
Chalmers Publication Library

Event- and time-based design of operation sequences with uncertainties in execution
times

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Proc. 18th IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA 2013), Cagliari, September

Citation for the published paper:
Sundström, N. ; Lennartson, B. (2013) "Event- and time-based design of operation sequences
with uncertainties in execution times". Proc. 18th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2013), Cagliari, September

Downloaded from: http://publications.lib.chalmers.se/publication/181008

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/181008


Event- and time-based design of operation sequences
with uncertainties in execution times

Nina Sundström
Automation Research Group

Department of Signals and Systems
Chalmers University of Technology

nina.sundstrom@chalmers.se

Bengt Lennartson
Automation Research Group

Department of Signals and Systems
Chalmers University of Technology

bengt.lennartson@chalmers.se

Abstract

In this paper, we introduce a complete framework for
integrating the design of the manufacturing process and
control system. We show how operation sequences can be
designed in a modeling tool, Sequence Planner (SP), and
how relations between operations may be expressed using
logical conditions. An approach to convert the SP model
into a constraint programming model for optimization is
presented. The time-based solution is transformed to an
event-based description. Due to uncertainties in execu-
tion times, some logical restrictions based on the optimal
schedule are relaxed to avoid unnecessary delays. The
control logics to achieve the desired operation sequences
are added to the SP model. Hence, the process designer
can revise the sequences if necessary, and the control de-
signer retrieves a logical description of the optimized pro-
cess that can be automatically converted to control code.

1. Introduction

Process planning is the practice of establishing oper-
ations and resources required to manufacture a product
as well as determining the sequential order of operations
based on their intermutual relations. With the increas-
ing need for flexibility in industry, the manufacturing pro-
cesses and their relations have become more complex [4].
To handle the increase in complexity, sequence planning
in industry tends to be either over-specified, simplified,
unclear or incorrect [2]. Scheduling entails coordinating
the operation sequences and deciding the order to perform
each operation based on a specific criterion [1]. Exam-
ples of previous research conducted on integrating process
planning and scheduling can be found in [15],[5] and [14].

There are a wide range of tools for illustrating opera-
tion sequences. In industry, Microsoft Excel is often used
as well as more graphical tools such as Gantt charts [18]
and PERT charts [7]. Sequence Planner Language (SPL),
a new language used for expressing sequences of opera-
tions, was presented in [6]. SPL is implemented in the

tool Sequence Planner (SP) that integrates product, pro-
cess and automation design. Also, the tool enables auto-
matic generation of control code.

Throughout the development of a manufacturing sys-
tem, new requirements and demands may change the se-
quences of operations [9]. As a consequence, the de-
sign of the manufacturing control system starts at a quite
late stage in the development of the manufacturing sys-
tem. Control engineers design the control system based
on an optimal or at least suboptimal sequence of oper-
ations given in a schedule, often visualized using Gantt
charts [13]. However, a drawback with Gantt charts is the
lack of information regarding embedded conditions that
express when operations can start. Hence, a large part of
development time for control designers are spent on find-
ing correct information and transforming the time-based
optimal solution to an event-based formulation that is im-
plemented in the control system [3].

A more solid approach would be to automate the whole
procedure from the optimization to the control code gener-
ation. Not only to support the control engineer but also to
give feedback to the process designer when modeling the
sequences of operations. The process designer would then
be able to iterate the procedure if the resulting schedule
contains undesirable behavior for the operation sequences.

In this paper, a procedure for integrating the design of
the process and the manufacturing control system is pre-
sented. The operation sequences are modeled in SP and
represented as a constraint programming (CP) model in
order to optimize the sequences. SP has visualization fea-
tures that enables the process designer to study the opti-
mal order of operations related to the original sequence
requirements. Also, it is possible to examine operations
from different views, e.g. from a product or resource view
[6]. If the result is not satisfying, the process engineer
could redesign the original operation sequences. The re-
sulting schedule opens up for robustness analysis due to
uncertainties in the execution times of the individual op-
erations. If operations do not have a logical coupling, e.g.
a relation in the original SP model or a common unit ca-
pacity resource, feasibility tests are performed to see if
unnecessary conditions may be removed. Hence, we re-



trieve less restrictive sequences to avoid unnecessary de-
lays when execution times differ from the nominal ones.
The generated control logics based on the optimal solu-
tion are added to the SP model. Hence, the control engi-
neer is handed an event-based description of the process.
This can be compared to the Gantt chart, only containing
timing information and operation order. As a final step,
automatic generation of control code is achievable.

