
Bidirectionalization for Free with Runtime Recording

Or, a Light-Weight Approach to the View-Update Problem

Kazutaka Matsuda
University of Tokyo

kztk@is.s.u-tokyo.ac.jp

Meng Wang
Chalmers University of Technology

wmeng@chalmers.se

ABSTRACT
A bidirectional transformation is a pair of mappings between
source and view data objects, one in each direction. When
the view is modified, the source is updated accordingly with
respect to some laws. Over the years, a lot of effort has been
made to offer better language support for programming such
transformations. In particular, a technique known as bidi-
rectionalization is able to analyze and transform unidirec-
tional programs written in general purpose languages, and
“bidirectionalize” them.

Among others, a technique termed as semantic bidirec-
tionalization proposed by Voigtländer stands out in term of
user-friendliness. The unidirectional program can be written
using arbitrary language constructs, as long as the function
is polymorphic and the language constructs respect para-
metricity. The free theorems that follow from the polymor-
phic type of the program allow a kind of forensic exami-
nation of the transformation, determining its effect without
examining its implementation. This is convenient, in the
sense that the programmer is not restricted to using a par-
ticular syntax; but it does require the transformation to be
polymorphic.

In this paper, we lift this polymorphism requirement to
improve the applicability of semantic bidirectionalization.
Concretely, we provide a type class PackM γ α µ, which in-
tuitively reads “a concrete datatype γ is abstracted to a
type α, and the ‘observations’ made by a transformation
on values of type γ are recorded by a monad µ”. With
PackM , we turn monomorphic transformations into poly-
morphic ones, that are ready to be bidirectionalized. We
demonstrate our technique with a case study of standard
XML queries, which were considered beyond semantic bidi-
rectionalization because of their monomorphic nature.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.3.3 [Programming Language]:
Languages Constructs and Features—Data types and struc-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

tures, Polymorphism

General Terms
Languages

Keywords
Bidirectional Transformation, Free Theorem, Type Class,
Haskell, XML Transformation

1. INTRODUCTION
Bidirectionality is a fundamental aspect of computing:

transforming data from one format to another, and requir-
ing a transformation in the opposite direction that is in some
sense an inverse. The most well-known instance is the view-
update problem [1, 6, 7] from database design: a “view” rep-
resents a database computed from a source by a query, and
the problem comes when translating an update of the view
back to a “corresponding” update on the source.

Let’s consider a (simplified version of) XML example taken
from http://www.w3.org/TR/xquery-use-cases/: a source
(in Figure 1) can be transformed by query Q1 (in Figure 2)
to produce a view (Figure 3). Here the query Q1 is the
“forward transformation”, and a corresponding “backward”
transformation maps an updated view back to the source.
For example, one may change the title “TCP/IP Illustrated”
to“TCP/IP Illustrated (second edition)” in the view and ex-
pect the source to be updated accordingly. Things are more
interesting with the year of a publication: this attribute’s
value is observed by the query in producing the view, so
whatever changes to it shall not alter the existing observa-
tions, to ensure that the view change can be reflected by a
source change. For example, we can change the year for the
first book to 2000, but not to any value that is less than
1992. The backward transformation is required to correctly
register the former valid change, but to reject the latter in-
valid one.

By dint of hard effort, one can construct separately the
forward transformation from source to view together with
the corresponding backward transformation. However, this
is a significant duplication of work, because the two trans-
formations are closely related. Moreover, it is prone to error,
because they do really have to correspond with each other
to be bidirectional. And, even worse, it introduces a main-
tenance issue, because changes to one transformation entail
matching changes to the other. Therefore, a lot of work
has gone into ways to reduce this duplication and the prob-
lems it causes; in particular, there has been a recent rise

<bib>
<book year="1994">

<title>TCP/IP Illustrated</title>
<author>Stevens W.</author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="1992">
<title>Advanced Programming in the Unix environ-

ment</title>
<author>Stevens W.</author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="2000">
<title>Data on the Web</title>
<author>Abiteboul Serge</author>
<author>Buneman Peter</author>
<author>Suciu Dan</author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>
</bib>

Figure 1: An XML Source

<bib>
{
for $b in doc("http://example.com/bib.xml")/bib/book
where $b/publisher = "Addison-Wesley"

and $b/@year > 1991
return
<book year="{ $b/@year }">{ $b/title }</book>

}
</bib>

Figure 2: Query Q1

in linguistic (mostly functional) approaches to streamlining
bidirectional transformations—this is very much a current
problem.

Using terminologies advocated by the lens framework [8]
that traces back to database research: the forward function
is commonly known as get having type S → V , and the
backward one as put having type S → V → S . The idea is
that put , in addition to an updated view, takes the original
source as an input, so that get does not have to be bijective
to have a backward semantics. As a result, put is often
partial even for total and surjective get . The correctness of
the pair of functions is governed by the following definitional
properties [5]:

Consistency get s′ = v if put s v = s′

Acceptability put s (get s) = s

(In this paper, when we write e = e′, we assume that neither
e nor e′ is undefined.) Here consistency (also known as the
PutGet law [8]) roughly corresponds to right-invertibility,
basically ensuring that all updates on a view are captured
by the updated source (the change of year to values less than
1992 in the above example violates this law), and acceptabil-
ity (also known as the GetPut law [8]) roughly corresponds
to left-invertibility, prohibiting changes to the source if no
update has been made on the view. Bidirectional transfor-
mations satisfying the above two laws are sometimes called
well-behaved [8]. In addition to these definitional properties,
some desirable laws such as composability and undoability
are also discussed in the literature [1, 11].

The paradigm of bidirectional programming is about con-
structing get in a bidirectional language and expecting a

<bib>
<book year="1994">

<title>TCP/IP Illustrated</title>
</book>
<book year="1992">

<title>Advanced Programming in the Unix environ-
ment</title>
</book>
</bib>

Figure 3: Result of Applying Q1 to the Source in
Figure 1

corresponding put to be created automatically. Very often,
such languages are defined as a collection of combinators
which can be read in two ways [4,8,9,13]: forward and back-
ward. A disadvantage of the combinator-based approach is
that transformations have to be encoded in a somewhat in-
convenient programming style.

Other than constructing special purpose bidirectional lan-
guages, an alternative is to mechanically transform existing
unidirectional programs to obtain a backward counterpart,
a technique known as bidirectionalization [14]. Different
flavors of bidirectionalization have been proposed: syntac-
tic [14], semantic [19], and a combination of the two [21].
Syntactic bidirectionalization inspects a get definition writ-
ten in a somehow restricted syntactic representation and
synthesizes a definition for the backward version. Semantic,
or extensional, bidirectionalization on the other hand treats
polymorphic get as an opaque semantic object, applying the
function independently to a collection of unique identifiers,
and the free theorem [23] arising from parametricity [18]
states that whatever happens to those identifiers happens in
the same way to any other inputs—this information is suf-
ficient to construct the backward transformation. (We will
give more details of the technique in Section 2.) This is con-
venient, in the sense that the programmer is not confined to
a certain syntactic representation; but it does require that
the transformation is polymorphic.

This polymorphism requirement has prevented the use
of semantic bidirectionalization in many applications, for
example XML transformations where queries are predom-
inantly monomorphic. Consider query Q1 we have seen ear-
lier on (Figure 2). The attribute value of year and content
of publisher are compared to constant values, which instan-
tiates their types to monomorphic ones, and the creation of
new element book is also beyond the reach of the existing
techniques of semantic bidirectionalization [19,21] based on
the standard free theorems [23].

