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1 Pico eNBs and RRHs
need dedicated backhaul
connections, whereas
inband FRNs utilize the
same carrier frequency as
the UE to communicate
with their donor eNBs. An
important difference
between a pico eNB and
an RRH is that a pico
eNB is a low-power eNB
that can form its own cells
underlying the macro
eNB, while an RRH is a
part of the macrocell eNB,
and is deployed distribu-
tively to either extend cov-
erage or improve local
capacity. Home eNBs are
deployed inside residential
or official buildings in an
unplanned way to form
femtocells and offload the
data traffic when users are
at home or at work.

2 A macro eNB is called a
donor eNB when it serves
the backhaul links of RNs
as well as UE within its
coverage.

INTRODUCTION

The Third Generation Partnership Project
(3GPP) has standardized Long Term Evolution
(LTE), which is aimed at improving the spectral
efficiency of a cellular network. A more intelli-
gent base station, the evolved Node B (eNB),
was introduced to simplify the system architec-
ture, and minimize the control and user plane
latency. By employing advanced multi-antenna
multiple-input multiple-output (MIMO) tech-
niques, carrier aggregation (CA), and other
schemes, the most recent LTE standard, LTE-

Advanced, can support a downlink speed of up
to 1 Gb/s [1].

The capacity offered by macro eNBs in the
current LTE-Advanced system is not evenly dis-
tributed across their coverage areas; user equip-
ment (UE) in the cell center can achieve much
higher throughput than cell edge UE. The het-
erogeneous and small cell networks (HetSNets)
solution addresses the capacity needs in certain
data-intensive hotspot areas, and provides a
ubiquitous user experience. An overview of a
typical HetSNets scenario is illustrated in Fig. 1.
Different types of low-power nodes, including
pico eNBs, remote radio heads (RRHs), inband
fixed relay nodes (FRNs), moving relay nodes
(MRNs), and home eNBs,1 have been intro-
duced. These low-power nodes are deployed
underlying macro eNBs to either extend cover-
age or increase network capacity locally [2].

The number of users using wireless broadband
services while riding in public transportation vehi-
cles is growing rapidly, due to the high penetra-
tion of smart phones, tablets, and increasingly
portable laptops [3]. In recent 3GPP studies, a
dedicated MRN deployment has been considered
as a cost-effective solution to serve data-intensive
UE inside public transportation vehicles [4].

In this article, we discuss the potential advan-
tages as well as the implementation challenges of
deploying MRNs. Compared to analog repeaters,
advanced relay nodes (RNs) in LTE-Advanced
systems can decode and forward data to UE.
They can also detect or correct errors before
forwarding the data to UE. Thus, the received
signal qualities at the UE can be enhanced by
using such RNs. Two types of advanced RNs,
type 1 and type 2 RNs, have been defined by
3GPP. Type 1 RNs are non-transparent RNs
that can form their own cells, and terminate all
layer 2 and layer 3 communication protocols.
Type 2 RNs are transparent RNs that replicate
the cell ID of their donor eNB (DeNB).2 The
FRN, which has been standardized in the LTE-
Advanced system, is an inband half-duplex
decode-and-forward (DF) type 1 RN, while the
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use of other types of RNs in LTE networks has
been left for further investigation [5, Ch. 30].
Similarly, the MRN proposed in recent 3GPP
studies is also an inband half-duplex DF type 1
RN that can form its own cell inside a vehicle
[4]. Moreover, MRNs can be shared by several
operators, a fact that can lower the cost of build-
ing the networks [6].

Initially, in 3GPP studies, MRNs were
designed to serve UE inside well isolated high-
speed trains [4]. Recent studies show that MRNs
can also effectively serve UE inside public trans-
portation vehicles in general (buses, trams, etc.)
[7, 8]. There are several advantages of using
MRNs. First, group handover (HO) can be per-
formed by regarding the UE served by the same
MRN as a group. Depending on the mobility
management schemes, the signaling at the radio
network side and probability of HO failure of
the vehicular UE could be noticeably lowered [4,
9]. Second, since MRNs are not as limited by
size and power as regular UE, they can better
exploit various smart antenna techniques and
advanced signal processing schemes. For exam-
ple, in a train, several backhaul antennas can be
interconnected to form a cooperative and coor-
dinated relay system [10], which can strengthen
the backhaul link by using antenna selection
techniques. Moreover, by a proper placement of
indoor and outdoor antennas, an MRN can cir-
cumvent the vehicular penetration loss (VPL)
caused by a well isolated vehicle. Measurements
show that the VPL can be as high as 25 dB in a
minivan at the frequency of 2.4 GHz [11], and
higher VPLs are foreseeable in the vehicles of
interest. Last but not least, compared to direct
transmission from eNBs to in-vehicle UE, better
propagation conditions — less shadowing and
path loss, and higher line-of-sight (LOS) connec-
tion probabilities — can be expected for the
backhaul connections between eNBs and MRNs.