The paper is outlined as follows. In the following
section, Section 2, an operation model is defined. How
to model relations between operations is also covered as
well as how to model in SP. In Section 3, an approach to
parse an operation model in SP to a CP model is given.
A method to generate logical constraints from an optimal
schedule is explained in Section 4. Finally, a case study
of an aero engine structure assembly plant is presented in
Section 5 followed by conclusions in Section 6.

2. Modeling

2.1. Operation model
There are various ways to define an operation model.

Since we are interested in generating event-based control
policies expressing start conditions for operations in re-
lation to other operations, we will use the definition of a
logical operation model.

An operation has three different locations: initial, exe-
cuting and finished. In order for an operation to move be-
tween two locations, a transition condition has to be ful-
filled. This condition includes a guard expression and a
transition action. When the guard expression evaluates to
true and a transition action may execute successfully, the
condition is satisfied. The transition condition between
the initial and executing location is defined as a precondi-
tion. Similarly, a postcondition is defined as the transition
condition between the executing and the finished location
[2]. An automaton extended with variables for an opera-
tion is depicted in Fig. 1.

Figure 1. A model of operation O.

The initial location is denoted Oi, the executing location
Oe and the final location Of . The transition condition
between Oi and Oe is given by the start event e↑ and the
precondition O↑. The stop event e↓ and the postcondition
O↓ are connected to the transition from Oe to Of .

2.2. Operation relations
The core of the operation is the pre- and postconditions,

i.e. O↑ and O↓ for an operation O. These transition con-
ditions are used when specifying constraints related to the
operation, e.g. to define relations between operations. A
graphical representation of different operation sequences

Figure 2. Graphical representations of par-
allel, alternative and arbitrary sequences.

is depicted in Fig. 2. We can view the operations as self-
contained and formulate preconditions to express when an
operation is allowed to start in the different sequences.
Resource booking for a unit capacity resource R is de-
fined as

R+ ≡ R = 0 ∧ Ŕ = 1

where Ŕ is the next value of R. Similarly, the definition
for unbooking a resource is

R− ≡ R = 1 ∧ Ŕ = 0

These definitions may be extended for resources with ca-
pacities greater than one.

Parallel sequence For the parallel sequence, operations
O2 and O3 will both have operation O1 in their precondi-
tion which can be specified as

O↑i = Of1 i = 2, 3

Alternative sequence In the alternative sequence, either
operation O5 or O6 can execute after the completion of
O4. The preconditions for operations O5 and O6 can be
expressed as

O↑i = Of4 ∧A+ i = 5, 6

The condition A+ on the common boolean variable with
initial value A = 0 models a mutual exclusion between
the operations in the arbitrary sequence. The value of A
will never be reset. Hence, only one of the alternative
operations will execute.

Arbitrary sequence The arbitrary sequence is a combi-
nation of parallel execution and mutual exclusion. The
operations in the arbitrary sequence can execute in an
arbitrary order without overlap. A common resource is
booked during the execution of an operation. Hence, mu-
tual exclusion prohibits the operations to execute at the
same time. The preconditions for operation O8 and O9

can be formulated as

O↑i = Of7 ∧R+ i = 8, 9

The postconditions contain the unbooking of the common
resource R

O↓i = R− i = 8, 9



2.3. Modeling using Sequence Planner
A modeling tool called Sequence Planner (SP) has

been developed by the Automation Group at Chalmers
University of Technology [6]. It can be used for the defi-
nition and visualization of product recipes. SP uses an ap-
proach where operations can be modeled as self-contained
with only relevant information on when and how an op-
eration can execute. Sequences of operations based on
e.g. different resources or products can be displayed by
using a projection of operations that somehow relates to
that resource or product. Recently, it has been shown that
transport operations can be automatically generated from
simulation software [8]. The next step is to also gener-
ate process operations based on the product recipe from
external CAD software.

In SP it is possible to model straight, parallel, alter-
native and arbitrary sequences as shown above. The re-
lations between operations are specified using pre- and
postconditions. Operations may also have pre- and postac-
tions in order to formulate e.g. booking and unbooking of
resources. When an operation requires one or more re-
sources, a precondition can be formulated to express that
the necessary resources have to be available before execut-
ing the operation. A preaction can state the actual resource
booking. Hence, when the precondition is fulfilled, the re-
source is booked and the operation related to the transition
condition starts executing. A processing time for each op-
eration can also be specified.

