𝛼𝑟
𝑢𝑟

+
1

𝑏𝑟 tan Δ𝛼𝑟
𝑢𝑟+1

= −
1

𝑏𝑟 tan Δ𝛼𝑟
𝑢𝑟 +  

1

𝑏𝑟 tan Δ𝛼𝑟
+

1

𝑏𝑟+1 sin Δ𝛼𝑟
 𝑢𝑟+1

−
1

𝑏𝑟+1 sin Δ𝛼𝑟
𝑢𝑟+2 

(4.46) 

In order to have the element displacement 𝑤𝑟 ,𝑥  take the average of the nodal 

displacements 𝑤1.𝑟 ,𝑥  and 𝑤2.𝑟 ,𝑥 . This can be written in a more compact matrix form 

as: 

 𝒘1,𝑥 = 𝑭𝑤1 ∙ 𝒖 (4.47) 

 𝒘2,𝑥 = 𝑭𝑤2 ∙ 𝒖 (4.48) 

 
𝒘,𝑥 =

𝒘1,𝑥 + 𝒘2,𝑥

2
=

𝑭𝑤1 + 𝑭𝑤2

2
∙ 𝒖 = 𝑭𝑤 ∙ 𝒖 (4.49) 
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Where the matrices are of the size dim(𝒘1,𝑥) = dim(𝒘2,𝑥) =  𝑛 × 1  and 

dim(𝑭𝑤1) = dim(𝑭𝑤2) = dim(𝑭𝑤) =  𝑛 ×  𝑛 + 1  . The displacements of the 

inner nodes (node 2 to node 𝑛) can now be expressed by the known 𝑢-displacements. 

The outer displacements 𝑤1.1,𝑥  and 𝑤2.𝑛 ,𝑥  are still unknown but can be solved by 

means of the force method and in particular the nodal transverse bending moments 

𝑚𝑠, see Section 4.2.7. Programming ready 𝑭𝑤1- and 𝑭𝑤2-matrices can be found in 

Appendix B. The corresponding nodal transverse displacement vectors 𝒘1,𝑥  and 𝒘2,𝑥  

will have the form: 

 𝒘1,𝑥 =  𝑤1.1,𝑥 𝑤1.2,𝑥 ⋯ 𝑤1.𝑛 ,𝑥 𝑇  
(4.50) 

 𝒘2,𝑥 =  𝑤2.1,𝑥 𝑤2.2,𝑥 ⋯ 𝑤2.𝑛 ,𝑥 𝑇  

Note that the vectors still contain the first order derivatives of the end displacements. 

 

4.2.4 The plate element rotations 

The element rotations 𝜗𝑟  are necessary to be determined so that in the following the 

nodal rotations ∆𝜗𝑟  and the nodal moments 𝑚𝑠.𝑟  can be determined and finally out of 

that the first and last plate element displacements can be defined. The element 

rotations are also used in the normalization of the deformation mode 4 corresponding 

to rigid body rotation mode, see Section 4.5. But first, the element rotations must be 

defined and are obtained from Figure 4.9. 

 

 

Figure 4.9: Designation of the local displacments in the in the cross-sectional plane 

 

The relation between the element rotation 𝜗𝑟  and the vertical nodal transversal 

displacements 𝑤1.𝑟  and 𝑤2.𝑟  is obtained as: 

 𝜗𝑟 =
𝑤2.𝑟 − 𝑤1.𝑟

𝑏𝑟
 (4.51) 

Since the nodal displacements 𝑤1.𝑟 ,𝑥  and 𝑤2.𝑟 ,𝑥  are expressed in the first ordered 

derivative the element rotation will also be expressed in the first ordered derivative as: 
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 𝜗𝑟 ,𝑥 =
𝑤2.𝑟 ,𝑥 − 𝑤1.𝑟 ,𝑥

𝑏𝑟
 (4.52) 

This can be written in a more compact matrix form by simply using the nodal 

transversal displacements defined in (4.50) as: 

 𝝑,𝑥 =  𝑭𝜗2 − 𝑭𝜗1 ∙ 𝒖 = 𝑭𝜗 ∙ 𝒖 (4.53) 

𝑭𝜗1 and 𝑭𝜗2 can be obtained by simple divide row 𝑟 in 𝑭𝑤1(4.47) (4.47) and 𝑭𝑤2 

(4.48) by the corresponding plate element width 𝑏𝑟 . 

In order to calculate the transverse bending moments 𝑚𝑠 out of the longitudinal 

displacement 𝑢 the change of the mutual angle must be used which only can be 

defined for the inner nodes (node 3 to node 𝑛 − 1). Using the definition in (4.51) one 

gets the angle difference as: 

 Δ𝜗𝑟 = 𝜗𝑟 − 𝜗𝑟−1 =
𝑤2.𝑟 ,𝑥 − 𝑤1.𝑟 ,𝑥

𝑏𝑟
−

𝑤2.𝑟−1,𝑥 − 𝑤1.𝑟−1,𝑥

𝑏𝑟−1
 (4.54) 

This could be expressed on more compact matrix form by combining the 𝑭𝜗1- and 

𝑭𝜗2-matrices defined in (4.53). 

 𝚫𝝑,𝑥 = Δ𝑭𝜗 ∙ 𝒖 (4.55) 

 

4.2.5 The separation of variables approach 

The preceding Sections 4.2.2, 4.2.3 and 4.2.4 have shown that is it possible to express 

the displacement components 𝑣, 𝑤 and 𝜗 by geometric relations through the 

longitudinal displacement 𝑢. Therefore forms the warping values the basis of the 

displacements, stresses and the resultant force sizes. Introduce the unit warping 

function 𝑢 𝑟 𝑠 . It is defined as a linear function within a plate element which has unit 

value for node 𝑟 and zero for all other nodes, see Figure 4.10. Note: this function is 

denoted with a bar to distinguish that it corresponds to unit displacements. 

 

 

Figure 4.10: Basic warping function defined on an unfolded cross-section 

 

In order to have a satisfactory presentation of the beam theories, all displacement 

variables are expressed by the separation of variables approach. The cross-sectional 

local coordinates 𝑠 and 𝑧 are separated from the longitudinal 𝑥 coordinate which is 
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described by the longitudinal amplitude function 𝜙 𝑥  with its derivatives 𝜙,𝑥 𝑥 , 

𝜙,𝑥𝑥  𝑥  etc. An arbitrary warping function 𝑢 𝑠, 𝑥  can then be expressed by the linear 

combination: 

 

𝑢 𝑠, 𝑥 =  𝑢 𝑟 𝑠 ∙ 𝜙 𝑟 ,𝑥 𝑥 

𝑛+1

𝑟=1

 (4.56) 

The amplitude function 𝜙 𝑟 𝑥  is denoted with a bar to express that it is related to the 

unit warping function 𝑢 𝑟 𝑠 . For one term in the summation above one has: 

 𝑢 𝑥 = 𝑢 𝑟 ∙ 𝜙 𝑟 ,𝑥 𝑥  (4.57) 

This can be written on a more compact matrix form as: 

 𝒖 𝑥 = 𝑼 ∙ 𝝓 ,𝑥 𝑥  (4.58) 

Where the involved terms are defined as: 

 𝒖 𝑥 =  𝑢1 𝑥 𝑢2 𝑥 ⋯ 𝑢𝑛+1 𝑥  
𝑇 (4.59) 

 
𝒖 𝑟 =  

0 ⋯ 0 1 
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑟

0 ⋯ 0
 
𝑇

 (4.60) 

 𝑼 =  𝒖 1 𝒖 2 ⋯ 𝒖 𝑛+1 
𝑇  (4.61) 

 𝝓  𝑥 =  𝜙 1 𝑥 𝜙 2 𝑥 ⋯ 𝜙 𝑛+1 𝑥  
𝑇 (4.62) 

Using the notation in (4.58), the cross-sectional displacements (4.41), (4.49) and 

(4.55) can be obtained as: 

 𝒗,𝑥 𝑥 = 𝑭𝑣 ∙ 𝑼 ∙ 𝝓 ,𝑥 𝑥 = 𝑭 𝑣 ∙ 𝝓 ,𝑥 𝑥  (4.63) 

 𝒘,𝑥 𝑥 = 𝑭𝑤 ∙ 𝑼 ∙ 𝝓 ,𝑥 𝑥 = 𝑭 𝑤 ∙ 𝝓 ,𝑥 𝑥  (4.64) 

 𝝑,𝑥 𝑥 = 𝑭𝜗 ∙ 𝑼 ∙ 𝝓 ,𝑥 𝑥 = 𝑭 𝜗 ∙ 𝝓 ,𝑥 𝑥  (4.65) 

 𝚫𝝑,𝑥 𝑥 = Δ𝑭𝜗 ∙ 𝑼 ∙ 𝝓 ,𝑥 𝑥 = Δ𝑭 𝜗 ∙ 𝝓 ,𝑥 𝑥  (4.66) 

Since 𝑼  is a unit matrix 𝑭𝑣 will remain identical to 𝑭 𝑣. The same holds for the other 

matrices 𝑭 𝑤 , 𝑭 𝜗  and 𝚫𝑭 𝜗 . Both left and right hand side in equation (4.63), (4.64), 

(4.65) and (4.66) are expressed in the same number of derivatives. Since 𝑭 𝑣, 𝑭 𝑤 , 𝑭 𝜗  

and 𝚫𝑭 𝜗  are constant and independent of the 𝑥-coordinate they will not be affected by 

the integration. There will nether be an integration constant since if 𝜙  𝑥  would be 

constant there will not be any warping. Integration with respect to 𝑥 on both sides is 

then lead to: 

 𝒗 𝑥  = 𝑭 𝑣 ∙ 𝝓  𝑥  (4.67) 

 𝒘 𝑥  = 𝑭 𝑤 ∙ 𝝓  𝑥  (4.68) 

 𝝑 𝑥  = 𝑭 𝜗 ∙ 𝝓  𝑥  (4.69) 
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 𝚫𝝑 𝑥  = Δ𝑭 𝜗 ∙ 𝝓  𝑥  (4.70) 

 

4.2.6 The unit transverse bending moments 

The nodal unit rotations Δ𝜗 𝑟  for the inner nodes 𝑟 = 3 to 𝑟 = 𝑛 − 1 are known and 

therefore the corresponding nodal unit bending moments can be determined by means 

of the force method. Introduce rollers at each fold lines (inner natural nodes), see 

Figure 4.11. The outer plate elements 𝑟 = 1 and 𝑟 = 𝑛 are treated as cantilevers. 

 

Figure 4.11: The cross-section is here flattened out and rollers are introduced at each 

inner natural node. The transverse unit nodal bending moment 𝑚 𝑠.𝑟  can then be 

determined by the means of the force method. 

 

By solving the plate differential equation 𝐾𝑤,𝑠𝑠𝑠𝑠 𝑠 = 0 subjected to a “support 

moment” 𝑚 𝑠.𝑟  (still unknown) the “support rotations” 𝜃𝑟−1, 𝜃𝑟  and 𝜃𝑟+1 can be 

determined and expressed in terms of the moment as: 

 
𝜃𝑟−1.1 =

𝑏𝑟−1

6𝐾𝑟−1
𝑚 𝑠.𝑟 = 𝛿𝑟−1 ∙ 𝑚 𝑠.𝑟  (4.71) 

 
𝜃𝑟−1.2 + 𝜃𝑟 .1 =

1

3
 
𝑏𝑟−1

𝐾𝑟−1
+

𝑏𝑟

𝐾𝑟
 𝑚 𝑠.𝑟 = 𝛿𝑟 ∙ 𝑚 𝑠.𝑟  (4.72) 

 
𝜃𝑟 .2 =

𝑏𝑟

6𝐾𝑟
𝑚 𝑠.𝑟 = 𝛿𝑟+1 ∙ 𝑚 𝑠.𝑟  (4.73) 

Where 𝐾𝑟  is the plate stiffness of plate element 𝑟 defined as: 

 
𝐾𝑟 =

𝐸𝑡𝑟
3

12 1 − 𝜈2 
 (4.74) 

The unit nodal rotation Δ𝜗 𝑟  obtained in (4.70) must coincide with the “support 

rotations” 𝜃𝑟 . Since the unit nodal rotations only are defined for the inner nodes (node 

3 to node 𝑛 − 1) the corresponding unit nodal moments 𝑚 𝑠.𝑟  only can be determined 

for those inner nodes. This can be written in matrix form as: 

 𝚫𝑖𝑘 ∙ 𝒎 𝑠 = −Δ𝑭 𝜗 ∙ 𝝓  (4.75) 

Where the 𝚫𝑖𝑘 -matrix involves the 𝛿-terms defined in (4.71), (4.72) and (4.73). The 

nodal unit bending moments 𝒎 𝑠 is then obtained by left-multiplication by the inverse 

of the 𝚫𝑖𝑘 -matrix which gives: 

 𝒎 𝑠 = −𝚫𝑖𝑘
−1 ∙ Δ𝑭 𝜗 ∙ 𝝓 = 𝑴 ∙ 𝝓  (4.76) 
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Where: 

 𝒎 𝑠 =  𝑚 𝑠.1 𝑚 𝑠.2 ⋯ 𝑚 𝑠.𝑛+1 𝑇  𝑴 = −𝚫𝑖𝑘
−1 ∙ Δ𝑭 𝜗  (4.77) 

A programming ready 𝚫𝑖𝑘 -matrix is defined in Appendix B. 

 

4.2.7 The displacements of the outer plate elements 

The transverse nodal displacements and the element rotations for the outer plate 

elements cannot be defined in the same way as for the inner plate elements, hence 

another approach must be used for those two plate elements. Since the nodal unit 

bending moments 𝑚 𝑠.3 and 𝑚 𝑠.𝑛−1 are defined at node 3 and node 𝑛 − 1 the plate 

rotations of the outer plate elements can be determined, see Figure 4.12. 

 

 

Figure 4.12: The element rotations of the outer two plate element can be determined 

from the unit bending moment 𝑚 𝑠.3 at node 𝑟 = 3 and 𝑟 = 𝑛 − 1 respectively. 

 

The element rotation consist of two parts, namely the rotation of the adjacent plate 

element 𝑟 = 2 or 𝑟 = 𝑛 − 1 and the “support rotation” corresponding to the 

transverse nodal bending moment at node 𝑟 = 3 or 𝑟 = 𝑛 − 1. The plate element 

rotations are then obtained as: 

 
𝜗 1 = 𝜗 2 + 𝛿1.1 = 𝜗 2 +

𝑏2

6𝐾2
𝑚 𝑠.3 𝜗 𝑛 = 𝜗 𝑛−1 − 𝛿𝑛 .2 = 𝜗 2 −

𝑏𝑛−1

6𝐾𝑛−1
𝑚 𝑠.𝑛−1 (4.78) 

When the element rotations are known the 𝑤-displacements of node 𝑟 = 1 and 

𝑟 = 𝑛 + 1 can then be determined from (4.51) as: 

 𝑤 1.1 = −𝜗 1 ∙ 𝑏1 + 𝑤 2.1 𝑤 2.𝑛 = 𝜗 𝑛 ∙ 𝑏𝑛 + 𝑤 1.𝑛  (4.79) 

 

4.2.8 Global displacements 

Once the local cross-sectional unit deformations  𝑣 𝑟 , 𝑤 𝑟 , 𝜗 𝑟  of each plate element 𝑟 

are known and the unit warping 𝑢 𝑟  for each node 𝑟 is known, it can be translated to 

the global coordinate system  𝑋, 𝑌, 𝑍  and the global nodal unit displacements 

 𝑈 , 𝑉 ,𝑊  . The geometric relations are illustrated in Figure 4.13. 
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Figure 4.13: This figure illustrates the transformation from local element unit 

displacements 𝑣 𝑟 , 𝑤 𝑟  and 𝜗 𝑟  to global nodal unit displacement 𝑉 𝑟  and 𝑊 𝑟 . 

 

The geometric relations between the local and global displacements are given as: 

 𝑈 𝑟 = 𝑢 𝑟  (4.80) 

 
𝑉 𝑟 = −𝑣 𝑟 ∙ cos 𝛼𝑟 −  𝑤 𝑟 − 𝜗 𝑟 ∙

𝑏𝑟

2
 ∙ sin 𝛼𝑟  (4.81) 

 
𝑊 𝑟 = −𝑣 𝑟 ∙ sin 𝛼𝑟 +  𝑤 𝑟 − 𝜗 𝑟 ∙

𝑏𝑟

2
 ∙ cos 𝛼𝑟  (4.82) 

The geometric relations for the last node 𝑟 = 𝑛 + 1are given as:  

 𝑈 𝑛+1 = 𝑢 𝑛+1 (4.83) 

 
𝑉 𝑛+1 = −𝑣 𝑛 ∙ cos 𝛼𝑛 −  𝑤 𝑛 + 𝜗 𝑛 ∙

𝑏𝑛

2
 ∙ sin 𝛼𝑛  (4.84) 

 
𝑊 𝑛+1 = −𝑣 𝑛 ∙ sin 𝛼𝑛 +  𝑤 𝑛 + 𝜗 𝑛 ∙

𝑏𝑛

2
 ∙ cos 𝛼𝑛  (4.85) 

 

4.3 Intermediate nodes 

In the previous Section 4.2 only the natural nodes was considered in the derivation 

and the maximum number of deformation modes was then equal to the number of 

natural nodes  𝑛 + 1 . A drawback is the lack of accuracy in the behaviour within the 

plate elements and since the load only can be applied at the natural nodes the loading 

procedure will be approximate. A way to overcome this is to introduce intermediate 

nodes and as a consequence a larger number of degrees of freedom and also a larger 

number of deformation modes will be obtained since also local deformation modes 

are added to the existing distortional modes. 

The definition of an intermediate node tells that the mutual angle difference Δ𝛼𝑟  at the 

corresponding node 𝑟 is zero, hence another approach must be used compared to the 
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use of only natural nodes derived in Section 4.2. In this chapter an extension of the 

previous derivation will be presented due to the imposition of intermediate nodes and 

only the affected matrices and terms will be mentioned and presented. 

 

4.3.1 The degrees of freedom 

The use of intermediate nodes will contribute to a larger number of degrees of 

freedom. According to the assumption (A4.2) and that the nodal angle difference is 

zero the warping deformation mode 𝑢𝑘 𝑠  must vary linear within the plate element. 

The warping values at the intermediate nodes can therefore be completely defined by 

interpolation of the warping values at the natural nodes and hence not contribute to 

the degrees of freedom. There is no restriction on the transverse displacements at the 

intermediate nodes though and they will therefore contribute to the number of degrees 

of freedom. The end nodes can also be treated in this way by introducing an extra 

transverse degree of freedom which therefore will contain one warping and one 

transverse degree of freedom each. The total number of degrees of freedom for a 

cross-section consists of: 

 The number of natural nodes (the warping degrees of freedom, 𝑢) 

 The number of intermediate nodes (the transverse degrees of freedom, 𝑤) 

 Two end nodes (two transverse degrees of freedom, 𝑤) 

When introducing intermediate nodes there is a need to distinguish between plate 

elements and sub-plate elements. In the following plate elements represents the whole 

plates between natural nodes and are associated with subscript 𝑟. The sub-plates are 

the elements obtained by implementation of intermediate nodes and is listening to 

subscript 𝑟𝑖 where 𝑖 denotes sub-plate 𝑖 of plate element 𝑟. If one plate element not 

contains any intermediate nodes it will in the following listen to one sub-plate. The 

total number of sub-plates are denoted 𝑛𝑠𝑢𝑏  and the total number of nodes (natural 

and intermediate together) are then 𝑛𝑠𝑢𝑏 + 1, see Figure 4.14. 

 

 

Figure 4.14: The imposition of intermediate nodes will contribute to extra degrees of 

freedom. The 𝑢-degrees of freedoms are the nodal warping values associated with the 

natural nodes and the 𝑤-degrees of freedom are associated with the intermediate 

nodes and end nodes. 

The degrees of freedom are presented in the newly defined vector 𝒙. The warping 

values associated with the natural nodes are lined up first and after them the degrees 
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of freedom associated with the end nodes and intermediate nodes. The 𝒙-vector is 

defined below where the subscripts refer to the node numbering: 

 𝒙 =  𝑢1 ⋯ 𝑢𝑛𝑠𝑢𝑏 +1 𝑤1 ⋯ 𝑤𝑛𝑠𝑢𝑏 +1 𝑇 (4.86) 

The 𝒙-vector contain both warping and transverse degrees of freedom which is the 

main difference compared with the derivation in Section 4.2, see equation (4.42). By 

applying unit displacements one degree of freedom at the time and all 𝒙-vectors 

collected in a matrix 𝑿  give: 

 𝑿 =  𝒙1 𝒙2 ⋯ 𝒙𝑛𝑠𝑢𝑏 +1 𝑇 (4.87) 

This will give that the 𝑿 -matrix not will be a unit matrix but will contain coupling 

terms since unit warping will give contribution at the intermediate nodes. In order to 

describe the appearance an example will be used, see Figure 4.15. 

 

 

Figure 4.15: This figure illustrates the discretization of a U-section where the natural 

nodes (filled dots) and intermediate nodes (empty dots) define the cross-section. 𝑎) 

The widths of the plate elements 𝑏𝑟  and widths of sub-plate elements 𝑏𝑟 .𝑖  are defined 

together with the node numbering (large rings). 𝑏) The degrees of freedom at each 

node are defined where the subscript is associated with the corresponding node 

numbering. 

 

The warping values 𝑢𝑟  at the intermediate nodes are obtained by interpolation of the 

warping values at the natural nodes which for the example above will give: 

 𝑢2  = 𝑢1 +
𝑏1.1

𝑏1

 𝑢3 − 𝑢1 =  1 −
𝑏1.1

𝑏1
 ∙ 𝑢1 +

𝑏1.1

𝑏1
∙ 𝑢3 

𝑢4  = 𝑢3 +
𝑏2.1

𝑏2

 𝑢6 − 𝑢3 =  1 −
𝑏2.1

𝑏2
 ∙ 𝑢3 +

𝑏2.1

𝑏2
∙ 𝑢6 

𝑢5  = 𝑢3 +
𝑏2.1 + 𝑏2.2

𝑏2

 𝑢6 − 𝑢3 

=  1 −
𝑏2.1 + 𝑏2.2

𝑏2
 ∙ 𝑢3 +

𝑏2.1 + 𝑏2.2

𝑏2
∙ 𝑢6 

𝑢7  = 𝑢6 +
𝑏3.1

𝑏3

 𝑢8 − 𝑢6 =  1 −
𝑏3.1

𝑏3
 ∙ 𝑢6 +

𝑏3.1

𝑏3
∙ 𝑢8 

(4.88) 

This can be written on a more compact matrix form as: 
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 𝒖 = 𝑼 ∙ 𝒙 (4.89) 

Where: 

 𝒖 =  𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 𝑢8 𝑇 (4.90) 

 𝒙 =  𝑢1 𝑢3 𝑢6 𝑢8 𝑤1 𝑤2 𝑤4 𝑤5 𝑤7 𝑤8 𝑇  (4.91) 

 𝑼 =

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0

 1 −
𝑏1.1

𝑏1

 
𝑏1.1

𝑏1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0  1 −
𝑏2.1

𝑏2

 
𝑏2.1

𝑏2

0 0 0 0 0 0 0

0  1 −
𝑏2.1 + 𝑏2.2

𝑏2

 
𝑏2.1 + 𝑏2.2

𝑏2

0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0  1 −
𝑏3.1

𝑏3

 
𝑏3.1

𝑏3

0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.92) 

Note: The 𝑼 -matrix is not a unit matrix as in (4.58). 

Another consequence of that two types of degrees of freedom are used is that the 

cross-sectional  displacements 𝒗 and 𝒘 not only can be determined by the warping 

vector 𝒖 any more but must be expressed in terms of the degrees of freedom vector 𝒙, 

hence the 𝑭𝑣, 𝑭𝑤1 and 𝑭𝑤2 matrices  must be rebuilt to be suitable to the new form: 

 𝒗 = 𝑭𝒗 ∙ 𝒙 𝒘1 = 𝑭𝑤1 ∙ 𝒙 𝒘2 = 𝑭𝑤2 ∙ 𝒙 (4.93) 

The matrices are built in the same way, i.e. by applying unit displacements one degree 

of freedom at the time. Since the warping deformation mode varies linear between the 

natural nodes the same 𝑭𝑣, 𝑭𝑤1 and 𝑭𝑤2 matrices can be used as for natural nodes but 

must be modified. The 𝑣-displacements are still constant within the plate elements 

which give the same 𝑣-displacements for the intermediate nodes as for the natural 

nodes. As in the case of only natural nodes the rows are related to plate elements and 

the columns are related to the degrees of freedom but when having intermediate nodes 

the rows correspond to sub-plates and the columns are related to all degrees of 

freedom defined in 𝒙. The 𝑭 𝑣-matrix is then obtained for the example defined in 

Figure 4.15 above as: 

 

𝑭 𝑣 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝑏1
−

1

𝑏1
0 0 0 0 0 0 0 0

1

𝑏1
−

1

𝑏1
0 0 0 0 0 0 0 0

0
1

𝑏2
−

1

𝑏2
0 0 0 0 0 0 0

0
1

𝑏2
−

1

𝑏2
0 0 0 0 0 0 0

0
1

𝑏2
−

1

𝑏2
0 0 0 0 0 0 0

0 0
1

𝑏3
−

1

𝑏3
0 0 0 0 0 0

0 0
1

𝑏3
−

1

𝑏3
0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.94) 
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The row and column related to the transverse degrees of freedom in the 𝑭 𝑤1 and 𝑭 𝑤2 

matrices will contain unit values at the corresponding position and zeros at all other 

positions. The first and last row will therefore be completed without the knowledge of 

the nodal moments which is the case when only considering natural nodes. Recall the 

example defined in Figure 4.15 and the corresponding matrices are obtained as: 

𝑭 𝑤1 =

=

 
 
 
 
 
 
 
 
 

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

−
1

𝑏1 𝑠𝑖𝑛 𝛥𝛼3
 

1

𝑏1 𝑠𝑖𝑛 𝛥𝛼3
+

1

𝑏2 𝑡𝑎𝑛 𝛥𝛼3
 −

1

𝑏2 𝑡𝑎𝑛 𝛥𝛼3
0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

0 −
1

𝑏2 𝑠𝑖𝑛 𝛥𝛼6
 

1

𝑏2 𝑠𝑖𝑛 𝛥𝛼6
+

1

𝑏3 𝑡𝑎𝑛 𝛥𝛼6
 −

1

𝑏3 𝑡𝑎𝑛 𝛥𝛼6
0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 
 
 
 
 
 
 
 
 

 

  (4.95) 

𝑭 𝑤2 =

=

 
 
 
 
 
 
 
 
 

0 0 0 0 0 1 0 0 0 0

−
1

𝑏1 𝑡𝑎𝑛 𝛥𝛼3
 

1

𝑏1 𝑡𝑎𝑛 𝛥𝛼3
+

1

𝑏2 𝑠𝑖𝑛 𝛥𝛼3
 −

1

𝑏2 𝑠𝑖𝑛 𝛥𝛼3
0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

0 −
1

𝑏2 𝑡𝑎𝑛 𝛥𝛼6
 

1

𝑏2 𝑡𝑎𝑛 𝛥𝛼6
+

1

𝑏3 𝑠𝑖𝑛 𝛥𝛼6
 −

1

𝑏3 𝑠𝑖𝑛 𝛥𝛼6
0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 

 
 
 
 
 
 
 
 

 

  (4.96) 

Note that the 𝑭 𝑣, 𝑭 𝑤1 and 𝑭 𝑤2 matrices are denoted with a bar to distinguish that they 

correspond to unit displacements of each degree of freedom, in the same way as for 

the case of only natural nodes but here unit displacements also apply on the transverse 

degrees of freedom at the ends and intermediate nodes. 

Out of the 𝑭 𝑣, 𝑭 𝑤1 and 𝑭 𝑤2 matrices defined in (4.94), (4.95) and (4.96) above the 

other matrices corresponding to the plate rotations 𝑭 𝜗  and 𝚫𝑭 𝜗  can completely be 

defined in the same way as in equation (4.52) and (4.54) but with the only difference 

is that the sub-plate widths 𝑏𝑟 .𝑖 are used instead of the plate element widths 𝑏𝑟 . 

Another difference is that the second and the second last node rotations are 

completely defined (since the first and last row in 𝑭 𝑤1 and 𝑭 𝑤2 will be non-zero). A 

consequence of this is that the 𝚫𝑖𝑘 -matrix defined in (4.75) could be filled one row 

earlier and one row later, i.e. the second and the second last row will be non-zero. In 

the expression for 𝚫𝑖𝑘  the sub-plate widths 𝑏𝑟 .𝑖 should be used instead of the plate 

element widths 𝑏𝑟 . According to this, the second and the second last nodal moments 

𝑚𝑠.𝑟  will now be non-zero and there is therefore no need to modify the 𝑭 𝑤1 and 𝑭 𝑤2 

any more as in the case of only considering natural nodes. 

 

4.4 Determination of the GBT matrices 

In the discretization process in Section 4.1 the 𝐶𝑖𝑘 , 𝐷𝑖𝑘  and 𝐵𝑖𝑘  terms in the GBT 

fundamental equilibrium equation (4.36) will then be expanded into 𝑪, 𝑫 and 

𝑩matrices instead. Those terms are defined by the deformation mode functions 𝑢𝑘 𝑠  

and 𝑤𝑘 𝑠 , see equation (4.19), (4.23) and (4.26). The deformation mode function 

𝑢𝑘 𝑠  is defined in (4.2) and will vary linearly within each plate element, i.e. between 

two natural nodes. The 𝑤 𝑠  will not vary linear since the nodal transverse bending 
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moments 𝑚𝑠.𝑟  will affect the variation within each plate element. In order to capture 

the variation four helping functions or shape functions Ψ1−4 are introduced. 

 

4.4.1 The deformation mode function w(s) 

The cross-sectional deformation mode 𝑤𝑘 𝑠  will be affected by the average element 

deflection 𝑤𝑟 , the element rotation 𝜗𝑟  and the nodal transverse bending moments 𝑚𝑠.𝑟  

and 𝑚𝑠.𝑟+1. The average element deflection 𝑤𝑟  is constant within each element 𝑟, 

hence the corresponding shape function Ψ1 will be a constant. The element rotation 𝜗𝑟  

will contribute to a linear variation within each element, hence Ψ2 is a linear function. 

In order to describe the variation due to the nodal moments two shape functions are 

used, namely Ψ3 and Ψ4, see Figure 4.16. 

 

 

Figure 4.16: The variation of the deflection 𝑤𝑘(𝑠)  between the nodes are affected by 

both the average element deflection 𝑤𝑟 , the element rotation 𝜗𝑟  and the nodal 

transverse bending moments 𝑚𝑠.𝑟  and 𝑚𝑠.𝑟+1. This figure also shows how the shape 

functions 𝛹1−4 varies and are defined. 

 

The cross-sectional deformation mode 𝑤𝑘 𝑠  can now be determined using the shape 

functions Ψ1−4 and the local plate coordinate 𝜂, defined as: 

 𝜂 𝑠 =
𝑠

𝑏𝑟
,    𝜂 ∈  0,1  (4.97) 

The deformation mode 𝑤𝑘 𝑠  is now defined as: 

 
𝑤𝑘 𝑠 =   𝑤𝑟 ∙ Ψ1 𝜂 + 𝜗𝑟

𝑏𝑟

2
∙ Ψ2 𝜂 + 𝑚 𝑠.𝑟

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3 𝜂 − 𝑚 𝑠.𝑟

𝑏𝑟
2

6𝐾𝑟

𝑛

𝑟=1

∙ Ψ4 𝜂   

(4.98) 
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Where the shape functions are defined as: 

 Ψ1 𝜂 = 1 Ψ2 𝜂 = 2𝜂 − 1 

(4.99) 
 Ψ3 𝜂 = 𝜂 1 − 𝜂  Ψ4 𝜂 = 𝜂 1 − 𝜂 3 − 2𝜂   

And the “average” element moments used in (4.98) are defined as: 

 
𝑚 𝑠.𝑟 =

𝑚𝑠.𝑟+1 + 𝑚𝑠.𝑟

2
 𝑚 𝑠.𝑟 =

𝑚𝑠.𝑟+1 − 𝑚𝑠.𝑟

2
 (4.100) 

Note: Do not mix up the average element moment 𝑚 𝑠.𝑟  with the unit nodal moments 

𝑚 𝑠.𝑟 . 

 

4.4.1.1 Determination of 𝚿𝟏 and 𝚿𝟐 

The average element deflection 𝑤𝑟 , see (4.49), is constant within each plate element 𝑟 

and therefore the corresponding shape function Ψ1 𝜂  must be constant. This gives 

the shape function: 

 Ψ1 𝜂 = 1 (4.101) 

The element rotation 𝜗𝑟 , defined in equation (4.51), will contribute to a linear 

variation of the deformation mode 𝑤𝑘 𝑠  within each plate element 𝑟. This gives the 

shape function: 

 Ψ2 𝜂 = 2𝜂 − 1 (4.102) 

 

4.4.1.2 Determination of 𝚿𝟑 and 𝚿𝟒 

To capture the variation of the deformation mode 𝑤𝑘 𝑠  due to nodal bending 

moments use the differential equation for a plate 𝑟 with the width 𝑏𝑟 , the plate 

stiffness 𝐾𝑟  (4.74) and simply supported at the edges, e.g. at the natural nodes 𝑟 and 

𝑟 + 1. The differential equation is defined as: 

 −𝐾𝑟𝑤,𝑠𝑠𝑠𝑠 𝑠 = 0 (4.103) 

The solution to (4.103) is then obtained by integration four times. This give: 

 
−𝐾𝑤 𝑠 = 𝐶1

𝑠3

6
+ 𝐶2

𝑠2

2
+ 𝐶3𝑠 + 𝐶4 (4.104) 

In order to find the solution four boundary conditions are needed which for a simply 

supported plate is defined as: 

 𝑤 0 = 0 𝑤 𝑏𝑟 = 0 
(4.105) 

 𝑚 0 = −𝐾𝑟𝑤,𝑠𝑠 0 = 𝑚𝑠.𝑟  𝑚 𝑏𝑟 = −𝐾𝑟𝑤,𝑠𝑠 𝑏𝑟 = 𝑚𝑠.𝑟+1 

By introducing the four boundary conditions (4.105) into (4.104) the four unknown 

constants can be determined as: 
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 𝐶1 =
𝑚𝑠.𝑟+1 − 𝑚𝑠.𝑟

𝑏𝑟
 𝐶2 = 𝑚𝑠.𝑟  

(4.106) 

 𝐶3 = −
𝑏𝑟

3
𝑚𝑠.𝑟 −

𝑏𝑟

6
𝑚𝑠.𝑟+1 𝐶4 = 0 

The deflection 𝑤(𝑠) within plate 𝑟 is now defined as a function of the coordinate 𝑠 as: 

 
𝑤 𝑠 = −

1

𝐾
 
𝑚𝑠.𝑟+1 − 𝑚𝑠.𝑟

6𝑏𝑟
𝑠3 +

𝑚𝑠.𝑟

2
𝑠2 −  

𝑏𝑟

3
𝑚𝑠.𝑟 +

𝑏𝑟

6
𝑚𝑠.𝑟+1 𝑠  (4.107) 

In order to distinguish two shape functions Ψ3 and Ψ4 some rewriting of (4.107) is 

needed. The deflection can be written in the local coordinate 𝜂 𝑠  defined in (4.97). 