In this paper, we propose a novel bidirectionalization ap-
proach that circumvents the polymorphism restriction, and
allows us to program and bidirectionalize monomorphic trans-
formations in a convenient manner. At the heart of the tech-
nique is a type class PackM that provides a solution the
problems of creation of constants and comparison with con-
stant values. More concretely, the constant values are “cre-
ated” into equivalent, and yet abstract in type, values, which
do not instantiate the type variables when used in compar-
ison. And, through methods of PackM , such comparisons
are recorded during runtime, which are checked before the
backward execution, so that free theorems for correct bidi-
rectionalization can be established.

The rest of the paper is organized as follows. In Sec-
tion 2, we firstly review the concept of semantic bidirection-

alization [19], and in Section 3, we describe our proposal and
the handling of monomorphic transformations. In Section 4,
we prove the correctness (consistency and acceptability) of
our approach, based on the free theorems concerning type
classes [20]. In Section 5, we discuss a datatype-generic im-
plementation of our approach. In Section 6, we revisit the
XML example mentioned in this section and show how it
is handled by our technique. In Section 7, we review addi-
tional issues of bidirectionalization. In Section 8, we discuss
related work, and conclude in Section 9.

A prototype implementation of our framework is available
from https://bitbucket.org/kztk/cheap-b18n, which also
contains more examples.

2. THE ESSENCE OF SEMANTIC BIDIREC-
TIONALIZATION

As a preparation, we firstly introduce the basic idea of se-
mantic bidirectionalization [19]. Consider that we are given
a polymorphic function of type ∀α. [α] → [α]. Parametric-
ity [18] asserts that the function can only drop or reorganize
its input list elements, without inspecting them or construct-
ing new ones. In other words, an element in a view must
come directly from an element in the source, and this corre-
spondence enables an update to a view element to be trans-
lated into an update to its origin in the source, which forms
the basis of a backward transformation.

2.1 Construction of Backward Transformation
We present a simple implementation of semantic bidirec-

tionalization that captures the core idea found in the original
paper [19], which will be expanded in Section 3. We assume
basic knowledge of Haskell with some GHC extensions and
its standard libraries, and may use functions from Prelude

without explanation. We use rank-2 polymorphism; thus
the language option Rank2Types is required to run the code
in this section.

Consider an arbitrary polymorphic function of type ∀α.
[α]→ [α], for example tail . We know from the type that the
function can only reorganize or drop its input list elements,
and an element in a view must have a unique corresponding
element in the source as its origin. However, it is not possible
to conclude the behavior of the function by observing the
source-view pair. For example, giving a source "aab" and
its view "ab", it is not clear which "a"-element in the source
corresponds to the "a"-element in the view.

A way to distinguish potentially equal elements is to iden-
tify them with their unique location. We use the following
datatype Loc to represent location-aware data.

data Loc α = Loc {body :: α, location :: Int}

For example, the source "aab" may have a location-aware
version as [Loc ’a’ 1,Loc ’a’ 2,Loc ’b’ 3]. If we apply the
same polymorphic function to it, we get [Loc ’a’ 2,Loc ’b’ 3],
with a clear correspondence.

Suppose that the view "ab" is updated to "cd". Matching
it to the location-aware view [Loc ’a’ 2,Loc ’b’ 3], we can
know that location-2 and location-3 are updated to ’c’ and
’d’ respectively. We represent such an update as a list of
pairs of location and the new value assigned to the location.

type Update α = [(Int , α)]

For the above case, we obtain an update [(2, ’c’), (3, ’d’)].

Applying the update to the location-aware source and then
extracting the bodys, gives us an updated source "acd".

The application of the update can be easily implemented
in Haskell, as the following function update.

update upd (Loc x i) =
maybe (Loc x i) (λy.Loc y i) (lookup i upd)

And the matching of the location-aware view and the up-
dated view to produce the update is defined as follows.

matchViewsSimple :: Eq γ ⇒ [Loc γ]→ [γ]→ Update γ
matchViewsSimple vx v =

if length vx == length v then
minimize vx $ makeUpdSimple $ zip vx v

else
error "Shape Mismatch"

Here, makeUpdSimple is an auxiliary function defined as

makeUpdSimple = foldr f []
where
f (Loc x i, y) u =

case lookup i u of
Nothing → (i, y) : u
Just y′ →

if y == y′ then u
else error "Inconsistent Update"

A number of checks are performed by matchViewsSimple
to ensure that the updates to the view do not cause incon-
sistency: the updates to the view shall not change the list
length, and if a source element appears more than once in
the view, the multiple occurrences of the same element need
to be updated consistently (that’s why the Eq context is
needed). Note that for simplicity we assume that the user-
defined equality (==) actually implements semantic equality
(=) for elements. For example, consider a forward function
f [x] = [x, x] of type ∀α. [α]→ [α]. Suppose an initial source
"a", and thus a view "aa". Then, updating the view to "ab"

will be rejected by matchViewsSimple, whereas updating to
"bb" will be accepted. Note that we also use a function
minimize to remove the redundant parts from an update,
which is defined as follows.

minimize vx u = u \\ [(i, x) | Loc x i← vx]

Here, (\\), imported from Data.List, computes the differ-
ence of two lists. It is worth remarking that the application
of minimize is optional, as identical updates will not change
the behavior the backward transformation. But having this
minimality property of updates simplifies the proofs for cor-
rectness that will be discussed in Section 4.

With the ground prepared, the higher-order function that
takes a forward function and produces a backward counter-
part can be realized as the following.

bwd :: Eq γ ⇒ (∀α. [α]→ [α])→ [γ]→ [γ]→ [γ]
bwd h = λs v. let sx = zipWith Loc s [1..]

vx = h sx
upd = matchViewsSimple vx v

in map (body ◦ update upd) sx

This version of bwd is specific to list-to-list transformations,
which is conveniently used to illustrate the basic idea of
semantic bidirectionalization. It is shown that the technique
generalizes to arbitrary Traversable datatypes such as rose
trees [10,19].

2.2 Extensions and Limitations
Things become more complicated if the forward function is

not fully polymorphic. For example, consider function nub ::
∀α. Eq α ⇒ [α] → [α] that removes duplicates from a list
based on a given equality comparison operator. Now similar
to the case of query Q1 we have seen before, the forward
transformation is able to observe equality among elements,
and the free theorems on fully polymorphic functions are no
longer applicable. In the original paper [19], the problem
is solved by a more sophisticated location-assigning scheme
tailored to each observer function. In the case of nub, where
equality is used, we need to make sure that the locations fully
reflect the equality among elements: locations are equal if
and only if the elements are equal, and no update is allowed
to break this condition.

As we will see in the next section, this technique of creat-
ing specialized location-assigning system to mimic the actual
source is not enough to handle functions that is able to con-
struct new elements at runtime, because for a user-defined
comparison operator it is no longer possible to generate loca-
tions that model the now potentially infinite set of element
values. Nevertheless, semantic bidirectionalization remains
particularly attractive because it offers the possibility of pro-
gramming forward transformations in a general-purpose lan-
guage that is expressive enough for practical applications.

3. OUR BIDIRECTIONALIZATION WITH
RUNTIME RECORDING

In this section, we present our improved semantic bidirec-
tionalization framework in Haskell. For illustration, we use
a toy example based on rose trees:

data Tree α = Node α [Tree α]

We assume that Tree is an instance of Functor with an ap-
propriate implementation of fmap. To run the code in this
section, we need the following language options: Flexible-

Instances, MultiParamTypeClasses and FunctionalDepen-

dencies in addition to Rank2Types.