3. Constraint programming

The origin of CP lies in the artificial intelligence and
computer science communities and can be traced back to
the constraint satisfaction problems (CSPs) studied in the
1970s [11]. A CSP entails finding a feasible set of deci-
sion variables subject to a number of constraints, i.e. as-
signing values to variables that satisfy all constraints [12].
During the last decades, CP has evolved into solving opti-
mization problems, that is finding the solution in a feasible
set that minimizes or maximizes a given objective func-
tion [10]. The constraints may be of various types; linear,
nonlinear, logical, cardinal and global. This makes mod-
eling problems using CP much more flexible compared
to operations research, where only linear and integer con-
straints may be used.

3.1. Scheduling using constraint programming
In this paper, IBM ILOG OPL is used for posing the

optimization models and IBM ILOG CP Optimizer is used
for solving the models. The solver uses constraint pro-
gramming targeting both constraint satisfaction and opti-
mization problems [17].

The decision variables for CP scheduling problems
using OPL are intervals. Each interval represents an
operation and is characterized by a start value, end
value and size. Examples of constraints that are used
in OPL to describe the structure of an SOP are e.g.
endBeforeStart() and alternative(). The former

states that the start of one interval has to be greater than the
end of another interval. The latter models an exclusive al-
ternative between different intervals. Another useful func-
tion in OPL is cumulFunction which can be used for the
resource allocation. This function is incremented as a re-
source is booked and decremented when the resource is
released, acting as a pulse function.

If a resource has to be booked for the duration of sev-
eral operation intervals a pulse function may not be used.
Instead, an OPL expression stepAtStart() can be used
to increment the cumulative function at the start of an op-
eration. In the same way, stepAtEnd() can be used to
decrement the resource at the end of an operation. An
upper bound for the cumulFunction corresponds to the
capacity of the resource.

3.2 Mapping of operation sequences
In SP it is possible to graphically represent four types

of sequences: straight, parallel, alternative and arbitrary.
The three latter ones are depicted in Fig. 2. As previously
mentioned, operations in CP using OPL are represented
by interval decision variables. The length of the intervals
equals the processing time of each operation. The map-
ping of the operation sequences depicted in Fig. 2 to CP
will be described in the following paragraphs. Each inter-
val Ii relates to an operation Oi. An interval variable I1 is
initiated as

1: interval I1 size(Omin1 ,Omax1 )

where Omin1 is the minimum execution time for O1 and
Omax1 is some sufficiently large constant. Serial execution
of two operations, O1 and O2 can be described in two
ways. One alternative is

1: endBeforeStart(I1,I2)

which allows for a segment of time between the two inter-
vals when nothing is performed. However, if a resource is
to be booked during O1 until O2 starts, it can be conve-
nient to use

1: endAtStart(I1,I2)

This constraint will ensure that I1 ends as I2 starts and
thus guarantees that the resource is booked for the nec-
essary period. Two operations, O2 and O3, executing in
parallel without mutual dependency can be modeled using
two sequential constraints. If O1 is an operation preceding
the two parallel operations, the system can be modeled by

1: endBeforeStart(I1,I2)
2: endBeforeStart(I1,I3)

If a SOP contains alternative operations, the alterna-
tive() constraint can be used. Suppose either O5 or
O6 is to be executed after the preceding operation O4.
The following code will ensure the correct behavior.

1: interval Ii optional size(Omini ,Omaxi ), i = 5, 6
2: endBeforeStart(I4, D)
3: alternative(D, {I5, I6})



First, I5 and I6 are initiated as optional, i.e. neither of
them have to be executed. Then, D , a dummy interval is
constrained to start after I4. The alternative() constraint
then states that if D is executed, it will start and end with
either I5 or I6. This will force one of these optional inter-
vals to be executed.

An arbitrary sequence is when two operations are both
to be executed, but during different time intervals. This
behavior can also be interpreted as a parallel sequence
with a dummy resource that mutually excludes the op-
erations. The necessary constraints for mutual exclu-
sion of two operations O8 and O9 are the following

1: endBeforeStart(I7,I8)
2: endBeforeStart(I7,I9)
3: cumulFunction C = pulse(I8)+pulse(I9)
4: C ≤ 1

A cumulative function C is used to represent a dummy
resource. On row 4, C is constrained to a maximum value
of 1. A pulse is a timed expression which attains value 1
as its target interval executes. As a result, with C defined
as the sum of two pulses on row 3, the two operations
cannot execute simultaneously without violating the upper
bound of C. In other words, I8 and I9 mutually exclude
each other. However, the order in which they execute is
not specified.