Besides using MRNs, several other solutions
using existing techniques have also been pro-
posed in 3GPP to serve vehicular UE [4]. In this
article, we first review the solutions based on the
existing techniques to serve vehicular UE. Then
we present the benefits of using dedicatedly
deployed MRNs to serve UE inside public trans-
portation vehicles. Simulation results show that
MRNs can effectively serve vehicular UE. At the
end of the article, we discuss the challenges and
open issues as well as future research directions
toward applying MRNs to practical communica-
tion systems.

CURRENT SOLUTIONS TO
SERVE VEHICULAR UE

Solutions based on existing system elements,
such as optimizing the deployment of macrocells,
or using layer 1 repeaters or WiFi access points
(APs) to assist serving vehicular UE, have been
discussed in 3GPP [4]. In this section, we briefly
review the advantages and disadvantages of
these solutions. All layer 1 repeaters, WiFi APs,
and MRNs communicate with a macro eNB via
radio interfaces, but MRNs also act as regular
eNBs for the UE they serve, and can potentially
support multiple radio access technologies.

DEDICATED MACRO ENBS

As the route of a public transportation vehicle is
usually known, the coverage of macro eNBs can
be tuned along the train lines or highways by
using directive antennas. A trade-off between
coverage and capacity can be addressed by
employing an umbrella structure. More specifi-
cally, high-power eNBs can be used to extend
coverage and handle control signaling with
underlying low-power nodes to improve capacity.
For instance, with CA, the primary component
carrier (PCC) is transmitted by a high-power
eNB, but the secondary component carriers
(SCCs) can be transmitted by low-power nodes.3
By employing sophisticated cross-carrier schedul-
ing schemes, most of the control signaling can be
sent by the high-power eNBs, and the data can
be transmitted by the low-power SCCs. If CA is
not possible, the use of RRHs can be consid-
ered. Since RRHs share the same cell ID as the
macro eNB, the closest RRH can serve the high
speed vehicle without HO mechanisms being
triggered.

However, the VPL, which is one of the major
challenges faced by vehicular UE, cannot be
reduced by this solution. Site acquisition, deploy-
ment, and maintenance are also challenges for
operators, especially for low-power nodes, due
to the requirements for power supply, dedicated
backhaul connection, and so on. Moreover, this
solution cannot easily be extended to urban sce-
narios.

LAYER 1 REPEATERS
Layer 1 repeaters are low-cost analog repeaters,
as little signal processing is required compared
to the advanced RNs in LTE. They amplify and
forward signals in a given frequency band, and
they can possibly work in a full- duplex mode on
the vehicles of interest, as the vehicles can suffi-
ciently isolate the transmit and receive chains.
This is an advantage compared to the half-duplex
FRNs standardized in LTE.4 Moreover, layer 1
repeaters can overcome the VPL caused by well
isolated vehicles, and thereby lower the UE
transmit power.

However, there are several issues with layer 1

3 With CA, up to four
SCCs can be aggregated
with a PCC, and each of
the component carriers
defines its own serving
cell. Different component
carriers may be configured
to provide different cover-
age. The configuration of
PCC and SCCs is termi-
nal-specific: depending on
the system load, UE
served by the same macro
eNB can have different
PCC and SCCs assign-
ments [5, Ch. 28]

4 A half-duplex RN can
transmit and receive in
both directions but not
simultaneously, whereas a
full-duplex RN provides
connection in both direc-
tions at the same time. To
achieve full duplexing,
good isolation between
transmit and receive
chains is required due to
self-interference, such as
using frequency-division
duplexing (FDD).