Example 1 (Links). Query “Links”: Collect all subtrees
with "a" as root label, and arrange them under a new root
labeled "results".

For example, if we apply Links to the source

srclinks = Node "root" [Node "a" [Node "text" []],
Node "p" [Node "a" [Node "text2" []]]]

we get the following view.

view links = Node "results" [Node "a" [Node "text" []],
Node "a" [Node "text2" []]]

Although being very simple, query Links is representative in
the sense that its execution involves comparing source labels
with constants, and the construction of new labels. A direct
implementation of the query is as follows.

linksmono :: Tree String → Tree String
linksmono t = Node "results" (linkssmono t)

linkssmono :: Tree String → [Tree String]
linkssmono (Node n ts) =

if n == "a" then Node n ts
else concatMap linkssmono ts

However, this function is monomorphic, which is not subject
to the existing bidirectionalization technique.

3.1 First Try: Making Monomorphic Queries
Polymorphic?

The reasons for linksmono to be monomorphic are the equal-
ity comparison of tree labels with the constant "a" and the
construction of the constant "results". So a technique to
prevent this type instantiation is to avoid the direct use of
constants, and instead construct new labels from them. The
following type class PackTrial can be used for this purpose.

class Eq γ ⇒ PackTrial γ α | α→ γ where
new :: γ → α
eq :: α→ α→ Bool

Function new abstracts a constant to an abstract type, and
function eq compares abstract labels for equality. With
them, we can implement Links as a polymorphic function.

linkspoly :: ∀α. PackTrial String α⇒ Tree α→ Tree α
linkspoly t = Node (new "results") (linksspoly t)

linksspoly :: ∀α. PackTrial String α⇒ Tree α→ [Tree α]
linksspoly (Node n ts) =

if eq n (new "a") then Node n ts
else concatMap linksspoly ts

The functional dependency α → γ in the class definition
has helped us to avoid a type annotation for the expression
eq n (new "a").

Problem solved? Not really. Due to the uses of new to-
gether with eq , which are able to construct new abstract
values and compare them with arbitrary labels, the free the-
orems of the type ∀α.PackTrial String α⇒ Tree α→ Tree α
are no longer strong enough to support the original bidirec-
tionalization. Concretely, since the forward transformation
is able to construct new labels and use them in observer
functions such as equality comparisons, it is no longer pos-
sible, without inspecting the actual implementation of the
forward function, to predict what changes may affect the ob-
servations, and therefore need to be rejected. For example
in linksspoly above, due to the comparison eq n (new "a") it
is no longer possible to assign a suitable location to n to
model its behavior with arbitrary new ly created values. As
a result, we can no longer guard against any invalid update
that alters n to a value no longer equal (new "a"), lead-
ing to the violation of the consistency law. In such a case,
no update can be safely accepted, which reduces semantic
bidirectionalization to a completely useless state.

3.2 Tracking Observations Using Monad
As we have seen, with the existing bidirectionalization

technique, it is necessary to reject all updates when label
construction is used, because of the fear that the update
may affect the control (or, computation path) of the forward
function. On the other hand, this requirement is certainly
over-conservative: for a given query such as Links, not all
the updates can affect its control. For example, updating
"a" to any other strings in view links affects the control, but
updating "text" to other strings does not.

Our idea is to use a monad to keep track of what obser-
vations are performed in the execution of a forward trans-
formation. Then, we can employ a more targeted update-
checking strategy by rejecting only those that do affect the
observations.

Specially, we extend type class PackTrial to PackM by
including a monad parameter. We also separate the con-

struction of new labels into a different class Pack .

class (Pack γ α,Monad µ)⇒ PackM γ α µ where
liftO :: Eq β ⇒ ([γ]→ β)→ ([α]→ µ β)

class Pack γ α | α→ γ where
new :: γ → α

In this new design, we no longer deal with specific observer
functions such as eq ; instead function liftO lifts any observer
function [γ]→ β on a concrete datatype γ to a monadic one
[α]→ µ β on an abstract datatype α where β is an instance
of Eq . The context Eq β is needed because we will compare
the observation results to check the validity of updates. For
convenience, we also introduce a specific instance of liftO
that operates on binary observer functions respectively.

liftO2 p x y = liftO (λ[x, y].p x y) [x, y]

As a result, forward functions in our setting have the fol-
lowing type.

∀α.∀µ. PackM γ α µ⇒ Tree α→ µ (Tree α)

The type is polymorphic in α which is suitable for semantic
bidirectionalization. And importantly, the type is polymor-
phic also in µ so that the monad cannot be manipulated
directly in the definitions of the forward functions, which
guarantees the integrity of the observation results recorded
in the monad.

3.3 Forward Execution
In our new setting, the query can be defined as follows.

links :: ∀α. PackM String α µ⇒ Tree α→ µ (Tree α)
links t = do as ← linkss t

return $ Node (new "results") as

linkss :: ∀α. PackM String α µ⇒ Tree α→ µ [Tree α]
linkss (Node n ts) =

do b← liftO2 (==) n (new "a")
if b then return $ Node n ts
else concatMapM linkss ts

where concatMapM h x = do y ← mapM h x
return (concat y)

As we can see, the above is a straightforward adaptation of
the definition of linkspoly .

To execute links, we need to instantiate the monad and
provide instances of its type class context. For forward exe-
cution, which does not require the recording of observations,
the identity monad I is used.1

newtype I α = I {runI :: α}

We omit the instance declaration of Monad I because it is
standard. Accordingly, we prepare the following instances
of Pack and PackM .

instance Pack γ (I γ) where
new = I

instance PackM γ (I γ) I where
liftO p x = I (p $ map runI x)

In the above, I γ is used instead of γ to satisfy the func-
tional dependency required by Pack , together with another
instance Pack γ (Loc γ) which will be introduced later.

1We do not use Identity in Haskell for brevity of the proofs.

Then, we can construct a function fwd for forward execu-
tion as below.

fwd :: (∀α.∀µ. PackM γ α µ⇒ Tree α→ µ (Tree α))
→ Tree γ → Tree γ

fwd h = λs.let I v = h (fmap I s) in fmap runI v

Example 2 (linksF). We can instantiate links for forward
execution as follows.

linksF :: Tree String → Tree String
linksF = fwd links

We can apply linksF directly to sources as in linksF srclinks =
view links .

3.4 Backward Execution
Then, we discuss the construction of backward transfor-

mations.

3.4.1 An Overview
Similar to before we attach locations to polymorphic la-

bels, with the following type.

data Loc α = Loc {body :: α, location :: Maybe Int}

Unlike what we saw in Section 2, the location part of the type
is optional (represented by the Maybe type): a newly con-
structed label by new does not have a corresponding source
label, and is therefore not updatable. For brevity, we write
x@i for Loc x (Just i) and x@# for Loc xNothing .

Let’s assume that a monadic infrastructure is prepared
(we will see how it is done in Section 3.4.3). Applying links
to a location-aware version srcx links of srclinks defined as

srcx links =
Node ("root"@1) [

Node ("a"@2) [Node ("text"@3) []],
Node ("p"@4) [Node ("a"@5) [Node ("text2"@6) []]]]

gives us a location-aware version viewx links of view links

viewx links = Node ("results"@#) [
Node ("a"@2) [Node ("text"@3) []],
Node ("a"@5) [Node ("text2"@6) []]]

together with the following observation history recorded in
the monad.

