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Concurrent Design and Control of Automated Material Handling
Systems

Maziar Mashaei1,2, Bengt Lennartson1

1Department of Signals and Systems, Chalmers University of Technology, Sweden
2FlexLink AB, Göteborg Sweden

Abstract— Lean and agile design and control of an automated
material handling system are investigated in this paper. The
demands for a minimal number of handling resources and their
maximal utilization emphasize the importance of a concurrent
structure and control design for a handling mechanism in the
conceptual phase. To provide this concurrency, a universal
model based on mathematical linear constraints is developed
to define a set of part movements without concerning a specific
handling technology. Furthermore, an objective characterizing
optimal part movements, according to the lean and agile
paradigms, is formulated in the conceptual design phase.
Control measures, which are obtained by solving the mixed
integer linear model including the objective and constraints,
provide important keys for designers to conceptualize a proper
design of an automated material handling system. To show the
application of developed approach, a case study is presented
and discussed.

Key words: Automated material handling system, Concur-
rent design and control, Lean and agile paradigms, Mixed
integer linear optimization model.

I. INTRODUCTION
Handling, buffering, and locating actions are the most

frequent non-value adding activities in a manufacturing plant.
The resources, which perform these functions and receive
commands from electronic control devices, are categorized in
a group of Automated Material Handling Systems (AMHSs).
The major examples of AMHSs are automated guided ve-
hicles (AGVs), pallet and conveyors systems, cranes, and
handling robots.

Operational and economical issues are the main concerns
in the design and control of a manufacturing plant. Defining
waste as a resource or effort that does not transform a part
(does not add any value to a part), Lean philosophy [1]
sums up these issues with the concept of waste minimization.
According to this philosophy, a material handling system is
an auxiliary system, because it does not transform a part,
but it supports adding value activities. Besides, according to
Agile philosophy [1] an AMHS should be flexible enough to
cope with various production scenarios. Hence, the lean and
agile design of an AMHS that captures the minimum number
of resources and the minimal cost, while fulfilling different
production scenarios with a maximum flow efficiency is a
vision for designers.

The realization of this vision is a great challenge because
there is a trade-off between maximum resource utilization
and maximum flow efficiency. The less number of handling

resources is devised, the less probable it is to obtain a high
flow efficiency. In the literature this challenge has been
broken into two subproblems; control design and system
(plant) design.

The main issue in the control design is to maximize flow
efficiency with a nearly fixed number of handling resources
and technologies (the number of carriers such as pallets and
AGVs may be variable). Flow enhancement, [5], [6], [7],
[8], makespan minimization [9], [10], reduction of the cycle
time and Work-In-Process (WIP), [11], [12], [13], [14] are
some instances for the control design. On the other hand,
the main objective in the plant design is to minimally design
a handling system (maximize handling resource utilization)
for a given flow rate, [2], [3], [4].

A sequential procedure of system and control design is a
classical approach in the development of a material handling
system. Although this approach has been applied in practice
and enhanced in a course of years, there are still some
evidences showing a vast gap between a practical design and
the visionary one based on the lean and agile philosophies.
According to [2], [15], in practice large percentages of
operational cost (20% to 50%), factory space (55%), and pro-
duction time (87%) of a manufacturing sector are attributed
to its material handling system. These values show that large
portions of capital, time, and effort are associated with non-
value adding activities that can highly affect product costs
(15% to 70%), [2].

One possible reason for this gap can be the lack of
concurrent structure and control design for AMHSs. In the
classical approach, the structure and resources of an AMHS
are first specified, sacrificing the precise modeling of the
system dynamics. Then for the given structure, control set
points are calculated as addressed in the aforementioned
studies. This approach does not guarantee a lean and agile
design for AMHSs, because the impact of control parameters
on the structure design is not fully and precisely investigated.

In this paper we address a novel approach for the re-
alization of an AMHS based on the integration of the
system and control problems in one design framework. The
concurrent system and control design framework promisees
finding solutions for both issues; the maximum utilization
and the maximum flow efficiency (lean and agile design of
an AMHS), which can not be obtained by using the classical
sequential design approach.



II. LEAN STRUCTURE AND CONTROL DESIGN OF AN
AMHS

An AMHS can be modeled by a graph in which locating,
connecting, and intersection positions are represented by
nodes, and flow paths are specified by edges. For example,
Fig. 1 shows a complete graph of a system with 6 nodes to
conduct and locate parts for operating machines M1 to M4.
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Fig. 1. A complete graph model of an AMHS, including 6 nodes.

Regarding the graph model, the structural design pro-
cedure should specify the number and position of nodes,
technology and equipment type for each node, number and
configuration of edges, and flow direction and handling
mechanism for each edge. On the other hand, the control
design procedure may characterize the number of parts, the
velocity of parts in each flow path, the buffer level and
queuing policy in each edge, scheduling and time instances
for releasing parts in each node.