Figure 1. An overview of 3GPP heterogeneous and small cell networks.
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repeaters. Compared to advanced DF RNs, the
signal-to-interference-plus-noise ratio (SINR)
cannot be improved at layer 1 repeaters, since
they amplify and forward both the received
desired and interference signals.5 Furthermore,
since layer 1 repeaters are less controlled by the
core network than the advanced RNs, the HO of
vehicular UE between eNBs still needs to be
performed individually, and advanced interfer-
ence management schemes cannot be integrated
in them. Thus, layer 1 repeaters may bring more
interference into the system.

LTE FOR BACKHAUL, WIFI FOR ACCESS
Using WiFi to provide Internet access to data
users on board is fairly common, as most smart
phones and laptops are WiFi-capable. Similar to
layer 1 repeaters, wireless backhaul nodes can be
placed on the roof of a vehicle with antennas
mounted outside communicating with the cellu-
lar network, while providing data access to vehic-
ular users with WiFi APs. Backhaul links can be
full duplex. WiFi is used for data connections,
and regular voice calls can be handled by the
cellular network. Hence, VPL can be circum-
vented, and group HO can be used for data
users. Furthermore, WiFi-only devices can also
use the cellular network, which may bring extra
income to service providers.

However, using WiFi technology to provide
UE with a seamless experience in the current
cellular network is challenging. Although the
802.11x extension of the WiFi standard enables
roaming for WiFi devices, functions such as
charging, authentication, and security still
require software and hardware upgrades for the
WiFi module to access the universal subscriber
identity module (USIM) in the device [12].
Moreover, although the 802.11e amendment of
the WiFi standard has quality of service (QoS)
support, it requires that all the APs are con-
trolled by the same central unit [13]. As WiFi

networks operate on the open industrial, scien-
tific and medical radio (ISM) bands, the inter-
ference in these radio bands cannot be
coordinated in the same manner as in the dedi-
cated frequency bands owned by operators.
Thus, it is difficult for the operators to offer sim-
ilar QoS as in their own cellular networks.

DEDICATED MRN DEPLOYMENT
In this section, we discuss the deployment of
dedicated MRNs to serve UE inside public trans-
portation vehicles. To motivate the use of MRNs
to serve vehicular users, we consider a simple
example. In a noise limited system, assume that
the position of a vehicular UE device is known,
and we are interested in finding the optimal
location for an FRN to minimize the end-to-end
outage probability (OP). This setup was studied
in [14], and Fig. 2 plots the optimal FRN posi-
tion as a function of VPL by using a typical
urban propagation model. The plot indicates
that if we know the communication is affected
by high VPL, the best solution is to place an
FRN as close as possible to the vehicle to com-
pensate for the VPL. In practice, as the posi-
tions of vehicles are not known beforehand, the
use of MRN is more economical and applicable
to serve vehicular UE.

In an interference limited scenario, the MRN
can bring additional benefits. As shown in [8,
10], MRNs can operate at much lower transmit
power compared to macro eNBs or other low-
power nodes, but still achieve similar or even
better performance. As shown in [8], when the
VPL is 30 dB, a half-duplex MRN can lower the
end-to-end OP by 65 percent on average com-
pared to direct transmission at vehicular UE,
and even better performance is expected from a
full-duplex MRN.

In order to understand the performance of an
MRN serving vehicular UE in a more practical
setup, we resort to system-level simulations. A
semi-static system simulator is used, and the sim-
ulated network consists of 19 cells. On average
we drop 25 macro UE devices per cell, and one
randomly located bus with five UE devices
onboard moving through the cells. A system
bandwidth of 10 MHz, corresponding to 50 phys-
ical resource blocks (PRBs), is considered. VPL
is varied between 0 and 30 dB, and detailed sim-
ulation parameters are given in Table 1. Both
half-duplex and full-duplex MRNs are consid-
ered, and the performance is compared with the
baseline case(i.e., vehicular UE devices are
served directly by macro eNBs). The half-duplex
MRN assisted transmission is implemented in
such a way that, in the first transmission time
interval (TTI), the DeNB sends to the MRN (via
backhaul link), and in the following TTI, the
MRN communicates to the UE devices in the
vehicle; eNBs communicate to macro UE devices
in both TTIs.