This give: 

 
𝑤 𝜂 =

𝑚𝑠.𝑟+1 + 𝑚𝑠.𝑟

2
∙
𝑏𝑟

2

2𝐾𝑟
∙ 𝜂 1 − 𝜂 −

𝑚𝑠.𝑟+1 − 𝑚𝑠.𝑟

2
∙
𝑏𝑟

2

6𝐾𝑟

∙ 𝜂 1 − 𝜂 3 − 2𝜂  

= 𝑚 𝑠.𝑟 ∙
𝑏𝑟

2

2𝐾𝑟
∙ Ψ3 𝜂 − 𝑚 𝑠.𝑟 ∙

𝑏𝑟
2

6𝐾𝑟
∙ Ψ4 𝜂  

(4.108) 

 

4.4.1.3 First and second order derivative of the deformation mode 

In the expressions for the matrices 𝑪, 𝑫 and 𝑩 the derivatives of the deformation 

mode 𝑤𝑘 𝑠  are used. In order to save some writing later the derivatives of (4.98) are 

defined and computed here. The derivatives are given as: 

 
𝑤𝑘 ,𝑠 𝑠 =   𝑤𝑟 ∙ Ψ1,𝜂𝜂,𝑠  + 𝜗𝑟

𝑏𝑟

2
∙ Ψ2,𝜂𝜂,𝑠 + 𝑚 𝑠.𝑟

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3,𝜂𝜂,𝑠

𝑛

𝑟=1

− 𝑚 𝑠.𝑟

𝑏𝑟
2

6𝐾𝑟
∙ Ψ4,𝜂𝜂,𝑠 

=   𝑤𝑟

1

𝑏𝑟
∙ Ψ1,𝜂   + 𝜗𝑟

1

2
∙ Ψ2,𝜂 + 𝑚 𝑠.𝑟

𝑏𝑟

2𝐾𝑟
∙ Ψ3,𝜂

𝑛

𝑟=1

− 𝑚 𝑠.𝑟

𝑏𝑟

6𝐾𝑟
∙ Ψ4,𝜂   

(4.109) 
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𝑤𝑘 ,𝑠𝑠 𝑠 =   𝑤𝑟 ∙ Ψ1,𝜂𝜂 ∙ 𝜂,𝑠

2  + 𝜗𝑟

𝑏𝑟

2
∙ Ψ2,𝜂𝜂 ∙ 𝜂,𝑠

2 + 𝑚 𝑠.𝑟

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3,𝜂𝜂 ∙ 𝜂,𝑠

2

𝑛

𝑟=1

− 𝑚 𝑠.𝑟

𝑏𝑟
2

6𝐾𝑟
∙ Ψ4,𝜂𝜂 ∙ 𝜂,𝑠

2  

=   𝑤𝑟

1

𝑏𝑟
2
∙ Ψ1,𝜂𝜂   + 𝜗𝑟

1

2𝑏𝑟
∙ Ψ2,𝜂𝜂 + 𝑚 𝑠.𝑟

1

2𝐾𝑟
∙ Ψ3,𝜂𝜂

𝑛

𝑟=1

− 𝑚 𝑠.𝑟

1

6𝐾𝑟
∙ Ψ4,𝜂𝜂   

(4.110) 

In (4.109) and (4.110) the first respectively the second derivative of the shape 

functions Ψ1−4 with respect to 𝜂 are obtained. Those are obtained as: 

 Ψ1,𝜂 𝜂 = 0 Ψ1,𝜂𝜂  𝜂 = 0 

(4.111) 

 Ψ2,𝜂 𝜂 = 2 Ψ2,𝜂𝜂  𝜂 = 0 

 Ψ3,𝜂 𝜂 = 1 − 2𝜂 Ψ3,𝜂𝜂  𝜂 = −2 

 Ψ4,𝜂 𝜂 = 6𝜂2 − 6𝜂 + 1 Ψ4,𝜂𝜂  𝜂 = 12𝜂 − 6 

 

4.4.2 The 𝑩-matrix 

The positions 𝑖 and 𝑘 in the 𝑩-matrix is defined by the 𝐵𝑖𝑘 -terms defined in (4.19). 

Insert the expression for the second derivative (4.110) into (4.19) one gets: 

 
𝐵𝑖𝑘 = 𝐾 𝑤𝑘 ,𝑠𝑠𝑤𝑖,𝑠𝑠𝑑𝑠

𝑏

=  𝐾𝑟   𝑤𝑟 .𝑘

1

𝑏𝑟
2
∙ Ψ1,𝜂𝜂   

=0

  + 𝜗𝑟 .𝑘

1

2𝑏𝑟
∙ Ψ2,𝜂𝜂   

=0

1

0

𝑛

𝑟=1

+ 𝑚 𝑠.𝑟 .𝑘

1

2𝐾𝑟
∙ Ψ3,𝜂𝜂 − 𝑚 𝑠.𝑟 .𝑘

1

6𝐾𝑟
∙ Ψ4,𝜂𝜂  

∙  𝑤𝑟 .𝑖

1

𝑏𝑟
2
∙ Ψ1,𝜂𝜂   

=0

  + 𝜗𝑟 .𝑖

1

2𝑏𝑟
∙ Ψ2,𝜂𝜂   

=0

+ 𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟
∙ Ψ3,𝜂𝜂

− 𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟
∙ Ψ4,𝜂𝜂  𝑏𝑟𝑑𝜂

=  𝐾𝑟𝑏𝑟   𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟

1

2𝐾𝑟
∙ Ψ3,𝜂𝜂 Ψ3,𝜂𝜂

1

0

𝑛

𝑟=1

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟

1

2𝐾𝑟
∙ Ψ4,𝜂𝜂 Ψ3,𝜂𝜂 − 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟

1

6𝐾𝑟

∙ Ψ3,𝜂𝜂Ψ4,𝜂𝜂 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟

1

6𝐾𝑟
∙ Ψ4,𝜂𝜂 Ψ4,𝜂𝜂  𝑑𝜂 

(4.112) 
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The integration of shape function products is performed and the results are tabulated 

in Table 4.1. 

 

Table 4.1: This table contains the integration of shape function products defined as 

 𝛹,𝜂𝜂 𝛹,𝜂𝜂
1

0
𝑑𝜂. 

 Ψ3,𝜂𝜂  Ψ4,𝜂𝜂  

Ψ3,𝜂𝜂  4 0 

Ψ4,𝜂𝜂  0 12 

 

Insert the values from Table 4.1 into (4.112) the 𝐵𝑖𝑘 -term is given as: 

 
𝐵𝑖𝑘 =  𝐾𝑟𝑏𝑟  𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟

1

2𝐾𝑟
∙ 4 − 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟

1

2𝐾𝑟
∙ 0

𝑛

𝑟=1

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟

1

6𝐾𝑟
∙ 0 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟

1

6𝐾𝑟
∙ 12 𝑏𝑟

=  
𝑏𝑟

𝐾𝑟
 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 +

1

3
𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 

𝑛

𝑟=1

 

(4.113) 

The 𝐵𝑖𝑘 -term can now be obtained as: 

 
𝐵𝑖𝑘 =  

𝑏𝑟

𝐾𝑟
 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 +

1

3
𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 

𝑛

𝑟=1

 (4.114) 

Now the 𝑩-matrix is determined and it will be a symmetric and full matrix. Another 

way to compute the 𝑩-matrix is 𝑩 = −𝚫𝑭 𝜗 ∙ 𝑴  where 𝚫𝑭 𝜗  is defined in (4.55) and 𝑴  

is defined in (4.77) [6]. 

 

4.4.3 The 𝑪-matrix 

The 𝑪matrix consist of two sub-matrices, 𝑪1 and 𝑪2. The position (𝑖, 𝑘) in the 𝑪1-

matrix and the 𝑪2-matrix is defined by 𝐶𝑖𝑘
𝐼 -term and the 𝐶𝑖𝑘

𝐼𝐼-term which are 

determined in (4.23). The definition explicitly defined as: 

 𝑪 = 𝑪1 + 𝑪2 (4.115) 
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4.4.3.1 The 𝑪𝟏-matrix 

 

Figure 4.17: This figure illustrates the linear variation of the cross-section 

deformation mode 𝑢𝑘 𝑠  (solid line) and the linear variation of the virtual 

displacement 𝑢𝑖 𝑠  (broken line). Rings denote natural nodes and squares denotes 

plate numbering. 

 

The longitudinal displacement mode 𝑢𝑘 𝑠  varies linear between the natural nodes 

and the virtual unit displacement 𝑢𝑟 .𝑖 = 1  at node 𝑟 and zero at all other nodes and 

linear variation between the nodes. For a unit displacement at node 𝑟 the two adjacent 

elements 𝑟 − 1 and 𝑟 will be affected which must be accounted for, see Figure 4.17. 

The 𝑢𝑘 𝑠 -displacement and 𝑢𝑖 𝑠 -displacement can then be described in the same 

local coordinate 𝜂 defined in (4.97). This give: 

𝑢𝑘 𝑠 = 𝑢𝑘 𝜂 =  

 1 − 𝜂 ∙ 𝑢𝑘 .𝑟−1 + 𝜂 ∙ 𝑢𝑘 .𝑟 , 𝜂 =
𝑠

𝑏𝑟−1
,      𝜂 ∈  0,1 

 1 − 𝜂 ∙ 𝑢𝑘 .𝑟 + 𝜂 ∙ 𝑢𝑘 .𝑟+1, 𝜂 =
𝑠

𝑏𝑟
,          𝜂 ∈  0,1 

  (4.116) 

𝑢𝑖 𝑠 = 𝑢𝑖 𝜂 =  

𝜂 ∙ 𝑢𝑖 .𝑟 ,                                             𝜂 =
𝑠

𝑏𝑟−1
,      𝜂 ∈  0,1 

 1 − 𝜂 ∙ 𝑢𝑖 .𝑟 ,                                  𝜂 =
𝑠

𝑏𝑟
,          𝜂 ∈  0,1 

  (4.117) 

The 𝐶𝑖𝑘
𝐼 -term can now be determined by inserting (4.116) and (4.117) into (4.20) and 

compute the integral. The variable substitution 𝑠 ⇒ 𝜂 gives that 𝑑𝑠 = 𝑏𝑟𝑑𝜂 which 

must be accounted for.  
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𝐶𝑖𝑘
𝐼 = 𝑡  𝑢𝑘𝑢𝑖𝑑𝑠

𝑏

=

= 𝑡𝑟−1    1 − 𝜂 ∙ 𝑢𝑘 .𝑟−1 + 𝜂 ∙ 𝑢𝑘 .𝑟 𝜂 ∙ 𝑢𝑖 .𝑟𝑏𝑟−1𝑑𝜂

1

0

+ 𝑡𝑟    1 − 𝜂 ∙ 𝑢𝑘 .𝑟 + 𝜂 ∙ 𝑢𝑘 .𝑟+1  1 − 𝜂 ∙ 𝑢𝑖 .𝑟𝑏𝑟𝑑𝜂

1

0

= 𝑡𝑟−1𝑏𝑟−1   
𝜂2

2
−

𝜂3

3
 𝑢𝑘 .𝑟−1 +

𝜂3

3
𝑢𝑘 .𝑟 

0

1

∙ 1 

+ 𝑡𝑟𝑏𝑟   𝜂 − 𝜂2 +
𝜂3

3
 𝑢𝑘 .𝑟 +  

𝜂2

2
−

𝜂3

3
 𝑢𝑘 .𝑟+1 

0

1

∙ 1 

= 𝑡𝑟−1𝑏𝑟−1  
1

6
𝑢𝑘 .𝑟−1 +

1

3
𝑢𝑘 .𝑟 + 𝑡𝑟𝑏𝑟  

1

3
𝑢𝑘 .𝑟 +

1

6
𝑢𝑘 .𝑟+1 

=
1

6
 𝑏𝑟−1𝑡𝑟−1𝑢𝑘 .𝑟−1 + 2 𝑏𝑟−1𝑡𝑟−1 + 𝑏𝑟𝑡𝑟 𝑢𝑘 .𝑟

+ 𝑏𝑟+1𝑡𝑟+1𝑢𝑘 .𝑟+1  

(4.118) 

The 𝐶𝑖𝑘
𝐼 -term can now be obtained as: 

 
𝐶𝑖𝑘

𝐼 =
1

6
 𝑏𝑟−1𝑡𝑟−1𝑢𝑘 .𝑟−1 + 2 𝑏𝑟−1𝑡𝑟−1 + 𝑏𝑟𝑡𝑟 𝑢𝑘 .𝑟 + 𝑏𝑟+1𝑡𝑟+1𝑢𝑘 .𝑟+1  (4.119) 

Since 𝐶𝑖𝑘
𝐼  is expressed in the nodal 𝑢-displacements it can easily be written in matrix 

form. The matrix 𝑪1 will be symmetric and have three diagonal non-zero bands. A 

programming ready matrix is defined in Appendix B. 

 

4.4.3.2 The 𝑪𝟐-matrix 

The 𝑪2-matrix is defined by the 𝐶𝑖𝑘
𝐼𝐼-term. Here the integral is computed using the 

shape functions Ψ1−4 defined in (4.99) and the cross-sectional deformation mode 𝑤𝑘  

defined in (4.98). 
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𝐶𝑖𝑘
𝐼𝐼 =

𝐾

𝐸
 𝑤𝑘𝑤𝑖𝑑𝑠

𝑏

=

=
1

𝐸
 𝐾𝑟   𝑤𝑟 .𝑘 ∙ Ψ1 + 𝜗𝑟 .𝑘

𝑏𝑟

2
∙ Ψ2 + 𝑚 𝑠.𝑟 .𝑘

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3

1

0

𝑛

𝑟=1

− 𝑚 𝑠.𝑟 .𝑘

𝑏𝑟
2

6𝐾𝑟
∙ Ψ4 

∙  𝑤𝑟 .𝑖 ∙ Ψ1 + 𝜗𝑟 .𝑖

𝑏𝑟

2
∙ Ψ2 + 𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3 − 𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟

∙ Ψ4 𝑏𝑟𝑑𝜂

=
1

𝐸
 𝐾𝑟𝑏𝑟   𝑤𝑟 .𝑘𝑤𝑟 .𝑖 ∙ Ψ1Ψ1 + 𝜗𝑟 .𝑘𝑤𝑟 .𝑖

𝑏𝑟

2
∙ Ψ2Ψ1

1

0

𝑛

𝑟=1

+ 𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3Ψ1 − 𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟
∙ Ψ4Ψ1

+ 𝑤𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

2
∙ Ψ1Ψ2 + 𝜗𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

2

𝑏𝑟

2
∙ Ψ2Ψ2

+ 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟

𝑏𝑟

2
∙ Ψ3Ψ2 − 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟

𝑏𝑟

2
∙ Ψ4Ψ2

+ 𝑤𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟
∙ Ψ1Ψ3 + 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2

𝑏𝑟
2

2𝐾𝑟
∙ Ψ2Ψ3

+ 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3Ψ3 − 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟

𝑏𝑟
2

2𝐾𝑟

∙ Ψ4Ψ3 − 𝑤𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟
∙ Ψ1Ψ4 − 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2

𝑏𝑟
2

6𝐾𝑟
∙ Ψ2Ψ4

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟

𝑏𝑟
2

6𝐾𝑟
∙ Ψ3Ψ4 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟

𝑏𝑟
2

6𝐾𝑟

∙ Ψ4Ψ4 𝑑𝜂 

(4.120) 

The only 𝜂-dependent terms are the shape functions Ψ1−4. The integration of the 

shape function products are computed and tabulated defined in Table 4.2. 
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Table 4.2: This table contains the integration of shape function products defined as 

 𝛹𝑖𝛹𝑗
1

0
𝑑𝜂. 

 Ψ1 Ψ2 Ψ3 Ψ4 

Ψ1 1 0 
1

6
 0 

Ψ2 0 
1

3
 0 −

1

30
 

Ψ3 
1

6
 0 

1

30
 0 

Ψ4 0 −
1

30
 0 

1

210
 

 

Insert the values from Table 4.2 into (4.120) gives: 

 
𝐶𝑖𝑘

𝐼𝐼 =
1

𝐸
 𝐾𝑟𝑏𝑟  𝑤𝑟 .𝑘𝑤𝑟 .𝑖 ∙ 1 + 𝜗𝑟 .𝑘𝑤𝑟.𝑖

𝑏𝑟

2
∙ 0 + 𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟
∙

1

6

𝑛

𝑟=1

− 𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟
∙ 0 + 𝑤𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

2
∙ 0 + 𝜗𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

2

𝑏𝑟

2
∙

1

3

+ 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟

𝑏𝑟

2
∙ 0 − 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟

𝑏𝑟

2
∙  −

1

30
 

+ 𝑤𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟
∙

1

6
+ 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2

𝑏𝑟
2

2𝐾𝑟
∙ 0

+ 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟

𝑏𝑟
2

2𝐾𝑟
∙

1

30
− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟

𝑏𝑟
2

2𝐾𝑟
∙ 0

− 𝑤𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟
∙ 0 − 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2

𝑏𝑟
2

6𝐾𝑟
∙  −

1

30
 

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟

𝑏𝑟
2

6𝐾𝑟
∙ 0 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟

𝑏𝑟
2

6𝐾𝑟
∙

1

210
 

=
1

𝐸
 𝐾𝑟𝑏𝑟  𝑤𝑟 .𝑘𝑤𝑟 .𝑖 + 𝑚 𝑠.𝑟 .𝑘𝑤𝑟.𝑖

𝑏𝑟
2

12𝐾𝑟
+ 𝜗𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟
2

12

𝑛

𝑟=1

+ 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟
3

360𝐾𝑟
+ 𝑤𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

12𝐾𝑟

+ 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
4

120𝐾𝑟
2

+ 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
3

360𝐾𝑟

+ 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
4

7560𝐾𝑟
2
 = 
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                           =

1

𝐸
 𝐾𝑟𝑏𝑟  𝑤𝑟 .𝑘𝑤𝑟 .𝑖 + 𝜗𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟
2

12

𝑛

𝑟=1

+  𝑤𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 + 𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖 
𝑏𝑟

2

12𝐾𝑟

+  𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖 + 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 
𝑏𝑟

3

360𝐾𝑟

+  𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 +
1

63
𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 

𝑏𝑟
4

120𝐾𝑟
2
  

(4.121) 

The 𝐶𝑖𝑘
𝐼𝐼-term can now be obtained as: 

 
𝐶𝑖𝑘

𝐼𝐼 =
1

𝐸
 𝐾𝑟𝑏𝑟  𝑤𝑟 .𝑘𝑤𝑟 .𝑖 + 𝜗𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟
2

12
+  𝑤𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 + 𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖 

𝑏𝑟
2

12𝐾𝑟

𝑛

𝑟=1

+  𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖 + 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 
𝑏𝑟

3

360𝐾𝑟

+  𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 +
1

63
𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 

𝑏𝑟
4

120𝐾𝑟
2
  

(4.122) 

The 𝑪2-matrix is now fully determined and will be symmetric and all positions will be 

non-zero. 

 

4.4.4 The 𝑫-matrix 

The 𝑫-matrix is defined by the three sub-matrices 𝑫1, 𝑫2 and 𝑫3. Each sub-matrix is 

defined by the 𝐷𝑖𝑘
𝐼 -, 𝐷𝑖𝑘

𝐼𝐼 - and 𝐷𝑖𝑘
𝐼𝐼𝐼-terms respectively which are defined in (4.26). The 

𝑫-matrix is defined as: 

 𝑫 = 𝑫1 −  𝑫2 + 𝑫3  (4.123) 

 

4.4.4.1 The 𝑫𝟏-matrix 

The 𝑫1-matrix is defined by the 𝐷𝑖𝑘
𝐼 -term. Here first order derivatives of the cross-

sectional deformation mode 𝑤𝑘 𝑠  and 𝑤𝑖 𝑠  should be used and are defined in 

(4.109). Then one have: 
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𝐷𝑖𝑘
𝐼 =

𝑡3

3
 𝑤𝑘 ,𝑠𝑤𝑖 ,𝑠𝑑𝑠

𝑏

=

=  
𝑡𝑟

3

3
  𝑤𝑟 .𝑘

1

𝑏𝑟
∙ Ψ1,𝜂 

=0

+ 𝜗𝑟 .𝑘

1

2
∙ Ψ2,𝜂 + 𝑚 𝑠.𝑟 .𝑘

𝑏𝑟

2𝐾𝑟

1

0

𝑛

𝑟=1

∙ Ψ3,𝜂 − 𝑚 𝑠.𝑟 .𝑘

𝑏𝑟

6𝐾𝑟
∙ Ψ4,𝜂  

∙  𝑤𝑟 .𝑖

1

𝑏𝑟
∙ Ψ1,𝜂 

=0

+ 𝜗𝑟 .𝑖

1

2
∙ Ψ2,𝜂 + 𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2𝐾𝑟
∙ Ψ3,𝜂

− 𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

6𝐾𝑟
∙ Ψ4,𝜂  𝑏𝑟𝑑𝜂

=  
𝑏𝑟𝑡𝑟

3

3
  𝜗𝑟 .𝑘𝜗𝑟 .𝑖

1

2

1

2
∙ Ψ2,𝜂Ψ2,𝜂 + 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

2𝐾𝑟

1

2

1

0

𝑛

𝑟=1

∙ Ψ3,𝜂Ψ2,𝜂 − 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

6𝐾𝑟

1

2
∙ Ψ4,𝜂Ψ2,𝜂 + 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2

𝑏𝑟

2𝐾𝑟

∙ Ψ2,𝜂Ψ3,𝜂 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2𝐾𝑟

𝑏𝑟

2𝐾𝑟
∙ Ψ3,𝜂Ψ3,𝜂

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

6𝐾𝑟

𝑏𝑟

2𝐾𝑟
∙ Ψ4,𝜂Ψ3,𝜂 − 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2

𝑏𝑟

6𝐾𝑟

∙ Ψ2,𝜂Ψ4,𝜂 − 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2𝐾𝑟

𝑏𝑟

6𝐾𝑟
∙ Ψ3,𝜂Ψ4,𝜂

+ 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

6𝐾𝑟

𝑏𝑟

6𝐾𝑟
∙ Ψ4,𝜂Ψ4,𝜂 𝑑𝜂 

(4.124) 

The only 𝜂-dependent terms are the shape functions Ψ1−4,𝜂 . The integration of the 

shape function products are computed and tabulated defined in Table 4.3. 
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Table 4.3: This table contains the integration of shape function products defined as 

 𝛹,𝜂𝛹,𝜂
1

0
𝑑𝜂. 

 Ψ2,𝜂  Ψ3,𝜂  Ψ4,𝜂  

Ψ2,𝜂  4 0 0 

Ψ3,𝜂  0 
1

3
 0 

Ψ4,𝜂  0 0 
1

5
 

 

Inserting the values in Table 4.3 into (4.124) gives: 

 
𝐷𝑖𝑘

𝐼 =  
𝑏𝑟𝑡𝑟

3

3
 𝜗𝑟 .𝑘𝜗𝑟 .𝑖

1

2

1

2
∙ 4 + 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

2𝐾𝑟

1

2
∙ 0 − 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

6𝐾𝑟

1

2
∙ 0

𝑛

𝑟=1

+ 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2

𝑏𝑟

2𝐾𝑟
∙ 0 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2𝐾𝑟

𝑏𝑟

2𝐾𝑟
∙

1

3

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

6𝐾𝑟

𝑏𝑟

2𝐾𝑟
∙ 0 − 𝜗𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2

𝑏𝑟

6𝐾𝑟
∙ 0

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

2𝐾𝑟

𝑏𝑟

6𝐾𝑟
∙ 0 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟

6𝐾𝑟

𝑏𝑟

6𝐾𝑟
∙

1

5
 =

=  
𝑏𝑟𝑡𝑟

3

3
 𝜗𝑟 .𝑘𝜗𝑟 .𝑖 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

12𝐾𝑟
2

𝑛

𝑟=1

+ 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

180𝐾𝑟
2
 

=  
𝑏𝑟𝑡𝑟

3

3
 𝜗𝑟 .𝑘𝜗𝑟 .𝑖

𝑛

𝑟=1

+  𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 +
1

15
𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 

𝑏𝑟
2

12𝐾𝑟
2
  

(4.125) 

The 𝐷𝑖𝑘
𝐼 -term is then obtained as: 

 
𝐷𝑖𝑘

𝐼 =  
𝑏𝑟𝑡𝑟

3

3
 𝜗𝑟 .𝑘𝜗𝑟 .𝑖 +  𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 +

1

15
𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 

𝑏𝑟
2

12𝐾𝑟
2
 

𝑛

𝑟=1

 (4.126) 

The 𝑫1-matrix is now fully determined and will be symmetric and all positions will in 

general be non-zero. 
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4.4.4.2 The 𝑫𝟐-matrix 

The 𝑫2-matrix is defined by the 𝐷𝑖𝑘
𝐼𝐼 -term. Here the second order derivatives of the 

deformation modes 𝑤𝑘 𝑠  is used which is defined in (4.110). 

 

𝐷𝑖𝑘
𝐼𝐼 =

𝜈𝐾

𝐺
 𝑤𝑘 ,𝑠𝑠𝑤𝑖𝑑𝑠

𝑏

=

=
𝜈

𝐺
 𝐾𝑟   𝑤𝑟 .𝑘

1

𝑏𝑟
2
∙ Ψ1,𝜂𝜂   

=0

  + 𝜗𝑟 .𝑘

1

2𝑏𝑟
∙ Ψ2,𝜂𝜂   

=0

1

0

𝑛

𝑟=1

+ 𝑚 𝑠.𝑟 .𝑘

1

2𝐾𝑟
∙ Ψ3,𝜂𝜂 − 𝑚 𝑠.𝑟 .𝑘

1

6𝐾𝑟
∙ Ψ4,𝜂𝜂  

∙  𝑤𝑟 .𝑖 ∙ Ψ1 + 𝜗𝑟 .𝑖

𝑏𝑟

2
∙ Ψ2 + 𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3 − 𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

6𝐾𝑟

∙ Ψ4 𝑏𝑟𝑑𝜂

=
𝜈

𝐺
 𝐾𝑟𝑏𝑟   𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖

1

2𝐾𝑟
∙ Ψ3,𝜂𝜂 Ψ1 − 𝑚 𝑠.𝑟 .𝑘𝑤𝑟.𝑖

1

6𝐾𝑟

1

0

𝑛

𝑟=1

∙ Ψ4,𝜂𝜂 Ψ1 + 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

1

2𝐾𝑟

𝑏𝑟

2
∙ Ψ3,𝜂𝜂 Ψ2 − 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

1

6𝐾𝑟

𝑏𝑟

2

∙ Ψ4,𝜂𝜂 Ψ2 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟

𝑏𝑟
2

2𝐾𝑟
∙ Ψ3,𝜂𝜂 Ψ3

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟

𝑏𝑟
2

2𝐾𝑟
∙ Ψ4,𝜂𝜂 Ψ3 − 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟

𝑏𝑟
2

6𝐾𝑟

∙ Ψ3,𝜂𝜂 Ψ4 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟

𝑏𝑟
2

6𝐾𝑟
∙ Ψ4,𝜂𝜂 Ψ4 𝑑𝜂 

(4.127) 

The only 𝜂-dependent terms are the shape functions Ψ1−4 and Ψ1−4,𝜂𝜂 . The 

integration of the shape function products are computed and tabulated defined in 

Table 4.4. 

 

Table 4.4: This table contains the integration of shape function products defined as 

 𝛹,𝜂𝜂 𝛹
1

0
𝑑𝜂. 

 Ψ1 Ψ2 Ψ3 Ψ4 

Ψ3,𝜂𝜂  −2 0 −
1

3
 0 

Ψ4,𝜂𝜂  0 2 0 −
1

5
 

 

Insert the values from Table 4.4 into (4.127) gives: 
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𝐷𝑖𝑘

𝐼𝐼 =
𝜈

𝐺
 𝐾𝑟𝑏𝑟  𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖

1

2𝐾𝑟
∙  −2 − 𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖

1

6𝐾𝑟
∙ 0

𝑛

𝑟=1

+ 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

1

2𝐾𝑟

𝑏𝑟

2
∙ 0 − 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

1

6𝐾𝑟

𝑏𝑟

2
∙ 2

+ 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟

𝑏𝑟
2

2𝐾𝑟
∙  −

1

3
 − 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟

𝑏𝑟
2

2𝐾𝑟
∙ 0

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

2𝐾𝑟

𝑏𝑟
2

6𝐾𝑟
∙ 0 + 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

1

6𝐾𝑟

𝑏𝑟
2

6𝐾𝑟
∙  −

1

5
  

=
𝜈

𝐺
 𝐾𝑟𝑏𝑟  −𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖

1

𝐾𝑟
− 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

6𝐾𝑟

𝑛

𝑟=1

− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

12𝐾𝑟
2
− 𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖

𝑏𝑟
2

180𝐾𝑟
2
 

=
𝜈

𝐺
 𝑏𝑟  −𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖 − 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

6

𝑛

𝑟=1

−  𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 +
1

15
𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 

𝑏𝑟
2

12𝐾𝑟

  

(4.128) 

The 𝐷𝑖𝑘
𝐼𝐼 -term is then obtained as: 

 
𝐷𝑖𝑘

𝐼𝐼 =
𝜈

𝐺
 𝑏𝑟  −𝑚 𝑠.𝑟 .𝑘𝑤𝑟 .𝑖 − 𝑚 𝑠.𝑟 .𝑘𝜗𝑟 .𝑖

𝑏𝑟

6

𝑛

𝑟=1

−  𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 +
1

15
𝑚 𝑠.𝑟 .𝑘𝑚 𝑠.𝑟 .𝑖 

𝑏𝑟
2

12𝐾𝑟

  

(4.129) 

The 𝑫2-matrix is now fully determined and all positions will be non-zero. In 

comparison to the other matrices the 𝑫2-matrix will not be symmetric. 

 

4.4.4.3 The 𝑫𝟑-matrix 

The 𝑫3-matrix is defined in by the 𝐷𝑖𝑘
𝐼𝐼𝐼-term. The only difference to the 𝑫2-matrix is 

that the indices 𝑖 and 𝑘 have changed position, i.e. index 𝑖 have become index 𝑘 in 

(4.129). The 𝐷𝑖𝑘
𝐼𝐼𝐼-term are then defined as: 

 
𝐷𝑖𝑘

𝐼𝐼𝐼 =
𝜈

𝐺
 𝑏𝑟  −𝑚 𝑠.𝑟 .𝑖𝑤𝑟 .𝑘 − 𝑚 𝑠.𝑟 .𝑖𝜗𝑟 .𝑘

𝑏𝑟

6

𝑛

𝑟=1

−  𝑚 𝑠.𝑟 .𝑖𝑚 𝑠.𝑟 .𝑘 +
1

15
𝑚 𝑠.𝑟 .𝑖𝑚 𝑠.𝑟 .𝑘 

𝑏𝑟
2

12𝐾𝑟

  

(4.130) 
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4.5 The diagonalization of the GBT fundamental 

equilibrium equation 

The GBT fundamental equilibrium equation derived (4.36) and the corresponding 

components 𝐵𝑖𝑘 , 𝐶𝑖𝑘  and 𝐷𝑖𝑘  are derived in Section 4.4. Express the stiffness terms in 

the unit deformation modes 𝑢 , 𝑣 , 𝑤  and 𝜗  the GBT fundamental equilibrium equation 

is obtained in matrix form as: 

 𝐸𝑪 𝝓 ,𝑥𝑥𝑥𝑥 − 𝐺𝑫 𝝓 ,𝑥𝑥 + 𝑩 𝝓 = 𝒒 − 𝒒 ,𝒙 (4.131) 

The bar denotes that they are expressed by the unit deformations. Since all position in 

the 𝑩 , 𝑪  and 𝑫  matrices generally are non-zero, the differential equation (4.131) is 

highly coupled which complicates the solution process. In order to have an easier and 

more practical treatment of the differential equation above, a transformation into an 

eigenvector coordinate system is carried out in order to have diagonal matrices and 

with that uncoupled equations. Since the differential equation involves three matrices, 

the transformation will not succeed to completely diagonalize all of them. The 

transformation intends therefore to diagonalize the matrices to the largest extent 

possible. 

 

4.5.1 Simultaneous diagonalization of the 𝑪 - and 𝑩 -matrix 

The simultaneous diagonalization involves three main steps. Here they follow for 

cross-sections that are not restrained, i.e. no locked cross-sectional nodes: 

1. Solve the generalized eigenvalue problem  𝑩 − 𝜆𝑘 ∙ 𝐸𝑪  𝒙 𝑘
𝐼 = 𝟎. 

2. Identify the torsion deformation mode corresponding to eigenvector 𝒙 4 by 

solving the second eigenvalue problem  𝐺𝑫 4×4 − 𝜆𝑘
𝐼𝐼 ∙ 𝐸𝑪 4×4 𝒙 𝑘 .4×1

𝐼𝐼 = 𝟎. 

3. Identify the extension and bending modes corresponding to eigenvectors 𝒙 1−3 

by solving the third eigenvalue problem  𝑲3×3 − 𝜆𝑘
𝐼𝐼𝐼 ∙ 𝐸𝑪 3×3 𝒙 𝑘 .3×1

𝐼𝐼𝐼 = 𝟎. 

 

4.5.1.1 The generalized eigenvalue  𝑩 − 𝝀𝒊
𝑰 ∙ 𝑬𝑪  𝒙 𝒊

𝑰 = 𝟎 

The first step in the diagonalization procedure is to solve the generalized eigenvalue 

problem in order to establish the deformation modes. The eigenvalue problem is 

defined as: 

  𝑩 − 𝜆𝑘
𝐼 ∙ 𝐸𝑪  𝒙 𝑘

𝐼 = 𝟎 (4.132) 

The superscript  ∙ 𝐼 referrers to the first of eigenvalue problem in the diagonalization 

process. A necessary condition in order to have a simultaneous diagonalization is that 

the eigenvectors are orthogonal to each other, and the following condition is therefore 

fundamental: 

 
𝒙 𝑖

𝐼 ∙ 𝑪 ∙ 𝒙 𝑘
𝐼 =  

0              𝑓𝑜𝑟𝑖 ≠ 𝑘

𝐶 𝑘𝑘𝑓𝑜𝑟𝑘 = 𝑘
  𝒙 𝑖

𝐼 ∙ 𝑩 ∙ 𝒙 𝑘
𝐼 =  

0              𝑓𝑜𝑟𝑖 ≠ 𝑘

𝐵 𝑘𝑘𝑓𝑜𝑟𝑘 = 𝑘
  (4.133) 

When solving the eigenvalue problem the same number of eigenvalues and 

eigenvectors are obtained as the total number of degrees of freedom (𝑛𝑑𝑜𝑓) in the 
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cross-section. Sort the eigenvalues and the corresponding eigenvectors in numerical 

order 𝜆1
𝐼 < 𝜆2

𝐼 … < 𝜆𝑛𝑑𝑜𝑓
𝐼  and normalize the eigenvectors such that the maximum 

value becomes unit value, i.e.  𝑥 𝑘  = 1. Collecting all the eigenvectors into 

theeigenmatrix 𝑿  gives: 

 𝑿 = 𝑿 𝐼 =  𝒙 1
𝐼 𝒙 2

𝐼 ⋯ 𝒙 𝑛𝑑𝑜𝑓
𝐼   (4.134) 

The four first eigenvalues will be zero 𝜆1−4
𝐼 = 0and correspond to the four rigid body 

modes (extension, major and minor axis bending and torsion). Thus, the set of 

eigenvectors consist of 𝑛𝑑𝑜𝑓 − 4 distinct orthogonal eigevectors (𝑘 = 5, … , 𝑛𝑑𝑜𝑓) 

which are associated with the transverse bending or distortion modes and a four-

dimensional eigenspace associated to the four rigid body deformation modes. The 

transformation to an arbitrary eigenvector coordinate system is obtained as: 

 𝑩 𝐼 =  𝑿 𝐼 
𝑇
∙ 𝑩 ∙ 𝑿 𝐼  𝑪 𝐼 =  𝑿 𝐼 

𝑇
∙ 𝑪 ∙ 𝑿 𝐼 𝑫 𝐼 =  𝑿 𝐼 

𝑇
∙ 𝑫 ∙ 𝑿 𝐼 (4.135) 

Since the first vectors span a four-dimensional eigenspace there could be many 

eigenvectors that are orthogonal to the other (𝑘 = 5, … , 𝑛𝑑𝑜𝑓) modes, the first four 

vectors needs therefore further treatment. 

 

4.5.1.2 Determination of the fourth eigenvector 𝒙 𝟒 

The identification of the eigenvector 𝒙 4 can be determined by taking the advantage of 

the fact that the 𝑫  matrix is diagonal and the first three diagonal elements is zero, i.e. 