Based on the graph model and without concerning a
handling technology, an index for measuring the lean design
can be defined according to the numbers of nodes, edges, and
carriers. The lower these numbers are, the fewer resources
are integrated in the system. This implies a procedure for
the conceptual design phase that takes a complete graph
as its input and provides a graph with a lower number of
nodes, edges, and WIP as its output. Naming this procedure
as the lean filter, the maximum reduction is achieved when
the output of the filter is a directed simple loop with the
minimal number of nodes and WIP. In this case the nodes
only represent locating positions for machines. For instance,
Fig. 2 demonstrates a reduction of the complete graph in Fig.
1 to the directed loop with 4 nodes.
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Fig. 2. Directed loop model of the AMHS with 4 nodes.

Although the one-loop design may have the lowest number
of resources, it cannot be applied if the desired production

rate is not fulfilled. The major problem in this design is
that the flow times of parts in the loop can be significantly
increased due to the rise of unnecessary transportation and
waiting times. As a result, the average throughput T H
decreases according to the Hopp and Spearman equation

T H =
WIP
FT

(1)

which relates T H to the average flow time FT and work-in-
process WIP, [16]. One solution to this problem is to increase
WIP in order to maintain the desired T H. But this solution
can not always be practised because a part carrier could
be the most expensive resource in an AMHS (for example
AGV), or there could be a barrier for increasing WIP (limited
buffer spaces). Having these limitations, a more complicated
configuration should be designed for the AMHS to satisfy the
desired throughput. To make this more clear, the following
example is devised.

The configuration shown in Fig. 2 is used to transport two
part types A and B between 4 processing machines. The part
operations in the machines are:

• A : O1(M1)→ O2(M2)→ O3(M3)→ O4(M2)→ O5(M4)

• B : O1(M1)→ O2(M2)→ O3(M3)→ O4(M4)

This means that part A circulates the loop twice and part B
once. Hence, the flow paths of A and B can be expressed
based on the nodes as

• A : 1 → 2 → 3 → 4 → 1 → 2 → 3 → 4
• B : 1 → 2 → 3 → 4

If for any reason the desired throughput cannot be achieved
by using the one-loop design, the system configuration
should be modified to reduce the flow paths and related
flow times. One solution is to introduce a feedback from
M3 to M2 for part A. This solution is depicted in Fig. 3 by
introducing two extra nodes and three extra edges.
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Fig. 3. Modified graph of the AMHS with 6 nodes. The small nodes
represent the intersections between the paths.

The big nodes indicate the locating points, at which the
parts are positioned for operating actions, and the small
nodes represent the intersections between the paths. Based
on this modification the flow paths are changed to

• A : 1 → 2 → 3 → 4 → 5 → 2 → 3 → 4 → 5 → 6
• B : 1 → 2 → 3 → 4 → 5 → 6

In practice, the added nodes and edges imply resources such
as fixture, robot, conveyor, aisle, diverter, merger etc., where
the types completely depend on the handling technology.



Which type and what number of resources should be added
to a one-loop AMHS to maintain a desired throughput are
challenging questions regarding the lean design. In the next
section, we introduce a measure and a design framework to
give some clues to tackle these challenges.

III. UNIVERSAL MODEL OF AN AMHS

A practical handling mechanism has limitations on trans-
portation time, queuing policy, and buffering and locating
parts. For example, a handling equipment may not be faster
than 1 m/s, it follows First Input First Output (FIFO)
queuing policy, and it may only buffer two parts for locating
actions. If these limitations are dropped, large domains can
be specified for variations of WIP and FT . Hence, with
such relaxations on part velocities, buffer capacities, and
queuing policies, theoretically it is not necessary to add more
nodes and edges to the one-loop AMHS model to fulfill a
desired throughput. A one-loop AMHS configuration with
these theoretical relaxations realizes a universal model for
any handling system technology.

The dynamics analysis of parts in the universal model
provides metrics for the relaxed parameters. If these metrics
are in practical ranges, then the one-loop AMHS design
is also practically possible. Otherwise, extra physical re-
sources should be added to the one-loop design in order to
translate the unrealistic metrics from theory into practice.
For example, assume that the transportation time of a part
between two the nodes 2 and 3 in Fig. 2 is calculated to be
zero seconds. In theory, this means that the length between
the two nodes is zero, or/and the part velocity goes to
infinity. In practice; however, both of these assumptions are
invalid. Thus, to obtain an applicable shorter transportation
time, some modifications should be applied to the system
configuration. Providing that there is no process for a part in
M3, an extra edge (bypass edge) between the nodes 2 and 4
may present such a realization.

A proper translation of the metrics into physical resources
requires a large amount of knowledge, experience, and engi-
neering skills about the system technology and architecture.
In other words, there is no formal method (language) for
this translation. However, it is possible to formally define
criteria for the metrics, leading to the minimal number of
resources for the translation. In this section, these criteria
are introduced, and a mathematical model which defines the
minimal number of handling resources is developed.