Figure 3 shows the downlink performance of
macro UE and vehicular UE separately, with
varying VPL. The cumulative distribution func-
tion (cdf) of the UE throughput is calculated.
The results in Fig. 3 are shown as 95 percent UE
throughput (horizontal axis) vs. 5 percent
throughput (vertical axis, corresponding cell

Figure 2. Optimal FRN position when UE position is known.
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edge performance). The throughput of vehicular
UE served by a half-duplex MRN is roughly
halved compared to the full-duplex MRN case
due to the half-duplex loss. Nevertheless, as
VPL increases, the cell edge performance of the
vehicular UE served by an MRN, for both the
half-duplex and full-duplex cases, is greatly
improved compared to the baseline case. The
performance improvement is due to two reasons:
• Relaying circumvents VPL.
• The MRN is installed on the roof of the

vehicle, and thereby better propagation
conditions (i.e., less shadowing and path
loss) are experienced by the backhaul link
compared to the direct link from macro
eNBs to vehicular UE.
Regarding the macro UE, the duplex scheme

employed by the MRN (square for full-duplex
MRN case and diamond when half-duplex MRN
is used) has no significant impact on the 95 per-
cent UE throughput. However, there is a notice-
able decrease of the 5 percent throughput for
the macro UE when a full-duplex MRN is used
to serve vehicular UE compared to the half-
duplex MRN case. This is because with a half-
duplex MRN, half of the time there is no
backhaul link connection, and during these TTIs
all PRBs are instead used to serve macro UE.
Moreover, when the backhaul link of the MRN
is active in one cell, it generates interference to
the macro UE in other cells. We also notice that
there are no significant impacts of different
VPLs on the performance of macro UE.

The results show a drastic increase in cell
edge performance for the vehicular UE. In this
example, the number of vehicular UE devices is
quite small compared to macro UE devices.
With a higher number of vehicular UE devices,
the performance would probably be affected
since increasing the number of PRBs for the
backhaul link would also decrease the macro UE
performance. Nevertheless, we can conclude that
the use of MRNs deployed on the vehicle
improves performance of the vehicular UE,
especially at the cell edge.

CHALLENGES AND OPEN ISSUES
The potential of using MRNs to improve the
QoS and throughput of vehicular UE is outlined
in previous sections, but there are also chal-
lenges. In this section, we briefly discuss the
challenges of deploying MRNs and possible
solutions.

From the scenarios studied earlier, we can
identify that the backhaul link is the capacity
bottleneck. As the UE speed goes up, the rapid
variations of mobile channels combined with
feedback delays reduce the accuracy of the chan-
nel state information (CSI) at eNBs. The CSI
feedback inaccuracy at the eNB limits the use of
advanced MIMO transmission schemes
employed in LTE systems to further increase the
throughput of the backhaul link, as adaptive
transmit beamforming, link adaptation, and
channel-aware scheduling would be severely
compromised. In FDD LTE systems, the CSI at
the eNB would be outdated by at least 5 ms due
to channel estimation delays, the frame struc-
ture, and feedback delays. Although LTE-

Advanced systems offer several diversity-based
schemes for high-mobility UE, more resources
are then required to be allocated to these UE
devices. This lowers the spectral efficiency of the
time-varying MRN backhaul link compared to
that of an FRN in a similar position.

Using channel predictors, such as Kalman or
Wiener predictors, could potentially enable the
use of adaptive transmit techniques at vehicular
velocities, as they can predict fading channels in
space 0.2–0.3 wavelengths ahead with adequate
accuracy. This means that 5 ms prediction hori-
zons could be attained for low vehicular veloci-
ties at 900 MHz carriers but not for frequency
above 1.5 GHz.6 The scenario with an antenna
or antenna array on the roof of a fast-moving
bus or tram provides an opportunity as well as a
challenge. One innovation is the use of a “pre-
dictor antenna” [15]. The vehicle velocity and

Table 1. Simulation parameters.