𝐷 11 = 𝐷 22 = 𝐷 33 = 0. Take the sub-matrices 𝑪 4×4 and 𝑫 4×4 associated to the four 

rigid body modes from the matrices defined in (4.135) and transform to a less 

arbitrary eigenvector coordinate system. Thus, another eigenproblem is defined as: 

  𝐺𝑫 4×4 − 𝜆𝑘
𝐼𝐼 ∙ 𝐸𝑪 4×4 𝒙 𝑘 .4×1

𝐼𝐼 = 𝟎 (4.136) 

The solution to the eigenproblem gives four eigenvalues and eigenvectors and sorted 

in numerical order gives that the three first eigenvalues are zero 𝜆1−3
𝐼𝐼 = 0 which now 

correspond to three rigid body modes left, i.e. extension, major and minor axis 

bending. The transformation is defined as: 

 𝑿 𝐼𝐼 =  𝒙 1
𝐼𝐼 𝒙 2

𝐼𝐼 𝒙 3
𝐼𝐼 𝒙 4

𝐼𝐼 =

=  𝒙 1
𝐼 𝒙 2

𝐼 𝒙 3
𝐼 𝒙 4

𝐼               
 𝑛𝑑𝑜𝑓  ×4

∙  𝒙 1.4×1
𝐼𝐼 𝒙 2.4×1

𝐼𝐼 𝒙 3.4×1
𝐼𝐼 𝒙 4.4×1

𝐼𝐼                       
4×4

 (4.137) 

The fourth eigenvalue is non-zero and the eigenvector corresponds to the torsion 

deformation mode and the eigenvector should be normalized such that unit rotation is 

obtained, i.e. all plate elements rotation have unit value 𝜗 𝑟 = 1. Replace the first four 

eigenvectorsin (4.134) with the transformed modes defined in (4.137) and the 

eigenmatrix 𝑿  is then defined as: 

 𝑿 =  𝒙 1
𝐼𝐼 𝒙 2

𝐼𝐼 𝒙 3
𝐼𝐼 𝒙 4

𝐼𝐼 𝒙 5
𝐼 ⋯ 𝒙 𝑛𝑑𝑜𝑓

𝐼   (4.138) 
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Perform the matrix multiplication and the diagonalization of the 𝑩 , 𝑪  and 𝑫  matrices 

are defined as: 

 𝑩 𝐼𝐼 =  𝑿 𝐼𝐼 
𝑇
∙ 𝑩 𝐼 ∙ 𝑿 𝐼𝐼  𝑪 𝐼𝐼 =  𝑿 𝐼𝐼 

𝑇
∙ 𝑪 𝐼 ∙ 𝑿 𝐼𝐼 𝑫 𝐼𝐼 =  𝑿 𝐼𝐼 

𝑇
∙ 𝑫 𝐼 ∙ 𝑿 𝐼𝐼  (4.139) 

Where 𝑿 𝐼𝐼 is defined in (4.137) and the matrices are defined in (4.135). The 𝐶 44-value 

will then coincide with the warping constant and the 𝐷 44-value coincide with the 

torsion stiffness in Vlasov torsion theory or non-uniform torsion theory. The three 

first eigenvectors is still not explicitly defined and needs further treatment in order to 

capture the extension, major and minor axis bending modes. 

 

4.5.1.3 The three first eigenvectors 𝒙 𝟏−𝟑 

In order to identify the three remaining eigenvectors corresponding to the extension, 

and bending rigid-body modes a new geometrical matrix 𝑲 must be used. This matrix 

is obtained and used in second-order analysis and this matrix corresponds to the non-

linear terms. Here the matrix is only defined. For further reading and deeper 

understanding, the reader is referred to [6], [23] and [24]. The sub-matrix 𝑲3×3 

corresponding to the three remaining undefined eigenvectors is defined by: 

 
𝐾𝑖𝑘 = −

1

𝐴
  𝑣 𝑖 .𝑟𝑣 𝑘 .𝑟 + 𝑤 𝑖 .𝑟𝑤 𝑘 .𝑟 𝑏𝑟𝑡𝑟

𝑛

𝑟=1

 (4.140) 

Where 𝐴 is the total cross-sectional area, 𝑏𝑟  and 𝑡𝑟  are the plate element 𝑟’s width and 

thickness respectively and the summation applies to the total number of plate 

elements 𝑛. The displacement components 𝑣 𝑘  and 𝑤 𝑘  are obtained from the second 

eigenvector transformation, i.e. the 𝑣 𝑘-and 𝑤 𝑘- terms are the position 𝑘 in the 𝒗 - and 

𝒘 -vector respectively. These vectors are defined as: 

 𝒗 = 𝑭 𝑣 ∙ 𝑿 𝑛𝑑𝑜𝑓 ×3
𝐼𝐼  (4.141) 

 𝒘 = 𝑭 𝑤 ∙ 𝑿 𝑛𝑑𝑜𝑓 ×3
𝐼𝐼  (4.142) 

Where 𝑿 𝑛𝑑𝑜𝑓 ×3
𝐼𝐼  is the sub-matrix containing the three first eigenvectors of 𝑿 𝐼𝐼  defined 

as: 

 𝑿 𝑛𝑑𝑜𝑓 ×3
𝐼𝐼 =  𝒙 1

𝐼𝐼 𝒙 2
𝐼𝐼 𝒙 3

𝐼𝐼  (4.143) 

Take the sub-matrix 𝑪 3×3 from the 𝑪 𝐼𝐼-matrix defined in (4.139). The third 

eigenproblem is then established as: 

  𝑲3×3 − 𝜆𝑘
𝐼𝐼𝐼 ∙ 𝐸𝑪 3×3 𝒙 𝑘 .3×1

𝐼𝐼𝐼 = 𝟎 (4.144) 

The solution to the eigenproblem gives three eigenvalues and eigenvectors and when 

sorted in numerical order 𝜆1
𝐼𝐼𝐼 < 𝜆2

𝐼𝐼𝐼 < 𝜆3
𝐼𝐼𝐼  gives that only the first eigenvalue is zero 

𝜆1
𝐼𝐼𝐼 = 0. The transformation is defined as: 
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 𝑿 𝐼𝐼𝐼 =  𝒙 1
𝐼𝐼𝐼 𝒙 2

𝐼𝐼𝐼 𝒙 3
𝐼𝐼𝐼 =  𝒙 1

𝐼𝐼 𝒙 2
𝐼𝐼 𝒙 3

𝐼𝐼            
 𝑛𝑑𝑜𝑓  ×3

∙  𝒙 1.3×1
𝐼𝐼𝐼 𝒙 2.3×1

𝐼𝐼𝐼 𝒙 3.3×1
𝐼𝐼𝐼                   

3×3

 
(4.145) 

Normalize the first eigenvector 𝒙 1
𝐼𝐼𝐼  such that all nodal warping values of deformation 

mode 1 have negative unit value, i.e. 𝑢 1.𝑟 = −1. The minus sign is to make the 

longitudinal normal stresses 𝜍𝑥 .1 for the first deformation mode compatible with the 

other deformation modes 𝑘 ≥ 2. Normalize 𝒙 2
𝐼𝐼𝐼  and 𝒙 3

𝐼𝐼𝐼  such that the diagonal 

elements in 𝐾 22 = 𝐾 33 = −1  in the 𝑲 3×3-matrix defined as: 

 𝑲 3×3 =  𝑿 𝐼𝐼𝐼 
𝑇
∙ 𝑲3×3 ∙ 𝑿 𝐼𝐼𝐼  (4.146) 

Replace the first three eigenvectors in the eigenmatrix 𝑿  defined in (4.138) with the 

three normalized eigenvectors calculated in (4.145) gives the final appearance of the 

eigenmatrix or transformation matrix 𝑿  as: 

 𝑿 =  𝒙 1 ⋯ 𝒙 𝑛𝑑𝑜𝑓  =  𝒙 1
𝐼𝐼𝐼 𝒙 2

𝐼𝐼𝐼 𝒙 3
𝐼𝐼𝐼 𝒙 4

𝐼𝐼 𝒙 5
𝐼 ⋯ 𝒙 𝑛𝑑𝑜𝑓

𝐼   (4.147) 

Finally, the diagonalization procedure of the 𝑩  and 𝑪  is totally defined by the 

transformation into the eigenvector coordinate system. The transformed matrices are 

denoted with a tilde as: 

 𝑩 = 𝑿 𝑇 ∙ 𝑩 ∙ 𝑿  𝑪 = 𝑿 𝑇 ∙ 𝑪 ∙ 𝑿  𝑫 = 𝑿 𝑇 ∙ 𝑫 ∙ 𝑿  (4.148) 

The 𝑩  and 𝑪  matrix will be completely diagonalized but the 𝑫  matrix will still have 

some off-diagonal terms which are non-zero, hence it is not possible to have a 

complete uncoupled GBT equation. The transformed and coupled GBT fundamental 

equation will then be defined as: 

 𝐸𝑪 𝝓 ,𝑥𝑥𝑥𝑥 − 𝐺𝑫 𝝓 ,𝑥𝑥 + 𝑩 𝝓 = 𝒒 − 𝒒 𝑥 ,𝑥  (4.149) 

 

4.5.2 Diagonalization of the 𝑫 -matrix 

In simultaneous diagonalization process above there is only possible to diagonalize 

two matrices at the time (𝑩  and 𝑪 ), hence the third 𝑫 -matrix will not be completely 

diagonalized. It appears thought that the off-diagonal terms in general are small in 

comparison with the diagonal terms and can be neglected, i.e. the off-diagonal terms 

in the 𝑫 -matrix obtained in (4.148) can be neglected if 

  𝐷 𝑖𝑘 
2

𝐷 𝑖𝑖 ∙ 𝐷 𝑘𝑘

≪ 1. (4.150) 

This is however only true for thin-walled open cross-sections. The influence of these 

coupling terms depends on the actual cross-section. For closed section this coupling 

terms cannot be neglected [6]. 
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4.6 Transformed GBT fundamental equilibrium equation 

The transformation into the eigenvector coordinate system leads to diagonal 𝑪  and 𝑩  

matrices and the approximate diagonalization of the 𝑫  matrix makes it possible to 

handle the coupled GBT fundamental differential equation derived in (4.36) in an 

uncoupled way. Equation (4.36) can then be written as: 

 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥𝑥 − 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥𝑥 + 𝐵 𝑘𝜙 𝑘 = 𝑞 𝑘 − 𝑞 𝑥 .𝑘 ,𝑥  (4.151) 

The subscript  ∙ 𝑘  on the 𝐵 𝑘 , 𝐶 𝑘  and 𝐷 𝑘  terms stands for the diagonal position 𝑘 in the 

corresponding matrix and the amplitude function 𝜙 𝑘  is obtained as the solution to the 

transformed differential equation (4.151). The amplitude function 𝜙 𝑘  is coupled to the 

corresponding deformation mode 𝒖 𝑘  defined as the columns in the modal matrix 𝑼  

defined as: 

 𝑼  = 𝑼 ∙ 𝑿  (4.152) 

The other displacement components are obtained in a similar way, namely: 

 𝑭 𝑣  = 𝑭𝑣 ∙ 𝑼 = 𝑭 𝑣 ∙ 𝑿  (4.153) 

 𝑭 𝑤  = 𝑭𝑤 ∙ 𝑼 = 𝑭 𝑤 ∙ 𝑿  (4.154) 

 𝑭 𝜗  = 𝑭𝜗 ∙ 𝑼 = 𝑭 𝜗 ∙ 𝑿  (4.155) 

 Δ𝑭 𝜗  = Δ𝑭𝜗 ∙ 𝑼 = Δ𝑭 𝜗 ∙ 𝑿  (4.156) 

 𝑴  = 𝑴 ∙ 𝑼 = 𝑴 ∙ 𝑿  (4.157) 

The local displacement components are then simply obtained as the value at the 

position corresponding to row 𝑟 and column 𝑘 in the corresponding matrices as: 

 𝑢 𝑟 .𝑘 = 𝑼  𝑟, 𝑘  (4.158) 

 𝑣 𝑟 .𝑘 = 𝑭 𝑣 𝑟, 𝑘  (4.159) 

 𝑤 𝑟 .𝑘 = 𝑭 𝑤 𝑟, 𝑘  (4.160) 

 𝜗 𝑟 .𝑘 = 𝑭 𝜗 𝑟, 𝑘  (4.161) 

 𝑚 𝑟 .𝑘 = 𝑴  𝑟, 𝑘  (4.162) 

In order to have the transformed global nodal displacement components the following 

relation holds: 

 𝑈 𝑟 .𝑘 = 𝑢 𝑟 .𝑘  (4.163) 

 
𝑉 𝑟 .𝑘 = −𝑣 𝑟 .𝑘 ∙ cos 𝛼𝑟 −  𝑤 𝑟 .𝑘 − 𝜗 𝑟 .𝑘 ∙

𝑏𝑟

2
 ∙ sin 𝛼𝑟  (4.164) 

 
𝑊 𝑟 .𝑘 = −𝑣 𝑟 .𝑘 ∙ sin 𝛼𝑟 +  𝑤 𝑟 .𝑘 − 𝜗 𝑟 .𝑘 ∙

𝑏𝑟

2
 ∙ cos 𝛼𝑟  (4.165) 
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And for the last node 𝑟 = 𝑛 + 1:  

 𝑈 𝑛+1 = 𝑢 𝑛+1 (4.166) 

 
𝑉 𝑛+1 = −𝑣 𝑛 ∙ cos 𝛼𝑛 −  𝑤 𝑛 + 𝜗 𝑛 ∙

𝑏𝑛

2
 ∙ sin 𝛼𝑛  (4.167) 

 
𝑊 𝑛+1 = −𝑣 𝑛 ∙ sin 𝛼𝑛 +  𝑤 𝑛 + 𝜗 𝑛 ∙

𝑏𝑛

2
 ∙ cos 𝛼𝑛  (4.168) 

The global nodal displacements components 𝑈 𝑟 .𝑘 , 𝑉 𝑟 .𝑘  and 𝑊 𝑟 .𝑘  stored in vectors will 

then for deformation mode 𝑘 have the following notations: 

 𝑼 𝑘 , 𝑽 𝑘 , 𝑾 𝑘  (4.169) 

Note: Unfortunately, there is a lack of indices so do not mistake 𝑾 𝑘  with the sectional 

force 𝑊 𝑘 𝑥 . 

 

4.6.1 GBT boundary conditions 

The boundary condition terms defined in (4.39) are not defined in a representative 

way. The orthogonalization process must be integrated into the boundary condition 

terms as well and the terms must be associated with known boundary conditions of 

the member. Hence, introduce the GBT sectional forces defined in (4.187) and the 

transformed matrices. Since the 𝑫 1 and 𝑫 2 not are not completely diagonal, a 

summation over all off-diagonal terms listening to subscript 𝑖 is introduced. This give 

for deformation mode 𝑘: 

   𝑊 𝑘 ,𝑥 + 𝐺   𝐷 1.𝑘𝑖 − 𝐷 2.𝑘𝑖 

𝑛𝑑𝑜𝑓

𝑖=1

𝜙 𝑘 ,𝑥 −  𝑞𝑥𝑢 𝑘𝑑𝑠

𝑏

 𝛿𝜙 𝑖 

0

𝐿

= 0 (4.170) 

   𝑊 𝑘 − 𝐺  𝐷 2.𝑘𝑖

𝑛𝑑𝑜𝑓

𝑖=1

𝜙 𝑘 𝛿𝜙 𝑖 ,𝑥 

0

𝐿

= 0 (4.171) 

The first boundary condition (4.170) can be fulfilled in two ways. Either are the 

amplitude function 𝜙 𝑘 0  and/or 𝜙 𝑘 𝐿  prescribed, i.e. 𝑣- and 𝑤-displacements are 

prescribed and no virtual displacement can take place leading to 𝛿𝜙 𝑖 0 = 0 and/or 

𝛿𝜙 𝑖 𝐿 = 0. The other way of fulfilling the condition is that the expression within the 

parentheses is zero: 

  𝑊 𝑘 ,𝑥 + 𝐺   𝐷 1.𝑘𝑖 − 𝐷 2.𝑘𝑖 

𝑛𝑑𝑜𝑓

𝑖=1

𝜙 𝑘 ,𝑥 −  𝑞𝑥𝑢 𝑖𝑑𝑠

𝑏

 

0

𝐿

= 0 (4.172) 

The second boundary condition (4.171) is fulfilled in the same way, namely either are 

the warping prescribed leading to that no virtual displacement can occur, i.e. 
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𝛿𝜙 𝑖 ,𝑥 0 = 0 and/or 𝛿𝜙 𝑖 ,𝑥 𝐿 = 0 or the other alternative is that the expression 

within the parentheses is zero, namely:  

  𝑊 𝑘 − 𝐺  𝐷 2.𝑘𝑖

𝑛𝑑𝑜𝑓

𝑖=1

𝜙 𝑘 

0

𝐿

= 0 (4.173) 

There are four main type of boundary condition in ordinary beam theory, namely 

fixed, pinned, guided and free end, see Figure 4.18. 

 

 

Figure 4.18: There are four main type of boundary conditions in ordinary beam 

theory, namely 𝑎) fixed, 𝑏) pinned, 𝑐) guided and 𝑑) free end. 

 

The GBT boundary conditions must therefore be translated such that the boundary 

conditions in Figure 4.18 are fulfilled. Since the fundamental GBT equation involves 

forth ordered derivatives four boundary conditions is needed, two at each end. Here 

follows the corresponding conditions associated with the end conditions in Figure 

4.18: 

 

a) 
𝜙 𝑘 0 = 0 

𝜙 𝑘 ,𝑥 0 = 0 

(4.174) 

b) 
𝜙 𝑘 ,𝑥 0 = 0 

𝑊 𝑘 0 = 0 

c) 
𝜙 𝑘 ,𝑥 0 = 0 

𝑊 𝑘 ,𝑥 0 = 0 

d) 

𝑊 𝑘 ,𝑥 0 + 𝐺   𝐷 1.𝑘𝑖 − 𝐷 2.𝑘𝑖 

𝑛𝑑𝑜𝑓

𝑖=1

𝜙 𝑘 ,𝑥 0 −  𝑞𝑥𝑢 𝑖𝑑𝑠

𝑏

= 0 

𝑊 𝑘 0 − 𝐺  𝐷 2.𝑘𝑖

𝑛𝑑𝑜𝑓

𝑖=1

𝜙 𝑘 0 = 0 

However, even though the 𝑫 3-matrix is not involved in the boundary term for the free 

end above an approximation can be utilized, namely use the 𝑫 -matrix defined in 

(4.148). The second boundary term can also be simplified. If the normal stresses 𝜍𝑥  is 

not of interest or not critical, the 𝑫 2-matrix can be excluded since the matrix contains 
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the transverse stress contribution 𝜍𝑠 which depends on Poisson’s ratio 𝜈 [6]. These 

simplifications lead to:  

d) 
𝑊 𝑘 ,𝑥 0 + 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0 −  𝑞𝑥 0 𝑢 𝑘𝑑𝑠

𝑏

= 0 

𝑊 𝑘 0 = 0 

(4.175) 

A great feature of GBT is that each mode 𝑘 has its own corresponding boundary 

conditions and since the total behaviour of the member is obtained as a summation 

over the mode contributions, there is a possibility to choose different boundary 

conditions for different modes in order to obtain a more realistic behaviour. In Figure 

4.19 below there are three common boundary conditions illustrated which have quite 

different influences on the global behaviour of the member. 

 

 

Figure 4.19: Three illustrative examples of how different boundary conditions for 

different modes can be utilized in order to have a more realistic behaviour of the 

member. 𝑎) fixed end 𝑏) pinned end with stiffener corresponding to 𝐸𝐴 = ∞ and 

𝐸𝐼 = 0 and 𝑐) pinned with a stiffer stiffener corresponding to 𝐸𝐴 = ∞ and 𝐸𝐼 = ∞. 

 

The main difference between the members in Figure 4.19 is the warping resistance. In 

member 𝑎) it is obvious that there cannot be any warping or transverse displacements. 

In member 𝑏) the transverse displacements are prevented but warping is allowed and 

in the third member no warping is allowed but the rotation at the support is still 

allowed. These conditions can be expressed in the cross-sectional forces and the 

amplitude function as: 

a)  𝜙
 
𝑘 0 = 0

𝜙 𝑘 ,𝑥 0 = 0
  for 𝑘 = 2, … , 𝑛𝑑𝑜𝑓 

(4.176) 
b)  𝜙

 
𝑘 0 = 0

𝑊 𝑘 0 = 0
  for 𝑘 = 2, … , 𝑛𝑑𝑜𝑓 

c)  𝜙
 
𝑘 0 = 0

𝑊 𝑘 0 = 0
  for 𝑘 = 2,3  𝜙

 
𝑘 0 = 0

𝜙 𝑘 ,𝑥 0 = 0
  for 𝑘 = 4, … , 𝑛𝑑𝑜𝑓 

The first deformation mode is a bit special since the forth ordered GBT differential 

equation prescribes a second ordered rod-equation. However, the three examples 

above will have the same boundary condition for the first mode, namely 𝜙 1,𝑥 0 = 0 

since the 𝑢-displacements are prevented. The first deformation mode and its 

corresponding boundary conditions are treated further in Appendix C. 
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4.6.2 GBT modal loading terms 

The GBT can handle different kind of loads, namely body, surface, line and point 

loads. All these type of forces must be translated into equivalent line-loads applied on 

the nodes. 

 

4.6.2.1 Body loads and surface loads 

The loads can either be defined in the local  𝑥, 𝑠, 𝑧 -coordinate system or in the global 
 𝑋, 𝑌, 𝑍 -coordinate system. In the local defined case a general applied distributed 

surface load 𝑝 and a body load 𝑔 are expressed in its local components  𝑝𝑥 ,𝑝𝑠 , 𝑝𝑧  
and  𝑔𝑥 , 𝑔𝑠 , 𝑔𝑧 , see Figure 4.20. 

 

Figure 4.20:A general applied surface load 𝑝 and body load 𝑔 expressed in the local 
 𝑥, 𝑠, 𝑧 -coordinate system and in the load components 𝑎) in 𝑥-direction as 𝑝𝑥 , 𝑔𝑥 , 𝑏) 

in 𝑠-direction as 𝑝𝑠, 𝑔𝑠 and 𝑐) in 𝑧-direction 𝑝𝑧 , 𝑔𝑧 . 

The applied loads can also be defined in the global  𝑋, 𝑌, 𝑍 -coordinate system which 

expressed in the global components are given as  𝑝𝑋 ,𝑝𝑌 , 𝑝𝑍  and  𝑔𝑋 , 𝑔𝑌 ,𝑔𝑍 , see 

Figure 4.21. 

 

Figure 4.21: A general applied surface load 𝑝 and body load 𝑔 expressed in the 

global  𝑋, 𝑌, 𝑍 -coordinate system and in the load components 𝑎) in 𝑋-direction as 

𝑝𝑋 , 𝑔𝑋 , 𝑏) in 𝑌-direction as 𝑝𝑌, 𝑔𝑌 and 𝑐) in 𝑍-direction 𝑝𝑍, 𝑔𝑍. 

 

The discretization of the applied loads amounts to convert them into equivalent nodal 

loads which then are distributed along the member. If only natural nodes are 

considered, the first and the last node cannot be loaded since it is treated as cantilevers 

so if the first and last plate element are loaded the second and the second last node 

will carry all loads from the outer plate elements. If intermediate nodes are imposed in 

the analysis the first and last node also can be loaded as well. 
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The equivalent nodal loads are for the inner nodes calculated according to Figure 

4.22. Rollers are introduced at each node such that each plate element are simply 

supported and the equivalent nodal load 𝑞𝑥 .𝑟 , 𝑞𝑠.𝑟  and 𝑞𝑧 .𝑟  is then obtained as the 

“reaction forces” at the corresponding roller due to the applied element loads.  

 

Figure 4.22: The load discretization of uniformly distributed surface plate elements 

loads 𝑝𝑧.𝑟−1 and 𝑝𝑧 .𝑟  by imposition of rollers at the nodes and the equivalent nodal 

loads are then the corresponding “reaction forces”. The equivalent nodal loads are 

denoted 𝑞𝑧 .𝑟−1, 𝑞𝑧 .𝑟 , 𝑞𝑧 .𝑟+1 etc. A treatment of uniformly distributed 𝑝𝑥 - and 𝑝𝑠-loads 

are completely analogue to the example defined in this figure. 

 

For uniformly distributed surface loads 𝑝𝑧 .𝑟−1 and 𝑝𝑧 .𝑟  [force / length
2
] on the two 

adjacent plate elements𝑟 − 1 and 𝑟 respectively the equivalent nodal load 𝑞𝑧 .𝑟  [force / 

length] is obtained as: 

 𝑞𝑧 .𝑟 =
𝑏𝑟−1

2
∙ 𝑝𝑧 .𝑟−1 +

𝑏𝑟

2
∙ 𝑝𝑧 .𝑟  (4.177) 

For a uniformly distributed body loads 𝑔𝑧 .𝑟−1 and 𝑔𝑧 .𝑟  [force / length
3
] the equivalent 

nodal load 𝑞𝑧 .𝑟  [force / length] for node 𝑟 is obtained as: 

 𝑞𝑧 .𝑟 =
𝑏𝑟−1𝑡𝑟−1

2
∙ 𝑔𝑧 .𝑟−1 +

𝑏𝑟𝑡𝑟
2

∙ 𝑔𝑧 .𝑟  (4.178) 

The treatment of distributed surface and body loads in the other directions are 

completely analogous as for equation (4.177) and (4.178). The loads defined in the 

global coordinate system. 

 

4.6.2.2 Line loads and point loads 

There is no need to discretize the line loads further if they are applied at the nodes 

otherwise the same approach is valid as for body loads and surface loads, namely that 

the equivalent nodal loads are obtained as the “reaction forces” at the rollers, see 

Figure 4.22. 
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Figure 4.23: 𝑎) A line load 𝑞𝑍 and 𝑏) a point load 𝑃𝑍  are here defined in the global 

 𝑋, 𝑌, 𝑍 -coordinate system. The point-force 𝑃 is treated as an equivalent line load 𝑞𝑍 

via Dirac’s delta function (dotted line load). 

 

In case of point loads so must they be treated as distributed line loads and this is 

carried out via Dirac’s delta function, see Figure 4.23. The Dirac’s delta function is 

defined as: 

 𝛿 𝑋 − 𝑋𝑃 =  
∞, 𝑋 = 𝑋𝑃

0, otherwise
  

(4.179) 

  𝛿 𝑋 − 𝑋𝑃 

∞

−∞

𝑑𝑋 =  𝛿 𝑋 − 𝑋𝑃 

𝑥𝑝
+

𝑥𝑝
−

𝑑𝑋 = 1 

Where 𝑋𝑃 is the fixed point at which the point load 𝑃 is acting. The equivalent line 

load which the point load is converted to is then defined as: 

 𝑞𝑍 = 𝑃𝑍 ∙ 𝛿 𝑋 − 𝑋𝑃  (4.180) 

This applies for point loads defined in the other directions as well. 

 

4.6.2.3 The GBT modal loads 

The GBT loading terms are defined in (4.35) and after the transformation into 

eigenvector coordinate system together with the load discretization to equivalent 

nodal loads 𝑞𝑟  the GBT modal loads 𝑞 𝑘  and 𝑞 𝑥 .𝑘 ,𝑥  are obtained as: 

 𝑞 𝑘 =   𝑞𝑠.𝑟𝑣 𝑟 .𝑘 + 𝑞𝑧 .𝑟𝑤 𝑟 .𝑘 

𝑛+1

𝑟=1

 𝑞 𝑥 .𝑘 ,𝑥 =  𝑞𝑥 .𝑟 ,𝑥𝑢 𝑟 .𝑘

𝑛+1

𝑟=1

 (4.181) 

The summation applies to all nodal load contributions 𝑞𝑥 .𝑟 ,𝑥 ,  𝑞𝑠.𝑟  and 𝑞𝑧 .𝑟  defined in 

the local  𝑥, 𝑠, 𝑧 -coordinate system. 𝑢 𝑟 .𝑘 , 𝑣 𝑟 .𝑘  and 𝑤 𝑟 .𝑘  are the local displacement 

components defined in equation (4.158), (4.159) and (4.160). 

The GBT modal loads can also be defined using the global load and displacement 

components in the same fashion as for the local defined loads. The following 

expressions hold therefore as: 
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 𝑞 𝑘 =   𝑞𝑌.𝑟𝑉 𝑟 .𝑘 + 𝑞𝑍.𝑟𝑊 𝑟 .𝑘 

𝑛+1

𝑟=1

 𝑞 𝑥 .𝑘 ,𝑥 =  𝑞𝑋.𝑟 ,𝑋𝑈 𝑟 .𝑘

𝑛+1

𝑟=1

 (4.182) 

The summation applies to all nodal load contributions 𝑞𝑋.𝑟 ,𝑋 ,  𝑞𝑌.𝑟  and 𝑞𝑍.𝑟  defined in 

the global  𝑋, 𝑌, 𝑍 -coordinate system. 𝑈 𝑟 .𝑘 , 𝑉 𝑟 .𝑘  and 𝑊 𝑟 .𝑘  are the global displacement 

components defined in equation (4.163), (4.164) and (4.165). 

 

4.6.3 The amplitude function 

The solution to the differential equation (4.151) can be obtained in many ways. 

Basically there are two different methods, namely analytical and approximate. The 

analytical solution has some advantages compared to the use of approximate methods. 

The main advantage is that it is an exact solution in the meaning that no convergence 

study is needed. Another advantage is that the computational effort is less compared 

with the use of finite elements due to its imposed number of degrees of freedom. A 

drawback though is that the analytical solution requires uncoupled set of differential 

equations and it must be solved for each pair of boundary conditions and support 

conditions and therefore must be predefined when used in programming of the GBT. 

The use of FEM, which is an approximate method, has some advantages compared to 

analytical solutions. This concerns especially the handling of boundary and support 

conditions. By locking
3
 degrees of freedoms there is a greater versatility using this 

method, rather than having to deriving analytical expressions for each possible load 

and boundary situation. Another key benefit when using FEM is that there is no need 

of having uncoupled equations, i.e. the coupled GBT fundamental equation (4.149) 

can be utilized directly. Some of the negative aspects concern the induced number of 

degrees of freedoms and the extra computational effort, also a convergence study is 

needed in order to be sure that the FEM-approximation is satisfactory. 

 

4.6.4 The displacement components 

Once the amplitude functions 𝜙 𝑘  and 𝜙 𝑘 ,𝑥  are determined, the nodal displacements 

𝑈𝑟 , 𝑉𝑟  and 𝑊𝑟  can be determined for each node 𝑟 in the cross-section as the 

summation over each modal contribution 𝑘. For node 𝑟 one gets the total global 

displacements as: 

 
𝑈𝑟 𝑥 =  𝑈 𝑟 .𝑘𝜙 𝑘 ,𝑥

𝑛𝑚𝑜

𝑘=1

 𝑥  

(4.183) 
 

𝑉𝑟 𝑥 =  𝑉 𝑟 .𝑘𝜙 𝑘

𝑛𝑚𝑜

𝑘=1

 𝑥  

 
𝑊𝑟 𝑥 =  𝑊 𝑟 .𝑘𝜙 𝑘 𝑥 

𝑛𝑚𝑜

𝑘=1

 

                                                 
3
With locking degrees of freedom, the authors refers to assign a value to that corresponding degree of 

freedom, e.g. at a support the transverse vertical displacement is prevented 𝑊 𝑥 = 0 = 0. 
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Where𝑛𝑚𝑜 is the total number of obtained deformation modes and the displacement 

components 𝑈 𝑟 .𝑘 , 𝑉 𝑟 .𝑘  and 𝑊 𝑟 .𝑘  are determined according to equation (4.163), (4.164) 

and (4.165) respectively. 

 

4.6.5 Normal stresses and sectional forces 

Recall the expressions for the stresses in the four fundamental beam theories defined 

in (3.3). There it was a possibility to describe the distribution within the cross-section 

in one function and the variation along the member in another function. This is 

fundamental in the derived transformed GBT equations. The first four deformation 

modes 𝑢 1−4 do correspond to the cross-sectional distribution and the amplitude 

function 𝜙 1−4 correspond to the variation along the member, see Figure 4.24 and 

compare with Figure 3.2. 

 

Figure 4.24: This figure illustrates the four first deformation modes 𝑢 1−4 and the 

analogy between the four fundamental beam theories defined in Chapter 3.1. 

 

The analogy between stresses in the four fundamental beam theories, see (3.1) to 

(3.2), and the four first GBT deformation modes is here defined by introducing the 

separation of variables approach: 

 𝜍𝑥 𝑥, 𝑦, 𝑧 = 𝐸 ∙ 𝑢,𝑥 𝑥 = 𝐸 ∙ 𝑢 1 𝑦, 𝑧 ∙ 𝜙 1,𝑥𝑥  𝑥  

(4.184) 

 𝜍𝑥 𝑥, 𝑦, 𝑧 = −𝐸 ∙ 𝑧 ∙ 𝑤,𝑥𝑥  𝑥 = −𝐸 ∙ 𝑢 2 𝑦, 𝑧 ∙ 𝜙 2,𝑥𝑥  𝑥  

 𝜍𝑥 𝑥, 𝑦, 𝑧 = −𝐸 ∙ 𝑦 ∙ 𝑣,𝑥𝑥  𝑥 = −𝐸 ∙ 𝑢 3 𝑦, 𝑧 ∙ 𝜙 3,𝑥𝑥  𝑥  

 𝜍𝑥 𝑥, 𝑦, 𝑧 = 𝐸 ∙ 𝜔 𝑥, 𝑦 ∙ 𝜗,𝑥𝑥  𝑥 = 𝐸 ∙ 𝑢 4 𝑦, 𝑧 ∙ 𝜙 4,𝑥𝑥  𝑥  

The common character of the stresses for the different modes can then be written in a 

more general way as: 

 𝜍𝑥 .𝑘 𝑥, 𝑦, 𝑧 = 𝐸 ∙ 𝑢 𝑘 ∙ 𝜙 𝑘 ,𝑥𝑥  (4.185) 

Above only the stresses corresponding to the four rigid-body modes are presented, but 

the same applies for all deformation modes 𝑘, not only the rigid-body modes. 