A. Notations and assumptions for the universal model

In the universal model, the number of edges is the same
as the number of nodes. Hence, the model can be partitioned
into segments so that each includes one edge and its follow-
ing node. Based on this partitioning, the following notations
are defined:

• ℓ ∈ M = {1,2, . . . ,m} is the index over all segments.
• Nℓ(t) is the number of carriers at time t in segment ℓ.
• bℓ is the buffer size of segment ℓ.
• Lℓ is the length of segment ℓ.

• i ∈ I = {1, . . . ,n} is the index over part instances in the
ordered part set ⟨P1,P2, . . .Pn⟩.

• vℓi [m/s] denotes the velocity of carrier for Pi in segment
ℓ. Furthermore, T ℓ

ci
= 1/vℓci

is the transportation time of
Pi, passing 1 meter in segment ℓ.

• T ℓ
ri
= LℓT ℓ

ci
is the transportation time of Pi in segment ℓ.

• τℓi is the locating time of Pi for some operation in
segment ℓ (the setup time is also included in the locating
time).

• W ℓ
i is the waiting time of Pi in the buffer of segment ℓ.

• FT ℓ
i = T ℓ

ri
+τℓi +W ℓ

i is the flow time of Pi in segment ℓ.
In addition to the notations, some assumptions are needed
to approximately represent complex functions in an AMHS
on mathematical form. These assumptions are introduced for
the model.

Deterministic system: Processing times τℓi and
transportation times T ℓ

ri
are deterministic and constant.

Cyclic system: A part set containing n parts
{P1,P2, . . .Pn} is cyclically fed to the segments from
the loading segment ℓ= 1 to the unloading segment ℓ= m.
The cycle number, k, specifies the part set fed in kth cycle.
Each segment handles kth part set before (k + 1)th part
set. Additionally, the order i ∈ I, by which Pj in the set
is released from the segment ℓ, is constant over time and
indicated by the releasing vector Iℓ. This means that ith

component of this vector is j or Iℓi = j. Accordingly, the
notation Iℓ( j) = i is used to specify the order of part j
released in the segment ℓ.

CONWIP system: Fixed number of carriers or
CONstant Work in Process is considered in the system
(N = ∑m

ℓ=1 Nℓ(t)).

Availability of parts and tools: Parts are always
available to be loaded in the first segment, and when a
part is located for an operation, the related tools are available.

Stationary behavior: If a part should circulate the
loop more than once (re-entrance behavior), then for each
circulation a distinct type instance is given to the part. In
the system stationary state, furthermore, it is assumed that
all type instances related to a part are fed to the system as
different parts in the part set.

B. Mathematical model of the lean design criterion

Based on the introduced notations and assumptions, we
have

WIP = N, T H =
n
C
, FT =

∑m
ℓ=1 ∑n

i=1 FT ℓ
i

n

where N is the number of carriers in the system and C is the
cycle time for the production of the part set {P1,P2, . . .Pn}.
Accordingly, (1) can be reformulated as

NC =
m

∑
ℓ=1

n

∑
i=1

T ℓ
ri
+ τℓi +W ℓ

i (2)



In this equation, the cycle time C and operation times τℓi are
given and the other terms are variables.

The lean design of an AMHS should realize the minimal
number of resources satisfying (2). Assuming that ℜ is the
index measuring the number of resources in the AMHS,
the lean design can mathematically be expressed by the
optimization model:

min ℜ
subject to (3)

NC =
m

∑
ℓ=1

n

∑
i=1

T ℓ
ri
+ τℓi +W ℓ

i

The objective function ℜ is developed according to the
design variables as follows:

Number of carriers: The equation

ℜ1(N) = N (4)

is a simple measure for the number of carriers.
Buffer size: The reduction of a segment buffer size may

save space and some resources in an AMHS design. Hence,
the index

ℜ2 =
m

∑
ℓ=1

bℓ (5)

is defined to measure these related resources.
Carrier (part) velocities: Large values of part velocities

(vℓi ), outside practical ranges, and high variations of these
values may increase the number of resources such as electric
motors, conveyors, aisles, spaces, and robots. They also
increase the complexity of the motion control for various
part instances. Therefore, to give a measure based on these
parameters, it is reasonable to define

ℜ3 =VU +
m

∑
ℓ=1

n

∑
i=1

(vℓi −V L) (6)

where V L and VU are the lower and upper boundaries for
the velocities (V L ≤ vℓi ≤VU ). The term T ℓ

ri
in the constraint

(2) is equal to LℓT ℓ
ci

for T ℓ
ci
= 1/vℓi . Hence, (6) is not linear

based on (2). A linear form of the measure is achieved by
the new definition

ℜ3 =
m

∑
ℓ=1

n

∑
i=1

(TU
c −T ℓ

ci
)−T L

c (7)

where, T L
c = 1/VU and TU

c = 1/V L (T L
c ≤ T ℓ

ci
≤ TU

c ). It
should be noted that (7) can not be formulated as a result of
(6). Obviously, this term gives a linear form of measuring
resources based on part transportation times (rather than part
velocities).