Parameter Value

Carrier frequency 2.6 GHz

System bandwidth 10 MHz

Number of PRBs 50

Number of cells 19

Intersite distance (ISD) 500 m

Duplex scheme Full-duplex (FDD) and half-duplex

Relaying type In-band, decode-and-forward

Vehicle position Random, uniform distribution

Number of vehicular UE devices 5

Number of macro UE devices/cell 25 (average)

Number of macro UE devices 475 (total)

UE position Random, uniform distribution

VPL 0, 10, 20, 30 dB

Number of receive antennas 2 (RN, UE)

PRB allocation principle Resource (PRB) fair

Frequency domain allocation Random

eNB transmission power 46 dBm

MRN transmission power 10 dBm

Shadowing standard deviation eNB-UE 8 dB

Shadowing standard deviation eNB-MRN 4 dB

Receiver noise figure 8 dB

Traffic model Full buffer

6 A vehicle at a speed of
50 km/h moves 0.0694 m
in 5 ms, which is a bit
more than 0.2 wave-
lengths at 900 MHz.
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direction would be relatively constant over the
required 5 ms prediction horizon. Channel pre-
dictions could then be obtained by the predictor
antenna located some distance directly in front
of the antennas used for transmission, as shown
in Fig. 4. Channel estimates from this antenna
could be used to predict the channel experienced
by the rearward antenna a little later when it has
moved to this position. We would avoid the need
to extrapolate in time from the measurements.

Preliminary results based on measurement
campaigns done in a 20 MHz orthogonal fre-
quency-division multiplexing (OFDM) system in
2.68 GHz downlinks showed that using a predic-
tor antenna can significantly improve the CSI
feedback accuracy at a vehicular velocity [15]. A
maximal normalized correlation above 0.95 was
reported between the signal from the predictor
antenna and the signal from the antenna behind
it mounted on the vehicle roof, with antenna dis-
tances (prediction horizons) of up to three wave-
lengths, in both LOS and non-LOS (NLOS)
conditions. This suggests that a simple predictor
that uses delayed channel estimates from a pre-
dictor antenna can provide useful prediction
accuracy at vehicular velocities. Thus, it opens up
the possibility of using the most advanced MIMO
techniques as well as link adaptation to increase
the throughput over the backhaul links of MRNs.

Another challenge in the deployment of
MRNs is from the aspect of mobility manage-
ment. This includes the HO of MRNs between
different DeNBs, and HO of UE between MRNs
and eNBs. Previous studies showed that by per-
forming group HO, the HO failure probabilities
of vehicular UE can be lowered significantly by
using MRNs [9]. However, as the LTE system
today has no mobility support for MRNs, modi-
fication of the current system architecture is
needed to provide efficient yet reliable mobility
management for MRNs [4, 7].

Figure 5 shows the current FRN architecture
employed by the LTE system. A DeNB acts as a
proxy, and hides an FRN from mobility manage-
ment entities (MMEs) and various gateways

serving the UE. As the time required for FRN
attachment and configuring the proxy functional-
ity at a DeNB is on the order of minutes [5, Ch.
30], the same FRN system architecture cannot
be directly adapted for MRNs. On the radio net-
work side, by using MRNs, the signaling over-
head can be reduced by performing MRN HO
instead of individual UE HO. However, on the
core network side, the data connection of each
UE device still needs to be handled individually
at the MME [4]. Although this is not required to
be done at the same time as the HO of UE,
depending on the network topologies and
whether the target DeNB is served by the same
MME or MME pool, the disturbance caused by
the HO may be very large [7]. To support MRN
mobility, several solutions either based on modi-
fications of the current FRN architecture or
using an entirely new architecture have been dis-
cussed, and various architectures have been
compared in [4, 7]. An overall comparison of
different mobility management architectures is
given in [4, Table 6.1], and detailed HO delays
are analyzed in [7]. Moreover, in a HetSNets
deployment scenario, there could potentially be
problems created by a large group of vehicular
UE devices that are handed over into a fixed
small cell, thereby disturbing its resource alloca-
tion. But we are already facing an even worse
variant of this problem today, when lots of indi-
vidual vehicular UE devices move through a
fixed network with small cells. Last but not least,
how to avoid UE devices close to but outside the
vehicles wrongly attaching to the MRNs also
needs consideration.