The sectional forces are defined as the integral over the cross-section and the 

longitudinal stresses. The definitions for the sectional forces in the four first modes 

are defined in (3.8). Here follows the translation into the general GBT notation as: 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:86 67 

 

𝑁 𝑥 =  𝜍𝑥𝑑𝐴

𝐴

=  𝜍𝑥𝑢 1𝑑𝐴

𝐴

= 𝐸  𝑢 1𝑢 1𝑑𝐴 ∙ 𝜙 1,𝑥𝑥  𝑥 

𝐴

 

𝑀𝑦 𝑥 =  𝜍𝑥𝑧𝑑𝐴

𝐴

=  𝜍𝑥𝑢 2𝑑𝐴

𝐴

= −𝐸  𝑢 2𝑢 2𝑑𝐴 ∙ 𝜙 2,𝑥𝑥  𝑥 

𝐴

 

𝑀𝑧 𝑥 =  𝜍𝑥𝑦𝑑𝐴

𝐴

=  𝜍𝑥𝑢 3𝑑𝐴

𝐴

= −𝐸  𝑢 3𝑢 3𝑑𝐴 ∙ 𝜙 3,𝑥𝑥  𝑥 

𝐴

 

𝑊 𝑥 = − 𝜍𝑥𝜔𝑑𝐴

𝐴

= − 𝜍𝑥𝑢 4𝑑𝐴

𝐴

= −𝐸  𝑢 4𝑢 4𝑑𝐴 ∙ 𝜙 4,𝑥𝑥  𝑥 

𝐴

 

(4.186) 

These expressions can also be expressed in a more general way which also applies for 

all deformation modes, not only for the rigid-body modes. The general expression for 

sectional forces is defined as: 

 

𝑊 𝑘 𝑥 = − 𝜍𝑥𝑢 𝑘𝑑𝐴

𝐴

= −𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  𝑥  (4.187) 

Note that the mismatch in the sing convention is handled during the normalization 

process of the first deformation mode, see Section 4.5. The introduced cross-sectional 

parameter 𝐶 𝑘  above is defined as: 

 

𝐶 𝑘 =  𝑢 𝑘𝑢 𝑘𝑑𝐴

𝐴

 (4.188) 

For the first four rigid-body modes the corresponding cross-sectional parameters will 

corresponds to the area, major and minor second moment of inertia and the warping 

constant as: 

 𝐶 1 = 𝐴 𝐶 2 = 𝐼𝑦  𝐶 3 = 𝐼𝑧  𝐶 4 = 𝐶𝑀  (4.189) 

Note that the 𝑦- and 𝑧-supscript denotes the principle axes which not necessary have 

to be aligned with the global coordinate axes. The longitudinal stresses can now be 

determined out of the sectional forces. Compare the expression for the longitudinal 

stresses (4.185) with the expression for sectional forces (4.187) the stresses can be 

determined as: 

 
𝜍𝑥 .𝑘 = 𝐸𝑢 𝑘𝜙 𝑘 ,𝑥𝑥 = −

𝑊 𝑘 𝑥 𝑢 𝑘

𝐶 𝑘
 (4.190) 

Since all modes are decoupled due to the orthogonality condition the total normal 

stress 𝜍𝑥  in the member is obtained as a summation over each modal stress 

contribution 𝜍𝑥 .𝑘  as: 
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 𝜍𝑥 𝑥, 𝑦, 𝑧 =  𝜍𝑥 .𝑘

𝑘

 𝑥, 𝑦, 𝑧  (4.191) 

 

4.6.6 Shear stresses and shear force 

An expression for the shear stress 𝜏𝑥𝑠  is derived in Section 3.1.1. If one translates 

them into GBT notations the shear stress is obtained as: 

 𝜏𝑥𝑠 .𝑘 = −
1

𝑡 𝑠 
 𝜍𝑥 .𝑘 ,𝑥𝑡𝑑𝑠

𝑠

0

=
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘𝑡 𝑠 
 𝑢 𝑘𝑡𝑑𝑠

𝑠

0

 (4.192) 

To have the total shear stress 𝜏𝑥𝑠  in the member the same applies as for the normal 

stresses, namely a summation over each modal contribution 𝜏𝑥𝑠 .𝑘  which then is given 

as: 

 𝜏𝑥𝑠 𝑥, 𝑦, 𝑧 =  𝜏𝑥𝑠 .𝑘

𝑘

 𝑥, 𝑦, 𝑧  (4.193) 

The shear force within plate element 𝑟 is defined as the integral over the element 

width 𝑏𝑟  and over the shear flow as: 

 
𝑆𝑘 .𝑟 =  𝜏𝑥𝑠 .𝑘 ∙ 𝑡𝑑𝑠

𝑏𝑟

 (4.194) 

 

4.6.6.1 Programming ready expression for shear flow and shear stress 

Use the definition for the warping function defined in (4.116) with the variable 

substitution 𝑠 ⇒ 𝜂 and the discretization into elements and nodes the expression for 

the nodal shear flow  𝜏𝑥𝑠 .𝑘𝑡 𝑟  at node 𝑟 is obtained as: 

 

 𝜏𝑥𝑠 .𝑘𝑡 𝑟 =
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘
    1 − 𝜂 ∙ 𝑢𝑘 .𝑖 + 𝜂 ∙ 𝑢𝑘 .𝑖+1 𝑡𝑖 ∙ 𝑏𝑖𝑑𝜂

1

0

𝑟−1

𝑖=1

=

=
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘
   𝜂 −

𝜂2

2
 ∙ 𝑢𝑘 .𝑖 +

𝜂2

2
∙ 𝑢𝑘 .𝑖+1 

0

1

𝑡𝑖 ∙ 𝑏𝑖

𝑟−1

𝑖=1

=
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘
 

𝑡𝑖𝑏𝑖

2
∙  𝑢𝑘 .𝑖 + 𝑢𝑘 .𝑖+1 

𝑟−1

𝑖=1

 

(4.195) 

The shear stress in the corresponding node 𝑟 is then simply obtained by divide both 

sides with the plate thickness 𝑡𝑟  as: 
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𝜏𝑥𝑠 .𝑘 .𝑟 =
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘𝑡𝑟
    1 − 𝜂 ∙ 𝑢𝑘 .𝑖 + 𝜂 ∙ 𝑢𝑘 .𝑖+1 𝑡𝑖 ∙ 𝑏𝑖𝑑𝜂

1

0

𝑟−1

𝑖=1

=

=
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘
   𝜂 −

𝜂2

2
 ∙ 𝑢𝑘 .𝑖 +

𝜂2

2
∙ 𝑢𝑘 .𝑖+1 

0

1

𝑡𝑖 ∙ 𝑏𝑖

𝑟−1

𝑖=1

=
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘
 

𝑡𝑖𝑏𝑖

2
∙  𝑢𝑘 .𝑖 + 𝑢𝑘 .𝑖+1 

𝑟−1

𝑖=1

 

(4.196) 

Note: If the thickness 𝑡𝑟  varies for the two adjacent plate elements to node 𝑟, the shear 

stress will have two nodal values but the shear flow will be continues over all nodes. 

 

4.6.6.2 Programming ready expression for shear force 

Due to the integration over the warping function the shear flow  𝜏𝑥𝑠 .𝑘𝑡  will not vary 

linearly between the nodes, see Figure 4.25. This must be accounted for in the shear 

force calculations. 

 

Figure 4.25: The shear flow  𝜏𝑥𝑠 .𝑘𝑡 𝑟  will have a parabolic distribution within the 

corresponding plate element 𝑟. Nodes are denoted with rings and plate numbering in 

squares. In order to have the shear force 𝑆𝑘 .𝑟  integration over the corresponding plate 

element is needed. 

 

Use the same warping function and variable substitution as above, and also utilize the 

accumulation feature of the shear flow, the shear force for plate element 𝑟 is obtained 

as: 
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𝑆𝑘 .𝑟 =   𝜏𝑥𝑠 .𝑘 𝜂 ∙ 𝑡 𝜂  
𝑟
∙ 𝑏𝑟𝑑𝜂

1

0

=    𝜏𝑥𝑠 .𝑘 ∙ 𝑡 𝑟

1

0

+
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘
   1 − 𝜂 ∙ 𝑢 𝑘 .𝑟 + 𝜂 ∙ 𝑢 𝑘 .𝑟+1 𝑡𝑟 ∙ 𝑏𝑟𝑑𝜂

𝜂

0

 ∙ 𝑏𝑟𝑑𝜂

=    𝜏𝑥𝑠 .𝑘 ∙ 𝑡 𝑟

1

0

+
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘
   𝜂 −

𝜂2

2
 ∙ 𝑢 𝑘 .𝑟 +

𝜂2

2
∙ 𝑢 𝑘 .𝑟+1 𝑡𝑟 ∙ 𝑏𝑟 

0

𝜂

 ∙ 𝑏𝑟𝑑𝜂

= 𝑏𝑟   𝜏𝑥𝑠 .𝑘𝑡 𝑟 ∙ 𝜂

+
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘
   

𝜂2

2
−

𝜂3

6
 ∙ 𝑢 𝑘 .𝑟 +

𝜂3

6
∙ 𝑢 𝑘 .𝑟+1 𝑡𝑟𝑏𝑟  

0

1

=  𝜏𝑥𝑠 .𝑘𝑡 𝑟𝑏𝑟 +
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘

𝑏𝑟
2𝑡𝑟
6

 2𝑢 𝑘 .𝑟 + 𝑢 𝑘 .𝑟+1  

 

The programming ready shear force in plate element 𝑟 is then defined as: 

 𝑆𝑘 .𝑟 =  𝜏𝑥𝑠 .𝑘𝑡 𝑟𝑏𝑟 +
𝑊 𝑘 ,𝑥 𝑥 

𝐶 𝑘

𝑏𝑟
2𝑡𝑟
6

 2𝑢 𝑘 .𝑟 + 𝑢 𝑘 .𝑟+1  (4.197) 

Where  𝜏𝑥𝑠 .𝑘𝑡 𝑟  is calculated according to (4.195). 
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5 Implementation of GBT 

This chapter will describe the implementation of GBT into calculation routines. 

Flowcharts showing the calculation will be presented, to make it possible for the 

reader to get a grip on how the main concepts are working.  

Figure 5.1 below shows the basic calculation flow of the GBT implementation. The 

first step is to discretize the cross-section into plate elements and nodes and assign the 

geometry such as widths, thicknesses, nodal coordinates etc. The next step is to 

analyse the cross-section to determine the deformation modes and its corresponding 

constants which forms the basis for the member analysis. The user can after this step 

finish the calculation flow and present the modal results or continue with a member 

analysis. This step requires more information about the member such as member 

length, boundary conditions and loads so that the amplitude function 𝜙 𝑘  can be 

determined for each deformation mode 𝑘. With the mode properties and amplitude 

function known, the total GBT solution can be calculated. Each mode property is then 

paired with the corresponding amplitude function and summed together to have the 

total deformation, stress and sectional forces. 

 

 

 

 

5.1 Cross-section discretization 

To enable any kind of GBT calculation the cross-section has to be discretized. As 

shown in the flowchart in Figure 5.1 this is the first step during the calculations and 

the output are frequently used throughout the rest of the process. The required inputs 

in the discretization process are the geometry of the cross-section, plate thicknesses 

and number of sub-plates per plate element. The geometry is then defined by the 

nodal coordinates, i.e. the 𝑦- and 𝑧-coordinates of the natural nodes
4
. This can easily 

be managed by assigning different input vectors. Then the different input vectors will 

be one vector containing the nodal 𝑦-coordinates, one containing the nodal 𝑧-

                                                 
4
For the definition of a natural node, see Section 4.3.1. 

Cross-section discretization 

Cross-section analysis 

Memberanalysis 

GBT solution 

Presentation of results 

Figure 5.1: An overall main flowchart of how a application in the context of GBT is 

performed. 
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coordinates, one with the plate element thicknesses and one vector that defines the 

number of sub-plates per plate element. If the “sub-plates per plate”-vector only 

contains ones it means that the analysis only will involve degrees of freedom 

associated with the natural nodes. The size of the input vectors will then depend if it 

contain nodal values or plate element values since there will always be one more node 

than elements. 

Figure 5.2 describes the difference in the node and elements numbering when only 𝑎) 

considering natural nodes and when 𝑏) intermediate nodes are included. The main 

difference is, after the cross-sectional analysis is performed, the number of obtained 

deformation modes. When including intermediate nodes also local deformation modes 

will be obtained, i.e. the variation between the natural nodes will be included together 

with the rigid-body modes and distortional modes. 

 

 

Figure 5.2: Discretized cross-sections where 𝑎) only considering natural nodes 

marked with filled dots (𝑛 = the total number of plate elements) and 𝑏) involving 

intermediate nodes marked with rings (𝑛 = the total number of sub-plate elements). 

 

5.2 Cross-section analysis 

The main subject of the cross-section analysis is to determine the cross-sectional 

deformation modes which form the basis within the concept of GBT. In Figure 5.3 the 

calculation flow within the cross-section analysis is prescribed. First the geometric 

𝑭 𝑣, 𝑭 𝑤1, 𝑭 𝑤2 and 𝚫𝑖𝑘  matrices are constructed which are used in order to determine 

the other 𝑭 𝑤 , 𝑭 𝜗 , Δ𝑭 𝜗  and 𝑴  matrices. For further knowledge about the different 

matrices the reader is referred to Section 4.2 and programming ready matrices are 

found in Appendix B. These geometric matrices are then used in order to construct the 

𝑩 -, 𝑪 - and 𝑫 -matrices. For further knowledge and definitions about this step, the 

reader is referred to Section 4.1 and 4.4 and for programming ready matrices and 

expressions, see Appendix B. 

Once the GBT matrices are determined a transformation process into an eigenvector 

coordinate system is initiated in order to have an as uncoupled differential equation as 

possible. This process is performed in three steps by solving three different 

generalized eigenproblems in order to capture orthogonal eigenvectors including four 

eigenvectors that are associated with the four rigid body modes allied with the four 

technical beam theories, namely extension, major and minor axis bending and non-

uniform torsion. For a more extensive description of this step the reader is referred to 

Section 4.5. Once the transformation is performed the deformation modes 𝒖  and the 
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other displacement components are completely defined which then forms the basis for 

the next major step in the GBT analysis, namely the member analysis. 

 

 

 

5.3 Member analysis 

After that the cross-sectional deformation modes have been determined the 

transformed GBT fundamental equation (4.151) can be established for each mode 𝑘. 

By solving the differential equation repeatedly for each mode the corresponding 

Figure 5.3: The calculation flow within the cross-sectional analysis is in this figure 

illustrated where in the first step all geometric matrices are assembled so that in the 

next step the GBT matrices can be determined. Out of these matrices three different 

eigenproblems are performed in order to transform the GBT differential equation as 

decoupled as possible. The last step is to define the deformation modes 𝒖  and the 

other transformed displacement components. 

Geometric matrices: 

𝑭 𝑣, 𝑭 𝑤1, 𝑭 𝑤2, 𝚫𝑖𝑘  

if 

𝑭 𝑤 , 𝑭 𝜗 , Δ𝑭 ϑ, 𝑴  

𝑭𝑤 , 𝑭𝜗  

GBT matrices: 

If only natural nodes, modify:        𝑭 𝑤1, 𝑭 𝑤1,𝑭 𝜗  

𝑪 1, 𝑪 2, 𝑫 1, 𝑫 2, 𝑫 3, 𝑩  

𝑪 = 𝑪 1 + 𝑪 2 𝑫 = 𝑫 1 −  𝑫 2 + 𝑫 3 𝑩  

Generalized eigenvector problems: 

Eigenvectors 𝑘 ≥ 5, . . ,𝑛𝑑𝑜𝑓:  𝑩 − 𝜆𝑘
𝐼 ∙ 𝐸𝑪  𝒙 𝑘

𝐼 = 𝟎 

𝑲3×3 

Eigenvectors 𝑘 = 4:                𝐺𝑫 4×4 − 𝜆𝑘
𝐼𝐼 ∙ 𝐸𝑪 4×4 𝒖 𝑘.4×1

𝐼𝐼 = 𝟎 

Eigenvectors 𝑘 = 1,2,3:          𝑲3×3 − 𝜆𝑘
𝐼𝐼𝐼 ∙ 𝐸𝑪 3×3 𝒙 𝑘.3×1

𝐼𝐼𝐼 = 𝟎 

All normalized eigenvectors:  𝑿 =  𝒙 1
𝐼𝐼 𝒙 2

𝐼𝐼 𝒙 3
𝐼𝐼 𝒙 4

𝐼𝐼 𝒙 5
𝐼 ⋯ 𝒙 𝑛𝑑𝑜𝑓

𝐼   

Deformation modes, transformed GBT: 

𝑪 = 𝑿 𝑇 ∙ 𝑪 ∙ 𝑿  𝑫 = 𝑿 𝑇 ∙ 𝑫 ∙ 𝑿  𝑩 = 𝑿 𝑇 ∙ 𝑩 ∙ 𝑿  

𝑼  = 𝑼 ∙ 𝑿   𝑭 𝑣  = 𝑭𝑣 ∙ 𝑼   𝑭 𝑤  = 𝑭𝑤 ∙ 𝑼  

𝑭 𝜗  = 𝑭𝜗 ∙ 𝑼  Δ𝑭 𝜗  = Δ𝑭𝜗 ∙ 𝑼  𝑴  = 𝑴 ∙ 𝑼  
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amplitude function 𝜙 𝑘  is determined which together with the modal cross-sectional 

properties is combined to get the total response of the member. 

 

5.3.1 The solution to the GBT fundamental equation 

There are two solution approaches available, namely analytical and numerical 

methods. The authors have chosen to only focus on the finite element method (FEM) 

which has advantages when programming the GBT. For further reading and 

knowledge about the FEM approach see Appendix D. 

The transformed and uncoupled GBT fundamental equation (4.151) reminds of the 

differential equation for a beam on elastic foundation, hence finite beam elements will 

be used in order to descretitize the GBT equation. In order to find a unique solution 

more information about the member, in addition to the cross-sectional modal 

properties, is required. Boundary and support conditions, member length, loading 

conditions are needed, as well as a sufficient number of finite elements in order to 

obtain a satisfactory convergence of the solution. Figure 5.4 below illustrates how the 

member analysis is performed for deformation mode 𝑘 when using a finite element 

approximation method on the uncoupled transformed GBT equation.  

The first step is to extract the quantities associated with the deformation mode 𝑘, i.e. 

extraction of 𝐶 𝑘 , 𝐷 𝑘 , 𝐵 𝑘  and the displacement components  𝒖 𝑘 ,𝒗 𝑘 , 𝒘 𝑘 5 or 

 𝑼 𝑘 , 𝑽 𝑘 , 𝑾 𝑘 6 depending on how the loads are defined. The next step is to calculate 

the modal loads 𝑞 𝑘  and 𝑞 𝑥 .𝑘 ,𝑥  according to Section 4.6.2. At this stage the all constants 

in the transformed GBT fundamental equation are defined and the FEM 

approximation process can be initiated by determine the FE element stiffness matrices 

and loads. The next step is to assemble all element matrices and element load vectors 

to global stiffness matrices and load vectors and apply the essential boundary 

conditions so that a unique solution to the equation system 𝒂𝑘  can be obtained. The 

last step is to extract the solution to obtain the approximated amplitude function 𝜙 𝑘  

and its first derivative 𝜙 𝑘 ,𝑥  but also the sectional forces 𝑊 𝑘 𝑥  and 𝑊 𝑘 ,𝑥 𝑥 . 

 

                                                 
5
The 𝒖 𝑘-, 𝒗 𝑘- and 𝒘 𝑘 -displacement components are obtained as the columns in the 𝑼 , 𝑭 𝑣  and 𝑭 𝑤  

respectively. 
6𝑼 𝑘 , 𝑽 𝑘  and 𝑾 𝑘  are the global nodal displacement components calculated according to Section 4.6.4 
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When utilizing the FEM approach there is also a possibility to solve the coupled GBT 

fundamental equation (4.149). This will not be illustrated here so for further reading 

about how to obtain the coupled solution, the reader is referred to Appendix D. 

  

Extraction of modal informations: 

𝐶 𝑘 , 𝐷 𝑘 , 𝐵 𝑘 , 𝒖 𝑘 , 𝒗 𝑘 , 𝒘 𝑘 , 𝑼 𝑘 , 𝑽 𝑘 , 𝑾 𝑘  

Calculate the modal loads: 

𝑞 𝑘 =   𝑞𝑠.𝑟𝑣 𝑘 .𝑟 + 𝑞𝑧.𝑟𝑤 𝑘.𝑟 

𝑛+1

𝑟=1

=   𝑞𝑌.𝑟𝑉 𝑘 .𝑟 + 𝑞𝑍.𝑟𝑊 𝑘.𝑟 

𝑛+1

𝑟=1

 

Construct FE stiffness matrices and load vectors: 

𝑲𝐶 
𝑒 , 𝑲𝐷 

𝑒 , 𝑲𝐵 
𝑒 , 𝒇𝑞 .𝑘

𝑒 , 𝒇𝑞𝑥 .𝑘
𝑒 , 𝒇𝑏 .𝑘

𝑒  

 

𝑞 𝑥 .𝑘 ,𝑥 =  𝑞𝑥 .𝑟 ,𝑥𝑢 𝑘 .𝑟

𝑛+1

𝑟=1

=  𝑞𝑋.𝑟 ,𝑥𝑈 𝑘 .𝑟

𝑛+1

𝑟=1

 

𝑲𝐶 , 𝑲𝐷 , 𝑲𝐵 , 𝒇𝑞 .𝑘 , 𝒇𝑞𝑥 .𝑘 , 𝒇𝑏 .𝑘  

 

Apply essential boundary conditions: 

Solve the equation system: 

 𝐸𝐶 𝑘𝑲𝐶 + 𝐺𝐷 𝑘𝑲𝐷 + 𝐵 𝑘𝑲𝐵  𝒂𝑘 = 𝒇𝑞 .𝑘 + 𝒇𝑞𝑥 .𝑘 + 𝒇𝑏 .𝑘  

 

Extraction of results: 

𝜙 𝑘 𝑥 = 𝑵 𝑥 𝒂𝑘   𝜙 𝑘 ,𝑥 𝑥 = 𝑵,𝑥 𝑥 𝒂𝑘  

𝜙 𝑘 0 , 𝜙 𝑘 ,𝑥 0 , 𝜙 𝑘 𝐿 , 𝜙 𝑘,𝑥 0  

𝑊 𝑘 𝑥 = 𝐸𝐶 𝑘𝑵,𝑥𝑥  𝑥 𝒂𝑘  𝑊 𝑘 ,𝑥 𝑥 = 𝐸𝐶 𝑘𝑵,𝑥𝑥𝑥  𝑥 𝒂𝑘  

Figure 5.4: The flowchart over how the FE-solution of the amplitude functions 𝜙 𝑘  

and 𝜙 𝑘 ,𝑥  are obtained together with the sectional forces 𝑊 𝑘 𝑥  and 𝑊 𝑘 ,𝑥 𝑥 . 
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5.4 GBT Solution 

When the amplitude function 𝜙 𝑘 𝑥  and the sectional force 𝑊 𝑘 𝑥  are known, the 

total behaviour of the member can be determined. Since all deformation modes are 

orthogonal to each other, the total behaviour is obtained as the summation over all 

modal contributions, see Figure 5.5. 

 

 

  

Figure 5.5: Illustration and a summary of the total GBT resulting displacements, 

stresses and section forces of the member at cross-sectional node or element 𝑟 and 

how they vary along the member lengths. 

Global nodal displacements, node 𝑟: 

 

 

 

 

𝑈𝑟 𝑥 =  𝑈 𝑘.𝑟𝜙 𝑘 ,𝑥 𝑥 

𝑘

 

Stresses, node 𝑟: 

𝜍𝑥 𝑥 =  𝜍𝑥 .𝑘 𝑥 

𝑘

 

Transverse bending moments, node 𝑟: 

𝑚𝑠.𝑟 𝑥 =  𝑚𝑠.𝑟 .𝑘𝜙 𝑘 𝑥 

𝑘

 

 

𝜏𝑥𝑠 𝑥 =  𝜏𝑥𝑠.𝑘 𝑥 

𝑘

 

 

𝑉𝑟 𝑥 =  𝑉 𝑘 .𝑟𝜙 𝑘 𝑥 

𝑘

 

 
𝑊𝑟 𝑥 =  𝑊 𝑘.𝑟𝜙 𝑘 𝑥 

𝑘

 

 

Shear force, plate element 𝑟: 

𝑆𝑟 𝑥 =  𝑆𝑟 .𝑘 𝑥 

𝑘
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6 Application and verification of GBT 

This chapter contains an application of the GBT on a predefined profile. During the 

literature review, all of the solved examples presented were performed for single 

symmetric cross sections. Therefore the authors have chosen to apply the GBT theory 

on a Z-profile in order to illustrate how the anti-symmetry affects the deformation 

modes. Another argument is that the Z-profile is a common profile in the construction 

industry and one common product is roof purlins. 

 

6.1 Selected profile 

The Z-profile used in the GBT analysis is Z200x1.2-profile manufactured by Borga 

AB [25]. The cross-section is depicted and defined according to Figure 6.1 below.  

 

   

 Parameter Size  𝑚𝑚  

 Height web, : 200 

 Width upper flange, 𝑎: 52 

 Width lower flange, 𝑏: 59 

 Height lip, 𝑐: 14 

 Thickness, 𝑡: 1.17 

   

Figure 6.1: The figure illustrates the cross-section of the chosen Z-profile. The table 

to the right contains the associated numbers according the labelling in the figure to 

the left. The figure also indicates the positive directions in the global  𝑋, 𝑌, 𝑍 -

coordinate system and the associated global  𝑈, 𝑉, 𝑊 -displacements. 

 

The material parameters used are the Young’s modulus of elasticity 𝐸 =
210 000 𝑁/𝑚𝑚2 and the Poisson’s ratio 𝜈 = 0.3 which gives the shear modulus of 

elasticity 𝐺 according to the formula: 

 𝐺 =
𝐸

2 1 + 𝜈 
= 80 769.23 𝑁/𝑚𝑚2 (6.1) 

 

6.2 Cross-section analysis 

This section presents the procedure of how the deformation modes are determined for 

the chosen Z-profile. This procedure is repeated twice, once when only the natural 

nodes are considered and once with imposed intermediate nodes so that the influence 

of intermediate nodes can be evaluated in an illustrative way. 
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6.2.1 Discretization 

The first step is to discretize the cross-section into plate elements and nodes. The plate 

intersections and the free ends will form the natural nodes and the plate elements will 

be defined between them. The intermediate nodes are the imposed nodes defined 

between natural nodes. 

 

6.2.1.1 Discretization with only natural nodes considered 

When only considering natural nodes the discretization of the cross-section and all 

inherent sizes will be defined in Figure 6.2. In total there will be five plate elements 

and six nodes (natural nodes). The associated degrees of freedom are the warping 

values 𝑢𝑟  at each natural node 𝑟, i.e. in total there are six degrees of freedom when 

only considering natural nodes. 

 

     

     

 Element𝑟 Width𝑏𝑟  

[mm] 

Thickness𝑡𝑟  

[mm] 

Angle𝛼𝑟  

[rad] 

 1 14 1.17 𝜋/2 

 2 52 1.17 0 

 3 200 1.17 −𝜋/2 

 4 59 1.17 0 

 5 14 1.17 𝜋/2 

     

Figure 6.2: Discretization of the cross-section when only considering the natural 

nodes. The figure to the left define the node (rings) and element (squares) numbering. 

The table to the right contain the plate element information such as plate widths 𝑏𝑟 , 

plate thickness 𝑡𝑟  and the plate angle 𝛼𝑟 . 

 

6.2.1.2 Discretization including intermediate nodes 

The authors have chosen to impose three intermediate nodes, one at the upper flange, 

one at the web and one at the lower flange. The node and element numbering along 

with each sub-plate information are defined in Figure 6.3. 
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 Element 

𝑟 

Width  

𝑏𝑟  [mm] 

Thickness 

𝑡𝑟  [mm] 

Angle 

𝛼𝑟  [rad] 

 1 14 1.17 𝜋/2 

 2 26 1.17 0 

 3 26 1.17 0 

 4 100 1.17 −𝜋/2 

 5 100 1.17 −𝜋/2 

 6 29.5 1.17 0 

 7 29.5 1.17 0 

 8 14 1.17 𝜋/2 

     
Figure 6.3: Discretization of the cross-section when intermediate nodes are included. 

The figure to the left define the node (rings) and element (squares) numbering. The 

table to the right contain the plate and subplate element information such as plate 

widths 𝑏𝑟 , plate thickness 𝑡𝑟  and the plate angle 𝛼𝑟 . 

 

The increased number of nodes also increases the number of degrees of freedom. For 

this particular cross-section and set of nodes the degrees of freedom consists of: 

 Node 1, 2, 4, 6, 8 and 9 are the defined natural nodes that give rise to six 

warping  𝑢𝑟  degrees of freedom. 

 Node 1 and 9 are the defined end nodes that give rise to two transverse  𝑤𝑟  
degrees of freedom. 

 Node 3, 5 and 7 are the defined intermediate nodes that give rise to three 

transverse  𝑤𝑟  degrees of freedom. 

In total there are eight plate elements, nine nodes, six warping degrees of freedom and 

five transverse degrees of freedom which in total are eleven degrees of freedom. 

 

6.2.2 Cross-section analysis 

The cross-section analysis is fully described in Chapter 5, which involves a number of 

matrices which that has to be determined in order to have the setup of deformation 

modes. All the geometric matrices  𝑼 ,𝑭 𝑣 , 𝑭 𝑤1, 𝑭 𝑤2, 𝑭 𝑤 , 𝑭 𝜗 , Δ𝑭 𝜗 ,𝚫𝑖𝑘 , 𝑴  , GBT 

matrices  𝑪 ,𝑫 , 𝑩  , all matrices in the transformation process (𝑪 4×4, 𝑫 4×4, 𝑲3×3, 

𝑪 3×3) and the transformed GBT matrices  𝑪 , 𝑫 , 𝑩 , 𝑼 , 𝑭 𝑣 , 𝑭 𝑤 , 𝑭 𝜗 ,Δ𝑭 𝜗 ,𝑴   are all 

expressed in numbers for the two analyses with and without imposition of 

intermediate nodes in Appendix G. 

 

6.2.3 Extracted deformation modes 

Due to the differences between including intermediate nodes or not, a different set of 

modes are acquired for each case. When performing the analysis with only natural 

nodes, global and distortional modes are collected. Imposition of intermediate nodes 

contributes to the result with the addition of local modes. In this section the obtained 

deformation modes are shown. The values from this analysis are used later in the 

report when analysing the response of a beam. 
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6.2.3.1 Only natural nodes 

The deformation modes 𝒖 𝑘  are expressed as a set of nodal warping values 𝑢 𝑟  and the 

total number of deformation modes is obtained as the number of degrees of freedom, 

hence when only natural nodes are considered six deformation modes are obtained. 

These modes are depicted in Figure 6.4 below where the dotted black line represent 

the undeformed cross-section and the solid red line is the deformation mode expressed 

in the nodal warping values 𝑢 𝑟 . The first four modes represents the deformation 

modes associated with the four rigid body modes, i.e. axial extension, major and 

minor principle axis bending and torsion. Mode five and six are the possible 

distortional modes. 

 

Figure 6.4: In total six deformation modes will be obtained when only natural nodes 

are considered. The black dotted line represents the undeformed cross-section and the 

solid red line is the corresponding deformation mode expressed in its nodal warping 

values 𝑢 𝑟 . 

 

These deformation modes can also be expressed in terms of the global 𝑉 𝑟  and 𝑊 𝑟  

displacement components, see Figure 6.5. The solid red line is the corresponding 

deformation mode expressed in terms of the nodal 𝑉 𝑟  and 𝑊 𝑟  displacement 

components. For further information about each deformation mode, see Appendix F. 

The variation between the nodes is plotted with a linear variation but actually the 

variation is non-linear and can be described in the shape functions Ψ1−4 𝜂 , see 

equation (4.108). 

 

Figure 6.5: The deformation modes expressed in the global 𝑉 𝑟  and 𝑊 𝑟  displacement 

components. The black dotted lines represent the undeformed cross-section and the 

solid red lines are illustrating the corresponding deformation mode. 

 

6.2.3.2 Including intermediate nodes 

The deformation modes 𝒖 𝑘  obtained when imposing the intermediate nodes are 

illustrates in Figure 6.6. Eleven deformation modes are obtained, the same number as 

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)
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the degrees of freedom. The four first deformation modes are identical to the four first 

obtained when only natural nodes are considered. The same colour scheme is used as 

for the natural nodes. Dotted black lines represents the undeformed cross-section and 

the solid red lines are the deformation modes expressed in the nodal warping values 

𝑢 𝑟 . 

 

Figure 6.6: The eleven deformation modes obtained in the case of imposed 

intermediate nodes. The black dotted lines represent the undeformed cross-section 

and the solid red lines are illustrating the corresponding deformation mode expressed 

in its nodal warping values 𝑢 𝑟 . 

 

These deformation modes can also be expressed in terms of the global 𝑉 𝑟  and 𝑊 𝑟  

displacement components, as in Figure 6.7. The solid red lines are illustrating the 

corresponding deformation mode expressed in terms of the nodal 𝑉 𝑟  and 𝑊 𝑟  

displacement components. For further information about each deformation mode, see 

Appendix F. The variation between the nodes is plotted with a linear variation but 

actually the variation is non-linear and can be described in the shape functions 

Ψ1−4 𝜂 , see equation (4.108). 

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11)
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Figure 6.7: The deformation modes expressed in the nodal global 𝑉 𝑟  and 𝑊 𝑟  

displacement components. The black dotted line represents the undeformed cross-

section and the solid red line is the corresponding deformation mode. 

 

6.3 Member analysis 

Based on the deformation modes acquired in previous section, this section will present 

the results from the member analysis. Further information of the member is therefore 

required such as loads, boundary conditions and member length. Initially the modal 

loads are calculated, based on the loads acting on the member. Thereafter the 

amplitude function is solved for each mode, and finally the summation of mode 

contributions will form the total beam response. 

 

6.3.1 The member conditions 

Figure 6.8 illustrates the conditions for the chosen member. The Z-profile is fully 

fixed at both ends and the total member length 𝐿 is 2.4 meters. The beam is subjected 

to two types of loads, namely the gravity load and an imposed uniformly distributed 

line-load. The gravity load 𝜌𝑔 is defined by the density 𝜌 = 7800𝑘𝑔/𝑚3 and the 

gravity constant 𝑔 = 9.82𝑚/𝑠2. The uniformly distributed line-load 𝑞𝑙  has a 

magnitude of 5𝑘𝑁/𝑚. Note that the loads are not aligned with any of the principle 

axes and also eccentric with regard to both the shear and gravity center. This 

application of loads will cause both skew bending and torsion effects. 

  

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11)
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 Member parameters 

 Length, 𝐿: 2.4  𝑚  
 Line-load, 𝑞𝑙 : 5.0  𝑘𝑁/𝑚  

 Gravity, 𝜌𝑔: 76.596  𝑘𝑁/𝑚3  
 BC: Fixed-Fixed 

   

 

Figure 6.8: The applied GBT example is based on these conditions and loads. The Z-

profile is fully fixed at both ends and subjected to both gravity loads and an uniformly 

distributed line-load acting at the intersection of the upper flange and the web. The 

table to the right contains the values used in the GBT member analysis. 

 

6.3.2 Modal loads and boundary conditions 

As a first step in the analysis process, the given loads have to be expressed in terms of 

nodal loads in the discretized cross-section. This is made according to Section 4.6.2 

and the discretized cross-section including intermediate nodes, see Figure 6.3. Since 

all loads are acting in the (negative) 𝑍-direction the nodal loads 𝑞𝑌.𝑟  and 𝑞𝑋.𝑟  are 

obtained as zero for all deformation modes. The only retained and discretized nodal 

loads are the 𝑞𝑍.𝑟   loads, which are tabulated in Figure 6.9 below. 

 

 

 

   

 Node 𝑟 𝑞𝑍 .𝑟 ∙ 10−4 𝑘𝑁 𝑚   

 1 -6.273 

 2 -17.923 

 3 -23.301 

 4 -50056.000 

 5 -89.617 

 6 -58.027 

 7 -26.437 

 8 -19.492 

 9 -6.273 

   

Figure 6.9: The loads on the Z-profile are only acting in (negative) 𝑍-direction. When 

the gravity load 𝜌𝑔 and the imposed line-load 𝑞𝑙  have been discretized to 

corresponding node loads 𝑞𝑧 .𝑟  are tabulated to the right. 

 

Before the GBT fundamental equation can be established, the modal loading term 𝑞 𝑘  

must be calculated. This is performed according to Section 4.6.2 and the numbers are 

presented in Figure 6.10 below. Deformation modes two, three and four have the 

greatest modal loads and will therefore have larger impact on the member than the 

other modes. 
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Mode 𝑘 𝑞 𝑘 ∙ 10−4 

1 0 

2 48965.0000 

3 11528.0000 

4 103470.0000 

5 21.1200 

6 -4.2164 

7 7.6925 

8 -13.5640 

9 -43.7400 

10 -2.0588 

11 -4.0940 

  
Figure 6.10: The modal loads 𝑞 𝑘  obtained for the Z-profile. The histogram to the left 

shows the magnitudes of each modal load 𝑞 𝑘  tabulated to the right. 

 

The boundary conditions for the fully fixed Z-profile are of essential type. All 

displacements are locked at 𝑋 = 0 and 𝑋 = 𝐿 which expressed in terms of the modal 

amplitude functions 𝜙 𝑘  and 𝜙 𝑘 ,𝑥  are defined as: 

  𝜙
 
𝑘 0 = 𝜙 𝑘 L = 0

𝜙 𝑘 ,𝑥 0 = 𝜙 𝑘 ,𝑥 L = 0
  for 𝑘 = 1, … ,11 

 
(6.2) 

 

6.3.3 Solution of differential equations 

The GBT fundamental equation is solved by means of FEM. In order to see how large 

the coupling terms in the GBT 𝑫 -matrix are influencing the results, the GBT 

fundamental equation is solved both uncoupled (4.151) and coupled (4.149). For 

further knowledge about the FEM procedure, the reader is referred to Appendix D. 

During the solution process a convergence study is performed, where the result are 

compared for different longitudinal discretizations. The authors used 10 mm finite 

elements during the analysis, even dough the result converges with relatively large 

element sizes. The argument to use these small elements is to get more data points 

available along the member.  

The uncoupled and coupled GBT solutions are expressed in terms of the modal 

amplitude function 𝜙 𝑘 𝑋  and tabulated in the quarter sections 𝑋 = 0, 0.25𝐿, 0.5𝐿 

and 0.75𝐿 in Table 6.1. 
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Table 6.1: The amplitude function 𝜙 𝑘 𝑋  are expressed at the quarter sections 𝑋 = 0, 

0.25𝐿, 0.5𝐿 and 0.75𝐿 for both the uncoupled and coupled solutions 

Mode 𝑘 
𝜙 𝑘 𝑋  Uncoupled 𝜙 𝑘 𝑋  Coupled 

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 0 1.29E-12 2.39E-12 1.35E-12 0 1.26E-12 2.34E-12 1.32E-12 

2 0 4.36E-01 8.10E-01 4.56E-01 0 4.36E-01 8.10E-01 4.56E-01 

3 0 2.30E00 4.28E00 2.41E00 0 2.30E00 4.28E00 2.41E00 

4 0 1.35E-03 2.51E-03 1.41E-03 0 1.35E-03 2.51E-03 1.41E-03 

5 0 1.77E00 2.06E00 1.81E00 0 1.73E00 1.83E00 1.75E00 

6 0 -1.52E-01 -1.54E-01 -1.54E-01 0 -1.46E-01 -1.44E-01 -1.46E-01 

7 0 1.50E-03 1.50E-03 1.50E-03 0 2.83E-03 2.16E-03 2.81E-03 

8 0 -1.02E-04 -1.02E-04 -1.02E-04 0 -9.01E-05 -5.78E-05 -8.80E-05 

9 0 -2.15E-04 -2.15E-04 -2.15E-04 0 -2.02E-04 -2.14E-04 -2.03E-04 

10 0 -1.35E-05 -1.35E-05 -1.35E-05 0 -1.86E-05 3.27E-06 -1.74E-05 

11 0 -2.33E-05 -2.33E-05 -2.33E-05 0 -9.04E-06 1.55E-04 1.22E-06 

 

As a trend in the values, the amplitude function is decreasing its magnitude for the 

higher modes. This means that the influence of the mode, on the total response, will 

be smaller. In Appendix F the first order derivative of the amplitude function, as well 

as sectional forces, are shown. 