From the mapping of operation sequences to con-
straints in CP, we see that pre- and postconditions express-
ing a relation to another operation can be modeled by end-
BeforeStart() or endAtStart(). For pre- and/or postcondi-
tions containing e.g. resource booking/releasing, cumula-
tive functions may be used to represent this behavior in
CP. For a resource R, a cumulative function is defined by

cumulFunction R =
∑
i pulse(Ii)

where i are the indices of all operation intervals that re-
quire R during execution.

4. Event generation

In the previous section we described how we can gen-
erate a constraint programming model from a set of op-
erations and their pre- and postconditions. The resources
required to perform each operation are given as well as
the execution time. Information regarding relations be-
tween operations may also be given. When the operation
model in SP has been parsed to an optimization model in
CP, an optimal schedule may be generated. The schedule
specifies the execution order for the operations in terms
of starting times for each operation. Since execution time
may vary from the nominal execution time, it is necessary
to express the order between the operations using logics
in the final control implementation. Thus, the optimal
operation order will be expressed as logical conditions in
the original operation model in SP. Hence the full model
will contain conditions based on the original operation se-
quences as well as conditions from the optimization.

If the process designer finds the schedule to be unsat-
isfactory, e.g. due to time gaps, SP can be used for an-
alyzing what conditions that caused this operational be-
havior in the schedule. Since complexity in manufactur-
ing processes often are tackled by over-specifying the sys-
tem, the process designer can in retrospect remove unnec-
essary conditions. If changes are made to the model, a
new schedule has to be generated. Once the schedule is
approved by the process designer, the control designer re-
trieves a logical description of the optimized process that
can be automatically converted to control code.

In order to avoid unnecessary delays when execution
times differ from nominal ones, we would like to perform
analysis on the constraints before adding conditions to the
SP model. Some operations in the schedule will have a
logic coupling due to e.g. relations in the original model.
However, others may be able to start before a preceding
operation have finished. As a consequence, we would like
to study the constraints in order to relax certain condi-
tions and gain less restrictive operation sequences. Hence,
for non-nominal execution times, the operation sequences
would be less affected by delays than without these anal-
ysis. We will present an approach to generate conditions
based on the optimal schedule that guarantees that the ex-
ecution order of the operations is maintained. Also, we
will introduce a method to analyze the operations and their
conditions to see it they can be modified in order to ob-
tain a less restrictive system for varying execution times.
But first, we will present an illustrative example to demon-
strate our approach.

4.1. Illustrative example
Consider two robots working in parallel. The job to

be performed by Robot 1 consists of three operations in a
straight sequence while Robot 2 has two subsequent op-
erations. The second operation for Robot 1 and the last
operation for Robot 2 are performed in a mutual zone.
Therefore, the robots have to book the zone before enter-
ing it and unbook it when they leave in order to avoid col-
lisions. The sequence of operations performed by Robot
1 is given by

JR1 : O11(5)→ O12(3)→ O13(3)

where the processing time for each operation is given in
the brackets after the operation. Robot 2 executes opera-
tions

JR2 : O21(5)→ O22(7)

The transition conditions for the operations are

O↑12 = Of11 ∧ R+

O↑13 = Of12

O↑22 = Of21 ∧ R+

where R is a common boolean variable with initial value
0 and maximum value 1. The operations requiring the
shared zone R, have a postcondition where R is unbooked.
In this quite trivial example it is easy to see what the re-
sulting time-optimal schedule would look like, see Fig. 3.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

O11

O12

O13

O21

O22

Figure 3. The time-optimal Gantt chart.

The set of conditions generated from the optimal schedule
with indirect relations removed is

O↑12 = Of11 ∧Of21

O↑13 = Of12

O↑22 = Of12

As an example, O11 and O13, have an indirect relation
since O13 has a relation to O12, which in turn, has a re-
lation to O11. Hence, if indirect relations were not re-
moved, Of11 would be a precondition for O13 to start. The
conditions related to the operation relations in the original
operation model are

O↑12 = Of11

O↑13 = Of12

O↑22 = Of21

Hence, by removing the conditions from the original op-
eration model from the conditions generated from the op-
timal schedule, we end up with the following conditions.