Furthermore, new challenges regarding inter-
ference management arise due to the use of
MRNs. As the distance between an MRN and the
vehicular UE served by it is very short, the MRN
and the vehicular UE can communicate with each
other using very low power. In addition, the VPL
can further help to dampen the signal of the
MRN access link that propagates out from the
vehicle. Thus, compared to direct transmission,
the use of MRNs generates less interference from
the access link, for both downlink and uplink, to
UE outside the vehicles. This is appreciated in a
densely deployed urban scenario where link avail-
abilities are usually dependent on interference
rather than coverage. For the backhaul link, how-
ever, the problem becomes complicated, as inter-
ference is expected both between different MRN
backhaul links, and between MRN backhaul links
and macro UE. The use of predictor antennas
can improve CSI accuracy to enable the use of
advanced interference avoidance and cancellation
schemes for the backhaul links. Nevertheless,
whether enhancements on the current intercell
interference coordination (ICIC) framework in
LTE are needed to support the use of MRNs still
requires further investigation.

DISCUSSION AND
FUTURE DIRECTIONS

In this article, we present the benefits and chal-
lenges of using dedicated MRNs to serve vehicu-
lar UE. Compared to serving vehicular UE
directly from macro eNBs, MRNs can increase

Figure 3. Downlink performance of MRN assisted transmission.

95 % throughput (kb/s)
900

VPL from 0 dB to 30 dB

V
PL

 f
ro

m
 0

 d
B 

to
 3

0 
dB

V
PL from

 0 dB to 30 dB

100

0

200

300

400

500

600

700

800

900

1000

1100

800 1000 1100 1200 1300 1400 1500 1600 1700 1800

Vehicle UE, half duplex MRN
Vehicle UE, full duplex MRN
Vehicle UE, eNB to vehicular UEs directly
Macro UE (full duplex for vehicular UEs)
Macro UE (half duplex for vehicular UEs)
Macro UE (eNB to vehicular UEs directly)

95 % throughput (kb/s)
13001250

150

100

5-
%

 t
hr

ou
gh

pu
t 

(k
b/

s)

5 
%

 t
hr

ou
gh

pu
t 

(k
b/

s)

200

1350 1400 1450 1500 1550

SUI LAYOUT_Layout 1  5/30/13  4:18 PM  Page 66



the performance of the UE inside the vehicle
significantly, especially at the cell edge. This is
because MRNs can effectively reduce VPL, and
create better propagation conditions for the
backhaul links compared to the direct links
between macro eNBs and vehicular UE. As the
backhaul connections of the MRNs become the
bottleneck, we present the idea of using predic-
tion antennas to increase the accuracy of the
CSI feedback for the backhaul links. This
improves the performance of channel-dependent
scheduling and enables the use of spatial pro-
cessing for the backhaul links of MRNs at high
vehicular velocities.

However, there are several challenges faced by
using MRNs, both technically and economically.
The use of MRNs brings new tasks regarding
mobility and interference management to the
community. Several mobility management solu-
tions have been proposed with initial evaluation
results, but which one should be adopted in the
future system still requires further investigation.
Moreover, whether new ICIC enhancements are
needed to support the use of MRNs is still an
open issue. From the business logic point of view,
on one hand, using MRN can significantly
improve the user experience, and thereby increase
the loyalty of customers. On the other hand, it
will increase the operation costs of operators.
Public transportation companies could potentially
share these costs. Also, novel context or location-
awareness-based services targeting the needs of
travelers and commuters could evolve into new
business models in the near future. Further inves-
tigations are needed to answer these broad ques-
tions. Nevertheless, the use of MRNs has great
potential as an efficient solution to the ever grow-
ing ubiquitous demand for high-quality mobile
data services by vehicular users.

ACKNOWLEDGMENT
The authors would like to thank the Swedish
Research Council (VR) and the EU FP7 for
providing the research funds. We also appreciate
the contributions from our colleagues in the EU
FP7 project INFSO-ICT-247223 ARTIST4G.

REFERENCES
[1] A. Ghosh et al., “LTE-Advanced: Next-Generation Wire-

less Broadband Technology,” IEEE Trans. Wireless Com-
mun., vol. 17, no. 3, June 2010, pp. 10–22.

[2] A. Damnjanovic et al., “A Survey on 3GPP Heteroge-
neous Networks,” IEEE Trans. Wireless Commun., vol.
18, no. 3, June 2011, pp. 10–21.