 

6.4 GBT solution 

When both the cross-section analysis and the member analysis are performed, the 

GBT solution can be obtained. Equation (4.183) and (4.191) shows how the 

displacements and stresses are calculated respectively, based on the known 

deformation modes and amplitude functions. In this section only relevant values are 

highlighted; see Appendix F for more detailed results for each node along the 

member. 

Figure 6.11 illustrates how the Z-Profile responds to the applied load and boundary 

conditions. The colour represents the stresses with tensile stresses marked as red and 

compressive stresses marked as blue. To make the deformations visible, a scale factor 

of 50 is used on the plot to the right.  
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Figure 6.11: The Z-profile is here plotted in its undeformed and deformed shape 

(scale factor 50). The colour represents the normal stress 𝜍𝑥  and red colour denotes 

tensile stresses and blue colour for compressive stresses [MPa]. 

 

6.4.1 Displacements 

The nodal displacements of the member are obtained as summation over all eleven 

modal contributions according to equation (4.183). Figure 6.12 illustrates the 

accumulation of modal contributions to the total displacements at node four in the 

midsection of the member. The contributions from the higher mode numbers 𝑘 > 5 

will not have any significant impact on this node at this section of the member. See 

Figure 6.9 for the nodal numbering. 

 

 

Figure 6.12: The accumulated 𝑉4 and 𝑊4 displacements at the midsection of the beam 

for node four. 
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6.4.2 Longitudinal stress 

The accumulated nodal normal stresses 𝜍𝑥 .1 𝑋  and 𝜍𝑥 .4 𝑋  for node one and node 

four are plotted in Figure 6.13 and Figure 6.14 respectively for an increasing number 

of considered modes. These are calculated as shown in (4.191).The labelling refers to 

total number of accumulated modes, e.g. Mode 1-4 stands for the sum of the 

contributions from deformation mode 1, 2, 3 and 4.  

At node one there is a counteracting impact on the normal stresses but for node four 

there is contributory impact instead. The influence of the higher modes on node one is 

of greater importance than for node four, but not in the same magnitudes as for the 

first modes. 

 

 

Figure 6.13: The variation along the member for the accumulated normal stress 

𝜍𝑥 .1 𝑋  at node one. The labeling refers to total number of accumulated modes, e.g. 

Mode 1-4 stands for the sum of the contributions from deformation mode 1, 2, 3 and 

4. 

 

 

Figure 6.14: The variation along the member for the accumulated normal stress 

𝜍𝑥 .4 𝑋  at node four. The labeling refers to total number of accumulated modes, e.g. 

Mode 1-4 stands for the sum of the contributions from deformation mode 1, 2, 3 and 

4. 

 

6.4.3 Extreme values 

Table 6.2 contain all extreme values along the member, both for the uncoupled and 

coupled case. The minimum value of 𝑉𝑟  is smaller than for 𝑊𝑟 , an indication on that 
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the member is deflecting more in the horizontal direction than in the vertical direction. 

This can also be seen in the accompanying Figure 6.15 which illustrates each section 

where the respective extreme value occurs. 

 

Table 6.2: All extreme values in terms of max and min values are here tabulated 

together with its associated node number and 𝑋-coordinate. 

Parameter 
Uncoupled Coupled Difference 

𝑋[mm] Node𝑟 Value 𝑋[mm] Node𝑟 Value [%] 

𝑈𝑟  [mm] 
Max 1900 4 0.22968 1900 4 0.22965 0.013 

Min 500 4 -0.22968 500 4 -0.22965 0.013 

𝑉𝑟  [mm] 
Max 0 1 0 0 1 0 0 

Min 1200 1 -4.2976 1200 1 -4.2916 0.140 

𝑊𝑟  [mm] 
Max 0 1 0 0 1 0 0 

Min 1200 4 -1.7766 1200 3 -1.7795 -0.163 

𝜍𝑥 .𝑟  [MPa] 
Max 0 4 209.3 2400 4 209.33 -0.014 

Min 0 6 -206.03 0 6 -206.07 -0.019 

 

Figure 6.15 illustrates the cross-sectional distribution at the sections for the 

corresponding extreme values. Due to the small difference between the uncoupled and 

coupled solution, only the uncoupled case is plotted. 

 

Figure 6.15: Illustration of 𝑎) the 𝑉 and 𝑊 displacements at midsection, 𝑏) the 𝑈 

displacements at 𝑋 = 500𝑚𝑚 and 𝑐) the normal stress 𝜍𝑥  at the support. Note that 

different scale-factors are used for the three different sub-plots. 

 

6.5 ABAQUS Comparison 

A reference analysis is performed in a commercial FE-application in order to verify 

the GBT solution and also to evaluate the accuracy of the GBT method. The authors 

have chosen to use ABAQUS and model the Z-profile with shell-elements. See 

Appendix H for details on how the profile was modelled and also to see more results 

along the member length, than what is presented in this section. The GBT values that 

are used in the comparison are all calculated according to the uncoupled approach. 

 

6.5.1 Displacements 

Figure 6.16 to Figure 6.18 below shows the 𝑈4, 𝑉4 and 𝑊4 displacements along the 

member length. The 𝑈 and 𝑉 displacements are almost the same for the two different 

analyse methods, where the graphs are placed on top of each other. The 𝑊 

displacements are slightly differing towards the middle of the beam. 
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Figure 6.16: 𝑈4 displacements along the member length, both for the GBT and 

ABAQUS case. 

 

 

Figure 6.17: 𝑉4 displacements along the member length, both for the GBT and 

ABAQUS case. 

 

Figure 6.18: 𝑊4 displacements along the member length, both for the GBT and 

ABAQUS case. 

 

6.5.2 Longitudinal stress 

Figure 6.19 shows the GBT and ABAQUS values for the longitudinal stress along the 

member. The values correlate very well in the middle part of the beam, where the 

curves are laying on each other. Close to the supports there are differences between 

the results, due to singularities in the ABAQUS model in these regions. 
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Figure 6.19: 𝜍𝑥 .4 magnitude along the member length, both for the GBT and ABAQUS 

case. 

 

6.5.3 Extreme values 

Table 6.3 presents all extreme values in terms of nodal displacements and normal 

stresses for the uncoupled GBT solution and the corresponding ABAQUS values at 

the same locations. The difference between the values is calculated, using the 

ABAQUS result as reference.  

For the 𝑈 and 𝑉 displacements there are almost no difference at all, with a maximum 

of -0.24% for 𝑉. The difference for 𝑊 is considerable larger, where the maximum 

displacement differs with 9.51%. The maximum and minimum values in normal stress 

𝜍𝑥  at the support are not representative, since the ABAQUS values are affected by 

singularities at the boundaries. To get a representative comparison for the normal 

stress, the values are compared at the midpoint 𝑋 = 1200𝑚𝑚. The difference in this 

section is about 0.6% to 1.59%. 

 

Table 6.3: Comparison of the GBT extreme values to the ABAQUS values in the same 

points along the member. 

Parameter 𝑋[mm] Node 𝑟 GBT ABAQUS Difference 

𝑈𝑟  [mm] 
Max 1900 4 0.22968 0.2301 0.0004 0.18 % 

Min 500 4 -0.22968 -0.2301 -0.0004 0.18 % 

𝑉𝑟  [mm] 
Max 0 1 0 0 0 0 % 

Min 1200 1 -4.2976 -4.2874 0.0102 -0.24 % 

𝑊𝑟  [mm] 
Max 0 1 0 0 0 0 % 

Min 1200 4 -1.7766 -1.9633 -0.1867 9.51 % 

𝜍𝑥 .𝑟  [MPa] 
Max 0 4 209.3 275.8790 66.5790 24.13 % 

Min 0 6 -206.03 -266.3320 -60.3020 22.64 % 

𝜍𝑥 .𝑟  [MPa] 
Max 1200 6 102.8085 102.1890 -0.6195 -0.61 % 

Min 1200 4 -104.4486 -102.8170 1.6316 -1.59 % 
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7 Parameter study 

To further enhance the understanding of GBT and the possibilities and restrictions, a 

parameter study will be undertaken. Throughout the chapter the same cross-section as 

defined in Section 6.1 will be used, and if nothing else is mentioned the discretization 

according to Figure 6.3 is used. 

 

7.1 Boundary conditions 

Here below follows the parameter study regarding different boundary conditions. Two 

boundary conditions are treated, namely one with fixed-free boundaries and one with 

fixed-guided boundaries. 

 

7.1.1 Fixed - Free conditions 

The Z-Profile is modelled as a cantilever where one end is fully fixed and the other is 

free. See Figure 7.1 for applied loads and conditions. 

 

 

 

   

 Member parameters 

 Length, 𝐿: 2.4  𝑚  
 Line-load, 𝑞𝑙 : 0.5  𝑘𝑁/𝑚  
 Gravity, 𝜌𝑔: 76.596  𝑘𝑁/𝑚3  
 BC: Fixed-Free 

   

 

Figure 7.1: The Z-Profile is fully fixed at one end and free at the other. The member is 

subjected to both gravity loads and a uniformly distributed line-load acting at the 

intersection of upper flange and the web. The table to the right contains the values 

used in the analyses. 

 

The essential GBT boundary conditions are defined below as: 

 𝜙 𝑘 0 = 𝜙 𝑘 ,𝑥 0 = 0 for 𝑘 = 1, … ,11 
 

(7.1) 

In the ABAQUS model all degrees of freedom are locked at the fixed end, i.e. all 

displacements and rotations are prevented. 

 

The total response of the cantilever is depicted in Figure 7.2 in its deformed shape 

with a scale factor of 20 and the colour represents the normal stress distribution. The 

red colour denotes tensile stresses and blue colour for compressive stresses. 
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Figure 7.2: The Z-profile plotted in its deformed shape (scale factor 20). The colour 

represents the normal stress 𝜍𝑥  and red colour denotes tensile stresses and blue 

colour for compressive stresses [MPa]. 

 

The GBT and the ABAQUS results are compared to each other at node four, i.e. the 

intersection between the upper flange and the web. Figure 7.3 illustrates the difference 

between the 𝑈, 𝑉 and 𝑊 displacements and the longitudinal stress 𝜍𝑥  along the 

member. The values are obtained as the difference between ABAQUS and GBT over 

the maximum obtained value in ABAQUS in each category.  

 

 

Figure 7.3: The difference between the GBT and ABAQUS results are plotted as the 

difference between them over the largest obtained value in ABAQUS in each category. 

This is performed for the 𝑈, 𝑉 and 𝑊 displacements and normal stress 𝜍𝑥  at node 

four along the member. 

 

Table 7.1 contain the differences expressed in numbers at five sections. Also the 

average difference is calculated for each category given both in its actual difference 

and in percentage. See Appendix I for detailed plots over each displacement and stress 

variation along the member at node four. 
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Table 7.1: Differences between the ABAQUS and GBT results given at five different 

sections along the member. The average difference is also tabulated in its actual 

difference and in percentage. 

𝑋 [mm] 0 600 1200 1800 2400 
Average difference 

[mm] or [MPa] [%] 

𝑈 0% 0.25% 0.40% 0.48% 0.51% 0.0018 0.35% 

𝑉 0% 0.11% 0.37% 0.71% 1.08% 0.0940 0.43% 

𝑊 0% 0.45% 0.75% 0.96% 1.07% -0.0616 0.68% 

𝜍𝑥  14.14% -1.19% -0.62% -0.28% 0.02% -0.0063 -0.71%
7
 

 

7.1.2 Fixed - Guided conditions 

The Z-Profile is modelled as with one end is fully fixed and the other is guided, i.e. 

the transverse displacements are permitted but no rotations are allowed. See Figure 

7.4 for applied loads and conditions. 

 

 

   

 Member parameters 

 Length, 𝐿: 2.4  𝑚  
 Line-load, 𝑞𝑙 : 0.5  𝑘𝑁/𝑚  
 Gravity, 𝜌𝑔: 76.596  𝑘𝑁/𝑚3  
 BC: Fixed-Guided 

 

Figure 7.4: The Z-Profile is fully fixed at one end and guided at the other. The 

member is subjected to both gravity loads and a uniformly distributed line-load acting 

at the intersection of upper flange and the web. The table to the right contains the 

values used in the analyses. 

 

The essential GBT boundary conditions are defined as: 

 𝜙 𝑘 0 = 𝜙 𝑘 ,𝑥 0 = 𝜙 𝑘 ,𝑥 L = 0 for 𝑘 = 1, … ,11 
 

(7.2) 

In the ABAQUS model all degrees of freedom are locked at the fixed end and at the 

guided end only the rotation degrees of freedom are locked. 

 

The total response of the member is depicted in Figure 7.2 in its deformed shape with 

a scale factor of 50 and the colour represents the normal stress distribution. The red 

colour denotes tensile stresses and blue colour for compressive stresses. 

                                                 
7
This value is calculated without considering the singularity at the fixed end 
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Figure 7.5: The Z-profile plotted in its deformed shape (scale factor 50). The colour 

represents the normal stress 𝜍𝑥  and red colour denotes tensile stresses and blue 

colour for compressive stresses [MPa]. 

 

The GBT and the ABAQUS results are compared to each other at node four, i.e. the 

intersection between the upper flange and the web. Figure 7.6 illustrates the difference 

betweenthe 𝑈, 𝑉 and 𝑊 displacements and the longitudinal stress 𝜍𝑥  along the 

member. The values are obtained as the difference between ABAQUS and GBT over 

the maximum obtained value in ABAQUS in each category. 

 

 
Figure 7.6: The difference between the GBT and ABAQUS results are plotted as the 

difference between them over the largest obtained value in ABAQUS in each category. 

This is performed for the 𝑈, 𝑉 and 𝑊 displacements and normal stress 𝜍𝑥  at node 

four along the member. 

 

Table 7.2 contain the differences expressed in numbers at five different sections. Also 

the average difference is calculated for each category presented both in its actual 

difference and in percentage. See Appendix I for detailed plots over each 

displacement and stress variation along the member at node four. 

 

-5%

0%

5%

10%

15%

0 500 1000 1500 2000

D
if

fe
re

n
ce

X [mm]

U

V

W

σxσx



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:86 95 

Table 7.2: Differences between the ABAQUS and GBT results given at five different 

sections along the member. The average difference is also tabulated in its actual 

difference and in percentage. 

𝑋 [mm] 0 600 1200 1800 2400 
Average difference 

[mm] or [MPa] [%] 

𝑈 0% 0.26% 0.25% 0.13% 0% 0.0003 0.17% 

𝑉 0% 0.11% 0.28% 0.39% 0.45% 0.0170 0.25% 

𝑊 0% 1.25% 2.08% 2.60% 2.78% -0.0567 1.85% 

𝜍𝑥  15.01% -0.95% -0.08% 0.51% 1.47% 0.5911 -0.14%
8
 

 

7.2 Point loading 

None of the used reference papers shows the full procedure of GBT analysis for point 

loading on a member. The authors thought that this is an important application and 

therefore this section is dedicated comparison and verification of that case.  

The same Z-profile as used before is now modelled as a cantilever, where one of the 

ends is considered fully fixed and the other one as free. The member is subjected to a 

concentrated point-force 𝑃𝑧 = 75𝑁, which is applied at the free end. See Figure 7.7 

for specifics concerning the model. 

 

 

   

 Member parameters 

 Length, 𝐿: 2.4  𝑚  
 Point-load, 𝑃𝑧 : 75  𝑁  
 Gravity, 𝜌𝑔: 76.596  𝑘𝑁/𝑚3  
 BC: Fixed-Free 

 

Figure 7.7: The Z-Profile is fully fixed at one end and free at the other. The member is 

subjected to both gravity load and a concentrated point-force 𝑃𝑥  acting at the tip of 

the member and at the intersection of upper flange and lip. The table to the right 

contains the values used in the analyses. 

 

The total response of the member is depicted in Figure 7.2 in its deformed shape with 

a scale factor of 50 and the colour represents the normal stress distribution. The red 

colour denotes tensile stresses and blue colour for compressive stresses. 

                                                 
8
This value is calculated without considering the singularity at the fixed end 
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Figure 7.8: The Z-profile plotted in its deformed shape (scale factor 10). The colour 

represents the normal stress 𝜍𝑥  and red colour denotes tensile stresses and blue 

colour for compressive stresses [MPa]. 

 

The GBT and the ABAQUS results are compared to each other at node one, i.e. at the 

free end of the upper lip. Figure 7.9 illustrates the difference between the 𝑈, 𝑉 and 𝑊 

displacements and the longitudinal stress 𝜍𝑥  along the member. The values are 

obtained as the difference between ABAQUS and GBT over the maximum obtained 

value in ABAQUS in each category. 

 

Figure 7.9: The difference between the GBT and ABAQUS results are plotted as the 

difference between them over the largest obtained value in ABAQUS in each category. 

This is performed for the 𝑈, 𝑉 and 𝑊 displacements and normal stress 𝜍𝑥  at node one 

along the member. 

 

Table 7.3 contain the differences expressed in numbers at five different sections. Also 

the average difference is calculated for each category presented both in its actual 

difference and in percentage. See Appendix I for detailed plots over each 

displacement and stress variation along the member at node one. 
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Table 7.3: Differences between the ABAQUS and GBT results given at five different 

sections along the member. The average difference is also tabulated in its actual 

difference and in percentage. 

𝑋 [mm] 0 600 1200 1800 2400 
Average difference 

[mm] or [MPa] [%] 

𝑈 0% -0.20% -0.41% -0.70% -0.29% 0.0011 -0.33% 

𝑉 0% -0.02% -0.15% -0.44% -0.04% -0.0148 -0.18% 

𝑊 0% 0.06% 0.03% 0.04% -0.02% -0.0010 0.01% 

𝜍𝑥  -3.74% -2.72% -1.47% -7.13% -7.10% 3.3928 -6.2%
9
 

 

7.3 Varying slenderness 

One of the major benefits by performing GBT analysis is that the result can be related 

to the response of each single independent deformation mode. In this section the 

influence of the different modes will be related to the length of the member.  

During the analysis the member length was varied between 600 mm and 3000 mm, in 

steps of 200 mm. For each analysis the total displacement at the midsection of the 

member in node one and four was calculated. The total displacement for each step 

was then divided into the first four modes (rigid body) and the following distortional 

and local deformation modes. Figure 7.10 and Figure 7.11 shows the result from this 

separation. 

 

 

Figure 7.10: Mode influence, with varying length, on the total displacement of node 

one at midpoint. 

 

For node one the influence of the distortional and local modes are greater than for 

node four. Similar to both cases is that with and increasing member length, the rigid 

body modes are influencing more of the results. This could be described as that the 

response for a stocky member has a local characteristic and the response for a slender 

member is more global.  

                                                 
9
This value is calculated without considering the singularity at the fixed end 

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

600 1000 1400 1800 2200 2600 3000

Member length [mm]

Modes 5-11

Modes 1-4



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:86 98 

 

Figure 7.11: Modal influence, with varying length, on the total displacement of node 

four at midpoint. 

 

7.4 Different discretization of the cross-section 

The way of discretizing the cross-section will have different affects on the total 

response of the member. In order to present this a symmetric hat-profile is chosen 

treated as a cantilever with both an applied gravity force 𝜌𝑔 and a uniformly 

distributed pressure 𝑞 at the upper flange, see Figure 7.12. 

 

 

Figure 7.12: A symmetric hat-profile modelled as a cantilever subjected both a 

gravity load 𝜌𝑔 and uniformly distributed pressure 𝑞 at the upper flange. 

 

The GBT analysis is performed for three different setups of nodes, namely 𝑎) only 

considering natural nodes, 𝑏) imposition of one intermediate node at the upper flange 

and 𝑐) a case when several intermediate nodes are considered. The total responses of 

the three setups are illustrated in Figure 7.13. One can there see that there is a 

difference in how the webs are inclined. In the case of only natural nodes the webs 

will have inwards inclinations compared to when imposition of intermediate nodes 

where an outwards inclination is obtained instead. 
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Figure 7.13: The GBT solution for three different setups of discretizations.𝑎) only 

natural nodes, 𝑏) one imposed intermediate node and 𝑐) several imposed intermediate 

nodes. 

 

When imposing intermediate nodes the resolution of the member gets better, but this 

mainly affects the local 𝑤 𝑠  displacements in the cross-section. The 𝑢 𝑠  will still 

vary linear between the natural nodes and 𝑣 𝑠  will still be the same and constant for 

all sub-plates. Since 𝑢 𝑠  varies linear also the normal stress 𝜍𝑥 𝑠  will vary linear 

between the natural nodes. A way of overcoming this is to impose natural nodes 

instead of intermediate nodes. Due to the definition these imposed natural nodes must 

be inserted such that an angle difference arises over those nodes. Therefore, displace 

those imposed nodes with a small distance 𝛿 according to Figure 7.14. 

 

 

Figure 7.14: Imposition of a natural node instead of intermediate node requires an 

angle difference over that node, hence introduce that node with a small displacement 

𝛿. 

 

Recall the Z-profile with fixed boundaries defined in Figure 6.2 and Figure 6.8. 

Instead of using intermediate nodes, natural nodes are imposed with a displacement 

𝛿 = 0.1𝑚𝑚. The variation in normal stresses 𝜍𝑥  at the mid-section of the member are 

illustrated in Figure 7.15 for the case of 𝑎) imposed intermediate nodes and 𝑏) 

imposed natural nodes. Note that the non-linear stress distribution in the lip is 

captured when natural nodes are imposed. 
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Figure 7.15: The variation in normal stress 𝜍𝑥  at the mid-section of the Z-profile in 

the case of 𝑎) imposed intermediate nodes and 𝑏) imposed natural node with the 

displacement 𝛿 = 0.1𝑚𝑚 

 

7.5 Calculation effort 

The difference in computational effort, between GBT and ABAQUS, is difficult to 

estimate since the analyses are using different solution methods. To enable any kind 

of comparison the GBT solution has been clocked for two separate parts; the cross-

sectional analysis and the member analysis. The cross-sectional analysis, which is 

GBT unique, is not compared with ABAQUS. The GBT member analysis is 

compared with the ABAQUS analysis, where the FEM solution is of interest. As 

model the same member and conditions as specified in Section 6.3 is used (fixed-

fixed Z-profile with body force and line load). 

 

7.5.1 Cross-sectional analysis 

This particular study is carried out in order to see how large the computational effort 

is to determine the deformation modes. The time is measured from that the first matrix 

is assembled, until the final deformation mode has been determined. Calculation of 

geometrical and material parameters, as well as the following FEM solution is not 

included in this comparison. 

Table 7.4 illustrates the elapsed time for different discretisations of the cross-section, 

where the number of intermediate nodes is the varying parameter. One can read that 

the case of only natural nodes requires a higher computational effort than if a few 

intermediate nodes are imposed, even though a larger number of degrees of freedom 

(dof) are considered. The computational effort per degree of freedom also increases 

for a larger number of considered intermediate nodes. Note that the degrees of 

freedom are calculated as the number of nodes in case of no intermediate nodes, 

otherwise it is the total number of nodes plus two. 
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Table 7.4: Elapsed time to carry out the cross-sectional analysis for different cross-

sectional discretizations. 

Intermediate nodes Dofs Time[𝑠] Rate [𝑠/𝑑𝑜𝑓] Change of rate [𝑠/𝑑𝑜𝑓] 

- 6 0.158 0.0263 - 

3 11 0.056 0.0051 - 

5 13 0.079 0.0061 0.0115 

10 18 0.207 0.0115 0.0305 

15 23 0.435 0.0189 0.0518 

20 28 0.793 0.0283 0.0716 

25 33 1.309 0.0397 0.1033 

30 38 2.020 0.0532 0.1421 

 

7.5.2 Member analysis 

The member analysis of GBT is compared to the solution of the ABAQUS model. For 

the GBT part the time is measured for the assembly and solution of the FEM 

approximation, where the modes of deformation already have been determined. In 

ABAQUS the time is measured as the CPU time, as given in the .dat file. Table 7.5 

shows the values of this comparison. 

 

Table 7.5: Comparison between the elapsed times to have the GBT and ABAQUS 

solutions for an increasing set of finite elements. 

 
Element size  

[𝑚𝑚] 
Dofs Time 

[𝑠] 
Rate  

[𝑠/𝑑𝑜𝑓] 
Change of rate  

[𝑠/𝑑𝑜𝑓] 

GBT 

53.33 1012 0.058 5.76E-05 - 

40 1342 0.066 4.95E-05 2.45E-05 

26.66 2002 0.095 4.76E-05 6.63E-05 

20 2662 0.102 3.84E-05 1.64E-05 

10 5302 0.246 4.64E-05 5.44E-05 

6.66 7942 0.533 6.71E-05 1.09E-04 

5 10582 0.853 8.06E-05 1.21E-04 

ABAQUS 

15 23184 1.6 6.90E-05 - 

10 50610 3.1 6.13E-05 5.47E-05 

7 103200 6.6 6.40E-05 6.66E-05 

5 202020 13.5 6.68E-05 6.98E-05 

3 557496 41.9 7.52E-05 7.99E-05 

 

The elapsed time per degree of freedom is almost equal between the different solution 

methods. As shown for the cross-sectional analysis, the change of rate for a higher 

number of degrees of freedom is increasing also in this case. The degrees of freedom 

in ABAQUS are summed as the total number of nodes times six, which are the 

degrees of freedom in each node for S4R elements. In the GBT method the degrees of 

freedom are calculated as two times the number of nodes in the longitudinal direction 

times the number of modes. Since the elements used are four degrees of freedom 

beam elements, and the FEM system is assembled for each mode, this calculation is 

considered to be the best reference compared to ABAQUS. 
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8 Discussion 

In this chapter the authors reasons about the whole project process, where difficulties 

and discoveries worth to mention are presented. Possible future research areas or 

masters project subjects are also discussed. 

 

8.1 GBT 

Most of the papers used in the background study are written at a very high academic 

level, where the reader is supposed to have an extensive knowledge in the field. This 

caused the authors to spend a lot of time to understand the core of the theory, as well 

as having to learning many new terms and physical relations.  

Since most of the found papers about research in the context of GBT are brief and 

concerns only one specific area, they are not very comprehensive regarding the 

fundamental parts. For a deeper understanding of the basic theory as well as the 

underlying mathematics, the authors chose to present this in a thoroughly manner. The 

derivation of both the fundamental equation and the establishment of deformation 

modes will hopefully make it easier for fresh researchers in the field to understand 

these parts. The only reference, known to the authors, dealing with the theory behind 

both the fundamental equation and the cross-sectional analysis is the Verallgemeinerte 

Technische Biegetheorie [6]. This book is written all in german, so in order to 

simplify further research the cross-sectional derivation was translated into english. 

Also a more logical notation has been used, which makes it easier to understand the 

different meanings of the terms. Furthermore, the mathematical parts in the derivation 

have been written a lot more explicit. As an example the diagonalization procedure 

was hard to comprehend, so the authors have specifically written, step-by-step, how to 

perform this. 

 

8.2 Implementation 

During the implementation of the theory it was of great importance to distinguish 

between the cross sectional analysis and the member analysis. From the beginning the 

authors did not see this, but during the process a structure like this felt more logical. 

The documentation about the whole MATLAB application is a bit vague on other 

parts than the ones discussed below, but this is made deliberately since they have a 

more arbitrary nature. How the cross section is discretized and how the results are 

presented, expressed in MATLAB code, can be done in numerous ways. 

 

8.2.1 Cross section analysis 

The cross section analysis was the first step to implement. The authors followed the 

calculation procedure as shown in [6], without including intermediate nodes. 

Constructing the geometrical and material matrices was unproblematic, and could 

easily be verified to be correct. The most challenging part was the diagonalization 

process, where the three eigenvalues where solved. Since the orthogonal eigenvectors 

are infinitely many, it is not possible to verify all the numbers during the calculation. 

When the procedure was completed, the end result could be verified to be correct. 

After succeeding the analysis once, the authors repeated the implementation again 

with the introduction of intermediate nodes. The reference material lacked specific 
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information on how to build some of the matrices, where the authors had to find out 

how to do that.  

 

8.2.2 Member analysis 

This part aims at solving the fundamental GBT equation, to get the amplitude 

functions known for each mode. The equation can be solved according to two 

different methods; analytical or approximate method. Analytical approach generates a 

solution that is exact and due to this no convergence needs to be verified, it is also 

provides a short computing time. When implementing an analytical solution, it has to 

be derived for each possible boundary condition and loading. This fact in combination 

with that only the uncoupled approach could be solved, made the authors to choose 

FEM as the solution method. FEM provides a good tool to approximate the solution 

both for the coupled and uncoupled case. Furthermore, it is easier to change boundary 

conditions and add arbitrarily placed loads on the member. A firm pre-existing 

knowledge base in the method made the choice easier for the authors and the 

implementation procedure went relatively easy. 

 

8.3 Application of GBT 

The authors chose to apply the GBT on a non-symmetric Z-profile and present the full 

solution, including numerical values both for the cross-sectional and member analysis. 

One of the factors to why this type of profile was chosen was that all reference 

examples concerns sections which are symmetrical around one axis. Hence the skew 

bending phenomena are not captured and illustrated, which the GBT is capable to 

handle. The extensive illustration and the fully solved example aim at helping 

subsequent readers to verify their own GBT implementations, both for the case of 

coupled and uncoupled approach as well as for different discretization methods. 

In Table 6.3 the GBT results and ABAQUS results for the member are compared. 

There is a good correlation between the 𝑈 and 𝑉 displacements and also the normal 

stresses 𝜍𝑥  correlates good if one neglect the singularities at the boundaries. The 

major difference is in the 𝑊 displacements and the reason to this is a bit concerning 

and the authors have not found the actual cause to the difference. Also the stress 

differs a bit at the boundaries, a fact caused by the singularities when analysing these 

regions in ABAQUS. 

To verify and understand the behaviour of GBT, with its limitations and possibilities, 

different analysis parameters have been studied. Boundary conditions, loading, 

varying slenderness are some of the areas that are covered in the following sections. 

 

8.3.1 Different loading and boundary conditions 

During parametric studies different boundary conditions and load applications was 

tested in the implementation and verified with ABAQUS. Since the boundary 

conditions in GBT are specified on a modal basis it is hard to mimic some of them in 

ABAQUS. Fixed, free and guided was easy to model in ABAQUS, while pinned 

where troublesome. The authors tried it but the system was unsolvable and due to this 

no comparison could be made for this condition. During all of the different models the 

body force where considered, while the external loading was varying. Line loads and 

point loads in different directions was tested. 
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Overall the results seem to correspond well between the different cases, where the 

deflections are almost exactly the same. For the longitudinal stress there are larger 

differences at locations close to supports or concentrated forces. One cause for these 

variances could be the already mentioned singularities, which causes local stress 

raiser at specific nodes. Another cause could be how the values have been extracted 

from ABAQUS. Since the S4R element type has several integration points in the 

thickness direction and also across the elements. The values used for comparison has 

been difficult to choose. In GBT stress across the thickness of the element is 

considered to be constant, an assumption which make the comparison to the shell 

model a bit more difficult. Furthermore ABAQUS returns two different values from a 

node line along the intersection of two plates, where the authors have been using the 

mean value for comparison. Although these uncertainties exist, the values seem to 

correlate in a very convincing way. Also it is interesting to see how good the theory 

performs for the point loading cases, since no verified calculation for this exists in the 

used reference literature. In the treatment of the free end boundary condition in GBT 

the more simplified method was utilized, see Section 4.6.1. Due to this assumption a 

larger difference in stresses for this case was expected and also obtained, even though 

the magnitude was small in comparison to the other more restraint conditions. 

 

8.3.2 Different discretizations of the cross-section 

When the intermediate nodes were modelled as natural nodes with a small angle 

between connecting plates, the resolution of the normal stress was shown to increase. 

In the case of intermediate nodes the value of the normal stress in these is an 

interpolation based on the distance from the previous natural node. The authors think 

that this is a good method to investigate how the stress varies along a plate in the 

cross-section. Also it was discovered that a really small offset of the nodes were 

required to perform the calculation, which minimizes the geometrical distortion 

compared to the unadjusted shape of the section. If no intermediate nodes had been 

implemented in the project, this approach would have been used to capture higher 

modes. 

The lipped U-section that was modelled with only natural nodes and a varying number 

of intermediate ones, showed how important the imposition of nodes at strategic 

locations are during analysis, see Figure 7.12. When only natural nodes at 

intersections between plates were used, the beam responded in a way that does not 

capture the real phenomena in the member. By imposing intermediate nodes the 

response seems adequate, which could be proven to be the case also when imposing 

one single node in the middle of the beam. This shows how important the intermediate 

nodes are and the locations that they are placed in. As a rule of thumb the authors 

estimate that one intermediate node per plate will provide a trustworthy result. This 

harsh method could off course be optimized, as shown when only one node was 

imposed at the right location. 

 

8.3.3 Modal influence depending on slenderness 

Figure 7.10 and Figure 7.11 illustrates the relation between the four rigid-body modes 

and the higher ones, for a transversally loaded beam with varying slenderness. The 

figures show clearly how the local and distortional modes have a larger impact on the 

results for shorter members. For more slender beams the total response of the beam is 

captured in a satisfactory way with only the rigid-body modes. The result is not 
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surprising, due to the knowledge of the different phenomena in slender and stocky 

members. Stocky beams are exposed to local and distortional deformations, while 

slender members have a more global response. One has to remember the instability 

issues with slender beams, which probably causes a failure before the yield limit is 

reached for the material. This kind of instability is not considered in this project, since 

it is related to the second order theory. The figures previously referred to also shows 

how the relation varies in different parts of the beam. For the node that is far away 

from the centreline the influence from the local and distortional modes are greater 

than for the node closer to the centreline. The reason for this is that more distortional 

and local effects occur in these outermost regions, while the centre of the beam is 

governed by the global effects. 

 

8.3.4 Computational effort 

The computational effort is similar per degree of freedom in both the GBT and 

ABAQUS analyses. Since the GBT method is using fewer degrees of freedom to 

reach a satisfactory result, this method is considered to be more computing efficient. It 

should also be mentioned that the GBT implementation is not optimized in any way, 

which most likely is the case for ABAQUS. If the application had been optimized, the 

authors thinks that the solution time per degree of freedom could be lowered and 

outperformance ABAQUS. Another approach could have been to use analytical 

method, where the calculation time probably would have been almost nullified. 

Although the previous paragraph presents GBT as very efficient in comparison to 

ABAQUS, one has to remember that the calculation effort for static first order 

analysis is not that high. With modern computers these kinds of problems are easy to 

solve, and the usage of shell elements gives the user a greater versatility to model 

more complex cases. However, if second order theory is considered, the authors think 

that this comparison will be of greater importance. More about the efficiency for 

second order calculation are written in Section 2.3. 

 

8.4 General remarks 

During the usage of the theory one of the major positive experiences is how the result 

is built up, where each mode has its contribution on the total member response. In the 

analysis the user can specify which modes to include, and see which modes that 

influence different behaviours. From a pedagogical point of view, this possibility 

contributes to a deeper understanding on the structural behaviour of a member. Since 

the theory is rather sophisticated to derive and implement the pedagogical benefits 

arrives when the implementation is done and a member is analysed.  