Observation Argument-1 Argument-2 Result
== "root"@1 "a"@# False
== "a"@2 "a"@# True
== "p"@4 "a"@# False
== "a"@5 "a"@# True

Entries in the above table represent the observations made
during the execution of links, which contribute to the control
of the computation path. No update is allowed to alter the
results. For example, consider an update [(3, "changed")],
which changes the label "text" in the view to "changed".
Since the label affected does not appear in the history, the
update does not change the table, and thus can be accepted.
In contrast, an update [(2, "b")] involves location 2 that ap-
pears in the history. We then need to check whether the
change, from "a" to "b", alters the observation result.

Observation Argument-1 Argument-2 Result
== "root"@1 "a"@# False
== "b"@2 "a"@# True
== "p"@4 "a"@# False
== "a"@5 "a"@# True

In this case, the comparison "b" == "a" returns False,
which is different from the result in the history. As a result,
the observation table becomes inconsistent, and the update
needs to be rejected. This consistency check of the history
is key for the application of free theorems, and therefore the
correctness of our proposal, which will be discussed formally
in Section 4.

In summary, updates are reflected in the following steps.

• Firstly, an observation history is constructed by apply-
ing the forward function, instantiated with an appro-
priate monad, to the location-aware source.

• Then, given an updated view, an update is constructed
and checked against the observation history obtained
in the previous step.

• Finally, if the update passes the check, it is applied to
the source.

In the following, we explain these steps in detail. For gen-
erality, we introduce helper functions primarily with speci-
fications, and defer concrete implementations to Section 5.

3.4.2 Locations
As mentioned in Section 3.4.1, locations for labels that ap-

pear in a view are optional. In particular, the labels that are
newly constructed by function new do not have obvious ori-
gins in the source, and therefore won’t have locations. This
is reflected in the instance declaration of Pack for backward
execution.

instance Pack γ (Loc γ) where
new x = Loc xNothing

Just like pointers, only one value can be assigned to a par-
ticular location. The property is formally defined as follows.

Definition 1 (Location Consistency). Let γ be a label type.
A tree t :: Tree (Loc γ) is location consistent if, for any labels
x@i and y@j in t such that i 6= # and j 6= #,

i = j ⇒ x = y

holds.

We use the following function to assign locations to all
source labels.

assignLocs :: Tree γ → Tree (Loc γ)

And it must satisfy the following conditions.

Condition (assignLocs). assignLocs must satisfy: For all s

• assignLocs s is location consistent, and

• fmap body (assignLocs s) = s.

This specification is rather loose and leave room for differ-
ent implementations of assignLocs. In Example 2, we have
chosen the following assignment with running integers.

"root"@1, "a"@2, "text"@3, "p"@4, "a"@5, "text2"@6

Another implementation is to assign the same locations to
“identical” labels as in the following.

"root"@1, "a"@2, "text"@3, "p"@4, "a"@2, "text2"@5

This assignment still guarantees location consistency as "a" =
"a". The difference is that now the two "a"s are considered
duplicates, instead of separate labels with the same value.

In this paper, we mainly discuss the former strategy, and
a datatype-generic implementation of it can be found in Sec-
tion 5. Nevertheless, we will discuss the implication of the
different choices in Section 7.

3.4.3 Observation History
The observation history is represented as a list of the fol-

lowing datatype.

data Result α = ∀β.Eq β ⇒ Result ([α]→ β) [α] β

Roughly speaking, a value Result p [x1, . . . , xn] r corresponds
to a line in the observation table shown in Section 3.3, as
below.

Observation Argument-1 . . . Argument-n Result
p x1 . . . xn r

The actual type of the observation outcome is existentially
quantified, so that results of different observers can be more
easily kept together.

The consistency of a history entry can be easily checked.

check :: Result α→ Bool
check (Result p xs r) = p xs == r

And we can check whether a history remains consistent after
an update.

checkHist :: (α→ α)→ [Result α]→ Bool
checkHist u h = all (check ◦ u′) h

where u′ (Result p xs r) = Result p (map u xs) r

A “Writer” monad W is responsible for gathering histo-
ries2

newtype W η β = W (β, [Result η])
instance Monad (W α) where

return x = W (x, [])
W (x, h1) >>= f = let W (y, h2) = f x in W (y, h1 ++ h2)

which allows us to define the following instance of PackM
for backward executions.

instance PackM γ (Loc γ) (W (Loc γ)) where
liftO p x = W (p′ x, [Result p′ x (p′ x)])

where p′ = p ◦map body

3.4.4 Updates
The application of updates remains straightforward. The

only change from Section 2 is that we now deal with optional
locations.

update :: Update γ → (Loc γ)→ (Loc γ)
update upd (Loc xNothing) = Loc xNothing
update upd (Loc x (Just i)) =

maybe (Loc x (Just i)) (λy.Loc y (Just i)) (lookup i upd)

The above definition satisfies the following conditions, which
will be used in the proofs in Section 4.

Condition (update). update satisfies the following condi-
tions. For any x,

• update [] x = x, and

• update upd (new x) = new x.

2We do not use Writer in Haskell instead of W for brevity
of the proofs.

Updates are extracted by comparing a location-aware view
and an updated view with a function of the following type.

matchViews :: Eq γ ⇒ Tree (Loc γ)→ Tree γ → Update γ

The definition of matchViews is similar to matchViewsSimple
in Section 2, except that matchViews needs to recognize la-
bels without locations and reject any changes to them. We
postpone the definition of matchViews to Section 5 where
we present a datatype-generic version of it. We require
matchViews to satisfy the following conditions.

Condition (matchViews). matchViews must satisfy:

• Correctness. for any v′ and location-consistent vx ,
if matchViews vx v′ succeeds and results in upd , then
fmap (body ◦ update upd) vx = v′ holds.

• Minimality. for any v and location-consistent vx such
that fmap body vx = v, matchViews vx v = [] holds.

3.4.5 Putting Everything Together
With all the ground prepared, we are now ready to set up

the backward execution.

bwd :: Eq γ ⇒ (∀α.∀µ.PackM γ α µ⇒Tree α→µ (Tree α))
→ Tree γ → Tree γ → Tree γ

bwd h = λs v. let sx = assignLocs s
W (vx , hist) = h sx
upd = matchViews vx v

in if checkHist (update upd) hist then
fmap (body ◦ update upd) sx

else
error "Inconsistent History"

Example 3 (links). We can instantiate links for backward
execution as follows.

linksB :: Tree String → Tree String → Tree String
linksB = bwd links

Suppose that view links is updated to the following tree.

view ′ = Node "results" [Node "a" [Node "changed" []],
Node "a" [Node "text2" []]]

Then, linksB srclinks view ′ results in the following updated
source.

Node "root" [Node "a" [Node "changed" []],
Node "p" [Node "a" [Node "text2" []]]]

On the other hand, an update to the view view ′′

view ′′ = Node "results" [Node "b" [Node "text" []],
Node "a" [Node "text2" []]]

is rejected for the reason discussed in Section 3.3.

4. CORRECTNESS
In this section, we prove the correctness of our approach.

That is, we prove that a forward transformation and the de-
rived backward transformation satisfy consistency and ac-
ceptability mentioned in Section 1.

We rewrite the laws in our setting. Let h be a function of
type ∀α.∀µ.PackM γ α µ⇒ Tree α→ µ (Tree α). We prove
that the following laws hold for any sources s and s′, and
view v.