[3] Cisco white paper, “Cisco Visual Networking Index:
Global Mobile Data Traffic Forecast Update,
2011–2016,” tech. rep., http://www.cisco.com/,
accessed Nov. 20th, 2012.

[4] 3GPP TR 36.836, “Technical Specification Group Radio
Access Network; Mobile Relay for Evolved Universal Ter-
restrial Radio Access (E-UTRA),” tech. rep.,
http://www.3gpp.org/, accessed Nov. 20, 2012.

[5] S. Sesia, I. Toufik, and M. Baker, LTE — The UMTS Long
Term Evolution: From Theory to Practice, 2nd ed.,
Wiley, 2011.

[6] 3GPP TR 22.951, “Service Aspects and Requirements for
Network Sharing,” tech. rep., Sept. 2012,
http://www.3gpp.org/, accessed Nov. 20, 2012.

[7] M. Khanfouci, Y. Sui, A. Papadogiannis, and M. Färber,
“D3.5-c Moving Relays and Mobility Aspects,” tech.
rep., Artist4G deliverable, May. 2012, https://ict-
artist4g.eu/projet/deliverables accessed Feb. 14, 2013.

[8] Y. Sui et al., “Performance Comparison of Fixed and
Moving Relays under Co-Channel Interference,” Proc.
IEEE GLOBECOM Wksps., 2012.

[9] W. Li et al., “Performance Evaluation and Analysis on
Group Mobility of Mobile Relay for LTE-Advanced Sys-
tem,” Proc. IEEE VTC 2012-Fall.

[10] V. V. Phan et al., “Providing Enhanced Cellular Cover-
age in Public Transportation with Smart Relay Sys-
tems,” Proc. IEEE VNC, 2010.

[11] E. Tanghe et al., “Evaluation of Vehicle Penetration Loss at
Wireless Communication Frequencies,” IEEE Trans. Vehic.
Tech., vol. 57, no. 4, July 2008, pp. 2036–41.

[12] 3GPP Std. TS 23.234, “3GPP System to Wireless Local
Area Network (WLAN) Interworking; System Descrip-
tion,” Sept. 2012, http://www.3gpp.org/, accessed Nov.
20, 2012.

[13] IEEE 802.11 WG, “Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications.
Amendment 8: Medium Access Control (MAC) Quality
of Service Enhancements,” IEEE 802.11e, Nov. 2005.

[14] Y. Sui, A. Papadogiannis, and T. Svensson, “The Poten-
tial of Moving Relays — A Performance Analysis,” Proc.
IEEE VTC 2012-Spring.

[15] M. Sternad et al., “Using ’Predictor Antennas’ for
Long-Range Prediction of Fast Fading for Moving
Relays,” Proc. IEEE WCNC, 2012.

BIOGRAPHIES
YUTAO SUI [S’11] (sui.yutao@chalmers.se) received his B.E.
degree in electronic engineering and B.A. degree in English
from Yanbian University, Yanji, China, in 2006, and his
M.Sc. degree in wireless communications from Lund Uni-
versity, Sweden, in 2009. He is currently a Ph.D. candidate
in the Department of Signals and Systems at Chalmers Uni-
versity of Technology, Gothenburg, Sweden. He concen-
trates his research on heterogeneous and small cell
networks, especially moving relays for vehicular user com-
munications.

JAAKKO VIHRIÄLÄ (jaakko.vihriala@nsn.com) received his
M.Sc. degree from the University of Oulu, Finland, in 1995.
He joined Nokia in 1993, and is currently with Nokia
Siemens Networks, Oulu. He has been working on DSP
algorithm design and implementation, WCDMA receiver
design, wireless relaying, and heterogeneous networks.

AGISILAOS PAPADOGIANNIS [S’07, M’10] (apapadogiannis@
gmail.com) received his M.Eng. degree in electrical and
computer engineering from the University of Patras,
Greece, in 2005, his M.Sc. (with distinction) degree in com-

Figure 4. An illustration of deploying an MRN on top of a public transporta-
tion vehicle.

0.5 to 3
wavelengths

Predictor
antenna

MRN

Access
link

Vehicular
UE

Macro eNB

Backhaul link

Figure 5. FRN system architecture in LTE release 10.