Due to the limited time of the project only first order theory was applied, where 

deflections and stresses were of interest. The authors thinks that the real benefits of 

the theory concerns the second order analysis, where critical loads and buckling 

shapes are in focus. A lot of research in this field has been done and it would have 

been very interesting for the project to reach these areas, but the fundamental 

knowledge has to be known to achieve this in a methodical way.  
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8.5 Further research 

The project has neglected some areas concerning first order theory, which was 

considered as too time consuming to include. For instance this thesis only presents the 

theory for thin-walled open cross-sections, which disables analysis of common shapes 

like I beams. There are written articles, [8] and [10], about GBT applied on arbitrary 

cross-section geometries. The basic concept is to discretize and handle the cross-

sectional analysis in a different manner than what is implemented throughout this 

project. There are also further possibilities to include cross-sectional restraints, e.g. 

preventing one node in the cross-section to translate or rotate. The way of treating this 

is to redefine the 𝜟𝑖𝑘 -matrix during the cross-sectional analysis. Boundary conditions 

are also one of area that perhaps would benefit from further investigations. The 

authors tried to model as many types as possible, with the given timeframe, but thinks 

that this could be further explored. Unfortunately it is hard to mimic some of the 

conditions in ABAQUS, hence the comparison gets difficult between the different 

methods.  

After the previous mentioned subjects have been studied, or neglected, the authors 

think that there are two different possible paths to follow in the future. One of them 

concerns the theory applied on frames, where several members are connected by 

joints. Reference papers concerning the theory applied on frames exists, where the 

crucial part is how to model the joints. Warping transmission and other kinematical 

connections are of great importance to model the behaviour of the structure. The other 

path concerns the second order theory. A lot of research on second order theory has 

been done, and the main reason to expand the research into this field is to get 

bifurcation loads and buckling shapes. The authors will not discuss all the areas in 

second order theory here, since that theory is as wide as for first order. Also the 

background chapter gives a picture about the different topics there is. 
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9 Conclusions 

The derivation in the context of GBT has been a major challenge, with all its lengthy 

and comprehensive calculation steps. During implementation the cross-sectional 

analysis was the most demanding obstacle due to its mathematical complexity in 

establishment of the deformation modes. Once the GBT fundamental equation and all 

deformation modes were determined, the FEM based member analysis could be 

solved and the solution could be obtained without difficulties. 

The GBT provides accurate values compared to the reference shell-models used. No 

singularities are occurring in the solution and the extraction of results is easy due to 

the orthogonality condition between the modes. The commonly used assumption of an 

uncoupled equation system was verified to be adequate, since the coupling terms did 

not have any noticeable effect on the results. The GBT boundary conditions that are 

possible to mimic with finite shell-elements have been tested and verified. 

Computational efficiency is higher for GBT than for the reference FEM model, due to 

lower total number degrees of freedom.  

The cross-section discretization has been found to be crucial and the imposed nodes 

must carefully be placed in the cross-section in order to capture the real behaviour of 

the member. If this is so and the analysis is performed correctly, the GBT provides a 

fast, pedagogical and an elegant solution approach. Furthermore, it enables new 

possibilities to evaluate the member and enhance the understanding of the response in 

the case of different cross-sections, boundary and loading conditions. 
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Appendix A Evaluation of the GBT stiffness terms 

The following stiffness terms are derived in Section 4.1 and are here stated and 

evaluated by integration over the element plate thickness. The plate stiffness 𝐾 is also 

introduced where it is suitable: 

 

𝐵𝑖𝑘 =
𝐸

1 − 𝜐2
 𝑧2𝑤𝑘 ,𝑠𝑠𝑤𝑖 ,𝑠𝑠𝑑𝑧𝑑𝑠
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3
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𝑏
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12 1 − 𝜐2 
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𝑏

= 𝐾 𝑤𝑘 ,𝑠𝑠𝑤𝑖,𝑠𝑠𝑑𝑠

𝑏
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𝜈𝐸

1 − 𝜈2
  

𝑧2

2
 
−𝑡/2

𝑡/2

𝑤𝑘 ,𝑠𝑠𝑢𝑖𝑑𝑠

𝑏

= 0 (A.9) 

Where the plate stiffness 𝐾 is defined as: 

 𝐾 =
𝐸𝑡3

12 1 − 𝜈2 
 (A.10) 
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Appendix B Programmable matrices 

Here in this appendix all programmable expressions derived in Chapter 4 are stated 

and expanded into programming ready matrices. The matrices that follow here are 

stated by only considering natural nodes, i.e. no intermediate nodes are accounted for. 

However, these matrices can be expanded so that intermediate nodes could be 

considered, see Section 4.3. 

 

Geometric matrices 

The 𝑭𝑣-matrix defines the relation between the nodal warping values 𝑢𝑟  and the 

transverse in-plane plate element displacements 𝑣𝑟 , see equation (4.40). 

 

𝑭𝑣 =

 
 
 
 
 

1

𝑏1
−

1

𝑏1
0

⋱ ⋱

0
1

𝑏𝑛
−

1

𝑏𝑛  
 
 
 
 

 (B.1) 

The 𝐅w1- and 𝐅w2-matrices defines the relation between the nodal warping value ur  

and the nodal transverse out-of-plane displacements w1.r  and w2.r , one at each end of 

the element, see equation (4.45) and (4.46). 

𝑭𝑤1 =

=

 
 
 
 
 
 

0

−
1

𝑏1 sin Δ𝛼2
 

1

𝑏1 sin Δ𝛼2
+

1

𝑏2 tan Δ𝛼2
 −

1

𝑏2 tan Δ𝛼2

⋱ ⋱ ⋱

0 −
1

𝑏𝑛−1 sin Δ𝛼𝑛
 

1

𝑏𝑛−1 sin Δ𝛼𝑛
+

1

𝑏𝑛 tan Δ𝛼𝑛
 −

1

𝑏𝑛 tan Δ𝛼𝑛  
 
 
 
 
 

 

  (B.2) 

𝑭𝑤2 =

=

 
 
 
 
 
 −

1

𝑏1 tan Δ𝛼2
 

1

𝑏1 tan Δ𝛼2
+

1

𝑏2 sin Δ𝛼2
 −

1

𝑏2 sin Δ𝛼2
0

⋱ ⋱ ⋱

−
1

𝑏𝑛−1 tan Δ𝛼𝑛
 

1

𝑏𝑛−1 tan Δ𝛼𝑛
+

1

𝑏𝑛 sin Δ𝛼𝑛
 −

1

𝑏𝑛 sin Δ𝛼𝑛

0  
 
 
 
 
 

 

  (B.3) 

These two matrices can later be used in order to evaluate the 𝐅w - and 𝐅ϑ-matrices 

which relates the nodal warping values ur  to the plate element transverse out-of-plane 

displacement wr  and the plate element rotation ϑr , see equation (4.49) and (4.52). 

The 𝚫ik -matrix is such that the transverse nodal bending moments ms  can be 

expressed in terms of the nodal warping values ur , see equations (4.71), (4.72) and 

(4.73). 
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𝚫𝑖𝑘 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0
0

 
𝑏2

3𝐾2
+

𝑏3

3𝐾3
 

𝑏3

6𝐾3

𝑏3

6𝐾3
 

𝑏3

3𝐾3
+

𝑏4

3𝐾4
 

𝑏4

3𝐾4

⋱ ⋱ ⋱
𝑏𝑛−3

6𝐾𝑛−3
 

𝑏𝑛−3

3𝐾𝑛−3
+

𝑏𝑛−2

3𝐾𝑛−2
 

𝑏𝑛−2

6𝐾𝑛−2

𝑏𝑛−2

6𝐾𝑛−2
 

𝑏𝑛−2

3𝐾𝑛−2
+

𝑏𝑛−1

3𝐾𝑛−1
 

0
0 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (B.4) 

 

GBT matrices 

The 𝑪1-matrix is also possible to have a programming ready matrix for, see equation 

(4.119). 

𝑪1 =
1

3

 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑡1𝑏1

𝑡1𝑏1

2
0

𝑡1𝑏1

2
 𝑡1𝑏1 + 𝑡2𝑏2 

𝑡2𝑏2

2
𝑡2𝑏2

2
 𝑡2𝑏2 + 𝑡3𝑏3 

𝑡3𝑏3

2
⋱ ⋱ ⋱

𝑡𝑛−2𝑏𝑛−2

2
 𝑡𝑛−1𝑏𝑛−1 + 𝑡𝑛𝑏𝑛 

𝑡𝑛−1𝑏𝑛−1

2
𝑡𝑛−1𝑏𝑛−1

2
𝑡𝑛−1𝑏𝑛−1 + 𝑡𝑛𝑏𝑛

𝑡𝑛𝑏𝑛

2

0
𝑡𝑛𝑏𝑛

2
𝑡𝑛𝑏𝑛  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (B.5) 
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The other matrices is in the GBT analysis is not possible to have a presentation in a 

distinct programmable matrix as above. Instead a calculation scheme is presented in 

terms of a MATLAB routine. Here follow first a translation of the notations used in 

the derivation chapter to the used notations in the MATLAB code. 

 

Table B.1: Here follows the matrix notations used in Chapter 4 and the corresponding 

matrix notations used in the MATLAB-code defined within this appendix 

Matrix notations MATLAB notations 

𝑭 𝑣  Fv 

𝑭 𝑤  Fw 

𝑭 𝜗  Ftheta 

𝑴 10 M 

𝑼 𝐼𝐼𝐼  U_III 

𝑚 𝑠.𝑟 .𝑘 , 𝑚 𝑠.𝑟 .𝑖
11 mrk_bar, mri_bar 

𝑚 𝑠.𝑟 .𝑘 , 𝑚 𝑠.𝑟 .𝑖  mrk_hat, mri_hat 

 

The 𝑩-matrix defined in (4.114): 

 
M_bar = zeros(nrOfElements,nrOfDofs); 

M_hat = zeros(nrOfElements,nrOfDofs); 

for r = 1:nrOfElements 

    M_bar(r,:) = (M(r+1,:)+M(r,:))/2; 

    M_hat(r,:) = (M(r+1,:)-M(r,:))/2;   

end 

 

B = zeros(nrOfDofs,nrOfDofs); 

for k = 1:nrOfDofs 

    for i = 1:nrOfDofs 

        sum_terms = 0; 

    for r = 1:nrOfElements 

            element = elements(r).Value; 

            br = element(r).Value.width; 

            Kr = element(r).Value.K; 

            mrk_bar = M_bar(r,k); 

            mri_bar = M_bar(r,i); 

            mrk_hat = M_hat(r,k); 

            mri_hat = M_hat(r,i); 

 

            sum_terms = sum_terms + ... 

               Kr*br*(mrk_bar*mri_bar*1/(Kr*Kr) + ... 

               mrk_hat*mri_hat*1/(3*Kr*Kr)); 

    end 

        B(k,i) = sum_terms; 

    end 

end 

                                                 
10𝑴  is the matrix which translates the nodal unit transverse bending moments 𝑚 𝑠.𝑟  to the corresponding 

unit warping 𝑢 𝑟  and should not be mistaken for the “average” element moments 𝑚 𝑠.𝑟  defined in (4.100) 
11

”Average” element moments defined in (4.100) 
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Note: The 𝑩-matrix can also be obtained as 𝑩 = −𝚫𝑭 𝜗 ∙ 𝑴  

The 𝑪2-matrix is defined in (4.122): 

 
C2 = zeros(nrOfDofs,nrOfDofs); 

for k = 1:nrOfDofs 

    for i = 1:nrOfDofs 

        sum_terms = 0; 

        for r = 1:nrOfElements 

            element = elements(r).Value; 

            br = element.width;                 

            Kr = element.K; 

            w_rk = Fw(r,k); 

            w_ri = Fw(r,i); 

            theta_rk = Ftheta(r,k); 

            theta_ri = Ftheta(r,i); 

            mrk_bar = M_bar(r,k); 

            mri_bar = M_bar(r,i); 

            mrk_hat = M_hat(r,k); 

            mri_hat = M_hat(r,i); 

 

            sum_terms = sum_terms + ... 

               Kr*br*(w_rk*w_ri + ... 

               theta_rk*theta_ri*br^2/12 + ... 

               (w_rk*mri_bar+mrk_bar*w_ri)*br^2/(12*Kr) + ... 

               (mrk_hat*theta_ri+theta_rk*mri_hat)*br^3/(360*Kr) + ... 

               (mrk_bar*mri_bar+1/63*mrk_hat*mri_hat)*br^4/(120*Kr^2)); 

 

        end 

        C2(k,i) = 1/E*sum_terms; 

    end 

end 

The 𝑫1-matrix defined in (4.126): 

 
D1 = zeros(nrOfDofs,nrOfDofs); 

for k = 1:nrOfDofs 

    for i = 1:nrOfDofs 

        sum_terms = 0; 

        for r = 1:nrOfElements 

            element = elements(r).Value; 

            br = element.width;                 

            tr = element.thickness;                 

            Kr = element.K; 

            theta_rk = Ftheta(r,k); 

            theta_ri = Ftheta(r,i); 

            mrk_bar = M_bar(r,k); 

            mri_bar = M_bar(r,i); 

            mrk_hat = M_hat(r,k); 

            mri_hat = M_hat(r,i); 

 

            sum_terms = sum_terms + ... 

               br*tr^3/3*(theta_rk*theta_ri + ... 

               (mrk_bar*mri_bar+1/15*mrk_hat*mri_hat)*br^2/(12*Kr^2)); 

        end 

        D1(k,i) = sum_terms; 

    end 

end 

The 𝑫2-matrix defined in (4.129): 

 
D2 = zeros(nrOfDofs,nrOfDofs); 

for k = 1:nrOfDofs 

    for i = 1:nrOfDofs 

        sum_terms = 0; 

        for r = 1:nrOfElements 

            element = elements(r).Value; 

            br = element.width;                 

            tr = element.thickness;                 
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            Kr = element.K; 

            w_rk = Fw(r,k); 

            w_ri = Fw(r,i); 

            theta_rk = Ftheta(r,k); 

            theta_ri = Ftheta(r,i); 

            mrk_bar = M_bar(r,k); 

            mri_bar = M_bar(r,i); 

            mrk_hat = M_hat(r,k); 

            mri_hat = M_hat(r,i); 

 

            sum_terms = sum_terms + ... 

               br*(-mrk_bar*w_ri - ... 

               mrk_hat*theta_ri*br/6 - ... 

               (mrk_bar*mri_bar+1/15*mrk_hat*mri_hat)*br^2/(12*Kr)); 

        end 

        D2(k,i) = ny/G*sum_terms;          

    end 

end 

The 𝑫3-matrixdefined in (4.130): 

 
D3 = zeros(nrOfDofs,nrOfDofs); 

for k = 1:nrOfDofs 

    for i = 1:nrOfDofs 

        sum_terms = 0; 

        for r = 1:nrOfElements 

            element = elements(r).Value; 

            br = element.width;                 

            tr = element.thickness;                 

            Kr = element.K; 

            w_rk = Fs_hat(r,k); 

            w_ri = Fs_hat(r,i); 

            theta_rk = Ftheta(r,k); 

            theta_ri = Ftheta(r,i); 

            mrk_bar = M_bar(r,k); 

            mri_bar = M_bar(r,i); 

            mrk_hat = M_hat(r,k); 

            mri_hat = M_hat(r,i); 

 

            sum_terms = sum_terms + ... 

               br*(-mri_bar*w_rk - ... 

               mri_hat*theta_rk*br/6 - ... 

               (mri_bar*mrk_bar+1/15*mri_hat*mrk_hat)*br^2/(12*Kr)); 

        end 

        D3(k,i) = ny/G*sum_terms;         

    end 

end 

The 𝑲-matrix defined in (4.140): 

 
K = zeros(size(U_III,2),size(U_III,2));     

for k = 1:size(U_III,2) 

    for i = 1:size(U_III,2) 

        sum_terms = 0; 

        for r = 1:nrOfElements 

            element = elements(r).Value; 

            br = element.width; 

            tr = element.thickness;                

            v_rk = Fv(r,:)*U_III (:,k); 

            v_ri = Fv(r,:)*U_III (:,i); 

            w_rk = Fw(r,:)*U_III (:,k); 

            w_ri = Fw(r,:)*U_III (:,k); 

 

            sum_terms = sum_terms +... 

              (v_rk*v_ri+w_rk*w_ri)*br*tr; 

        end 

        K(k,i) = sum_terms;             

    end 

end 

K = -1/A*K; 
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Appendix C Analogy between the rod and GBT 

differential equation 

This chapter shows the analogy between the rod equation which is a second order 

differential equation and the first deformation mode which is a forth order differential 

equation. The physical meaning of the two extra boundary conditions needed in order 

to solve the GBT fundamental differential equation is here stated and evaluated. 

 

The rod differential equation 

The rod-equation is defined and stated below for a member with an arbitrary and 

constant cross-section and elastic modulus. 

 𝐸𝐴𝑢,𝑥𝑥 = −𝑞𝑥  (C.1) 

In order to have a solution to (C.1) integrate the equation twice: 

 𝐸𝐴𝑢,𝑥 = −𝑞𝑥𝑥 + 𝐶1 (C.2) 

 𝐸𝐴𝑢 = −𝑞𝑥

𝑥2

2
+ 𝐶1𝑥 + 𝐶2 (C.3) 

Two integration constants are obtained, hence two boundary conditions is needed in 

order to have complete determined variation along the member. There are two types 

of boundary conditions, namely essential and natural boundary conditions. 

To have a representative comparison between the rod equation and the GBT 

fundamental equation an example is introduced, see Figure C.1. 

 

 

Figure C.1: This example is used in order to have a representative comparison 

between the rod equation and the GBT fundamental equation. The rod is subjected to 

a uniform load 𝑞𝑥  and a point force 𝑃𝑥  at 𝑥 = 𝐿 and is clamped at 𝑥 = 0. 

 

The associated boundary conditions for the clamped rod are given as: 

 
𝑢 0 = 0 (C.4) 

 𝐸𝐴𝑢,𝑥 𝐿 = 𝑃𝑥  (C.5) 

The first boundary condition gives that 𝐶2 = 0 and the other gives that 𝐶1 = 𝑃𝑥 +
𝑞𝑥𝐿. The 𝑢-displacement variation along the member is then defined as: 

 𝑢 𝑥 =
1

𝐸𝐴
 −𝑞𝑥

𝑥2

2
+  𝑃𝑥 + 𝑞𝑥𝐿 𝑥  (C.6) 
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The GBT equation for the first deformation mode 

The GBT fundamental equation is defined in (4.151). For the first deformation mode 

 𝑘 = 1  it appears that 𝐷 1, 𝐵 1 and 𝑞 1 is zero, hence the only non-zero terms are 𝐶 1 

and 𝑞 𝑥 .1,𝑥 . The warping function for the first mode is defined as 𝑢 1 = −1 which gives 

that 𝑢 𝑥  and 𝑞 𝑥 .1,𝑥  are defined as: 

 𝑢 𝑥 = 𝑢 1𝜙 1,𝑥 𝑥 = −𝜙 1,𝑥 𝑥  (C.7) 

 
𝑞𝑥 .1,𝑥 = 𝑞𝑥 ,𝑥𝑢 1 = −𝑞𝑥 ,𝑥  

(C.8) 

Insert all conditions for the first mode into the GBT equation gives: 

 𝐸𝐶 1𝜙 1,𝑥𝑥𝑥𝑥 = 𝑞𝑥 ,𝑥  (C.9) 

This equation is a forth order differential equation and must be integrated four times: 

 
𝐸𝐶 1𝜙 1,𝑥𝑥𝑥 = 𝑞𝑥 + 𝐶1 (C.10) 

 
𝐸𝐶 1𝜙 1,𝑥𝑥 =  𝑞𝑥 + 𝐶1 𝑥 + 𝐶2 (C.11) 

 

𝐸𝐶 1𝜙 1,𝑥 =  𝑞𝑥 + 𝐶1 
𝑥2

2
+ 𝐶2𝑥 + 𝐶3 (C.12) 

 

𝐸𝐶 1𝜙 1 =  𝑞𝑥 + 𝐶1 
𝑥3

6
+ 𝐶2

𝑥2

2
+ 𝐶3𝑥 + 𝐶4 (C.13) 

Four boundary conditions are needed in order to have a complete description of the 

variation in the amplitude function 𝜙 1 along the member. However, since for the first 

deformation mode only the 𝑢-displacements is of interest (the 𝑣- and 𝑤-displacements 

are by definition zero) there is only a need of determine the first derivative of the 

amplitude function 𝜙 1,𝑥 , hence three boundary conditions is needed. The forth 

integration constant can therefore be left undefined since it will not contribute to the 

variation of 𝑢-displacements along the member. From Figure C.1 two boundary 

conditions are obtained by simply translate them to the GBT notations as: 

 𝑢 0 = 0   ⇒    −𝜙 1,𝑥 0 = 0 (C.14) 

 𝐸𝐴𝑢,𝑥 𝐿 = 𝑃𝑥   ⇒   −𝐸𝐶 1𝜙 1,𝑥𝑥  𝐿 = 𝑃𝑥  (C.15) 

The third condition is obtained by equilibrium condition of an infinitesimal part of the 

rod. The third condition is then given as: 

 𝑁,𝑥 = −𝑞𝑥    ⇒   −𝐸𝐶 1𝜙 1,𝑥𝑥𝑥 = −𝑞𝑥 (C.16) 

Utilize the third condition to determine the 𝐶1-constant by inserting (C.16) into 

(C.10). It appears that the 𝐶1-constant must be zero in order to fulfil the equilibrium 

condition as: 

 𝑁,𝑥 = −𝐸𝐶 1𝜙 ,𝑥𝑥𝑥 = − 𝑞𝑥 + 𝐶1 = −𝑞𝑥    ⇒    𝐶1 = 0 (C.17) 
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Apply the first boundary condition (C.14) on (C.12). From this condition the 𝐶3-

constant must also be zero in order to be fulfilled: 

 −𝜙 1,𝑥 0 = −
1

𝐸𝐶 1
𝐶3 = 0   ⇒    𝐶3 = 0 (C.18) 

The last constant is determined by using the boundary load term (C.15) and 

introducing it into (C.11). The 𝐶2-constant is then obtained as: 

 −𝐸𝐶 1𝜙 1,𝑥𝑥  𝐿 = − 𝑞𝑥𝐿 + 𝐶2 = 𝑃𝑥    ⇒    𝐶2 = − 𝑃𝑥 + 𝑞𝑥𝐿  (C.19) 

The variation in 𝑢-displacement along the member is then obtained by inserting the 

integration constants 𝐶1 (C.17), 𝐶2 (C.19) and 𝐶3 (C.18) into (C.12) gives: 

 𝜙 1,𝑥 =
1

𝐸𝐶 1
 𝑞𝑥

𝑥2

2
−  𝑃𝑥 + 𝑞𝑥𝐿 𝑥  (C.20) 

 𝑢 𝑥 = −𝜙 1,𝑥 =
1

𝐸𝐶 1
 −𝑞𝑥

𝑥2

2
+  𝑃𝑥 + 𝑞𝑥𝐿 𝑥  (C.21) 

Expression (C.21) is the same as (C.6) derived using the rod-equation, hence the 

analogy between the two equations are proofed and there are only two boundary 

conditions with physical meaning in order to solve the GBT fundamental differential 

equation for the first mode. The other two conditions are simply just to get rid of 

integration constants. 

Another interesting comparison could be by relating the first deformation mode and 

its quantities to known beam quantities, see Figure C.2. 

 

Figure C.2: The analogy between the GBT equation for the first deformation mode 

and the Euler-Bernoulli equation. 𝑎) Illustrates a cantilevering beam subjected to a 

uniformly distributed load 𝑞𝑧  and a point moment 𝑀𝐿 together with its sectional 

forces. 𝑏) Illustrates a clamped rod subjected to uniformly distributed load 𝑞𝑥   and a 

point load 𝑃𝑥  together with its sectional force. 
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The GBT quantities for the first deformation mode and the corresponding beam 

quantities are tabulated in Table C.1 below. One can read that the 𝑢-displacements 

corresponds to the slope of the beam deflections 𝑤,𝑥 , the normal force 𝑁 𝑥  to the 

bending moments 𝑀 𝑥 , the uniformly distributed load 𝑞𝑥  to the shear force 

distribution 𝑉 𝑥  and a concentrated point force 𝑃𝑥  to a point moment 𝑀𝐿. 

 

Table C.1: This table contains the GBT differential equation according to the first 

deformation mode and its corresponding quantities and the ordinary Euler-Bernoulli 

beam equation with its corresponding quantities, both related to the members defined 

in Figure C.2 

GBT, deformation mode 1 Euler-Bernoulli beam 

𝐸𝐶 1𝜙 1,𝑥𝑥𝑥𝑥 = −𝑞 𝑥 .1,𝑥 = 𝑞𝑥 ,𝑥  −𝐸𝐼𝑧𝑤,𝑥𝑥𝑥𝑥 = 𝑞𝑍  

𝐸𝐶 1𝜙 1,𝑥𝑥𝑥 = 𝑞𝑥  𝐸𝐼𝑧𝑤,𝑥𝑥𝑥 = 𝑉 𝑥  

−𝐸𝐶 1𝜙 1,𝑥𝑥 = 𝑊  𝑥 = 𝑁 𝑥  𝐸𝐼𝑧𝑤,𝑥𝑥 = 𝑀 𝑥  

−𝐸𝐶 1𝜙 1,𝑥𝑥  𝐿 = 𝑃𝑥  𝐸𝐼𝑧𝑤,𝑥𝑥  𝐿 = 𝑀𝐿 

𝑢 0 = −𝜙 1,𝑥 0 = 0 𝑤,𝑥 0 = 0 

− 𝑤 0 = 0 

 

 
 

  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:86 D-5 

Appendix D Finite element solution 

This appendix will show the theory behind the FEM implementation used by the 

authors when solving the GBT equation for each mode. Note that the procedure to 

perform this is analogue with the one for beam on elastic foundation. 

 

The transformed and uncoupled GBT equation 

The uncoupled GBT differential equation (4.151) is derived in Section 4.6 and is 

redefined here as: 

 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥𝑥 − 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥𝑥 + 𝐵 𝑘𝜙 𝑘 = 𝑞 𝑘 − 𝑞 𝑥 .𝑘 ,𝑥  (D.1) 

 

The weak form 

The first step in the finite element approach is to rewrite the uncoupled GBT-equation 

on weak form. This is obtained by multiplication of an arbitrary weight-function 𝑣 𝑥  

and integration over the member length as shown below: 

 

 𝑣 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥𝑥 − 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥𝑥 + 𝐵 𝑘𝜙 𝑘 𝑑𝑥

𝐿

0

=  𝑣𝑞 𝑘𝑑𝑥

𝐿

0

−  𝑣𝑞 𝑥 .𝑘 ,𝑥𝑑𝑥

𝐿

0

 (D.2) 

The next step is to carry out the integration such that the same order of derivatives on 

the weight-function 𝑣 𝑥  and the amplitude function 𝜙  𝑥  is obtained. Integration by 

parts on the terms gives: 

 

 𝑣𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥𝑥 𝑑𝑥

𝐿

0

=  𝑣𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  0

𝐿
−  𝑣,𝑥𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥 𝑑𝑥

𝐿

0

=  𝑣𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  0

𝐿
−  𝑣,𝑥𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  0

𝐿
+  𝑣,𝑥𝑥𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑑𝑥

𝐿

0

 

(D.3) 

 

 𝑣𝐺𝐷 𝑘𝜙 𝑘 ,𝑥𝑥𝑑𝑥

𝐿

0

=  𝑣𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0

𝐿
−  𝑣,𝑥𝐺𝐷 𝑘𝜙 𝑘 ,𝑥𝑑𝑥

𝐿

0

 (D.4) 

 

 𝑣𝑞 𝑥𝑘 ,𝑥𝑑𝑥

𝐿

0

=  𝑣𝑞 𝑥 .𝑘 0
𝐿 −  𝑣,𝑥𝑞 𝑥 .𝑘𝑑𝑥

𝐿

0

 (D.5) 

The weak form of the differential equation is then formulated by putting all terms 

together as: 
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 𝑣,𝑥𝑥𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑑𝑥

𝐿

0

+  𝑣,𝑥𝐺𝐷 𝑘𝜙 𝑘 ,𝑥𝑑𝑥

𝐿

0

+  𝑣𝐵 𝑘𝜙 𝑘𝑑𝑥

𝐿

0

=  𝑣𝑞 𝑘𝑑𝑥

𝐿

0

+  𝑣,𝑥𝑞 𝑥 .𝑘𝑑𝑥

𝐿

0

−  𝑣𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  0

𝐿

+  𝑣,𝑥𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  0

𝐿
+  𝑣𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0

𝐿
−  𝑣𝑞 𝑥 .𝑘 0

𝐿 

(D.6) 

 

Finite element approximation 

Once the weak form of the equation is known, the finite element approximation could 

be introduced. Discretize the member into a number of finite elements and nodes. The 

amplitude function 𝜙 𝑘  is then determined by the nodal values and the variation within 

the elements are defined by element shape functions. The amplitude function is 

discretized as: 

 𝜙 𝑘 𝑥 = 𝑵 𝑥 ∙ 𝒂𝑘  (D.7) 

Where 𝑵 𝑥  is a vector containing the element shape functions, one per degree of 

freedom and 𝒂 is a vector containing all the nodal degrees of freedom. The arbitrary 

weight-function is chosen according to Galerkin’s method presented in [26] defined 

as: 

 𝑣 𝑥 = 𝑵 𝑥 ∙ 𝒄 (D.8) 

Where 𝑵 𝑥  is the shape function vector and 𝒄 is a vector contain arbitrary chosen 

constants. 

Insert the finite element approximations into the weak form (D.6). Since it is only the 

shape functions 𝑵 𝑥  that vary with 𝑥 the 𝒂𝑘- and 𝒄-vectors can be left outside the 

integrals. This give: 

 

𝒄𝑇  𝐸𝐶 𝑘  𝑵,𝑥𝑥
𝑇 𝑵,𝑥𝑥𝑑𝑥

𝐿

0

+ 𝐺𝐷 𝑘  𝑵,𝑥
𝑇 𝑵,𝑥𝑑𝑥

𝐿

0

+ 𝐵 𝑘  𝑵𝑇𝑵𝑑𝑥

𝐿

0

 𝒂𝑘

= 𝒄𝑇   𝑵𝑇𝑞 𝑘𝑑𝑥

𝐿

0

+  𝑵,𝑥
𝑇 𝑞 𝑥 .𝑘𝑑𝑥

𝐿

0

−  𝑵𝑇𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  0

𝐿

+  𝑵,𝑥
𝑇 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  0

𝐿
+  𝑵𝑇𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0

𝐿
−  𝑵𝑇𝑞 𝑥 .𝑘 0

𝐿  

(D.9) 
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Since 𝒄-vector only consist arbitrary constants it can be neglected and the final finite 

element approximation can be written as: 

  𝐸𝐶 𝑘𝑲𝐶 + 𝐺𝐷 𝑘𝑲𝐷 + 𝐵 𝑘𝑲𝐵  𝒂𝑘 = 𝒇𝑞 .𝑘 + 𝒇𝑞𝑥 .𝑘 + 𝒇𝑏 .𝑘  (D.10) 

Where 𝑲𝐶 , 𝑲𝐷  and 𝑲𝐵  are global stiffness matrices and the three global loading 

vectors 𝒇𝑞 .𝑘 , 𝒇𝑞𝑥 .𝑘and 𝒇𝑏 .𝑘  correspond to the applied modal loads and boundary loads 

respectively. They are defined as: 

 

𝑲𝐶 =  𝑵,𝑥𝑥
𝑇 𝑵,𝑥𝑥𝑑𝑥

𝐿

0

 𝑲𝐷 =  𝑵,𝑥
𝑇 𝑵,𝑥𝑑𝑥

𝐿

0

 𝑲𝐵 =  𝑵𝑇𝑵𝑑𝑥

𝐿

0

 (D.11) 

 

𝒇𝑞 .𝑘 = 𝑞 𝑘  𝑵𝑇𝑑𝑥

𝐿

0

 𝒇𝑞𝑥 .𝑘 = 𝑞 𝑥 .𝑘  𝑵,𝑥
𝑇 𝑑𝑥

𝐿

0

 

 

(D.12) 

 𝒇𝑏 .𝑘 = − 𝑵𝑇𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  0

𝐿
+  𝑵,𝑥

𝑇 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  0

𝐿
+  𝑵𝑇𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0

𝐿

−  𝑵𝑇𝑞 𝑥 .𝑘 0
𝐿 

(D.13) 

 

Evaluation of the element stiffness matrices 

The global stiffness matrices defined in (D.11) is obtained by assembling element 

stiffness matrices 𝑲𝐶 
𝑒 , 𝑲𝐷 

𝑒  and 𝑲𝐵 
𝑒 . In order to calculate the element stiffness matrices, 

the shape functions must be defined in first place. The differential equation (D.1) 

reminds on the equation for a beam on elastic foundation, hence finite beam elements 

will be used. These contain four degrees of freedom per element or two per node. The 

finite element approximation for one element is then defined as: 

 𝜙 𝑘 𝑥 = 𝑵𝑒 𝑥 ∙ 𝒂𝑘
𝑒  (D.14) 

Where the element shape function vector is defined as: 

 𝑵𝑒 𝑥 =  𝑁1
𝑒 𝑥 𝑁2

𝑒 𝑥 𝑁3
𝑒 𝑥 𝑁4

𝑒 𝑥   (D.15) 

And the element degrees of freedom vector is defined as the nodal value and the nodal 

slope of the amplitude function as: 

 𝒂𝑘
𝑒 =  𝜙 𝑘 .1 𝜙 𝑘 .1,𝑥 𝜙 𝑘 .2 𝜙 𝑘 .2,𝑥  (D.16) 

The superscript  ∙ 𝑒  is introduced to indicate that they are related to one finite 

element. The shape functions are derived by means of the 𝐶-method [26]. 
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Those shape functions are defined below together with the first and second derivative 

respectively. 