Acceptability bwd h s (fwd h s) = s
Consistency fwd h s′ = v if bwd h s v = s′

Throughout the section, we fix the function h.
Following the original work [19], we make use of free theo-

rems [2,20,22,23] in the proofs. We assume that a polymor-
phic function h that we bidirectionalize is total, and sources
and views do not contain any undefined values. We also im-
plicitly use the fact that our backward transformation can be
made total through the explicit handling of exceptions (e.g.,
by Maybe). Thus, we can interpret types as sets and func-
tions as set-theoretic functions. This totality assumption is
reasonable in the context of bidirectional transformation.

4.1 Free Theorem
Roughly speaking, free theorems are theorems obtained

for free as corollaries of relational parametricity [18], which
states that, for a term f of type τ , (f, f) belongs to a certain
relational interpretation of τ . A simple example of a free
theorem is that f of type ∀α.[a]→ [a] satisfies map g ◦ f =
f ◦map g for any function g of type σ → τ .

We start by introducing some notations. We write R ::
σ1 ↔ σ2 if R is a relation on σ1 × σ2. For relations R ::
σ1 ↔ σ2 and R′ :: τ1 ↔ τ2, we write R→ R′ :: (σ1 → τ1)↔
(σ2 → τ2) for the relation {(f, g) | ∀(x, y) ∈ R.(f x, g y) ∈
R′}. For a polymorphic term f of type ∀α.τ and a type σ, we
write fσ for the instantiation of f to σ that has type τ [σ/α].
For simplicity, we sometimes omit the subscript and simply
write f for fσ if σ is clear from the context or irrelevant.

We introduce a relational interpretation JτKρ of types,
where ρ is a mapping from type variables to relations, as
follows.

JαKρ = ρ(α)

JBKρ = {(e, e) | e :: B} if B is a base type

Jτ1→τ2Kρ = Jτ1Kρ → Jτ2Kρ
J∀α.τKρ =

{
(u, v)

∣∣∣∀R :: σ1↔σ2. (uσ1 , vσ2) ∈ JτKρ[α 7→R]

}
Here, ρ[α 7→ R] is an extension of ρ with α 7→ R. If ρ = ∅,
we sometimes write JτK instead of JτK∅. We abuse the no-
tation to write J∀α.τK as ∀R.F where F is the interpreta-
tion JτK{α7→R}. For example, we write ∀R.∀S. R → S for

J∀α.∀β.α→ βK.
The relational interpretation can be extended to the list

type [·] and the rose-tree type Tree, as follows.

J[τ]Kρ = [JτKρ] JTree τKρ = Tree JτKρ

Here, we write [S] for the smallest relation satisfying

([], []) ∈ [S], and
(a1 : x2, a1 : x2) ∈ [S]⇔ (a1, a2) ∈ S ∧ (x1, x2) ∈ [S],

and write Tree R for the smallest relation satisfying

(Node x1 ts1,Node x2 ts2) ∈ Tree R
⇔ (x1, x2) ∈ R, (ts1, ts2) ∈ [Tree R].

Intuitively, [R] relates two lists with the same length of
which each pair of the elements in a same position are re-
lated by R, and similarly Tree R relates two trees with the
same shape of which each pair of labels in the same position
are related by R.

Then, parametricity states that, for a term f of a closed
type τ , (f, f) is in JτK.

Free theorems are theorems obtained by instantiating para-
metricity. For example, for f :: ∀α.[α] → [α], we must
have (f, f) ∈ ∀R.[R] → [R]. Thus, for any R : σ1 ↔
σ2, (fσ1 , fσ2) ∈ [R] → [R] holds. That is, if we take

R = {(x, g x) | x :: σ1} for any g :: σ1 → σ2, we obtain
map g ◦ f = f ◦map g.

Voigtländer [20] extends parametricity to a type system
with type constructors. A key notion in his result is rela-
tional action.

Definition 2 (Relational Action [20]). For type constructor
κ1 and κ2, F is called a relational action between κ1 and κ2,
denoted by F : κ1 ↔ κ2, if F maps any relation R : τ1 ↔ τ2
for every closed type τ1 and τ2 to F R : κ1 τ1 ↔ κ2 τ2.

Accordingly, the relational interpretation is extended as:

JκKρ = ρ(κ)

Jτ1 τ2K = Jτ1K Jτ2K
J∀κ.τK =

{
(u, v)

∣∣∣∀F : κ1 ↔ κ2. (uκ1 , vκ2) ∈ JτKρ[κ 7→F]

}
Parametricity holds also on the relational interpretation [2,
22]. Here, κ, κ1 and κ2 are type constructors of kind ∗ → ∗,
and thus the quantified F is a relational action.

Voigtländer [20] handles a function with type-class con-
straints as a higher-order function that takes the methods
of the type classes as inputs. For example, a function f ::
Monad µ ⇒ τ can be seen as a function f ′ :: (∀α. α →
µ α) → (∀α.∀β. µ α → (α → µ β) → µ β) → τ with f ′ =
λreturn.λ(>>=).f , and an instance fκ of f can be seen as
f ′ returnκ (>>=)κ. As he packed the conditions posed by the
above interpretation of Monad by Monad-action, we intro-
duce a similar notion of PackM -action for PackM .

Definition 3 (PackM -action). For relations L :: σ1 ↔ σ2

and U :: τ1 ↔ τ2 and a relational action F :: κ1 ↔ κ2, a
triple (L,U ,F) is called a PackM -action if all the following
conditions hold.

• (σi, τi, κi) is an instance of PackM for i = 1, 2,

• (returnκ1 , returnκ2) ∈ ∀R.R→ F R,

• ((>>=)κ1 , (>>=)κ2) ∈ ∀R.∀S.F R → ((R→F S)→F S),

• (newσ1,τ1 ,newσ2,τ2) ∈ L → U , and

• (liftOσ1,τ1,µ1,β1
, liftOσ2,τ2,µ2,β2

) ∈ ([L]→ S)→ [U]→
F S for all S :: β1 ↔ β2 satisfying ((==)β1 , (==)β2) ∈
S → S → Bool .

Intuitively, a PackM -action is a property that is “preserved”
under PackM -methods.

Now, we are ready to state a free theorem for a function
h of the type ∀α.∀µ. PackM γ α µ⇒ Tree α→ µ (Tree α).

Theorem 1 (A Free Theorem). Suppose h be a function
of type ∀α.∀µ. PackM γ α µ ⇒ Tree α → µ (Tree α). Let γ
be a type and L be a relation {(e, e) | e :: γ}. Let (τ1, κ1)
and (τ2, κ2) be pairs of types and type constructors such that
(γ, τ1, κ1) and (γ, τ2, κ2) are instances of PackM . Then, for
every PackM -action (L,U :: τ1 ↔ τ2,F :: κ1 ↔ κ2), we
have (hτ1,κ1 , hτ2,κ2) ∈ Tree U → F (Tree U).

4.2 Preservation of Local Consistency
First of all, we prove that a tree vx constructed in bwd is

location consistent. This is used to apply the properties on
matchViews.

Lemma 1 (Location-Consistency of vx). SupposeW (vx ,) =
h (assignLocs s) for a tree s. Then, vx is location consistent.

Proof Sketch. Let s be a source and E be the set of labels in
assignLocs s. Then, it follows that vx is location-consistent
if all the labels e = x@i in vx with i 6= # are also in E.

Let U and F be a relation and a relational action.

U = {(x@i, x@i) | x@i ∈ E, i 6= #}
F R = {(W (x,),W (y,)) | (x, y) ∈ R}

Then, we can prove that (L,U ,F) is a PackM -action, and
(h, h) ∈ Tree U → F (Tree U) from Theorem 1 where L =
{(e, e) | e :: γ}. Since (assignLocs s, assignLocs s) ∈ Tree U ,
we have (vx , vx) ∈ Tree U . Thus, vx is location consistent.