O↑12 = Of21

O↑22 = Of12

Based on these logical restrictions, the constraints
endBeforeStart(I21, I12) and endBeforeStart(I12, I22) are
added to the CP model to guarantee that the starting or-
der of the operations is maintained. Since the duration
for operations may vary from nominal execution times,
we would like to asses these constraints in order to see
if we have any unnecessary restrictions in our operation
model. Hence, the constraint endBeforeStart(I21, I12)
is modified to startBeforeStart(I21, I12) and a feasibility
test is performed to see if this yields a feasible solu-
tion. Similarly, endBeforeStart(I12, I22) is modified to
startBeforeStart(I12, I22). The feasibility test will result
in an infeasible solution since operations O12 and O22

share a resource with capacity 1. Hence, we reintroduce
endBeforeStart(I12, I22) to our model. The transition con-
ditions for the operations in the original operation model
are updated accordingly.

O↑12 = Of11 ∧ R+ ∧ (Oe21 ∨Of21)

O↑13 = Of12

O↑22 = Of21 ∧ R+ ∧Of12

The Gantt chart in Fig. 3 displays a time gap between the
two operations for Robot 2. This is due to the common re-
source for O21 and O22. Hence, if O21 has a delay smaller
than the time gap, i.e. the execution time for O12, the op-
timal solution would still hold since O12 can start during
the execution of O21. Assume that O21 has an execution
time T21 = 5+Δ where Δ is the deviation from nominal
execution time. When constraints are not modified, the
makespan MS for the system can be expressed as

MS = 15 +Δ

When modifying the constraints, the makespan is given as

MS = 15 +max(Δ− 3, 0)

Hence, the optimal solution would still hold if Δ ≤ 3.

4.2. Approach
LetO be the set of all operations in the operation model

andOj the set of operations that are completed before op-
eration Oj starts. We observe thatOj ⊂ O. The following
conditions guarantee that the order in the optimal schedule
is maintained.

O↑j =
∧

Oi∈Oj

Ofi ∀ Oj ∈ O (1)

Hence, we restrict an operation to start before all preced-
ing operations have finished executing. The number of
operations in the precondition is reduced by removing in-
direct relations.

As previously mentioned, we would like to analyze the
conditions related to the operations before adding them to
the SP model. This is due to uncertainties in execution
time for operations. For non-nominal execution times, we
would like to avoid unnecessary delays. Let the conditions
generated from the optimal schedule be contained in a set
Cs where indirect relations have been removed. The set of
conditions stating operation relations in the original model
in SP is denoted Cm. It is of no interest to modify the
original relations specified in the SP model. Therefore,
to retrieve the conditions to analyze we need to study the
conditions in Cs \ Cm. For each condition Cj ∈ Cs \ Cm,
we add constraints on the related operation intervals I in
the CP model

endBeforeStart(Ii, Ij) ∀ Oi ∈ pre(Cj), Oj ∈ O
where pre(Cj) ⊆ Oj is the set of operations for which
there are logical conditions in Cj . The generated endBe-
foreStart() constraints are included in a set P . As pre-
viously mentioned, operations may have one or several
operations in their precondition. The analysis differ be-
tween these two cases and will be described in the follow-
ing paragraph.

Analyzing constraints The analysis of the constraints
depends on the number of operations in a precondition.
When an operation Oj only have operation Oi as a pre-
condition, the constraint endBeforeStart(Ii, Ij) ∈ P is to



be studied. In order to see if it is possible for opera-
tion Oj to not only start after but also during the execu-
tion of Oi, we replace this constraint with a constraint
startBeforeStart(Ii, Ij). This constraint specifies that in-
terval Ii has to start executing before interval Ij can
start its execution. A feasibility test determines if this
would result in a feasible solution. If not, we reintroduce
endBeforeStart(Ii, Ij) to P .