𝑁1
𝑒 = 1 − 3

𝑥2

𝐿𝑒
2 + 2

𝑥3

𝐿𝑒
3  𝑁1,𝑥

𝑒 = −
6𝑥 𝐿𝑒 − 𝑥 

𝐿𝑒
3  𝑁1,𝑥𝑥

𝑒 = −
6  𝐿𝑒 − 2 𝑥 

𝐿𝑒
3  

(D.17) 

𝑁2
𝑒 = 𝑥  1 − 2

𝑥

𝐿𝑒
+

𝑥2

𝐿𝑒
2  𝑁2,𝑥

𝑒 =
 𝐿𝑒 − 3 𝑥  𝐿𝑒 − 𝑥 

𝐿𝑒
2  𝑁2,𝑥𝑥

𝑒 =
6 𝑥 − 4 𝐿𝑒

𝐿𝑒
2  

𝑁3
𝑒 =

𝑥2

𝐿𝑒
2  3 − 2

𝑥

𝐿𝑒
  𝑁3,𝑥

𝑒 =
6 𝑥 𝐿𝑒 − 𝑥 

𝐿𝑒
3  𝑁3,𝑥𝑥

𝑒 =
6  𝐿𝑒 − 2 𝑥 

𝐿𝑒
3  

𝑁4
𝑒 =

𝑥2

𝐿𝑒
 
𝑥

𝐿𝑒
− 1  𝑁4,𝑥

𝑒 =
𝑥 3 𝑥 − 2 𝐿𝑒 

𝐿𝑒
2  𝑁4,𝑥𝑥

𝑒 = −
2  𝐿𝑒 − 3 𝑥 

𝐿𝑒
2  

The finite element stiffness matrices 𝑲𝐶 
𝑒 , 𝑲𝐷 

𝑒  and 𝑲𝐵 
𝑒  can now be completely 

determined by performing the vector multiplication and integration over the element 

length 𝐿𝑒  gives: 

 𝑲𝐶 
𝑒 =  

 
 
 
 
 
𝑁1,𝑥𝑥

𝑒 𝑁1,𝑥𝑥
𝑒 𝑁1,𝑥𝑥

𝑒 𝑁2,𝑥𝑥
𝑒 𝑁1,𝑥𝑥

𝑒 𝑁3,𝑥𝑥
𝑒 𝑁1,𝑥𝑥

𝑒 𝑁4,𝑥𝑥
𝑒

𝑁2,𝑥𝑥
𝑒 𝑁1,𝑥𝑥

𝑒 𝑁2,𝑥𝑥
𝑒 𝑁2,𝑥𝑥

𝑒 𝑁2,𝑥𝑥
𝑒 𝑁3,𝑥𝑥

𝑒 𝑁2,𝑥𝑥
𝑒 𝑁4,𝑥𝑥

𝑒

𝑁3,𝑥𝑥
𝑒 𝑁1,𝑥𝑥

𝑒 𝑁3,𝑥𝑥
𝑒 𝑁2,𝑥𝑥

𝑒 𝑁3,𝑥𝑥
𝑒 𝑁3,𝑥𝑥

𝑒 𝑁3,𝑥𝑥
𝑒 𝑁4,𝑥𝑥

𝑒

𝑁4,𝑥𝑥
𝑒 𝑁1,𝑥𝑥

𝑒 𝑁4,𝑥𝑥
𝑒 𝑁2,𝑥𝑥

𝑒 𝑁4,𝑥𝑥
𝑒 𝑁3,𝑥𝑥

𝑒 𝑁4,𝑥𝑥
𝑒 𝑁4,𝑥𝑥

𝑒  
 
 
 
 

𝑑𝑥

𝐿𝑒

0

 (D.18) 

 𝑲𝐷 
𝑒 =  

 
 
 
 
 
𝑁1,𝑥

𝑒 𝑁1,𝑥
𝑒 𝑁1,𝑥

𝑒 𝑁2,𝑥
𝑒 𝑁1,𝑥

𝑒 𝑁3,𝑥
𝑒 𝑁1,𝑥

𝑒 𝑁4,𝑥
𝑒

𝑁2,𝑥
𝑒 𝑁1,𝑥

𝑒 𝑁2,𝑥
𝑒 𝑁2,𝑥

𝑒 𝑁2,𝑥
𝑒 𝑁3,𝑥

𝑒 𝑁2,𝑥
𝑒 𝑁4,𝑥

𝑒

𝑁3,𝑥
𝑒 𝑁1,𝑥

𝑒 𝑁3,𝑥
𝑒 𝑁2,𝑥

𝑒 𝑁3,𝑥
𝑒 𝑁3,𝑥

𝑒 𝑁3,𝑥
𝑒 𝑁4,𝑥

𝑒

𝑁4,𝑥
𝑒 𝑁1,𝑥

𝑒 𝑁4,𝑥
𝑒 𝑁2,𝑥

𝑒 𝑁4,𝑥
𝑒 𝑁3,𝑥

𝑒 𝑁4,𝑥
𝑒 𝑁4,𝑥

𝑒  
 
 
 
 

𝑑𝑥

𝐿𝑒

0

 (D.19) 

 𝑲𝐵 
𝑒 =  

 
 
 
 
𝑁1

𝑒𝑁1
𝑒 𝑁1

𝑒𝑁2
𝑒 𝑁1

𝑒𝑁3
𝑒 𝑁1

𝑒𝑁4
𝑒

𝑁2
𝑒𝑁1

𝑒 𝑁2
𝑒𝑁2

𝑒 𝑁2
𝑒𝑁3

𝑒 𝑁2
𝑒𝑁4

𝑒

𝑁3
𝑒𝑁1

𝑒 𝑁3
𝑒𝑁2

𝑒 𝑁3
𝑒𝑁3

𝑒 𝑁3
𝑒𝑁4

𝑒

𝑁4
𝑒𝑁1

𝑒 𝑁4
𝑒𝑁2

𝑒 𝑁4
𝑒𝑁3

𝑒 𝑁4
𝑒𝑁4

𝑒  
 
 
 

𝑑𝑥

𝐿𝑒

0

 (D.20) 

Evaluating these integrals results in the following programmable matrices:  

 𝑲𝐶 
𝑒 =

 
 
 
 
 
 
 
 
 

12

𝐿𝑒
3

6

𝐿𝑒
2

−
12

𝐿𝑒
3

6

𝐿𝑒
2

6

𝐿𝑒
2

4

𝐿𝑒
−

6

𝐿𝑒
2

2

𝐿𝑒

−
12

𝐿𝑒
3 −

6

𝐿𝑒
2

12

𝐿𝑒
3 −

6

𝐿𝑒
2

6

𝐿𝑒
2

2

𝐿𝑒
−

6

𝐿𝑒
2

4

𝐿𝑒  
 
 
 
 
 
 
 
 

 (D.21) 
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 𝑲𝐷 
𝑒 =

 
 
 
 
 
 
 
 
 

6

5𝐿𝑒

1

10
−

6

5𝐿𝑒

1

10
1

10

2𝐿𝑒

15
−

1

10
−

𝐿𝑒

30

−
6

5𝐿𝑒
−

1

10

6

5𝐿𝑒
−

1

10
1

10
−

𝐿𝑒

30
−

1

10

2𝐿𝑒

15  
 
 
 
 
 
 
 
 

 (D.22) 

 𝑲𝐵 
𝑒 =

 
 
 
 
 
 
 
 
 

13𝐿𝑒

35

11𝐿𝑒
2

210

9𝐿𝑒

70
−

13𝐿𝑒
2

420
11𝐿𝑒

2

210

𝐿𝑒
3

105

13𝐿𝑒
2

420
−

𝐿𝑒
3

140
9𝐿𝑒

70

13𝐿𝑒
2

420

13𝐿𝑒

35
−

11𝐿𝑒
2

210

−
13𝐿𝑒

2

420
−

𝐿𝑒
3

140
−

11𝐿𝑒
2

210

𝐿𝑒
3

105  
 
 
 
 
 
 
 
 

 (D.23) 

 

The finite element loading vectors 

The global loading vectors 𝒇𝑞 .𝑘  and 𝒇𝑞𝑥 .𝑘  defined in (D.12) can be determined by 

assemble the element loading vectors 𝒇𝑞 .𝑘
𝑒   and 𝒇𝑞𝑥 .𝑘

𝑒  in a similar way as the for the 

stiffness matrices. The element loading vectors is determined by integration over the 

element length 𝐿𝑒  as: 

 𝒇𝑞 .𝑘
𝑒 = 𝑞 𝑘   

𝑁1

𝑁2

𝑁3

𝑁4

 𝑑𝑥

𝐿𝑒

0

= 𝑞 𝑘

 
 
 
 
 
 
 
 
 

𝐿𝑒

2
𝐿𝑒

2

12
𝐿𝑒

2

−
𝐿𝑒

2

12 
 
 
 
 
 
 
 
 

 (D.24) 

 𝒇𝑞𝑥 .𝑘
𝑒 = 𝑞 𝑥 .𝑘  

 
 
 
 
𝑁1,𝑥

𝑁2,𝑥

𝑁3,𝑥

𝑁4,𝑥 
 
 
 

𝑑𝑥

𝐿𝑒

0

= 𝑞 𝑥 .𝑘  

−1
0
1
0

  (D.25) 

In case of a point force the loading term cannot be left outside the integral since the 

Dirac’s delta function depends on 𝑥, hence the element load vector for an applied 

point force 𝑃 acting at 𝑥 = 𝑥𝑃  is obtained as: 
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 𝒇𝑞 .𝑘
𝑒 =  𝑞 𝑘  

𝑁1

𝑁2

𝑁3

𝑁4

 𝑑𝑥

𝐿𝑒

0

=  𝑞 𝑘  

𝑁1

𝑁2

𝑁3

𝑁4

 𝑑𝑥

𝑥𝑃
+

𝑥𝑃
−

=  𝑃𝑠𝑣 𝑘 .𝑟 + 𝑃𝑧𝑤 𝑘 .𝑟 

 
 
 
 
𝑁1 𝑥𝑃 

𝑁2 𝑥𝑃 

𝑁3 𝑥𝑃 

𝑁4 𝑥𝑃  
 
 
 

 (D.26) 

 𝒇𝑞𝑥 .𝑘
𝑒 =  𝑞 𝑥 .𝑘

 
 
 
 
𝑁1,𝑥

𝑁2,𝑥

𝑁3,𝑥

𝑁4,𝑥 
 
 
 

𝑑𝑥

𝐿𝑒

0

=  𝑞 𝑥 .𝑘

 
 
 
 
𝑁1,𝑥

𝑁2,𝑥

𝑁3,𝑥

𝑁4,𝑥 
 
 
 

𝑑𝑥

𝑥𝑃
+

𝑥𝑃
−

= 𝑃𝑥𝑢 𝑘 .𝑟

 
 
 
 
 
𝑁1,𝑥 𝑥𝑃 

𝑁2,𝑥 𝑥𝑃 

𝑁3,𝑥 𝑥𝑃 

𝑁4,𝑥 𝑥𝑃  
 
 
 
 

 (D.27) 

Where the modal loads are defined as 𝑞 𝑘 = 𝛿(𝑥 − 𝑥𝑃) 𝑃𝑠𝑣 𝑘 .𝑟 + 𝑃𝑧𝑤 𝑘 .𝑟 = 𝛿(𝑋 −

𝑋𝑃) 𝑃𝑌𝑉 𝑘 .𝑟 + 𝑃𝑍𝑊 𝑘 .𝑟  and 𝑞 𝑥 .𝑘 = 𝛿(𝑥 − 𝑥𝑃)𝑃𝑥𝑢 𝑘 .𝑟 = 𝛿(𝑋 − 𝑋𝑃)𝑃𝑋𝑈 𝑘 .𝑟  depending if 

the loads are defined in the local  𝑥, 𝑠, 𝑧 -coordinate system or the global  𝑋, 𝑌, 𝑍 -

coordinate system, see Section 4.6.2.2 

The finite element boundary load vector 𝒇𝑘 .𝑏  defined in (D.13) can be developed 

further by inserting the respective coordinates 𝑥 = 0 and 𝑥 = 𝐿𝑒  into the expressions: 

 

𝒇𝑏 .𝑘 = − 𝑵𝑇𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  0

𝐿
+  𝑵,𝑥

𝑇 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  0

𝐿
+  𝑵𝑇𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0

𝐿

−  𝑵𝑇𝑞 𝑥 .𝑘 0
𝐿

= −   𝑵𝑇 𝐿 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  𝐿  −  𝑵𝑇 0 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  0   

+   𝑵,𝑥
𝑇  𝐿 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  𝐿  −  𝑵,𝑥

𝑇  0 𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  0   

+   𝑵𝑇 𝐿 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 𝐿  −  𝑵𝑇 0 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0   

−   𝑵𝑇 𝐿 𝑞 𝑥 .𝑘 −  𝑵𝑇 0 𝑞 𝑥 .𝑘  

=

 
 
 
 
 
 
 
 
𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  0 − 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0 + 𝑞 𝑥 .𝑘 0 

−𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  0 

0
⋮
0

−𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥𝑥  𝐿 + 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 𝐿 − 𝑞 𝑥 .𝑘 𝐿 

𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  𝐿  
 
 
 
 
 
 
 

 

(D.28) 

Introduce the sectional forces and the boundary load vector is obtained as: 
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 𝒇𝑏 .𝑘 =

 
 
 
 
 
 
 
 
−𝑊 𝑘 ,𝑥 0 − 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 0 + 𝑞 𝑥 .𝑘 0 

𝑊 𝑘 0 
0
⋮
0

𝑊 𝑘 ,𝑥 𝐿 + 𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 𝐿 − 𝑞 𝑥 .𝑘 𝐿 

−𝑊 𝑘 𝐿  
 
 
 
 
 
 
 

 (D.29) 

 

The transformed and coupled GBT equation 

The transformed and coupled GBT differential equation is written on the form: 

 𝐸𝑪 𝝓 ,𝑥𝑥𝑥𝑥 − 𝐺𝑫 𝝓 ,𝑥𝑥 + 𝑩 𝝓 = 𝒒 − 𝒒 𝑥 ,𝑥  (D.30) 

Where the 𝑩 , 𝑪  and 𝑫  are the transformed GBT matrices. The 𝑩 - and 𝑪 -matrix are 

completely diagonalized in the simultaneous diagonalization process, see Section 

4.5.1. The 𝑫 -matrix will still have some non-zero off-diagonal terms which means 

that the differential equation (D.1) will still be coupled. 

 

The weak form 

The same procedure is carried out as for an uncoupled differential equation, namely 

rewriting the differential on the weak form. Multiply with an arbitrary weight-

function 𝒗 𝑥  which is defined in a vector and finally integrate over the length. The 

weak form of the coupled differential equation is obtained as: 

 

 𝒗,𝑥𝑥𝐸𝑪 𝝓 ,𝑥𝑥𝑑𝑥

𝐿

0

+  𝒗,𝑥𝐺𝑫 𝝓 ,𝑥𝑑𝑥

𝐿

0

+  𝒗𝑩 𝝓 𝑑𝑥

𝐿

0

=  𝒗𝒒 𝑑𝑥

𝐿

0

+  𝒗,𝑥𝒒 𝑥𝑑𝑥

𝐿

0

−  𝒗𝐸𝑪 𝝓 ,𝑥𝑥𝑥  0

𝐿
+  𝒗,𝑥𝐸𝑪 𝝓 ,𝑥𝑥  0

𝐿

+  𝒗𝐺𝑫 𝝓 ,𝑥 0

𝐿
−  𝒗𝒒 𝑥 0

𝐿 

(D.31) 

 

Finite element approximation 

Introduce the finite element approximation into the weak form. The amplitude 

function 𝝓  and the weight-function is approximated as for the uncoupled case, 

namely: 

 𝝓  𝑥 = 𝑵 𝑥 ∙ 𝒂𝑡𝑜𝑡  (D.32) 

 𝒗 𝑥 = 𝑵 𝑥 ∙ 𝒄 (D.33) 
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Insert the finite element approximation into weak form which gives: 

 

𝒄𝑇  𝐸𝑪  𝑵,𝑥𝑥
𝑇 𝑵,𝑥𝑥𝑑𝑥

𝐿

0

+ 𝐺𝑫  𝑵,𝑥
𝑇 𝑵,𝑥𝑑𝑥

𝐿

0

+ 𝑩  𝑵𝑇𝑵𝑑𝑥

𝐿

0

 𝒂𝑡𝑜𝑡

= 𝒄𝑇   𝑵𝑇𝒒 𝑑𝑥

𝐿

0

+  𝑵,𝑥
𝑇 𝒒 𝑥𝑑𝑥

𝐿

0

−  𝑵𝑇𝐸𝑪 𝝓 ,𝑥𝑥𝑥  0

𝐿

+  𝑵,𝑥
𝑇 𝐸𝑪 𝝓 ,𝑥𝑥  0

𝐿
+  𝑵𝑇𝐺𝑫 𝝓 ,𝑥 0

𝐿
−  𝑵𝑇𝒒 𝑥 0

𝐿  

(D.34) 

Since the 𝒄-vector only consists of arbitrary constants it can be cancelled out since the 

expression within the parentheses will hold any way. The final finite element 

approximation of the differential equation can then be written as: 

  𝑲𝐶 
𝑡𝑜𝑡 + 𝑲𝐷 

𝑡𝑜𝑡 + 𝑲𝐵 
𝑡𝑜𝑡  𝒂𝑡𝑜𝑡 = 𝒒𝑡𝑜𝑡  (D.35) 

The finite element stiffness matrices are here defined as: 

 

𝑲𝐶 
𝑡𝑜𝑡 =  

𝐸𝐶 11𝑲𝐶 
11 𝟎

⋱
𝟎 𝐸𝐶 𝑛𝑛𝑲𝐶 

𝑛𝑛
  (D.36) 

 

𝑲𝐷 
𝑡𝑜𝑡 =  

𝐺𝐷 11𝑲𝐷 
11 ⋯ 𝐺𝐷 1𝑛𝑲𝐷 

1𝑛

⋮ ⋱ ⋮
𝐺𝐷 𝑛1𝑲𝐷 

𝑛1 ⋯ 𝐺𝐷 𝑛𝑛𝑲𝐷 
𝑛𝑛

  (D.37) 

 

𝑲𝐵 
𝑡𝑜𝑡 =  

𝐵 11𝑲𝐵 
11 𝟎

⋱
𝟎 𝐵 𝑛𝑛𝑲𝐵 

𝑛𝑛
  (D.38) 

Where the sub-matrices 𝑲𝐶 
𝑘𝑘

, 𝑲𝐷 
𝑘𝑗

 and 𝑲𝐵 
𝑘𝑘

 are the global finite element stiffness 

matrices corresponding to deformation mode 𝑗 and 𝑘. The subscript and superscript𝑛 

stands for total number of deformation modes. The global stiffness matrices are 

assembled from the element stiffness matrices 𝑲𝐶 
𝑒 , 𝑲𝐷 

𝑒  and 𝑲𝐵 
𝑒  which are defined in 

(D.21), (D.22) and (D.23) respectively. 

The total solution vector 𝒂𝑡𝑜𝑡  contain all modal solutions 𝒂𝑘  which contains all 

degrees of freedom of the approximated amplitude function 𝜙 𝑘 . The vector is defined 

as: 

 𝒂𝑡𝑜𝑡 =  𝒂1 ⋯ 𝒂𝑛  𝑇 (D.39) 
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The total load vector 𝒒𝑡𝑜𝑡  is defined in the same way as the solution vector, namely 

each the modal load vectors are stated after each other as: 

 𝒒𝑡𝑜𝑡 =   𝒇𝑞 .1 + 𝒇𝑞𝑥 .1 + 𝒇𝑏 .1 ⋯  𝒇𝑞 .𝑛 + 𝒇𝑞𝑥 .𝑛 + 𝒇𝑏 .𝑛  
𝑇
 (D.40) 

Where the load vectors are defined as in (D.12) and (D.13). 

 

Extraction of modal results 

Once the equation system is solved and the solution vector 𝒂𝑘  is determined, the 

amplitude functions 𝜙 𝑘 𝑥  and 𝜙 𝑘 ,𝑥 𝑥  are obtained as: 

 𝜙 𝑘 𝑥 = 𝑵 𝑥 ∙ 𝒂𝑘  𝜙 𝑘 ,𝑥 𝑥 = 𝑵,𝑥 𝑥 ∙ 𝒂𝑘  (D.41) 

And the sectional forces 𝑊 𝑘 𝑥  and 𝑊 𝑘 ,𝑥 𝑥  are obtained as: 

 𝑊 𝑘 𝑥 = 𝐸𝐶 𝑘𝑵,𝑥𝑥  𝑥 ∙ 𝒂𝑘  𝑊 𝑘 ,𝑥 𝑥 = 𝐸𝐶 𝑘𝑵,𝑥𝑥𝑥  𝑥 ∙ 𝒂𝑘  (D.42) 
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Appendix E Beam theory analogies to GBT 

 

Table E.1: This table contain the analogies between the four fundamental beam 

theories and there corresponding quantities and how the notations is handled in the 

GBT for the corresponding deformation mode 𝑘 

Process Elongation Bending 1 Bending 2 
Warping 

Torsion 
GBT 

Deformation 𝑢 𝑣 𝑤 𝜗 𝜙 𝑘  

Unit warping 

function 
−1 −𝑦 −𝑧 𝜔 𝑢 𝑘  

Warping 

function 
𝑢 𝑢 = −𝑦𝑣,𝑥  𝑢 = −𝑧𝑤,𝑥  𝑢 = 𝜔𝜗,𝑥  𝑢𝑘 = 𝑢 𝑘𝜙 𝑘 ,𝑥  

Area 𝐴 =  𝑑𝐴
𝐴

    

𝐶 𝑖𝑘 =  𝑢 𝑖𝑢 𝑘𝑑𝐴
𝐴

 

 

𝐶 𝑘 =  𝑢 𝑘
2𝑑𝐴

𝐴

 

First moment of 

inertia 
 𝑆1 =  𝑦𝑑𝐴

𝐴

 𝑆2 =  𝑧𝑑𝐴
𝐴

  

Second moment 

of inertia 
 𝐼1 =  𝑦2𝑑𝐴

𝐴

 𝐼2 =  𝑧2𝑑𝐴
𝐴

  

Warping 

stiffness 

constant 

   𝐶𝑀 =  𝜔2𝑑𝐴
𝐴

 

Cross-sectional 

forces 
𝑁 =  𝜍𝑑𝐴

𝐴

 

𝑀1

=  𝜍𝑦𝑑𝐴
𝐴

 

𝑀2

=  𝜍𝑧𝑑𝐴
𝐴

 𝑊 = − 𝜍𝜔𝑑𝐴
𝐴

 

𝑊 𝑘

= − 𝜍𝑢 𝑘𝑑𝐴
𝐴

 

Elasticity 

(Hook’s law) 
𝑁 = 𝐸𝐴𝑢,𝑥  

𝑀1

= −𝐸𝐼1𝑣,𝑥𝑥  

𝑀2

= −𝐸𝐼2𝑤,𝑥𝑥  𝑊 = −𝐸𝐶𝑀𝜗,𝑥𝑥  𝑊 𝑘 = −𝐸𝐶 𝑘𝜙 𝑘 ,𝑥𝑥  

Normal stresses 𝜍𝑁 =
𝑁

𝐴
 𝜍1 =

𝑀1

𝐼1
𝑦 𝜍2 =

𝑀2

𝐼2
𝑧 𝜍𝜗 = −

𝑊

𝐶𝑀
𝜔 𝜍𝑘 = −

𝑊 𝑘

𝐶 𝑘
𝑢 𝑘  

Shear stresses  

𝜏1 𝑠 

=
𝑄1𝑆1

𝐼1𝑡 𝑠 
 

𝜏2 𝑠 

=
𝑄2𝑆2

𝐼2𝑡 𝑠 
 

𝜏𝜗  𝑠 

=
𝑊,𝑥  𝜔𝑑𝐴

𝑠

0

𝐶𝑀𝑡 𝑠 
 

𝜏𝑘 𝑠 

=
𝑊 𝑘 ,𝑥  𝑢 𝑘𝑑𝐴

𝑠

0

𝐶 𝑘𝑡 𝑠 
 

Differantial 

equation 

 𝐸𝐴𝑢,𝑥 ,𝑥

= −𝑞𝑥  

 𝐸𝐼1𝑣,𝑥𝑥  ,𝑥𝑥

= 𝑞1 

 𝐸𝐼2𝑤,𝑥𝑥  ,𝑥𝑥

= 𝑞2 

 𝐸𝐶𝑀𝜗,𝑥𝑥  ,𝑥𝑥

−  𝐺𝐼𝐷𝜗,𝑥 ,𝑥

= 𝑚𝐷  

 𝐸𝐶 𝑘𝜙 𝑘,𝑥𝑥  ,𝑥𝑥

−  𝐺𝐷 𝑘𝜙 𝑘 ,𝑥 ,𝑥

+ 𝐵 𝑘𝜙 𝑘
= 𝑞 𝑘 − 𝑞 𝑥 .𝑘 ,𝑥  
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Appendix F Application of GBT– Results 

 

This appendix presents the numerical results of the Z-profile from the three major 

steps in GBT, namely the cross-section analysis, the member analysis and the GBT 

solution. The cross-section analysis is a fundamental part of GBT, therefore this step 

is carried out twice where one case is by only considering natural nodes and one case 

when three intermediate nodes are imposed. In the member analysis and GBT solution 

there is no difference in procedure of how the cross-section is discretized, hence only 

the results for the case of intermediate nodes are presented. But instead two cases of 

solutions of the GBT fundamental equation is tabulated, namely the solution to the 

uncoupled and the solution to the coupled equation. 

 

Cross-sectional analysis 

The cross-section analysis is carried out for two cases, one for only natural nodes and 

one for the case of three imposed intermediate nodes. 

 

Only natural nodes considered 

Table F.1 to Table F.6 presents each deformation mode in terms of the global nodal 

𝑈 𝑟 , 𝑉 𝑟  and 𝑊 𝑟  displacement components, the local nodal transverse bending moment 

𝑚 𝑠.𝑟 , the element 𝑣 𝑟 , 𝑤 𝑟 , 𝜗 𝑟  displacement components together with the element shear 

force 𝑆 𝑟 . Note that the same subscript  ∙ 𝑟  is used to denote either which node or 

which plate element the corresponding value is associated with. The table also 

contains the diagonal terms in the transformed GBT 𝑪 -, 𝑫 - and 𝑩 -matrices which 

then spans the decoupled GBT fundamental equation.  

 

Table F.1: Characteristics of deformation mode 1 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 -1 0 0 0 0 0 0 -0.2891 

2 -1 0 0 0 0 0 0 -6.1357 

3 -1 0 0 0 0 0 0 -97.9350 

4 -1 0 0 0 0 0 0 -51.4290 

5 -1 0 0 0 0 0 0 -13.7110 

6 -1 0 0 - - - 0 - 

𝐶 1 = 396.6300 𝐷 1 = 0 𝐵 1 = 0 

 

Table F.2: Characteristics of deformation mode 2 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 97.9670 -0.2292 0.9734 -0.9734 0.2292 0 0 0.0047 

2 111.5900 -0.2292 0.9734 0.2292 0.9734 0 0 0.1044 

3 99.6780 -0.2292 0.9734 0.9734 -0.2292 0 0 0.9827 

4 -95.0000 -0.2292 0.9734 0.2292 0.9734 0 0 0.1248 

5 -108.5200 -0.2292 0.9734 -0.9734 0.2292 0 0 0.0046 

6 -94.8930 -0.2292 0.9734 - - - 0 - 

𝐶 2 = 2485600.0000 𝐷 2 = 0 𝐵 2 = 0 
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Table F.3: Characteristics of deformation mode 3 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 31.8320 -0.9734 -0.2292 0.2292 0.9734 0 0 0.0318 

2 28.6240 -0.9734 -0.2292 0.9734 -0.2292 0 0 0.4003 

3 -21.9920 -0.9734 -0.2292 -0.2292 -0.9734 0 0 -0.1603 

4 23.8400 -0.9734 -0.2292 0.9734 -0.2292 0 0 0.5728 

5 -33.5900 -0.9734 -0.2292 0.2292 0.9734 0 0 0.0370 

6 -36.7990 -0.9734 -0.2292 - - - 0 - 

𝐶 3 = 110750.0000 𝐷 3 = 0 𝐵 3 = 0 

 

Table F.4: Characteristics of deformation mode 4 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 5292.8000 -103.7700 -54.0660 54.0660 110.7700 1 0 0.0003 

2 4535.9000 -117.7700 -54.0660 117.7700 -28.0660 1 0 0.0048 

3 -1588.1000 -117.7700 -2.0656 -2.0656 -17.7680 1 0 0.0001 

4 -1174.9000 82.2320 -2.0656 -82.2320 27.4340 1 0 -0.0048 

5 3676.7000 82.2320 56.9340 -56.9340 -75.2320 1 0 -0.0003 

6 4473.8000 68.2320 56.9340 - - - 0 - 

𝐶 4 = 1685100000 𝐷 4 = 180.9800 𝐵 4 = 0 

 

Table F.5: Characteristics of deformation mode 5 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 -0.3870 -0.0134 0.0358 -0.0358 0.0081 -0.0007 0 -3.5555 

2 0.1146 -0.0029 0.0358 0.0029 0.0177 -0.0007 0 -1.8953 

3 -0.0348 -0.0029 -0.0004 -0.0004 -0.0043 0 -0.1868 -12.8570 

4 0.0528 -0.0058 -0.0004 0.0058 0.0458 0.0016 -0.5431 1.7064 

5 -0.2886 -0.0058 0.0920 -0.0920 0.0180 0.0017 0 -9.2301 

6 1 -0.0302 0.0920 - - - 0 - 

𝐶 5 = 7.0868 𝐷 5 = 0.0002 𝐵 5 = 0.0010 

 

Table F.6: Characteristics of deformation mode 6 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 1 0.0351 -0.0941 0.0941 -0.0210 0.0020 0 8.9386 

2 -0.3177 0.0069 -0.0941 -0.0069 -0.0470 0.0018 0 -3.2873 

3 0.0395 0.0069 0.0002 0.0002 0.0025 0 0.7175 5.5176 

4 -0.0002 -0.0019 0.0002 0.0019 0.0178 0.0006 -0.3097 3.3915 

5 -0.1132 -0.0019 0.0353 -0.0353 0.0068 0.0007 0 -3.4484 

6 0.3811 -0.0116 0.0353 - - - 0 - 

𝐶 6 = 7.1932 𝐷 6 = 0.0002 𝐵 6 = 0.0015 
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Imposition of three intermediate nodes 

Table F.7 to Table F.17 below present the characteristics for each deformation mode, 

in the same fashion as for the case of natural nodes. Note that for deformation mode 

𝑘 = 1, 2, 3, 4 the GBT 𝐶 , 𝐷  and 𝐵  constants are identical to the case when only natural 

nodes are considered. Node 𝑟 = 3, 5, 7 are the imposed intermediate nodes. 

 

Table F.7: Characteristics of deformation mode 1 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 -1 0 0 0 0 0 0 -0.2891 

2 -1 0 0 0 0 0 0 -2.0708 

3 -1 0 0 0 0 0 0 -4.0649 

4 -1 0 0 0 0 0 0 -34.2180 

5 -1 0 0 0 0 0 0 -63.7170 

6 -1 0 0 0 0 0 0 -24.4310 

7 -1 0 0 0 0 0 0 -26.9980 

8 -1 0 0 0 0 0 0 -13.7110 

9 -1 0 0 - - - 0 - 

𝐶 1 = 396.63 𝐷 1 = 0 𝐵 1 = 0 

 

Table F.8: Characteristics of deformation mode 2 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 -97.9670 0.2292 -0.9734 0.9734 -0.2292 0 0 -0.0047 

2 -111.590 0.2292 -0.9734 -0.2292 -0.9734 0 0 -0.0354 

3 -105.640 0.2292 -0.9734 -0.2292 -0.9734 0 0 -0.0690 

4 -99.6780 0.2292 -0.9734 -0.9734 0.2292 0 0 -0.4858 

5 -2.3388 0.2292 -0.9734 -0.9734 0.2292 0 0 -0.4969 

6 95.0000 0.2292 -0.9734 -0.2292 -0.9734 0 0 -0.0832 

7 101.7600 0.2292 -0.9734 -0.2292 -0.9734 0 0 -0.0415 

8 108.5200 0.2292 -0.9734 0.9734 -0.2292 0 0 -0.0046 

9 94.8930 0.2292 -0.9734 - - - 0 - 

𝐶 2 = 2485600.0000 𝐷 2 = 0 𝐵 2 = 0 

 

Table F.9: Characteristics of deformation mode 3 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 31.8320 -0.9734 -0.2292 0.2292 0.9734 0 0 0.0318 

2 28.6240 -0.9734 -0.2292 0.9734 -0.2292 0 0 0.1883 

3 3.3160 -0.9734 -0.2292 0.9734 -0.2292 0 0 0.2120 

4 -21.9920 -0.9734 -0.2292 -0.2292 -0.9734 0 0 -0.1289 

5 0.9237 -0.9734 -0.2292 -0.2292 -0.9734 0 0 -0.0313 

6 23.8400 -0.9734 -0.2292 0.9734 -0.2292 0 0 0.3088 

7 -4.8754 -0.9734 -0.2292 0.9734 -0.2292 0 0 0.2640 

8 -33.5900 -0.9734 -0.2292 0.2292 0.9734 0 0 0.0370 

9 -36.7990 -0.9734 -0.2292 - - - 0 - 

𝐶 3 = 110750.0 𝐷 3 = 0 𝐵 3 = 0 
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Table F.10: Characteristics of deformation mode 4 
Node 

𝑟 
𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 5292.8000 -103.7700 -54.0660 54.0660 110.7700 1 0 0.0003 

2 4535.9000 -117.7700 -54.0660 117.7700 -41.0660 1 0 0.0021 

3 1473.9000 -117.7700 -28.0660 117.7700 -15.0660 1 0 0.0028 

4 -1588.1000 -117.7700 -2.0656 -2.0656 -67.7680 1 0 0.0048 

5 -1381.5000 -17.7680 -2.0656 -2.0656 32.2320 1 0 -0.0048 

6 -1174.9000 82.2320 -2.0656 -82.2320 12.6840 1 0 -0.0028 

7 1250.9000 82.2320 27.4340 -82.2320 42.1840 1 0 -0.0020 

8 3676.7000 82.2320 56.9340 -56.9340 -75.2320 1 0 -0.0003 

9 4473.8000 68.2320 56.9340 - - - 0 - 

𝐶 4 = 685100000.0000 𝐷 4 = 180.9800 𝐵 4 = 0 

 

Table F.11: Characteristics of deformation mode 5 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 -0.6897 -0.0235 0.0643 -0.0643 0.0142 -0.0013 0 -4.9364 

2 0.2101 -0.0050 0.0643 0.0050 0.0473 -0.0013 0 -3.9871 

3 0.0807 -0.0050 0.0304 0.0050 0.0149 -0.0012 -0.1358 3.0595 

4 -0.0488 -0.0050 -0.0005 -0.0005 -0.0349 -0.0006 -0.2727 -9.1802 

5 0.0047 -0.0649 -0.0005 -0.0005 -0.0354 0.0006 -0.3679 -3.0523 

6 0.0583 -0.0059 -0.0005 0.0059 0.0210 0.0015 -0.4529 6.8407 

7 -0.1148 -0.0059 0.0425 0.0059 0.0673 0.0017 -0.2257 -6.0662 

8 -0.2878 -0.0059 0.0920 -0.0920 0.0179 0.0017 0 -7.2285 

9 1 -0.0298 0.0920 - - - 0 - 

𝐶 5 = 9.0532 𝐷 5 = 0.0002 𝐵 5 = 0.0011 

 

Table F.12: Characteristics of deformation mode 6 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 1 0.0361 -0.0943 0.0943 -0.0215 0.0021 0 6.9301 

2 -0.3199 0.0068 -0.0943 -0.0068 -0.0680 0.0020 0.0001 4.4934 

3 -0.1428 0.0068 -0.0416 -0.0068 -0.0208 0.0016 0.4964 -7.6975 

4 0.0343 0.0068 0.0001 0.0001 0.0128 0.0001 0.9960 -14.1560 

5 0.0241 0.0188 0.0001 0.0001 0.0075 -0.0002 0.1070 16.2530 

6 0.0139 -0.0037 0.0001 0.0037 0.0132 0.0009 -0.7894 6.7938 

7 -0.0941 -0.0037 0.0263 0.0037 0.0449 0.0013 -0.3938 -3.5467 

8 -0.2021 -0.0037 0.0636 -0.0636 0.0130 0.0013 0 -4.8424 

9 0.6880 -0.0222 0.0636 - - - 0 - 

𝐶 6 = 9.2657 𝐷 6 = 0.0002 𝐵 6 = 0.0028 

 

Table F.13: Characteristics of deformation mode 7 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 -0.0940 -0.0527 0.0093 -0.0093 0.0268 -0.0037 0 -0.4700 

2 0.0358 -0.0009 0.0093 0.0009 -0.0272 -0.0028 0.1276 -0.0967 

3 0.0133 -0.0009 -0.0638 0.0009 -0.0319 0.0024 -6.7344 0.7529 

4 -0.0092 -0.0009 -0.0001 -0.0001 0.4996 0.0100 -10.5570 -0.2682 

5 -0.0003 1 -0.0001 -0.0001 0.4997 -0.0100 14.3830 -0.5431 

6 0.0086 -0.0006 -0.0001 0.0006 -0.0406 -0.0027 -9.9889 0.7314 

7 -0.0099 -0.0006 -0.0811 0.0006 -0.0367 0.0030 -6.5469 -0.0813 

8 -0.0284 -0.0006 0.0077 -0.0077 0.0286 0.0040 0.1312 -0.4027 

9 0.0794 -0.0565 0.0077 - - - 0 - 

𝐶 7 = 12.3800 𝐷 7 = 0.0183 𝐵 7 = 0.5131 
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Table F.14: Characteristics of deformation mode 8 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 -0.0357 -0.4555 0.0035 -0.0035 0.2279 -0.0325 0 -0.1864 

2 0.0128 -0.0003 0.0035 0.0003 -0.2755 -0.0215 0.9819 -0.0608 

3 0.0057 -0.0003 -0.5545 0.0003 -0.2772 0.0213 -81.5860 0.3175 

4 -0.0013 -0.0003 0 0 0.0425 0.0009 21.2490 0.6672 

5 -0.0015 0.0853 0 0 0.0428 -0.0009 5.4958 -0.8074 

6 -0.0017 0.0003 0 -0.0003 0.5000 0.0339 -40.0780 -0.4216 

7 0.0069 0.0003 1 -0.0003 0.4976 -0.0341 115.5600 0.1654 

8 0.0155 0.0003 -0.0047 0.0047 -0.3795 -0.0542 3.5363 0.2715 

9 -0.0505 0.7587 -0.0047 - - - 0 - 

𝐶 8 = 12.0220 𝐷 8 = 0.1475 𝐵 8 = 13.2410 

 

Table F.15: Characteristics of deformation mode 9 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 0.0397 0.9210 -0.0038 0.0038 -0.4607 0.0658 0 0.2597 

2 -0.0131 0.0003 -0.0038 -0.0003 0.4981 0.0386 14.7720 0.1497 

3 -0.0056 0.0003 1 -0.0003 0.5000 -0.0385 147.6000 -0.3043 

4 0.0019 0.0003 0 0 0.1887 0.0038 -57.3800 -0.4220 

5 0.0003 0.3772 0 0 0.1887 -0.0038 28.1800 -0.0351 

6 -0.0013 0.0001 0 -0.0001 0.3741 0.0254 -41.4090 -0.1383 

7 0.0029 0.0001 0.7483 -0.0001 0.3730 -0.0254 85.5120 0.1623 

8 0.0070 0.0001 -0.0023 0.0023 -0.3320 -0.0474 17.6470 0.1724 

9 -0.0255 0.6638 -0.0023 - - - 0 - 

𝐶 9 = 9.7490 𝐷 9 = 0.1869 𝐵 9 = 20.3500 

 

Table F.16: Characteristics of deformation mode 10 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 -0.0003 0.4700 0.0001 -0.0001 -0.2350 0.0336 0 -0.0005 

2 0.0006 0 0.0001 0 0.0156 0.0012 79.8620 0.2766 

3 0.0003 0 0.0312 0 0.0156 -0.0012 -15.6010 0.5023 

4 -0.0001 0 0 0 0.0142 0.0003 -0.4151 1.2581 

5 -0.0002 0.0284 0 0 0.0142 -0.0003 2.3596 -1.3419 

6 -0.0004 0 0 0 0.0239 0.0016 -7.9750 -1.0010 

7 0.0004 0 0.0477 0 0.0238 -0.0016 50.1090 -0.5926 

8 0.0012 0 -0.0001 0.0001 0.5000 0.0714 -172.170 0.0041 

9 -0.0006 -1 -0.0001 - - - 0 - 

𝐶 10  = 0.9892 𝐷 10 = 0.0558 𝐵 10 = 15.3050 

 

Table F.17: Characteristics of deformation mode 11 

Node 𝑟 𝑈 𝑟  𝑉 𝑟  𝑊 𝑟  𝑣 𝑟  𝑤 𝑟  𝜗 𝑟  𝑚 𝑠.𝑟  𝑆 𝑟  

1 0.0032 -1 -0.0004 0.0004 0.5000 -0.0714 0 0.1758 

2 -0.0022 0.0001 -0.0004 -0.0001 0.0378 0.0029 -191.640 -0.4898 

3 -0.0007 0.0001 0.0760 -0.0001 0.0380 -0.0029 61.0680 -1.1239 

4 0.0007 0.0001 0 0 0.0311 0.0006 -10.9940 -0.7518 

5 0.0001 0.0622 0 0 0.0311 -0.0006 5.2788 0.7850 

6 -0.0005 0 0 0 0.0387 0.0026 -7.8239 -0.3973 

7 0.0002 0 0.0774 0 0.0386 -0.0026 30.4620 -0.2023 

8 0.0008 0 -0.0002 0.0002 0.2148 0.0307 -81.1130 0.0741 

9 -0.0013 -0.4297 -0.0002 - - - 0 - 

𝐶 11 = 0.9241 𝐷 11 = 0.0541 𝐵 11 = 17.5440 
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Member analysis 

Here follows the solutions to the uncoupled and coupled GBT fundamental equation 

in terms of the modal amplitude function 𝜙 𝑘 , 𝜙 𝑘 ,𝑥  and in terms of the modal sectional 

force 𝑊 𝑘 , 𝑊 𝑘 ,𝑥 . 