4.3 Proof of Acceptability
The overall structure of our (calculational-style) proof of

acceptability is as follows.

bwd h s (fwd h s)

= { Unfolding bwd }
if checkHist (update upd) hist then

fmap (body ◦ update upd) sx else . . .

= { (*) — see below }
if True then fmap (body ◦ id) sx else . . .

= { Reduction }
fmap body sx

= { Property of assignLocs }
s

At (*), we use two properties: one is upd = [], and the
other is checkHist (update []) hist = True. To show them, it
suffices to use the following lemma together with the prop-
erties on matchViews (with Lemma 1) and update.

Lemma 2. Let sx be assignLocs s. Suppose W (vx , hist) =
h sx and I v = h (fmap I s). Then, we have fmap body vx =
fmap runI v and checkHist id hist = True.

Proof Sketch. Let U :: I γ ↔ (Loc γ) and F :: I ↔W (Loc γ)
be a relation and a relational action defined by:

U = {(x, y) | runI x = body y}
F R = {(I x,W (y, w)) | (x, y) ∈ R ∧ checkHist id w}

We can show that (L,U ,F) is a PackM -action where L =
{(e, e) | e :: γ}. Then, we have (h, h) ∈ Tree U → F (Tree U)
from Theorem 1; that is, for any x and y with fmap runI x =
fmap body y, we obtain fmap runI v = fmap body vx and
checkHist id hist = True where I v = h x and W (vx , hist) =
h y. Taking x = fmap I s and y = assignLocs s, we obtain
the lemma.

4.4 Proof of Consistency
The proof is a bit more complicated but has a similar

structure. The overall structure of our proof is as follows.

fwd h (bwd h s v) (assuming bwd h s v succeeds)

= { Unfolding bwd , and bwd succeeded }
fwd h (fmap (body ◦ update upd) sx)

= { (*) — see below }
fmap (body ◦ (update upd)) vx

= { Property of matchViews and Lemma 1}
v

At (*), we used the following lemma.

Lemma 3. Let sx be assignLocs s, and s′ be fmap (body ◦
update upd) sx . Let v′, vx and hist be those obtained from
I v′ = h (fmap I s′) and W (vx , hist) = h sx . Suppose we
have checkHist (update upd) = True. Then we have

fmap runI v′ = fmap (body ◦ update upd) vx

Proof Sketch. Let U :: I γ ↔ Loc γ and F :: I ↔ W (Loc γ)
be a relation and a relational action defined by:

U = {(x, y) | runI x = body (update upd y)}
F R =
{(I x,W (y, w)) | checkHist (update upd)w ⇒ (x, y) ∈ R}

We can show that (L,U ,F) is a PackM -action where L =
{(e, e) | e :: γ}. Then, we can prove the lemma straightfor-
wardly from Theorem 1.

5. GOING GENERIC
So far, we have demonstrated our idea for a specific type,

namely Tree. In this section, we extend the solution to be
datatype-generic.

Actually, this generalization has already been done in
the previous work [10, 19], and we borrow the ideas and
adapt them for our new setup. More concretely, we use the
datatype-generic function traverse from Data.Traversable

to define assignLocs and matchViews, and change the type
declarations of fwd and bwd accordingly.

traverse :: (Traversable κ,Applicative θ)⇒
(α→ θ β)→ κ α→ θ (κ β)

We also use the following helper functions.

toList :: (Traversable κ)⇒ κ α→ [α]
toList = getConst ◦ traverse (λx.Const [x])

fill :: Traversable κ⇒ κ β → [α]→ κ α
fill t l = evalState (traverse f t) l

where f x = do (a : x)← Control .Monad .State.get
Control .Monad .State.put x
return a

Here, Const and getConst are from Control.Applicative.
We qualified the state monad operations get and put with
Control .Monad .State to distinguish them from the get and
put as bidirectional transformations. Intuitively, toList ex-
tracts all the elements of a container as a list, and fill re-
places the elements of a container by those of a given list.

We redefine assignLocs as a function of type

assignLocs :: Traversable κ⇒ κ γ → κ (Loc γ)

with definition

assignLocs t = fill t (assignLocsList $ toList t)
where assignLocsList l =

zipWith (λx i. Loc x (Just i)) l [1..]

For“lawful” instances of Traversable [3], including those that
are systematically derived [15], the conditions we posed on
assignLocs in Section 3.4 hold.

We also redefine matchViews.

matchViews :: (Traversable κ,Eq (κ ()))⇒
κ (Loc γ)→ κ γ → Update γ

What matchViews does is to perform element-wise compar-
ison after shape-equality check.

matchViews vx v =
if fmap ignore vx == fmap ignore v then

let lx = toList vx
l = toList v

in minimize lx $ makeUpd $ zip lx l
else

error "Shape Mismatch"

Here, ignore is a function defined by ignore x = (), which ig-
nores its input but leaves a place-holder. Function makeUpd ,
which is defined below, constructs an update from two views,
making sure that elements without locations are not changed,
and location consistency is not violated.

makeUpd = foldr f []
where
f (Loc xNothing , y) u =

if x == y then u
else error "Update of Constant"

f (Loc x (Just i), y) u =
case lookup i u of

Nothing → (i, y) : u
Just y′ →

if y == y′ then u
else "Inconsistent Update"

Again, the conditions we pose on matchViews hold by lawful
Traversable instances [3].

Accordingly, the types of fwd and bwd are updated.

fwd :: (Traversable κ1,Traversable κ2,Eq (κ2 ()),Eq γ)⇒
(∀α µ.PackM γ α µ⇒ κ1 α→ µ (κ2 α))
→ κ1 γ → κ2 γ

bwd :: (Traversable κ1,Traversable κ2,Eq (κ2 ()),Eq γ)⇒
(∀α µ.PackM γ α µ⇒ κ1 α→ µ (κ2 α))
→ κ1 γ → κ2 γ → κ1 γ

No change is required in the definitions of fwd and bwd .
Note that there exist GHC extensions -XDeriveFunctors

and -XDeriveTraversables that allow instances of Functor
and Traversable to be automatically derived, which comes
handy for bidirectionalizing transformations on user-defined
datatypes.

6. XML QUERY EXAMPLE
In this section, we revisit our motivating example of XML

querying, and show how we can bidirectionalize the query
Q1 shown in Figure 2. Recall that, if we apply Q1 to the
XML source in Figure 1 we get the XML view in Figure 3.

6.1 A Datatype for XML
Firstly, we define a datatype to describe XML documents,

using the rose-tree datatype defined in Section 3 with the
following label type.

data L = A String | E String | T String deriving Eq

Here, A, E and T stand for “attribute”, “element” (in terms
of XML) and “text” (attribute values and character data).
We omit other features of XML that are not expressed by
this datatype, such as namespaces.

For example, an XML fragment

<book year="1994"><title>Text</title></book>

is represented as

Node (E "book") [Node (A "year") [Node (T "1994")],
Node (E "title") [Node (T "Text")]]

The following function label is handy when we write pro-
grams that manipulate the rose trees.

label (Node l) = l

6.2 Programming the Forward Transforma-
tion

Then, we implement Q1 as a function of type ∀α.∀µ.
PackM L α µ ⇒ Tree α → µ (Tree α) that is suitable for
bidirectionalization. A standard way to write XML trans-
formations in a functional language is to use “filters” [24].
In [24], the filters (if we simplify and customize them to our
rose trees) are of type Tree L→ [Tree L], which will be made
polymorphic in our setting as

PackM L α µ⇒ Tree α→ ListT µ (Tree α).

where monad transformer ListT in Control.Monad.List is
defined by:

newtype ListT µ α = ListT {runListT :: µ [α]}

which has an implementation for the method lift :: µ α →
ListT µ α in Control.Monad.Trans. In addition, we will
make use of the fact that ListT µ is an instance of MonadPlus
in Control.Monad. Specifically, we use function mzero ::
MonadPlus κ⇒ κ α to represent computation failure.