If a precondition contains two or more operations, they
will be in parallel. To motivate this, assume two oper-
ations in a precondition could be in a straight sequence.
The second operation would have the first operation in its
precondition since this operation starts and ends before
the second operation. Hence, the first operation would be
removed from the precondition containing the two oper-
ations due to indirect relations. This implies that if an
operation depends on several operations to have finished
before executing, these operations will be in parallel. Con-
sider the case when a precondition for operation Ok con-
tains two operations Oi and Oj

O↑k = Ofi ∧Ofj O↑k ∈ Cs \ Cm

It is not sufficient to study the constraints individu-
ally. Not only do we need to examine each constraint
startBeforeStart(Ii, Ik) and startBeforeStart(Ij , Ik) sepa-
rately, we also need to check the stronger conjunction
of the constraints. Hence, if we start with evaluating if
all three operations can execute in parallel and the re-
sult is infeasible, we may continue to assess the con-
straints individually. We start with evaluating the con-
straint related to the operation with the latest comple-
tion time contained in pre(Ck). Assume that the com-
pletion time for Ii is greater than the completion time
for Ij . In this case, endBeforeStart(Ij , Ik) will be rein-
troduced to P and startBeforeStart(Ii, Ik) will be evalu-
ated. If the result is infeasible, we continue with inter-
val Ij and evaluate startBeforeStart(Ij , Ik) and reintro-
duce endBeforeStart(Ii, Ik) to P . In order to avoid a large
number of combinations, we have limited the number of
considered parallel operations to be two. The remaining
operations will have to finish executing before the suc-
ceeding operation can start.

Feasibility tests The assessments mentioned in the pre-
vious paragraph consists of feasibility tests. Two main
feasibility tests are performed to see if the problem is fea-
sible or not. The first test checks if operations share a
common resource with unit capacity and hence are mu-
tually excluded. The second test uses constraint propa-
gation to see if it is feasible to modify a constraint. The
feasibility test is formed as a constraint satisfaction prob-
lem using the optimization model excluding the objective
function and the addition of the constraints in P . A limit
for the search in terms of time or fails is necessary. If a
solution can not be found before this limit is reached, the
test is determined to be infeasible. In this case, we will
restrain an operation to start after the previous operation
has finished.

Generating logical conditions When the analysis of the
constraints has been completed, the result is added to the
operation model in SP. We go through the constraints in P
to see if they have been modified or not. Then, constraints
are parsed to operation relations.

startBeforeStart(Ii, Ij) ⇒ O↑j = O↑j ∧ (Oei ∨Ofi )

endBeforeStart(Ii, Ij) ⇒ O↑j = O↑j ∧Ofi

Thus, we update the precondition for the operations in
the SP model with the result from the analysis. The SP
model will then contain conditions based on the original
sequence requirements and conditions based on the opti-
mal schedule. Operations without logical coupling have
been assessed to see if it is necessary for a succeeding op-
eration to wait for the preceding operation to finish or if it
is sufficient to wait for the preceding operation to start.

4.3. Algorithms
One approach to ensure that the order in the schedule

is maintained is to sort the operation intervals after ear-
liest start time. If we go through the sorted intervals we
can specify that all intervals that are completed before a
specific operation interval starts are added to the precon-
dition for the corresponding operation. This procedure is
described in Algorithm 1 as well as removing indirect re-
lations from the preconditions by the local function has-
Relation. The input to this algorithm is the sorted array

Algorithm 1: Generate conditions

Input: I , O
Output:

1 for j in I do
2 Oj = ∅;
3 for i in I do
4 if startOf(i) < startOf(j) ∧

endOf(i) ≤ startOf(j) then
5 Oj = Oj ∪Oi;

end
end

6 Cs = Cs ∪O↑j ;
7 for Ok in Oj do
8 for Ol in Oj \Ok do
9 if hasRelation (Ok, Ol) then

10 pre(Cj) =pre(Cj) \Ok;
11 continue to next Ok;

end
end

end
end

of operation intervals, I , and the set of operations,O. The
first step is to add preconditions for all operations accord-
ing to (1). Next, the operations in the precondition are
examined to see if indirect relations exist. If so, opera-
tions are removed from the precondition. When the con-
ditions in Cs have been determined, Algorithm 2 is used



to add constraints to the operation intervals. The input is
the sorted array of operation intervals, I , and the condi-
tions related to the optimal schedule Cs that do not exist
in the condition set for the original operation model Cm,
i.e. Cs \ Cm. For each operation in the set of precondition
operations, endBeforeStart() is added to the set of con-
straints, P . The assessment of constraints is performed

Algorithm 2: Specify constraints

Input: I, Cs \ Cm
Output:

1 for Cj in Cs \ Cm do
2 for Oi in pre(Cj) do
3 P = P ∪ endBeforeStart(Ii, Ij);

end
end

using the feasibility test given in Algorithm 3. The input
is two operation intervals, Ii and Ij , and the output is ei-
ther true or false. If the corresponding operations share a
resource with capacity 1, the method returns false. Else,
the constraint endBeforeStart(Ii, Ij) ∈ P is replaced
with startBeforeStart(Ii, Ij). The function solve uses con-
straint propagation to test if the constraints from the opti-
mization model together with the constraints in P are sat-
isfied. The algorithm returns true if solve returns a feasible
solution. Else, the constraint startBeforeStart(Ii, Ij) ∈ P
is reset to endBeforeStart(Ii, Ij) and the algorithm returns
false. When all feasibility tests have been performed, the

Algorithm 3: Feasibility test

Input: Ii, Ij
Output: True/False

1 if sharedResource (Ii, Ij) then
2 return False;

end
3 P = P ∪ startBeforeStart(Ii, Ij) \

endBeforeStart(Ii, Ij);
4 if solve () then
5 return True;

end
6 P = P ∪ endBeforeStart(Ii, Ij) \

startBeforeStart(Ii, Ij);
7 return False;

final step is to generate conditions to the SP model based
on the constraints in P , see Algorithm 4.

5. Case study

For our case study we have considered a manufacturing
facility for aero engine structures, to be more specific the
turbine exhaust case. Traditionally this structure has been
delivered as one big piece of casting which has then been
machined in several steps. The manufacturing process is
very robust and several steps may be performed in the

Algorithm 4: Add conditions

Input: P
Output:

1 for p in P do
2 switch p do

case endBeforeStart(Ii, Ij)
3 O↑j = O↑j ∧Ofi ;

end
case startBeforeStart(Ii, Ij)

4 O↑j = O↑j ∧ (Oei ∨Ofi );

end
endsw

end

same station by using multi-purpose machines. However,
a major drawback is that only a few suppliers in the world
can deliver these big pieces of casting. The aero engine in-
dustries are therefore looking into the possibility of using
automated manufacturing processes. They study possible
methods to divide the structure into smaller parts which
are automatically assembled to sub-assemblies which are
further assembled to the final structure. Much in the same
way as processes in the automotive industry where auto-
mated manufacturing is used to a great extent.

Process description The manufacturing steps studied in
this paper, are the processes that refine smaller parts be-
fore they are assembled, as well as the assembly opera-
tions of the smaller parts to the larger parts, called seg-
ments. An extension of this manufacturing system was
studied in [16]. The part of the manufacturing facil-
ity studied contains tables for fixating and unfixating the
parts, a robot for transporting the parts and machines for
milling, measuring and welding. The parts and segments
are attached to fixtures throughout all operations. There
are 2 types of segments, each consisting of either 2 or 3
smaller parts. Additionally, there are 4 different types of
parts. The product recipe for all part types is given by

Fixate (2)→Milling (22;32;42)→ Unfixate (4)

The execution time for the different operations are given
in the brackets following the operation. The milling op-
eration has three different execution times depending on
the part type to be processed. The product recipes for the
segment types are given by

Fixate (8)→Measuring (2)→Welding (20)→
→Measuring (2)→ Unfixate (2)

The manufacturing cell have one robot that performs the
necessary transportation of products between operations.
The characteristics of the considered system are given be-
low.

• 14 resources, 36 parts, 13 segments, 513 operations

• Alternative transportation paths due to buffers.



• In the product recipes some operations are repeated,
which results in parts returning to a workstation pre-
viously visited.

• Parts always have one ore more resources booked
throughout their operation sequences.

The objective is to minimize the makespan of the produc-
tion of 13 segments, i.e. a total of 36 parts.

Results The optimization was run on a Windows 7 64-
bit system with a 2.66 [GHz] Intel Core2 Quad CPU and
4 [GB] of RAM. The suboptimal makespan for 13 seg-
ments was 724 minutes. More information regarding the
optimization can be found in [16]. The suboptimal sched-
ule of the manufacturing system contains 403 operations.
This number differs from the number of operations in the
SP model which is 513. This is due to alternative paths
where the number of operations in each branch differ. The
number of conditions generated from the schedule, Cs and
the number of relation conditions in the SP model, Cm are
given below. Also, the number of conditions to analyze,
Cs \ Cm, is given.

|Cs| = 640
|Cm| = 390

|Cs \ Cm| = 247

The number of preconditions in Cs \ Cm containing more
than one operation is 32. The analysis show that 135 of
the conditions could be changed from Of to Oe ∨Of .