Part scheduling: There are two approaches to affect the
waiting time of Pi in segment ℓ. Change the schedule for the
releasing action of Pi in the segment (change Iℓi , see Cyclic
system in Section III-A) and/or make a tunneling action for Pi
if there is no process for this part in segment ℓ. The tunneling
action means that when another part is being located for
an operation in segment ℓ, Pi bypasses the locating position
(and the other part) and enters segment ℓ+ 1. Integrating

scheduling and tunneling mechanisms in an AMHS is often
expensive and demands smart controls and related resources.
For example, take a conveyor line where parts enter and
exit with FIFO queuing policy. This handling mechanism
is simple because it is not necessary to change the queuing
positions of parts in the line. If there is such a necessity, extra
resources such as diverter, merger, or robot may be devised
in the line. Hence, it is crucial to minimize the number
of scheduling changes and tunneling actions to reduce the
number of resources in an AMHS. This is measured by the
term

ℜ4 =
m

∑
ℓ=2

n

∑
i=1

| Iℓi − Iℓ−1
i |+

m

∑
ℓ=1

n

∑
i=1

β ℓ
i (8)

for

β ℓ
i =

{
1 : if there is a tunneling action for Pi in segment ℓ
0 : otherwise

(9)
Introducing constraints αℓ

i ≥ Iℓi − Iℓ−1
i and αℓ

i ≥ Iℓ−1
i − Iℓi , a

linearized form of ℜ4 can be obtained as

ℜ4 =
m

∑
ℓ=2

n

∑
i=1

αℓ
i +

m

∑
ℓ=1

n

∑
i=1

β ℓ
i (10)

Realization of ℜ: The objective function in (3) is
determined by

ℜ =
4

∑
e=1

weℜe (11)

where ℜe for e ∈ {1,2,3,4} respectively denote the relations
(4), (5), (7), and (10), and we are weight coefficients.
Introducing

ℜmin
e = min ℜe

subject to (12)

NC =
m

∑
ℓ=1

n

∑
i=1

T ℓ
ri
+ τℓi +W ℓ

i

the coefficients are calculated by we = ρe/ℜ̂min
e , where ρe ∈

[0,1] is a coefficient showing the tendency to a type of
handling technology, and ℜ̂min

e is defined by

ℜ̂min
e =

{
| ℜmin

e | : if | ℜmin
e |≥ 1

1 : if | ℜmin
e |< 1 (13)

Here the condition | ℜmin
e |< 1 is considered to bound we in

[0,1]. For example, if there is a high tendency to use AGVs,
then ρ1 = 1 and other ρe < 1;e ̸= 1, because the number of
carriers plays an important role in the cost of AGV systems.
If there is no prioritized AMHS technology, ρe = 1 for all
weight coefficients.

To properly develop the optimization models (3) and (12),
the terms T ℓ

ri
and W ℓ

i in (2) should also be related to the
design variables. Unlike T ℓ

ri
= LℓT ℓ

ci
, the term W ℓ

i can not be
explicitly presented as a function of the design variables.
To relate W ℓ

i to the decision variables, the mathematical
constraints characterizing (2) are developed in the next
section.



IV. DESIGN CONSTRAINT MODELS

Handling time of a part instance in the universal model
is subject to various constraints, due to scheduling, cyclic,
dynamic, CONWIP, and buffer criteria. Equation (2) is too
abstract to express all these criteria. Hence, the mapping of
this equation to a set of mathematical models characterizing
the denoted criteria seems necessary. In this section, we do
so and develop the mathematical models denoted as design
constraints. In the first step of developing these constraints,
a relation between the number of carriers in the model and
the individual flow time of a part instance is developed.

Notations:

• k ∈ K = {1,2, . . .ks,ks + 1, . . . ,ks
U} is the index over

cycles in transient and steady state phases. Moreover,
Ks = {ks,ks + 1, . . . ,ks

U} includes all index cycles, in
which the system is in the steady state phase.

• Ŝℓj[k] is the time when Pj in {P1,P2, . . .Pn} is released
by segment ℓ in cycle k.

• Sℓi [k] is the time when a part in the ordered part set
⟨P1,P2, . . .Pn⟩ is released by segment ℓ with order i in
cycle k.