A simple example of a filter is keep that keeps its input.

keep :: PackM L α µ⇒ Tree α→ ListT µ (Tree α)
keep = return

Another simple example is children that returns the children
of a node, defined as follows.

children :: PackM L α µ⇒ Tree α→ ListT µ (Tree α)
children (Node ts) = ListT (return ts)

Also, a useful example is ofLabel l t that returns t as is if the
root of t has label l, and fails otherwise.

ofLabel :: PackM L α µ⇒ α→ Tree α→ ListT µ (Tree α)
ofLabel l t = do guardM $ lift $ liftO2 (==) (label t) l

return t

Here, guardM is a function that is similar to guard in Con-

trol.Monad except that guardM takes a monadic argument.
It fails if its argument is True and does nothing otherwise.

guardM :: MonadPlus κ⇒ κBool → κ ()
guardM x = x >>= (λb.if b then return () else mzero)

Filters are composable [24]. For example, with following
operator />

(/>) :: PackM L α µ⇒ (Tree α→ ListT µ (Tree α))
→ (Tree α→ ListT µ (Tree α))
→ (Tree α→ ListT µ (Tree α))

f /> g = f >=> children >=> g

where (>=>) is Kleisli-composition operator in Control.Monad

defined by (f >=> g) x = f x >>= g, for example, we can make
a filter keep /> ofLabel (new $ E "book") that extracts book

elements from the children of its input, and a filter keep />

keep /> keep that extracts the grandchildren of its input.

q1 :: PackM L α µ⇒ Tree α→ µ (Tree α)
q1 t = pick $ do bs ← gather $ (keep /> (tag "book" >=> h)) x

return $Node (el "bib") bs
where
h b =

do y ← (keep /> attr "year" /> keep) b
t← (keep /> tag "title") b
p← (keep /> tag "publisher" /> keep) b
guardM $ lift $ liftO2 gtInt (label y) (new $ T "1991")
guardM $ lift $

liftO2 (==) (label p) (new $ T "Addison-Wesley")
return $Node (new $ E "book")

[Node (new $ A "year") [y], t]
gtInt l1 l2 = (read l1 :: Int) > (read l2 :: Int)

tag s = ofLabel (new $ E s)
attr s = ofLabel (new $ A s)

gather :: Monad µ⇒ ListT µ α→ ListT µ [α]
gather (ListT m) = ListT $ do {x← m; return [x]}
pick :: Monad µ⇒ ListT µ α→ µ α
pick (ListT x) = do {a← x; return $ head a}

Figure 4: Query Q1 in Our Framework

Now we are ready to implement Q1 in Figure 4. The code
is mostly declarative. An auxiliary function gather gathers
results: for example children y produces one child at a time,
and gather (children y) collects the children in a list.

6.3 Permitted Updates
Given that q1 has the right type, we can easily bidirec-

tionalize it with fwd and bwd . It is not difficult to see that
fwd q1 implements Q1, although there is a subtle difference
that Q1 reads an input XML documents from a certain URL
while q1 takes the input as a parameter.

Let us discuss what kind of updates will be permitted
by bwd q1 . Consider the view in Figure 3. There are the
following kinds of in-place updates:

• Changing bib-tags to other tags.

• Changing book-tags to other tags.

• Changing year to other attributes.

• Changing the values of year-attributes.

• Changing title-tags to other tags.

• Changing title-texts under titles.

The first three updates should be rejected because these
elements and attributes are those introduced by the query
q1 instead of coming from the original source. As expected,
bwd q1 rejects the three updates; more precisely, an error
"Update of Constant" is raised by matchViews.

The fourth update, which is the most interesting case
among the six, is conditionally accepted by bwd q1 ; more
precisely, we can change the value to any (string representa-
tion of) numbers as long as the number is greater than 1991.
This behavior is quite natural because if we change the year
to one that is no greater than 1991, say 1990, then the book
will disappear from the view, which violates the consistency
law.

The fifth-update is rejected for a similar reason. Note
that the query extracted titles by (keep /> tag "title") b.
Thus, if we allow changing title-tags to other tags, the
consistency law will be violated.

The last update is unconditionally accepted by bwd q1
because q1 does not inspect titles.

7. INTERPRETATION OF DUPLICATION
In this section, we discuss the difference in the interpre-

tation of duplication between the original semantic bidirec-
tionalization [19] and ours.

It is rather natural to expect that in any reasonable sys-
tem, duplicates shall be updated at the same time to the
same values. In theory, there is little controversy about this
statement; yet in practice, it is less obvious whether two val-
ues are actual duplicates, or merely being incidentally equal.

As mentioned in Section 3.4.2, in this paper we take a
conservative approach by considering all source elements as
independent data regardless of their values. This decision
makes a lot of sense. For example, consider our example Q1
in Figure 2. Suppose that there are books published in the
same year in the source, we don’t want to have all of them
changed just because one is changed.

On the other hand, it is also obvious that our choice is
not the only correct one. In the original work on seman-
tic bidirectionalization [19], when the system is extended to
non-fully polymorphic forward functions such as ∀α. Eq α
⇒ [α] → [α], they use a strategy of considering elements
as duplicates, as along as they are equal. The idea to han-
dle the above function is to provide a specialized version of
assignLocs that assigns locations that reflect the uses of Eq
(i.e., equal elements get the same location so that for every
two elements x@i and y@j (i 6= # and j 6= #) the condition
that x = y if and only if i = j holds). Any updates that
violate this condition are rejected. As an example, consider
function nub in Data.List that removes duplicated elements
from a list. The backward function named as nubB has the
following behavior.

> nub "abba"

ab

> nubB "abba" "cb"

cbbc

In the above, the two ’a’s are considered duplicates, and
the changing of one changes the other.

If we use our system on a variant of nub of the suitable
type nub′ :: Eq γ ⇒ ∀α µ.PackM γ α µ ⇒ [α] → µ [α],
the result is different due to the different interpretation of
duplication. Our system assigns locations as [’a’@1, ’b’@2,
’b’@3, ’a’@4], and applying nub′ returns the view [’a’@1,
’b’@2] and possibly (depending on the implementation) the
following history.

Observation Argument-1 Argument-2 Result
== ’a’@1 ’b’@2 False
== ’a’@1 ’a’@4 True
== ’b’@2 ’b’@3 True

The same update [(1, ’c’)] that turns ’a’ into ’c’ is rejected
when checking the history.

It is however easy to switch between the above two in-
terpretations in our system: only assignLocs needs to be
changed.

8. RELATED WORK
Another way of bidirectionalizing programs is through

syntactically transforming forward-function definitions [14],
a technique termed as syntactic bidirectionalization in [19],
in contrast to the semantic approach that does not inspect
the program definitions. The advantages of the syntactic

approach is that it can derive more efficient and effective (in
the sense of allowing certain shape updates) backward trans-
formations. For example, the technique in [14] can derive a
backward transformation for function zip that accepts arbi-
trary updates on the view, including insertion and deletion
of elements. On the downside, since syntactic bidirection-
alization inspects the definition of a program, the resulting
backward transformation depends on the syntactic structure
of the forward transformation, which is fragile and less pre-
dictable. Moreover, the ability of permitting more updates
comes partly at the cost of the expressiveness of the for-
ward transformation. It is usually much harder to develop
programs that are suitable for syntactic bidirectionalization
than that for semantic bidirectionalization.