S1

X
2 S1

S1

S1X2Un

S1
1

IP

IP

FRN

eNB

DeNB

MME /
gateways

MME /
gateways

S1

S11

SUI LAYOUT_Layout 1  5/30/13  4:18 PM  Page 67



munications engineering from the University of York, Unit-
ed Kingdom, in 2006, and his Ph.D. degree in electronics
and communications from TELECOM ParisTech, Paris,
France, in 2009. From 2006 to 2009 he was a research
engineer at Orange Labs, Paris, working on 4G communi-
cations. The focus of his work was on coordinated multi-
point (CoMP) and relaying techniques with affordable
overheads in relation to the 3GPP LTE-Advanced stan-
dards. From April 2010 to August 2011 he was a research
associate at the Department of Electronics, University of
York, working on technologies beyond 4G. From August
2011 to February 2013 he was a postdoctoral fellow at
the Department of Signals and Systems, Chalmers Uni-
versity of Technology, where he conducted teaching,
research, and research supervision in the areas of future
user-centric and energy-efficient networks. He has partic-
ipated in several European (FP7 METIS, FP7 ARTIST4G,
FP7 BuNGee, CELTIC WINNER+), nationally funded (VR
Dynamic Multipoint Wireless Transmission, VINNOVA
MAGIC, VINNOVA MORE4G, RCUK UC4G), and industrial
research projects (4GRADIO, PRICE) in the general area of
future wireless systems. He holds two international
patents, and has authored a book and numerous high
impact technical papers.

MIKAEL STERNAD [S’83, M’88, SM’90] (mikael.sternad@sig-
nal.uu.se) is a professor of automatic control at Uppsala
University and received a Ph.D. degree from Uppsala Uni-
versity in the same field in 1987. With a background in
robust and adaptive estimation, control, and filtering, he
led the national Swedish project Wireless IP and is at pre-
sent leading the Dynamic Multipoint Wireless Access
framework project funded by the Swedish Research Coun-
cil. He has participated in the EU WINNER, WINNER II, and
ARTIST4G Integrated Projects, contributing to channel pre-
diction and estimation, adaptive transmission, design of
robust linear precoders, deployment concepts, multiple
access techniques/concepts, MAC layer design, and overall
system design. Channel prediction has been one focus area
of research for 15 years. He is also involved in audio and

acoustic MIMO signal processing, room compensation, and
sound field control. He co-founded and was chairman
(2001–2005) of Dirac Research, a company in this area. He
has authored over 130 papers, six book chapters, and 10
patents.

WEI YANG [S’09] (ywei@chalmers.se) received his B.E.
degree in communication engineering and M.E. degree in
communication and information systems from Beijing Uni-
versity of Posts and Telecommunications, China, in 2008
and 2011, respectively. He is currently pursuing a Ph.D.
degree in electrical engineering at Chalmers University of
Technology. From July to August 2012, he was a visiting
student at the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cam-
bridge. He is the recipient of a Student Paper Award at the
2012 IEEE International Symposium on Information Theory,
Cambridge, Massachusetts. His research interests are in the
areas of information and communication theory.

TOMMY SVENSSON [S’98, M’03, SM’10] (tommy.svensson@
chalmers.se) is an associate professor in communication
systems at Chalmers University of Technology, where he is
leading the research on air interface and microwave back-
haul networking technologies for future wireless systems.
He received a Ph.D. in information theory from Chalmers
in 2003, and has worked at Ericsson AB with core net-
works, radio access networks, and microwave transmis-
sion products.  He partic ipated in the European
collaborative research projects WINNER I, II, WINNER+,
and ARTIST4G, which have contributed to the 3GPP LTE
standards, and he is currently active in the EU FP7 METIS
project targeting solutions for 2020. His main research
interests are in design and analysis of physical layer algo-
rithms, multiple access, resource allocation, cooperative
systems, and moving relays/cells. He has co-authored two
books and more than 70 journal and conference papers.
He is Chairman of the IEEE Sweden VT/COM/IT chapter,
and coordinator of the Communication Engineering Mas-
ter’s Program at Chalmers.

SUI LAYOUT_Layout 1  5/30/13  4:18 PM  Page 68



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Cadmus settings for Acrobat Distiller 9)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 2400
        /PresetName (Cadmus_Flattener_Presert)
        /PresetSelector /UseName
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