• Cℓ
i [k] = Sℓi+1[k] − Sℓi [k] for i ∈ I \ {n} and

Cℓ
n[k] = Sℓ1[k+1]−Sℓn[k] are defined as interval

times.
Proposition 1: In the universal model, the relation

between the number of carriers N, the flow time (lead time)
of Pj, FTj = ∑m

ℓ=1 FT ℓ
j , and the interval times Cm

g(i, e)[k] is set
by equations:

FTj[k] =
Ni

∑
e=1

Cm
g(i, e)[k+ f (i,e,Ni)] (14)

nN =
n

∑
i=1

Ni (15)

f (i,e,x) =
⌊
((i− x) mod n)− e

n

⌋
(16)

and

g(i,e) =
{

n : i− e = nk, k ∈ Z
(i− e) mod n : i− e ̸= nk, k ∈ Z (17)

where Ni is the number of parts released by the segment m,
including the last part, Pj, with the order i = Im( j).

Proof: The order of releases for Pj in the segments
can be represented by the vector [I1( j), I2( j), . . . , Im( j)]T .
Assume Pj is the part that is now entering the system with
the carrier which was handling the part Pj́ with the order of
î = Im( j́). Now consider that Ni parts (including Pj) should
exit from the line until Pj is released by the segment m with
the order i = Im( j). Hence,

i = (î+Ni) mod n (18)

and

Ni = N +
m

∑
ℓ=2

(Iℓ( j)− Iℓ−1( j)) = N + Im( j)− I1( j)≥ 1 (19)

which implies that the change of order cannot exceed N.
Moreover, we have

FTj[k] =
Ni

∑
e=1

Cm
y(î,e)[k+h(î,e,Ni)] : î, j ∈ I (20)

where

y(î,e) =
{

n : î+ e−1 = nk, k ∈ Z
(î+ e−1) mod n : otherwise (21)

and

h(î,e,Ni) =

⌊
î+ e−1−Ni

n

⌋
(22)

Equation (19) leads to
n

∑
i=1

Ni = nN +
n

∑
j=1

(Im( j)− I1( j)) = nN (23)

On the other hand, defining ê=Ni−e+1, and using (18), we
have g(i, ê) = y(î,e) and f (i, ê,Ni) = h(î,e,Ni). This implies

Ni

∑
e=1

Cm
y(î,e)[k+h(î,e,Ni)] =

1

∑
ê=Ni

Cm
g(i,ê)[k+ f (i, ê,Ni)]

which gives (14) according to (20). �

Compared to (2), the relation (14) gives more information
about the dynamic behavior of an individual part instance.
But this information is not yet enough to realize the waiting
times W ℓ

i . To obtain the desired information, relations
between the part flow times FT ℓ

i [k] and part releasing times
Sℓi [k] should be mathematically defined. This leads to the
following design constraints.

Scheduling constraints: The segment releasing vector
Iℓ is generated from J = [1,2, . . .n] by Iℓ = ∆ℓ JT , where ∆ℓ

is an n× n permutation matrix. Denoting [∆ℓ]i, j = δ ℓ
i, j and

Iℓi = ∑n
j=1 δ ℓ

i, j j, each operation time τℓj based on the order j
can be mapped to the operation time T ℓ

i based on the order
Iℓ as follows

i, j ∈ I, ℓ ∈ M (24)
n

∑
i=1

δ ℓ
i, j = 1,

n

∑
j=1

δ ℓ
i, j = 1,

n

∑
j=1

δ ℓ
i, j τℓj ≤ T ℓ

i

Cyclic and periodic behavior constraints: These con-
straints demand two crucial properties for the universal
model. The first property is the cyclic manner of part releas-
ing actions in a segment with the order Iℓ or Sℓi+1[k]−Sℓi [k] =
Cℓ

i [k]. The second property forces the periodic behavior
Cℓ

i [k] = Cℓ
i in the stationary state. To tune the cycle time

C, then ∑n
i=1 Cm

i [k] =C, and for ℓ ̸= m the condition can be
relaxed to ∑n

j=1 τℓj ≤ ∑n
i=1 Cℓ

i [k]≤C. Therefore,

k ∈ Ks, ℓ ∈ M (25)
Sℓi+1[k]−Sℓi [k] =Cℓ

i : i ∈ I \{n}
Sℓ1[k+1]−Sℓn[k] =Cℓ

n : k ∈ Ks \{ks
U}

n

∑
i=1

Cm
i =C

n

∑
j=1

τℓj ≤
n

∑
i=1

Cℓ
i ≤C : ℓ ∈ M \{m}



Segment dynamic behavior constraints: The duration of
Pj in segment ℓ, Ŝℓj[k]− Ŝℓ−1

j [k], is bounded by the constraint
Ŝℓj[k]− Ŝℓ−1

j [k]≥ τℓj +T ℓ
r j

. The inequity indicates the fact that
there might be a waiting time for this part in the denoted
duration. If the part set {P1,P2, . . .Pn} enters to the segment
ℓ by the order Iℓ−1 and releases from this segment by the
order Iℓ, the constraint based on the order of part j in Iℓ−1