Instead of trying to bidirectionalize unidirectional pro-
grams, one can try to program directly in a “bidirectional”
language, in which the resulting programs are bidirectional
by construction. Such bidirectional languages are usually
combinator based [4, 8, 13, 16, 17, 25], and the programmer
builds a bidirectional transformation by combining smaller
ones with special combinators. Some combinator languages
can be implemented as libraries [13,16], which is rather light-
weight, while some languages [4, 8, 25] need richer type sys-
tems, which are not available in most general-purpose lan-
guages, to be effective. It is usually easy to extend the lan-
guages by adding or removing combinators for specific do-
mains [4,17,25], and typically users of the bidirectional lan-
guages have better control of the behaviors of the programs
by not relying on a black-box bidirectionalization system;
but the users do have to program in an unusual style and is
limited by the expressiveness of the languages.

The use of runtime recording of the forward execution
path for the backward execution is not new [7, 8, 14]. The
lens framework [8] provides a combinator ccond that per-
forms conditional branching in the forward execution, and
in the backward direction, the recorded history prohibits
updates that may cause the execution to take a different
branch. This treatment of branching is more explicit in [14],
where branching information is recorded in a complement,
which is kept constant to guarantee the bidirectional laws.
Fegaras [7] adopts runtime recording to propagate updates
through XML views over relational databases, ensuring the
translation satisfies the consistency.

Both ours and the original work on semantic bidirectional-
ization [19] focus on in-place updates, which is a non-trivial
problem when the forward transformations are complex [12],
It is shown that this limitation of updates can be relaxed
to some extent by combining semantic bidirectionalization
with other techniques that are good at shape updates [21].
We expect that a similar extension is also applicable to our
proposal.

We omit the issue of performance in this paper and opt for
simple declarative definitions over more efficient variants. It
is obvious that some traversals in our implementation may
be fused and more involved data structures such as binary
search trees and hash tables can be used instead of lists.
Another performance aspect relevant to bidirectional trans-
formation is incremental computation [26], as updates are
expected to be relatively small comparing to the source.
We expect semantic bidirectionalization, both the original
work [19] and our result, to fit the requirement for incre-
mental computation of updates because they essentially map
update operations on the view to those on the source.

9. CONCLUSION
In this paper, we extend semantic bidirectionalization to

handle monomorphic transformations, by programming them
in a polymorphic way through a type class PackM . Specif-
ically, we replace monomorphic values in the definition of a
transformation with polymorphic elements that are newly
constructed from those values. A history of the program
execution is recorded at runtime, which can be checked to
reinstate the applicability of free theorems in the presence of
newly constructed polymorphic elements. We prove that the
transformations produced by our bidirectionalization sys-
tem satisfy the bidirectional properties, i.e., the acceptabil-
ity and consistency laws. The practicality of our system is
demonstrated by a case study of XML transformations.

As future work, we plan to design new or adapt existing
domain-specific languages to use our system as a backend,
so that bidirectionality can be more easily achieved.

10. ACKNOWLEDGMENTS
We would like to thank Akimasa Morihata, Jean-Philippe

Bernardy and Janis Voigtländer for their helpful comments
on a preliminary version of the paper. This work was par-
tially supported by JSPS KAKENHI Grant Number 24700020.

11. REFERENCES
[1] F. Bancilhon and N. Spyratos. Update semantics of

relational views. ACM Trans. Database Syst.,
6(4):557–575, 1981.

[2] J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs
for free – Parametricity for dependent types. J. Funct.
Program., 22(2):107–152, 2012.

[3] R. Bird, J. Gibbons, S. Mehner, J. Voigtländer, and
T. Schrijvers. Understanding idiomatic traversals
backwards and forwards. In Haskell, 2013. To appear.

[4] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz,
and A. Schmitt. Boomerang: resourceful lenses for
string data. In POPL, pages 407–419. ACM, 2008.

[5] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel,
A. Schürr, and J. F. Terwilliger. Bidirectional
transformations: A cross-discipline perspective. In
ICMT, LNCS 5563, pages 260–283, 2009. Springer.

[6] U. Dayal and P. A. Bernstein. On the correct
translation of update operations on relational views.
ACM Trans. Database Syst., 7(3):381–416, 1982.

[7] L. Fegaras. Propagating updates through XML views
using lineage tracing. In ICDE, pages 309–320, 2010.
IEEE.

[8] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bidirectional
tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang.
Syst., 29(3), 2007.

[9] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient
lenses. In J. Hook and P. Thiemann, editors, ICFP,
pages 383–396. ACM, 2008.

[10] N. Foster, K. Matsuda, and J. Voigtländer. Three
complementary approaches to bidirectional
programming. In Generic and Indexed Programming,
LNCS 7470, pages 1–46. Springer, 2012.

[11] S. J. Hegner. Foundations of canonical update support
for closed database views. In S. Abiteboul and P. C.
Kanellakis, editors, ICDT, LNCS 470, pages 422–436.
Springer, 1990.

[12] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
K. Nakano. Bidirectionalizing graph transformations.
In ICFP, pages 205–216. ACM, 2010.

[13] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable
editor for developing structured documents based on
bidirectional transformations. In PEPM, pages
178–189. ACM, 2004.

[14] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and
M. Takeichi. Bidirectionalization transformation based
on automatic derivation of view complement
functions. In ICFP, pages 47–58. ACM, 2007.

[15] C. McBride and R. Paterson. Applicative
programming with effects. J. Funct. Program.,
18(1):1–13, 2008.

[16] S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic
approach to bi-directional updating. In APLAS, LNCS
3302, pages 2–20. Springer, 2004.

[17] R. Rajkumar, S. Lindley, N. Foster, and J. Cheney.
Lenses for web data. In Preliminary Proceedings of
Second International Workshop on Bidirectional
Transformations (BX 2013), 2013.

[18] J. C. Reynolds. Types, abstraction and parametric
polymorphism. In Information Processing, pages
513–523. Elservier Science Publishers B.V.
(North-Holland), 1983.

[19] J. Voigtländer. Bidirectionalization for free! (pearl). In
POPL, pages 165–176. ACM, 2009.

[20] J. Voigtländer. Free theorems involving type
constructor classes: functional pearl. In ICFP, pages
173–184. ACM, 2009.

[21] J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang.
Combining syntactic and semantic bidirectionalization.
In ICFP, pages 181–192. ACM, 2010.

[22] D. Vytiniotis and S. Weirich. Parametricity, type
equality, and higher-order polymorphism. J. Funct.
Program., 20(2):175–210, 2010.

[23] P. Wadler. Theorems for free! In FPCA, pages
347–359, 1989.

[24] M. Wallace and C. Runciman. Haskell and XML:
Generic combinators or type-based translation? In
ICFP, pages 148–159. ACM, 1999.

[25] M. Wang, J. Gibbons, K. Matsuda, and Z. Hu.
Gradual refinement: Blending pattern matching with
data abstraction. In MPC, LNCS 6120, pages 397–425.
Springer, 2010.

[26] M. Wang, J. Gibbons, and N. Wu. Incremental
updates for efficient bidirectional transformations. In
ICFP, pages 392–403, ACM, 2011.