 

Uncoupled solution 

The uncoupled solution is tabulated in terms of the modal amplitude function 𝜙 𝑘 𝑋  

and 𝜙 𝑘 .𝑥 𝑋  in Table F.18 and in terms of the sectional force 𝑊 𝑘 𝑋  and 𝑊 𝑘 ,𝑥 𝑋  in  

Table F.19. The values are given at four different positions along the beam; at the first 

support, in the middle and at the quarter points. Note that 𝑊 𝑘 𝑋  and 𝑊 𝑘 .𝑥 𝑋  for 

deformation mode two and three can be interpret as the moment and shear distribution 

along the member respectively. 

 

Table F.18: The solution to the uncoupled GBT fundamental equation is in this table 

expressed in terms of the modal amplitude function 𝜙 𝑘 𝑋  and its first ordered 

derivative 𝜙 𝑘 ,𝑥 𝑋  at the sections 𝑋 = 0, 0.25𝐿, 0.5𝐿 and 0.75𝐿. 

Mode 𝑘 
𝜙 𝑘 𝑋  𝜙 𝑘 .𝑥 𝑋  

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 0 1.29E-12 2.39E-12 1.35E-12 0 3.02E-15 -1.11E-25 -2.99E-15 

2 0 4.36E-01 8.10E-01 4.56E-01 0 1.02E-03 -1.33E-14 -1.01E-03 

3 0 2.30E00 4.28E00 2.41E00 0 5.41E-03 -1.24E-14 -5.35E-03 

4 0 1.35E-03 2.51E-03 1.41E-03 0 3.17E-06 -3.66E-17 -3.14E-06 

5 0 1.77E00 2.06E00 1.81E00 0 1.70E-03 -7.62E-15 -1.56E-03 

6 0 -1.52E-01 -1.54E-01 -1.54E-01 0 -6.92E-05 -3.90E-16 5.76E-05 

7 0 1.50E-03 1.50E-03 1.50E-03 0 -1.03E-09 1.68E-21 6.29E-10 

8 0 -1.02E-04 -1.02E-04 -1.02E-04 0 -4.27E-16 -5.77E-22 1.83E-16 

9 0 -2.15E-04 -2.15E-04 -2.15E-04 0 -5.02E-16 0 2.16E-16 

10 0 -1.35E-05 -1.35E-05 -1.35E-05 0 -1.33E-22 4.43E-23 4.43E-23 

11 0 -2.33E-05 -2.33E-05 -2.33E-05 0 -9.02E-23 -9.02E-23 -9.02E-23 

 

 

Table F.19: The solution to the uncoupled GBT fundamental equation is in this table 

expressed in terms of the modal sectional force 𝑊 𝑘 𝑋  and its first ordered derivative 

𝑊 𝑘 ,𝑥 𝑋  at the sections 𝑋 = 0, 0.25𝐿, 0.5𝐿 and 0.75𝐿. 

Mode 𝑘 
𝑊 𝑘 𝑋  𝑊 𝑘 .𝑥 𝑋  

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 -1.11E-09 1.10E-10 5.54E-10 1.39E-10 2.75E-12 1.41E-12 -2.31E-14 -1.41E-12 

2 -2.35E06 2.34E05 1.18E06 2.94E05 5.83E03 2.99E03 -4.90E01 -2.99E03 

3 -5.53E05 5.51E04 2.77E05 6.92E04 1.37E03 7.03E02 -1.15E01 -7.03E02 

4 -4.95E06 4.95E05 2.47E06 6.20E05 1.23E04 6.27E03 -1.02E02 -6.27E03 

5 -8.94E01 1.40E01 4.59E-01 1.34E01 6.46E-01 -3.26E-02 7.26E-04 3.26E-02 

6 1.12E01 -1.18E00 1.19E-01 -1.07E00 -9.75E-02 5.66E-03 -2.18E-05 -5.66E-03 

7 -1.68E00 -6.30E-05 -7.08E-10 -4.19E-05 5.06E-02 1.06E-06 6.09E-14 -1.06E-06 

8 5.08E-01 -4.37E-11 -6.80E-16 -1.79E-11 -2.82E-02 1.29E-12 2.19E-17 -1.29E-12 

9 1.13E00 -4.15E-11 2.39E-16 -1.70E-11 -6.88E-02 1.22E-12 -3.58E-17 -1.22E-12 

10 1.53E-02 -9.20E-19 9.20E-19 1.84E-18 -1.18E-03 8.25E-19 -1.38E-19 -2.76E-19 

11 2.69E-02 -1.75E-18 -1.75E-18 -1.75E-18 -2.12E-03 2.63E-19 2.63E-19 2.63E-19 
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Coupled solution 

The coupled solution is tabulated in terms of the modal amplitude function 𝜙 𝑘 𝑋  and 

𝜙 𝑘 .𝑥 𝑋  in Table F.20 and in terms of the sectional force 𝑊 𝑘 𝑋  and 𝑊 𝑘 ,𝑥 𝑋  in 

 

Table F.21. The values are given at the same four sections along the beam as for the 

uncoupled case so that the coupling influence can be evaluated. 

 

Table F.20: The solution to the coupled GBT fundamental equation is in this table 

expressed in terms of the modal amplitude function 𝜙 𝑘 𝑋  and its first ordered 

derivative 𝜙 𝑘 ,𝑥 𝑋  at the sections 𝑋 = 0, 0.25𝐿, 0.5𝐿 and 0.75𝐿. 

Mode 𝑘 
𝜙 𝑘 𝑋  𝜙 𝑘 .𝑥 𝑋  

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 0 1.26E-12 2.34E-12 1.32E-12 0 2.96E-15 -6.05E-26 -2.93E-15 

2 0 4.36E-01 8.10E-01 4.56E-01 0 1.02E-03 2.06E-14 -1.01E-03 

3 0 2.30E00 4.28E00 2.41E00 0 5.41E-03 -3.77E-14 -5.35E-03 

4 0 1.35E-03 2.51E-03 1.41E-03 0 3.17E-06 6.45E-17 -3.14E-06 

5 0 1.73E00 1.83E00 1.75E00 0 1.27E-03 4.73E-14 -1.12E-03 

6 0 -1.46E-01 -1.44E-01 -1.46E-01 0 -4.96E-05 -9.19E-15 3.94E-05 

7 0 2.83E-03 2.16E-03 2.81E-03 0 -1.09E-06 7.05E-17 1.32E-06 

8 0 -9.01E-05 -5.78E-05 -8.80E-05 0 1.05E-07 1.26E-17 -1.01E-07 

9 0 -2.02E-04 -2.14E-04 -2.03E-04 0 -2.93E-08 9.52E-18 3.04E-08 

10 0 -1.86E-05 3.27E-06 -1.74E-05 0 5.94E-08 -1.17E-17 -5.96E-08 

11 0 -9.04E-06 1.55E-04 1.22E-06 0 5.20E-07 -2.86E-17 -5.06E-07 

 

 

Table F.21: The solution to the coupled GBT fundamental equation is in this table 

expressed in terms of the modal sectional force 𝑊 𝑘 𝑋  and its first ordered derivative 

𝑊 𝑘 ,𝑥 𝑋  at the sections 𝑋 = 0, 0.25𝐿, 0.5𝐿 and 0.75𝐿. 

Mode 𝑘 
𝑊 𝑘 𝑋  𝑊 𝑘 .𝑥 𝑋  

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 -1.08E-09 1.08E-10 5.42E-10 1.35E-10 2.69E-12 1.38E-12 -2.27E-14 -1.38E-12 

2 -2.35E06 2.34E05 1.18E06 2.94E05 5.83E03 2.99E03 -4.90E01 -2.99E03 

3 -5.53E05 5.51E04 2.77E05 6.92E04 1.37E03 7.03E02 -1.15E01 -7.03E02 

4 -4.95E06 4.94E05 2.47E06 6.20E05 1.23E04 6.26E03 -1.02E02 -6.26E03 

5 -9.71E01 1.50E01 -1.85E00 1.41E01 7.42E-01 -4.41E-02 8.46E-04 4.41E-02 

6 1.20E01 -1.05E00 1.22E-01 -9.38E-01 -1.14E-01 5.78E-03 -1.19E-05 -5.78E-03 

7 3.96E00 3.25E-02 -9.17E-03 2.54E-02 -1.54E-01 -3.55E-04 -1.23E-06 3.55E-04 

8 9.58E-01 4.85E-04 4.34E-04 4.70E-04 -5.36E-02 -7.90E-07 -5.74E-09 7.90E-07 

9 1.53E00 1.44E-04 -1.15E-04 9.52E-05 -9.45E-02 -2.44E-06 -1.14E-08 2.44E-06 

10 7.03E-03 -3.60E-06 2.51E-05 7.29E-08 -5.84E-05 1.84E-07 2.80E-10 -1.84E-07 

11 2.85E-01 1.25E-04 1.64E-04 1.34E-04 -2.20E-02 4.10E-07 2.16E-09 -4.10E-07 

 

GBT solution 

Here follows the numerical values of the GBT results. The nodal 𝑈𝑟 , 𝑉𝑟  and 𝑊𝑟  

displacements and stresses 𝜍𝑥  and 𝜏𝑥𝑠  are defined at the quarter sections 𝑋 = 0, 

0.25𝐿, 0.5𝐿 and 0.75𝐿 for both the uncoupled and the coupled GBT fundamental 

equation. The nodal displacements are tabulated in Table F.22, Table F.23 and Table 

F.24. The nodal stresses are tabulated in Table F.25. 
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Table F.22: The total nodal 𝑈𝑟 -displacements at the sections 𝑋 = 0, 0.25𝐿, 0.5𝐿 and 

0.75𝐿 calculated for both the uncoupled and coupled GBT fundamental equation 

expressed in [mm]. 

Node 𝑟 
𝑈𝑟 𝑋  uncoupled 𝑈𝑟 𝑋  coupled 

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 0 0.0870 0 -0.0866 0 0.0873 0 -0.0869 

2 0 0.0551 0 -0.0548 0 0.0549 0 -0.0546 

3 0 -0.0850 0 0.0845 0 -0.0850 0 0.0846 

4 0 -0.2250 0 0.2238 0 -0.2249 0 0.2237 

5 0 -0.0018 0 0.0018 0 -0.0018 0 0.0018 

6 0 0.2214 0 -0.2203 0 0.2214 0 -0.2202 

7 0 0.0812 0 -0.0807 0 0.0812 0 -0.0808 

8 0 -0.0591 0 0.0588 0 -0.0590 0 0.0586 

9 0 -0.0857 0 0.0853 0 -0.0861 0 0.0857 

 

Table F.23: The total nodal 𝑉𝑟-displacements at the sections 𝑋 = 0, 0.25𝐿, 0.5𝐿 and 

0.75𝐿 calculated for both the uncoupled and coupled GBT fundamental equation 

expressed in [mm]. 

Node 𝑟 
𝑉𝑟 𝑋  uncoupled 𝑉𝑟 𝑋  coupled 

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 0 -2.3816 -4.2976 -2.4352 0 -2.3800 -4.2916 -2.4335 

2 0 -2.3631 -4.2898 -2.4168 0 -2.3626 -4.2883 -2.4163 

3 0 -2.3631 -4.2898 -2.4168 0 -2.3626 -4.2883 -2.4163 

4 0 -2.3631 -4.2898 -2.4168 0 -2.3626 -4.2883 -2.4163 

5 0 -2.3325 -4.1627 -2.3841 0 -2.3275 -4.1463 -2.3787 

6 0 -2.0867 -3.7878 -2.1341 0 -2.0863 -3.7863 -2.1337 

7 0 -2.0867 -3.7878 -2.1341 0 -2.0863 -3.7863 -2.1337 

8 0 -2.0867 -3.7878 -2.1341 0 -2.0863 -3.7863 -2.1337 

9 0 -2.1464 -3.8698 -2.1946 0 -2.1449 -3.8629 -2.1930 

 

Table F.24: The total nodal 𝑊𝑟-displacements at the sections 𝑋 = 0, 0.25𝐿, 0.5𝐿 and 

0.75𝐿 calculated for both the uncoupled and coupled GBT fundamental equation 

expressed in [mm]. 

Node 𝑟 
𝑊𝑟 𝑋  uncoupled 𝑊𝑟 𝑋  coupled 

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 0 -0.9188 -1.7589 -0.9416 0 -0.9228 -1.7749 -0.9459 

2 0 -0.9188 -1.7589 -0.9416 0 -0.9228 -1.7749 -0.9459 

3 0 -0.9519 -1.7719 -0.9744 0 -0.9538 -1.7795 -0.9765 

4 0 -0.9774 -1.7766 -0.9997 0 -0.9774 -1.7764 -0.9996 

5 0 -0.9774 -1.7766 -0.9997 0 -0.9774 -1.7764 -0.9996 

6 0 -0.9774 -1.7766 -0.9997 0 -0.9774 -1.7764 -0.9996 

7 0 -0.8639 -1.6181 -0.8846 0 -0.8661 -1.6278 -0.8869 

8 0 -0.7399 -1.4473 -0.7589 0 -0.7444 -1.4684 -0.7637 

9 0 -0.7399 -1.4473 -0.7589 0 -0.7444 -1.4684 -0.7637 
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Table F.25: The total nodal longitudinal normal stress 𝜍𝑥 .𝑟at the sections 𝑋 = 0, 

0.25𝐿, 0.5𝐿 and 0.75𝐿 calculated for both the uncoupled and coupled GBT 

fundamental equation expressed in [MPa]. 

Node𝑟 
𝜍𝑥 .𝑟 𝑋  uncoupled 𝜍𝑥 .𝑟 𝑋  coupled 

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 -73.8960 8.0503 40.9280 9.1137 -73.2450 7.9999 41.1000 9.0720 

2 -53.2770 6.0728 25.3910 6.7030 -53.4570 6.0838 25.3330 6.7112 

3 78.0180 -8.7388 -39.5020 -9.7384 77.9440 -8.7342 -39.5230 -9.7349 

4 209.3100 -23.5500 -104.3900 -26.1800 209.3500 -23.5520 -104.3800 -26.1810 

5 1.6345 -0.1828 -0.8196 -0.2035 1.6316 -0.1818 -0.8204 -0.2025 

6 -206.0400 23.1850 102.7600 25.7730 -206.0800 23.1890 102.7400 25.7760 

7 -74.5110 8.3300 37.7570 9.2855 -74.4270 8.3186 37.7860 9.2756 

8 57.0210 -6.5248 -27.2420 -7.2019 57.2300 -6.5515 -27.1660 -7.2249 

9 71.9160 -7.6693 -40.4560 -8.7229 71.1530 -7.5693 -40.7090 -8.6355 
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Appendix G Application of GBT - Matrices 

This appendix present all matrices used in the cross-section analysis of the Z-profile 

defined in Section 6.1. The matrices are expressed for both the cases when only 

natural nodes are considered as well as the imposition of three intermediate nodes. 

 

Natural nodes 

𝑭 𝑤1 =

 
 
 
 
 
−0.0212 0.0406 −0.0209 0.0013 0.0003 −0.0002
−0.0714 0.0714 0 0 0 0

0 −0.0192 0.0192 0 0 0
0 0 0.0050 −0.0050 0 0
0 0 0 0.0169 −0.0169 0  

 
 
 
 

 

𝑭 𝑤2 =

 
 
 
 
 

0 0.0192 −0.0192 0 0 0
0 0 0.0050 −0.0050 0 0
0 0 0 −0.0169 0.0169 0
0 0 0 0 −0.0714 0.0714

0.0003 −0.0004 −0.0011 0.0184 −0.0360 0.0189 
 
 
 
 

 

𝑭 𝑣 =

 
 
 
 
 
0.0714 −0.0714 0 0 0 0

0 0.0192 −0.0192 0 0 0
0 0 0.0050 −0.0050 0 0
0 0 0 0.0169 −0.0169 0
0 0 0 0 0.0714 −0.0714 

 
 
 
 

 

𝑭 𝑤 =

 
 
 
 
 
−0.0106 0.0299 −0.0200 0.0007 0.0002 −0.0001
−0.0357 0.0357 0.0025 −0.0025 0 0

0 −0.0096 0.0096 −0.0085 0.0085 0
0 0 0.0025 −0.0025 −0.0357 0.0357

0.0001 −0.0002 −0.0006 0.0177 −0.0265 0.0095  
 
 
 
 

 

𝑭 𝜗 =

 
 
 
 
 
0.0015 −0.0015 0.0001 −0.0001 0 0
0.0014 −0.0014 0.0001 −0.0001 0 0

0 0.0001 −0.0001 −0.0001 0.0001 0
0 0 −0.0001 0.0001 −0.0012 0.0012
0 0 −0.0001 0.0001 −0.0014 0.0014 

 
 
 
 

 

Δ𝑭 𝜗 =

 
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0

−0.1374 0.1470 −0.0192 0.0011 0.0085 0
0 −0.0096 0.0011 0.0169 −0.1295 0.1211
0 0 0 0 0 0
0 0 0 0 0 0  

 
 
 
 
 

∙ 10−2 

𝚫𝐼𝑘 =

 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0.0027 0.0003 0 0
0 0 0.0003 0.0028 0 0
0 0 0 0 1 0
0 0 0 0 0 1 
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𝚫𝐼𝑘
−1 =

 
 
 
 
 
 
0 0 0 0 0 0
0 1 0 0 0 0
0 0 371.6247 −42.3279 0 0
0 0 −42.3279 361.5808 0 0
0 0 0 0 1 0
0 0 0 0 0 0 

 
 
 
 
 

 

𝑴 =

 
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0

0.5105 −0.5503 0.0719 0.0029 −0.0863 0.0512
−0.0581 0.0970 −0.0123 −0.0608 0.4720 −0.4377

0 0 0 0 0 0
0 0 0 0 0 0  

 
 
 
 
 

 

𝑪 𝟏 =

 
 
 
 
 
 
5.4600 2.7300 0 0 0 0
2.7300 25.7400 10.1400 0 0 0

0 10.1400 98.2800 39.0000 0 0
0 0 39.0000 101.0100 11.5050 0
0 0 0 11.5050 28.4700 2.7300
0 0 0 0 2.7300 5.4600 

 
 
 
 
 

 

𝑪 𝟐 =

 
 
 
 
 
 

0.0340 −0.0420 0.0103 −0.0078 0.0232 −0.0177
−0.0420 0.0545 −0.0158 0.0102 −0.0300 0.0231
0.0103 −0.0158 0.0070 −0.0037 0.0095 −0.0073
−0.0078 0.0102 −0.0037 0.0056 −0.0121 0.0078
0.0232 −0.0300 0.0095 −0.0121 0.0450 −0.0356
−0.0177 0.0231 −0.0073 0.0078 −0.0356 0.0296  

 
 
 
 
 

 

𝑪 =

 
 
 
 
 
 

5.4940 2.6880 0.0103 −0.0078 0.0232 −0.0177
2.6880 25.7945 10.1242 0.0102 −0.0300 0.0231
0.0103 10.1242 98.2870 38.9963 0.0095 −0.0073
−0.0078 0.0102 38.9963 101.0156 11.4929 0.0078
0.0232 −0.0300 0.0095 11.4929 28.5150 2.6944
−0.0177 0.0231 −0.0073 0.0078 2.6944 5.4896  

 
 
 
 
 

 

𝑫 𝟏 =

 
 
 
 
 
 

0.0913 −0.0918 0.0079 −0.0070 0.0138 −0.0142
−0.0918 0.0933 −0.0089 0.0060 −0.0125 0.0138
0.0079 −0.0089 0.0020 0 0.0050 −0.0059
−0.0070 0.0060 0 0.0017 −0.0074 0.0066
0.0138 −0.0125 0.0050 −0.0074 0.0773 −0.0761
−0.0142 0.0138 −0.0059 0.0066 −0.0761 0.0758  

 
 
 
 
 

∙ 10−3 

𝑫 𝟐 =

 
 
 
 
 
 
−0.0035 0.0058 −0.0031 0.0014 −0.0040 0.0033
0.0035 −0.0059 0.0032 −0.0014 0.0040 −0.0033

0 0 0 0 0 0
0 0 0 0 0 0

−0.0032 0.0039 −0.0013 0.0025 −0.0041 0.0022
0.0032 −0.0040 0.0013 −0.0024 0.0041 −0.0023 

 
 
 
 
 

∙ 10−3 
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𝑫 𝟑 =

 
 
 
 
 
 
−0.0035 0.0035 0 0 −0.0032 0.0032
0.0058 −0.0059 0 0 0.0039 −0.0040
−0.0031 0.0032 0 0 −0.0013 0.0013
0.0014 −0.0014 0 0 0.0025 −0.0024
−0.0040 0.0040 0 0 −0.0041 0.0041
0.0033 −0.0033 0 0 0.0022 −0.0023 

 
 
 
 
 

∙ 10−3  

𝑫 =

 
 
 
 
 
 

0.0982 −0.1011 0.0114 −0.0089 0.0210 −0.0207
−0.1011 0.1052 −0.0129 0.0080 −0.0204 0.0211
0.0114 −0.0129 0.0028 0 0.0068 −0.0077
−0.0089 0.0080 0 0.0024 −0.0105 0.0094
0.0210 −0.0204 0.0068 −0.0105 0.0855 −0.0824
−0.0207 0.0211 −0.0077 0.0094 −0.0824 0.0804  

 
 
 
 
 

∙ 10−3 

𝑩 =

 
 
 
 
 
 

0.7012 −0.7559 0.0988 0.0040 −0.1186 0.0704
−0.7559 0.8181 −0.1069 −0.0102 0.1723 −0.1174
0.0988 −0.1069 0.0140 0.0013 −0.0220 0.0148
0.0040 −0.0102 0.0013 0.0103 −0.0790 0.0736
−0.1186 0.1723 −0.0220 −0.0790 0.6187 −0.5714
0.0704 −0.1174 0.0148 0.0736 −0.5714 0.5300  

 
 
 
 
 

∙ 10−3 

𝑿 𝐼 =

 
 
 
 
 
 
0.0470 0.0729 1.0000 0.0119 −0.3869 1.0000
0.1516 0.2212 0.9112 −0.0266 0.1146 −0.3177
0.9593 1.0000 −0.1752 0.1007 −0.0348 0.0395
1.0000 −0.9509 0.0741 −0.2071 0.0528 −0.0002
0.1746 −0.2575 −0.0022 0.9103 −0.2886 −0.1132
0.0498 −0.1343 0.0613 1.0000 1.0000 0.3811  

 
 
 
 
 

 

𝑿 𝐼𝐼 =

 
 
 
 
 
 

0.0123 0.2438 1.0054 0.9984
0.1695 0.1423 0.9846 0.8557
1.4475 −0.0079 0.0028 −0.2996
−0.7977 1.4428 0.2989 −0.2216
0.6524 1.2725 −0.8152 0.6936
0.8095 1.1709 −0.8359 0.8439  

 
 
 
 
 

 

𝑲 =  
−0.7301 0.1524 0.4807
0.1524 −0.0609 −0.0653
0.4807 −0.0653 −0.3587

 ∙ 10−3 

𝑿 𝐼𝐼𝐼 =

 
 
 
 
 
 
−1.0000 97.9665 31.8323
−1.0000 111.5940 28.6241
−1.0000 99.6777 −21.9921
−1.0000 −95.0001 23.8396
−1.0000 −108.5204 −33.5904
−1.0000 −94.8930 −36.7986 

 
 
 
 
 

 

𝑿 =

 
 
 
 
 
 
−1.0000 97.9665 31.8323 5292.7866 −0.3869 1.0000
−1.0000 111.5940 28.6241 4535.8682 0.1146 −0.3177
−1.0000 99.6777 −21.9921 −1588.0643 −0.0348 0.0395
−1.0000 −95.0001 23.8396 −1174.9435 0.0528 −0.0002
−1.0000 −108.5204 −33.5904 3676.7485 −0.2886 −0.1132
−1.0000 −94.8930 −36.7986 4473.8301 1.0000 0.3811  
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𝑼 =

 
 
 
 
 
 
1.0000 0 0 0 0 0

0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000 

 
 
 
 
 

 

𝑼 =

 
 
 
 
 
 
−1.0000 97.9665 31.8323 5292.7866 −0.3869 1.0000
−1.0000 111.5940 28.6241 4535.8682 0.1146 −0.3177
−1.0000 99.6777 −21.9921 −1588.0643 −0.0348 0.0395
−1.0000 −95.0001 23.8396 −1174.9435 0.0528 −0.0002
−1.0000 −108.5204 −33.5904 3676.7485 −0.2886 −0.1132
−1.0000 −94.8930 −36.7986 4473.8301 1.0000 0.3811  

 
 
 
 
 

 

𝑪 =

 
 
 
 
 
 
396.6300 0 0 0 0 0

0 2485614.0056 0 0 0 0
0 0 110749.2464 0 0 0
0 0 0 1685093945.1568 0 0
0 0 0 0 7.0868 0
0 0 0 0 0 7.1932 

 
 
 
 
 

 

𝑩 =

 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0.9868 0
0 0 0 0 0 1.5308 

 
 
 
 
 

∙ 10−3  

 

𝑫 =

 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 −0.0134 0
0 0 0 0 0.2817 −0.1555
0 0 0 180982.2690 35.5691 67.3127
0 −0.0134 0.2817 35.5691 0.1899 −0.0456
0 0 −0.1555 67.3127 −0.0456 0.1667  

 
 
 
 
 

∙ 10−3  
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Appendix H ABAQUS reference model 

This appendix presents all input data of the reference model and the numerical results 

obtained in ABAQUS (ver. 6.11-1) for the chosen Z-profile. 

 

Input data 

The same input data were used as for the GBT model analysed in Section6.3. See 

Figure 6.1 and Figure 6.8 for further details about the Z-profiles boundary conditions 

and loads.  

The geometry of the FE-model is defined in [mm] and the value for the Young’s 

modulus of elasticity is defined as 𝐸 = 210000 [N/mm
2
] and Poisson’s ratio 𝜈 = 0.3. 

The elements used in the analysis are the S4R shell elements. These are a four node 

conventional stress-displacement shell element, with reduced integration in order to 

avoid shear and membrane locking. 

 

Boundary conditions 

The boundary conditions for the Z-profile are that both ends are fully fixed, i.e. all 

displacements and rotations are prevented at the ends. The boundary conditions in the 

FE-model will then be of essential type and all displacements and rotations are locked 

(predefined as zero) for all nodes along both boundaries. 

 

Applied loads 

The gravity load was assigned as a gravity force in ABAQUS where the density was 

assigned as 7.8 ∙ 10−9 [kg/mm
3
] and the gravity constant as 9.82 ∙ 103 [mm/s

2
]. 

The line-load was more troublesome to assign since there was no possibility to assign 

the load to the intersection between the upper flange and the web. Therefore a small 

partitioned surface was assigned on the upper flange, closest to the web, with a width 

of 0.5 [mm], see Figure H.1. The equivalent imposed surface load was then calculated 

and applied as 10 [N/mm
2
]. 
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Figure H.1: Illustration from ABAQUS on the partition used to apply the load on the 

member. 

 

Mesh density 

In order to have a sufficient mesh density a convergence study was performed for five 

different shell-element sizes, namely with the element sides of 50, 25, 10, 5 and 3 

[mm]. The estimated error was calculated according to: 

 

𝐸𝑟𝑟𝑜𝑟 =  1 −  
 𝑈4.𝑎𝑝𝑝

2 + 𝑉4.𝑎𝑝𝑝
2 + 𝑊4.𝑎𝑝𝑝

2

 𝑈4.3𝑚𝑚
2 + 𝑉4.3𝑚𝑚

2 + 𝑊4.3𝑚𝑚
2

 

 

The mesh with element side of 3 [mm] was considered as a reference and the total 

displacement magnitudes at node four in the midsection were related to each other in 

order to have the error estimation. Figure H.2 shows the error estimation for each 

element size. 

 

 

Figure H.2: The estimated error for the five different element sizes of 50, 25, 10, 5and 

3 mm. 
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An element size of 5 [mm] resulted in an error estimation of 0.18% which were 

satisfactory and used as the mesh density for the model. With this mesh the model 

consist of 33120 elements and 33670 nodes and in total 202020 number degrees of 

freedom (6 degrees of freedom per node), see Figure H.3. 

 

 

Figure H.3: The Z-Profile was modelled using S4R shell-elements with an element 

size of 5 [mm]. 

 

The ABAQUS results 

The ABAQUS results are tabulated in Table H.1 and Table H.2 below in terms of 

nodal displacements 𝑈𝑟 𝑋 , 𝑉𝑟 𝑋  and 𝑊𝑟 𝑋  and nodal normal stresses 𝜍𝑥 .𝑟 𝑋  at 

the quarter sections  𝑋 = 0, 0.25𝐿,  0.5𝐿 and 0.75𝐿. Note that the node numbering 

refers to the same node numbers used in the GBT analysis of the Z-profile discretized 

with three imposed intermediate nodes. 

 

Table H.1: The nodal 𝑈𝑟 𝑋  and 𝑉𝑟 𝑋  displacements at the quarter sections 𝑋 = 0, 

0.25𝐿,  0.5𝐿 and 0.75𝐿 obtained in ABAQUS expressed in [mm]. 

Node 𝑟 
𝑈𝑟 𝑋  𝑉𝑟 𝑋  

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 3.53E-34 9.39E-02 7.23E-04 -9.35E-02 -2.88E-37 -2.41E00 -4.32E00 -2.45E00 

2 3.77E-34 5.70E-02 4.43E-04 -5.68E-02 4.59E-36 -2.43E00 -4.36E00 -2.47E00 

3 -7.37E-34 -8.31E-02 -6.44E-04 8.28E-02 8.40E-35 -2.43E00 -4.36E00 -2.47E00 

4 -1.48E-33 -2.27E-01 -1.76E-03 2.26E-01 -1.17E-34 -2.43E00 -4.36E00 -2.47E00 

5 -6.76E-36 -2.24E-03 -1.76E-05 2.23E-03 -3.38E-38 -2.29E00 -4.07E00 -2.32E00 

6 2.38E-33 2.22E-01 1.72E-03 -2.21E-01 -1.98E-34 -2.11E00 -3.78E00 -2.14E00 

7 5.94E-34 8.18E-02 6.34E-04 -8.15E-02 7.04E-35 -2.11E00 -3.79E00 -2.14E00 

8 -3.75E-34 -5.75E-02 -4.46E-04 5.73E-02 -4.88E-36 -2.11E00 -3.79E00 -2.14E00 

9 -3.16E-34 -8.85E-02 -6.85E-04 8.81E-02 -7.65E-38 -2.16E00 -3.85E00 -2.19E00 
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Table H.2: The nodal 𝑊𝑟 𝑋  displacements and normal stresses 𝜍𝑥 .𝑟 𝑋  at the 

quarter sections 𝑋 = 0, 0.25𝐿,  0.5𝐿 and 0.75𝐿 obtained in ABAQUS expressed in 

[mm] and [MPa] respectively. 

Node 𝑟 
𝑊𝑟 𝑋  𝜍𝑥 .𝑟 𝑋  

𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 𝑋 = 0 0.25𝐿 0.5𝐿 0.75𝐿 

1 -5.01E-35 -1.22E00 -2.14E00 -1.24E00 -7.72E01 9.41E00 3.77E01 1.01E01 

2 4.04E-35 -1.22E00 -2.14E00 -1.24E00 -3.10E01 3.87E00 1.65E01 4.16E00 

3 -2.47E-36 -1.18E00 -2.07E00 -1.20E00 6.71E01 -8.54E00 -3.75E01 -9.21E00 

4 -4.03E-34 -1.14E00 -1.98E00 -1.16E00 2.71E02 -2.47E01 -1.04E02 -2.65E01 

5 -1.56E-34 -1.14E00 -1.99E00 -1.16E00 -3.18E00 -3.36E-01 -1.67E-01 -3.32E-01 

6 -4.12E-34 -1.14E00 -1.98E00 -1.16E00 -2.40E02 2.47E01 1.01E02 2.64E01 

7 8.72E-37 -1.05E00 -1.86E00 -1.07E00 -7.57E01 9.71E00 3.93E01 1.04E01 

8 3.80E-35 -9.51E-01 -1.74E00 -9.66E-01 3.46E01 -4.27E00 -1.80E01 -4.59E00 

9 -4.51E-35 -9.50E-01 -1.74E00 -9.66E-01 7.76E01 -9.10E00 -3.88E01 -9.79E00 
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Appendix I Parametric study 

This appendix presents complementary results from the parametric study. 

 

Fixed – Free conditions 

 

 

 

 

Figure I.1: The 𝑈, 𝑉 and 𝑊 displacements and the normal stress 𝜍𝑥  variations are 

here plotted for node four along the Z-profile modelled as a cantilever, both for the 

GBT and ABAQUS analysis 
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Fixed – Guided conditions 

 

 

 

 

Figure I.2: The 𝑈, 𝑉 and 𝑊 displacements and the normal stress 𝜍𝑥  variations plotted 

for node four along the Z-profile modelled as a with a fixed and a guided end, both 

for the GBT and ABAQUS analysis. 
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Fixed – Free conditions subjected to point-load 

 

 

 

 

Figure I.3: The 𝑈, 𝑉 and 𝑊 displacements and the normal stress 𝜍𝑥  variations plotted 

for node one along the Z-profile modelled as a with a fixed and a guided end, both for 

the GBT and ABAQUS analysis. 
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