and Iℓ is modified as

SℓIℓ( j)[k]−Sℓ−1
Iℓ−1( j)[k] ≥ (δ ℓ

Iℓ( j), j +δ ℓ−1
Iℓ−1( j), j −2)Φ

+ T ℓ
Iℓ( j)+LℓT ℓ

cIℓ( j)
(26)

or

Sℓi [k]−Sℓ−1
î

[k]≥ (δ ℓ
i, j +δ ℓ−1

î, j
−2)Φ+T ℓ

i +LℓT ℓ
ci

(27)

where Φ is a large constant number (larger than nFT ),
Iℓ( j) = i, and Iℓ−1( j) = î. On the other hand, the rela-
tion Sℓi [k]−Sℓi−1[k]≥ T ℓ

i , without concerning Pi tunneling
behavior, is achieved. In order to include the part tunneling
behavior in this relation, first we introduce the permissibility
tunneling factor of Pj in segment ℓ as

εℓj =
{

1 : τℓj > 0
0 : τℓj = 0

(28)

εℓj = 1 means that there is no tunneling action for Pj in the
segment. In other words, a part does not bypass the locating
position if there is a non-zero operating time of the part in the
segment. Now, the relation Sℓi [k]− Sℓi−1[k] ≥ T ℓ

i is modified
to the constraints

Sℓi [k]−Sℓi−e[k]+β ℓ
i−eΦ ≥ T ℓ

i : e = {1, . . . , i−1}(29)

1−
n

∑
j=1

δ ℓ
i, j εℓj ≥ β ℓ

i

where β ℓ
i ≥ 0 is a binary variable. This variable is set to zero

if εℓj = 1 or αℓ
i = 0. Otherwise, β ℓ

i may be set to one to relax
the constraint Sℓi+1[k]−Sℓi [k]≥ T ℓ

i+1. Considering (26), (29),
and the assumption that the handling of a part set is cyclic
in a segment, the dynamic behavior constraints are

i, î, j ∈ I, k ∈ K, ℓ ∈ M (30)
Sℓi [k]−Sℓ−1

î
[k]≥ (δ ℓ

i, j +δ ℓ−1
î, j

−2)Φ

+T ℓ
i +LℓT ℓ

ci
: ℓ ∈ M \{1}

Sℓi [k]−Sℓi−e[k]+β ℓ
i−eΦ ≥ T ℓ

i : i ∈ I \{1},e = {1, . . . , i−1}

1−
n

∑
j=1

δ ℓ
i, j εℓj ≥ β ℓ

i

αℓ
i ≥ β ℓ

i

Sℓ1[k+1]−Sℓn[k]≥ T ℓ
1 : k ∈ K \{ks

U}
S1

1[1]≥ T 1
1

CONWIP constraints: Equations (14), (15), and (19)
characterize a CONWIP property for the universal model.
Providing that the part waiting times in the segment ℓ = 1
are neglected in the stationary state, and the system behaves

periodically (Cm
g(i, e)[k+ f (i,e,Ni)] =Cm

g(i, e)), these constraints
for part j are rewritten as

Ni

∑
e=1

Cm
g(i, e) = Ŝm

j [k]− Ŝ1
j [k]+ τ1

j +T 1
r j

(31)

Ni = N + Im( j)− I1( j) (32)
n

∑
i=1

Ni = nN (33)

Furthermore, according to the order of releasing actions for
Pj in the segments ℓ= 1 and ℓ= m (I1( j) = î and Im( j) = i),
these constraints are modified to

i, î, j ∈ I, k ∈ Ks, ℓ ∈ M (34)

(2−δ m
i, j −δ 1

î, j)Φ+
Ni

∑
e=1

Cm
g(i, e) ≥ Sm

i [k]−S1
î [k]+T 1

î +L1T 1
cî

(δ m
i, j +δ 1

î, j −2)Φ+
Ni

∑
e=1

Cm
g(i, e) ≤ Sm

i [k]−S1
î [k]+T 1

î +L1T 1
cî

(2−δ m
i, j −δ 1

î, j)Φ+Ni ≥ N + i− î

(δ m
i, j +δ 1

î, j −2)Φ+Ni ≤ N + i− î
n

∑
i=1

Ni = nN

When Ni (i∈ I) are known parameters, (34) presents a set of
linear constraints that can be devised in linear optimizations
models. With Ni as variables, these constraints should be
linearized as follows (the linearization procedure has been
introduced in [17]).

i, î, j ∈ I, e ∈ I, k ∈ Ks (35)
C qi + ri +(2−δ m

i, j −δ 1
î, j)Φ ≥ Sm

i [k]−S1
î [k]+T 1

î +L1T 1
cî

C qi + ri +(δ m
i, j +δ 1

î, j −2)Φ ≤ Sm
i [k]−S1

î [k]+T 1
î +L1T 1

cî

ri =
n

∑
e=1

di,e

Cm
g(i,e) ≥ di,e

di,e ≥Cm
g(i,e)− (1− xi,e)C

C xi,e ≥ di,e

xi,e ≥ xi,e+1 : e ∈ I \{n}

Ni = nqi +
n

∑
e=1

xi,e

(2−δ m
i, j −δ 1

î, j)Φ+Ni ≥ N + i− î

(δ m
i, j +δ 1

î, j −2)Φ+Ni ≤ N + i− î

nN =
n

∑
i=1

Ni

In these constraints xi,e is a binary variable, qi is a positive
integer variable, and {ri, di,e} are positive real variables.