6. Conclusions

In this paper, we introduced a framework for integrat-
ing the design of a manufacturing system and the devel-
opment of a control system. The modeling tool, Sequence
Planner (SP), is used to model the operation sequences.
The SP model is converted to a constraint programming
model in order to optimize the operation sequences. The
resulting time-based schedule is translated to an event-
based description of the resulting operation order. Due to
uncertainties in the operation execution times, some logi-
cal restrictions generated by the optimal schedule are re-
laxed. As a result from the less restrictive event-based op-
eration sequences, unnecessary delays are avoided when
operation execution times differ from the nominal ones.
The result is fed back to the original SP model where con-
trol logics for final implementation may be automatically
generated.

Acknowledgement

This work was carried out at the Wingquist Labora-
tory VINN Excellence Center within the Area of Ad-
vance Production at Chalmers. The work has been sup-
ported by the EU-FP7 FLEXA project, Swedish Govern-
mental Agency for Innovation Systems (VINNOVA) and
Swedish Research Council (VR). The support is gratefully
acknowledged.

References

[1] In P. Beek, editor, Principles and Practice of Constraint
Programming - CP 2005, volume 3709 of Lecture Notes
in Computer Science. 2005.

[2] K. Bengtsson. Flexible Design of Operation Behavior Us-
ing Modeling and Visualization. PhD thesis.

[3] K. Bengtsson, B. Lennartson, C. Yuan, P. Falkman, and

S. Biller. Operation-oriented specification for integrated

control logic development. In Automation Science and En-
gineering, 2009. CASE 2009. IEEE International Confer-
ence on, pages 183–190, 2009.

[4] M. P. Fanti, B. Maione, S. Mascolo, and A. Turchiano.

Event-based feedback control for deadlock avoidance in

flexible production systems. Robotics and Automation,
IEEE Transactions on, 13(3):347–363, 1997.

[5] J. Kempenaers, J. Pinte, J. Detand, and J.-P. Kruth. A col-

laborative process planning and scheduling system. Ad-
vances in Engineering Software, 25(1):3 – 8, 1996.

[6] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson,

M. Fabian, P. Falkman, and K. Åkesson. Sequence plan-

ning for integrated product, process and automation de-

sign. IEEE Transactions on Automation Science and En-
gineering, 7:791–802, 2010.

[7] R. Levin and C. Kirkpatrick. Planning and control with
PERT/CPM. New York, McGraw-Hill, 1966.

[8] P. Magnusson, N. Sundström, K. Bengtsson, B. Lennart-

son, P. Falkman, and M. Fabian. Planning transport se-

quences for flexible manufacturing systems. In Preprints
of 18th World Congress of the International Federation of
Automatic Control, 2011.

[9] H. Marri, A. Gunasekaran, and R. Grieve. Computer-aided

process planning: A state of art. The International Journal
of Advanced Manufacturing Technology, 14(4):261–268,

1998.
[10] P. Pardalos and M. Resende. Handbook of applied opti-

mization. Oxford University Press, 2002.
[11] M. Pinedo. Planning and scheduling in manufacturing and

services. Number v. 1 in Springer series in operations re-

search. Springer, 2005.
[12] F. Rossi, P. van Beek, and T. Walsh. Handbook of

Constraint Programming (Foundations of Artificial Intelli-
gence). Elsevier Science Inc., New York, NY, USA, 2006.

[13] G. Schmidgall, J. Kiefer, and T. Bär. Objectives of in-

tegrated digital production engineering in the automotive

industry. In Proceedings of the 16th IFAC World Congress,
Prague, Czech Republic, 2005.

[14] A. I. Shabaka and H. A. ElMaraghy. A model for generat-

ing optimal process plans in rms. International Journal
of Computer Integrated Manufacturing, 21(2):180–194,

2008.
[15] W. Shen, L. Wang, and Q. Hao. Agent-based dis-

tributed manufacturing process planning and scheduling:

a state-of-the-art survey. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on,

36(4):563–577, 2006.
[16] N. Sundström, O. Wigström, P. Falkman, and B. Lennart-

son. Optimization of operation sequences using constraint

programming. In Proceedings of 14th IFAC Symposium on
Information Control Problems in Manufacturing, 2012.

[17] P. Van Hentenryck. The OPL optimization programming
language. MIT Press, Cambridge, MA, USA, 1999.

[18] J. M. Wilson. Gantt charts: A centenary appreciation.

European Journal of Operational Research, 149(2):430 –

437, 2003.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