Buffer constraints: Similar to (31) and (33), the con-
straints ∑

Nℓ
i

e=1 Cℓ
g(i, e) = Ŝℓj[k]− Ŝℓ−1

j [k] for Iℓ( j) = i and nNℓ =

∑n
i=1 Nℓ

i keep Nℓ parts in segment ℓ. Because Nℓ ≤ bℓ, the
relation ∑bℓ

e=1 Cℓ
g(i, e) ≥ Ŝℓj[k]− Ŝℓ−1

j [k] forces the segment to
always buffer the number of parts lower than the buffer size.



Considering Iℓ−1( j) = î, this implies

i, î, j ∈ I, e ∈ I, ℓ ∈ M \{1}, k ∈ Ks (36)
bℓ

∑
e=1

Cℓ
g(i, e)+(2−δ ℓ

i, j −δ ℓ−1
î, j

)Φ ≥ Sℓi [k]−Sℓ−1
î

[k]

Assuming ∑n
i=1 Cℓ

i = C, the linearized form of (36) for a
variable bℓ is developed similar to (35).

i, î, j ∈ I, e ∈ I, k ∈ Ks (37)
C qℓi + rℓi +(2−δ ℓ

i, j −δ ℓ−1
î, j

)Φ ≥ Sℓi [k]−Sℓ−1
î

[k]

rℓi =
n

∑
e=1

dℓ
i,e

Cℓ
g(i,e) ≥ dℓ

i,e

dℓ
i,e ≥Cℓ

g(i,e)− (1− xℓi,e)C

C xℓi,e ≥ dℓ
i,e

xℓi,e ≥ xℓi,e+1 : e ∈ I \{n}

bℓ ≥ nqℓi +
n

∑
e=1

xℓi,e

Variable constraints: All variables shall be clarified
based on their domains such as binary, natural, and real.
These variables are defined based on the set of design con-
straints D = {(24),(30),(25),(34),(35),(36),(37)} as fol-
lows.

i ∈ I, j ∈ I, e ∈ I, ℓ ∈ M, k ∈ K (38)
N,Ni,bℓ,qi,qℓi ∈ N
T ℓ

i , T ℓ
ci
, Sℓi [k],Cℓ

i , ri, rℓi , di,e, dℓ
i,e ∈ R+

δ ℓ
i, j, xi,e, xℓi,e, β ℓ

i ∈ {0,1}

V. AGILE AND LEAN DESIGN OF AN AMHS

With the design variables N, bℓ, T ℓ
ci

, δ ℓ
i , and β ℓ

i , the relation
(2) can be characterized by the constraints (24), (25), (30),
(35), and (37). According to (3) and (11); therefore, the
AMHS lean design is formulated by the following model.

min
4

∑
e=1

weℜe

subject to (39)
(24),(25),(30),(35),(37),(38)

αℓ
i ≥

n

∑
j=1

(δ ℓ
i, j −δ ℓ−1

i, j ) j : ℓ ∈ M \{1}

αℓ
i ≥

n

∑
j=1

(δ ℓ−1
i, j −δ ℓ

i, j) j : ℓ ∈ M \{1}

TU
c ≥ T ℓ

ci
≥ T L

c

T o
c ≥ T L

c

αℓ
i ≥ 0, TU

c ≥ 0, T L
c ≥ 0

Here, T o
c is a given value (for instance about 10) to bound

the objective of (39). Solving this optimization problem, the
values of the design variables are obtained. These values
give important measures to engineers regarding the AMHS,

which should satisfy a desired production scenario with the
minimum number of resources. Data about part instances
(number and types), segments (number and lengths), opera-
tion sequences and times, and throughput define a production
scenario. These data can be changed due to a customized
production manner (agile aspect) or other reasons. Hence,
an agile and lean design of an AMHS that can cope with
these changes for various production scenarios is highly
appreciated.

One design strategy is to anticipate changes over parame-
ters {n,m,Lℓ,τℓi ,C} and solve (39) for the related production
scenarios. For each design variable, this leads to a domain of
optimal values satisfying the scenarios. Therefore, the han-
dling resources should be selected so that their utilizations
provide a range of flexibilities for part movements, according
to the achieved domains.

Hopefully, the number of production scenarios based on
variations in {n,m,Lℓ} is not so large in practice, because
even a highly flexible manufacturing plant has limitations
over the range of product types as well as number and
position of machines. But the parameters {τℓi ,C} are prone
to large deviations that introduce a tremendous number of
production scenarios. Moreover, these parameters can also be
stochastically varied due to some unestimated causes or ma-
chine breakdowns. To deal with anticipated and unanticipated
variations in {τℓi ,C}, a worst case analysis can significantly
reduce the effort needed to analyze all related production
scenarios for these parameters.

The worst case scenario is realized by considering the
minimum value of C and maximum potential increases for
τℓi (i ∈ I). For a given production scenario specified by the
known data {n,m,Lℓ,τℓi }, the procedure to obtain an agile
and lean design of an AMHS is conducted by the following
steps.

1) The minimum value of C, C∞, is achieved, assuming
the extreme values N → ∞, vℓi → ∞, and bℓ → ∞. These
assumptions give

C∞ = max
{ n

∑
i=1

τℓi : ℓ ∈ M
}

(40)

2) While having the maximum throughput n/C∞, the
maximum potential for increasing τℓi is achieved by selecting
C =C∞ and solving the optimization model

min
4

∑
e=1

weℜe −w5

m

∑
ℓ=1

n

∑
i=1

T ℓ
i

subject to (41)
Design constraints in (39)

In this optimization model, the term w5 is a weight coefficient
realizing the degree of the agility. For, w5 ≥ 1, the design
tendency is to maximize possible increases of operation
times, devising the minimum number of handling resources.

VI. CASE STUDY

In this section, we introduce a case study which includes 4
part instances (A,..,D) and 6 machines. The production data



for this case are illustrated in Table I.

TABLE I
PRODUCTION DATA FOR THE CASE STUDY

Mℓ TA TB TC TD Lℓ

[s] [s] [s] [s] [m]
M1 5 5 5 5 2.6
M2 0 48 14 42 1.6
M3 17 39 0 35 1.1
M4 36 0 27 37 1.1
M5 9 0 19 48 1.6
M6 5 5 5 5 1.1

To conceptually design an AMHS for the plant according
to the lean and agile objectives, we employ the model
(41). This optimization problem cannot be solved efficiently
without using some relaxation methods. We first relax the
binary variables for the tunneling actions (β ℓ

i ∈ [0,1]) and
drop the buffer constraints (37) and related variables from
(41). Proceeding in a similar way for (12), we obtain ℜmin

1 =
6, ℜmin

3 =−10, ℜmin
4 = 0, with the assumption that T L

c <= 10
and C∞ = 104. For ρe = 1, this leads to w1 = 0.167, w3 = 0.1,
and w4 = 1. Substituting the weight coefficients in (41) and
solving the model with the mentioned relaxations and w5 = 1,
the following design parameters are obtained, N = 11, T ℓ

ci
=

T L
c = TU

c = 8.68, β ℓ
i = 0, and

∆1..6 =

 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (42)

Furthermore, using these parameters in

min bh −w5

m

∑
ℓ=1

n

∑
i=1

T ℓ
i

subject to (43)
(24),(25),(30),(37),(34),(38)

a lower bound for the buffer size of the specific segment h is
obtained, while the constraints on the buffer size of the other
segments are not considered in the model. This means that
the first line in (37) is modified by including ℓ= h. Solving
(43) gives the buffer capacities {3,2,3,3,2} for b2 to b6,
respectively (b1 can be assumed as large as N to buffer all
empty carriers).

The design parameters provide important measures for
AMHS designers. We can maintain the maximum throughput

n
C∞ = 4

104 and deviations ∑m
ℓ=1 ∑n

i=1(T
ℓ

i − τℓi ) (agile aspect),
with only 11 carriers, without tunneling actions and changing
the scheduling of parts in machines, with the same part
velocities vℓi ≥ 7.5 m

min , and the given buffer sizes. These
values are completely within practical ranges for conveyors,
pallet systems, and robots. It is possible to use small AGVs
and cranes provided that two or three parts are packed as a
unit load on these carriers (it is not practical to put 3 AGVs
in the buffer with the length 1.1 m).

VII. CONCLUSION

The demands for a minimal number of handling resources
(lean design) and their maximal utilization (agile design)
emphasize a concurrent structure and control design of an

AMHS in the conceptual phase. To provide this concurrency,
a lean and agile design framework has been introduced in this
paper. A universal model has been developed to define a set
of part movements without concerning AMHS technology.
Furthermore, the objective which characterizes optimal part
movements according to the lean and agile paradigms has
been formulated for the conceptual design phase. Control
measures which are obtained according to this objective
provide important keys for designers to conceptualize a
concurrent design and control of an AMHS.

For big production plants with many part types and
machines, the computation time of (41) can dramatically
increase due to a large number of binary decision variables.
Development of a systematic approach to combine some
heuristic and relaxation methods to overcome the model time
complexity can be considered as the continuation of this
work.
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