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Abstract—The main concern of this paper is to study the
presence of a cascaded Butler network in diversity antenna
systems. The advantages of a cascaded Butler network in 2D
multipath environments have been already shown. These advan-
tages are limited to either correlated or nonuniform multipath
environments with a line-of-sight component. In the frame of
this paper, for the first time, we show a further advantage
of a cascaded Butler network in 3D multipath environments,
including the effects of coupling. This advantage is associated
with an improved convergence in received signals’ covariance
matrix in a multipath environment wherein the number of
independent incoming waves is limited, i.e., non-rich multipath
environment. For this purpose, we use a simulation tool in which
a multipath scenario with certain number of incoming waves is
emulated and some selected multiport antennas are exposed to
it. Afterwards, the simulated random received signals are used to
yield different performance metrics like spatial correlation. This
advantage achieves considerable practical interest sincea typical
actual multipath scenario is most likely a non-rich multipath
environment.

Index Terms—Multiport antennas, Butler network, beam-
forming, multiport matching efficiency, effective diversity gain,
richness threshold.

I. I NTRODUCTION

D ISCRETE Fourier transformation is a contemporary con-
cern for its advantages in multiple-input and multiple-

output (MIMO ) wireless communication systems. In practice, a
discrete Fourier transformation over spatially received signals
can be realized in theRF domain by an ideal Butler network
[1]. Firstly, in [1] the authors studied the effects of implement-
ing a Butler network in aMIMO communication system in both
correlated and uncorrelated multipath environments. Froma
communication engineer’s point of view, they showed the
benefits of a cascaded Butler network in correlated multipath
environments. Later, A. Grauet al. investigated the matter
from an antenna standpoint and highlighted the advantages
inherent in using a Butler network [2]-[4].

However, some additional developments of the aforemen-
tioned works may become useful. For instance, the multipath
model used to simulate their results is in 2D, e.g. a two-ring
model located at the transmitter and receiver with the scatterers
distributed uniformly in the azimuth plane [2], [3]. Moreover,
the developments appear to be limited to cases of negligible
coupling among radiating elements. In contrast, we simulate
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some proposed antennas in 3D multipath environments includ-
ing coupling among nearby radiating elements. In addition
to these, we analyze the behavior of the proposed multiport
antennas in the presence and absence of a Butler network
in two distinct multipath environments: (a) a rich multipath
environment wherein the received signals at different ports of
the antennas have converged joint probability density function
and (b) a multipath environment with finite number of incident
waves which is, henceforth, referred to as anon-richmultipath
environment [5].

In general, the advantages of a cascaded Butler network can
be viewed from two perspectives. From the first standpoint, an
advantage is linked to an improved mean effective gain (MEG).
This advantage is likely only realizable in certain non-uniform
multipath environments with limited angular spread, regardless
of the number of incident waves [4]. On the contrary, in this
paper, we reveal a further advantage of a Butler network in
diversity antenna systems, which to the best of our knowledge
has not been appreciated before. In brief, it is clarified that
in general the spatial correlation between the received random
signals depends also on the number of incident waves. We
reveal that a Butler network facilitates the convergence ofthe
spatial correlation and thus can potentially enhance the overall
diversity performance in a non-rich multipath environment.

Throughout this paper we restrict ourselves to uniform
multipath environments in order to focus on the effects of a
cascaded Butler network solely upon correlation convergence
and notMEG enhancement. Even so, the extracted conclusions
are general and hold for non-uniform multipath environments
too. This study ultimately leads to a fundamental conclusion
saying that, as long as the diversity gain is concerned, the
shape of the embedded patterns plays more critical role than
the element separation in non-rich multipath environments.
We stress that our study is limited to random received signals
which have converged Rayleigh distributions.

The structure of the paper is as follows. Section II develops
a general compact formula to calculate the total embedded
efficiencies in the presence of an arbitrary microwave network.
The total embedded efficiencies are used to normalize the
associated embedded patterns, which play an important role
in later sections. A general description of the microwave
component under study as well as the simulation approach
is presented in Section III. Section IV addresses the effects
of Butler network on diversity gain performance in a rich
multipath environment. This is followed in Section V applying
a similar study in a non-rich multipath circumstance.

To set the notation, letters with an over-bar sign denote the
column vectors, whereas the bold letters represent matrices.
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The matrix I denotes the identity matrix. The dagger sign
·
† stands for Hermitian transpose while the superscriptT

for transpose. The incident and reflected wave vectors are
normalized such that their square is the associated mean power
[6, pp. 182].

II. M ULTIPORT MATCHING EFFICIENCY FORMULATION

In order to normalize the far field patterns used in our
simulations we need to know the total embedded element
efficiencies. In lossless structures, the total embedded element
efficiencies equate the multiport matching efficiencies [7].
Thus, the main goal in this section is to derive a compact
formula for multiport matching efficiency in ann-port antenna
system in the presence of an arbitrary passive microwave
network. Indeed, the details presented here are the base for
generalization of multiport matching efficiency in the presence
of two or more number of cascaded networks [8]. We start
with briefly reviewing the antenna modeling upon which the
required formulations are developed.

A. Antenna Modeling: Background

Assume ann-port antenna system characterized by its
scattering matrix,Sant. The antenna’s scattering matrix can
be divided into four submatrices, as shown in (1) [9], [10].
SubmatrixSa contains the input reflection coefficients as well
as the coupling among different element ports. Regarding the
other submatrices, which are all functions of angular direction,
Sb and Sc link the element ports with the two orthogonal
radiation ports, whereas submatrixSd describes the structural
antenna scattering with the element ports being matched-
terminated.

Sant =

[

Sa (n×n) Sb (n×2)

Sc (2×n) Sd (2×2)

]

(n+2)×(n+2)

(1)

To construct a general formula for the multiport matching
efficiency, we are solely concerned about the input ports’
scattering matrix,Sa. In a similar way, the middle microwave
network in Fig. 1 is characterized by its S-matrix,Sm. The
sub-blocks of this matrix are identified as

Sm =

[

S11 (n×n) S12 (n×n)

S21 (n×n) S22 (n×n)

]

(2n×2n)

(2)

B. Derivation of Multiport Matching Efficiencies

Multiport matching efficiency is the ratio between the ac-
cepted power by a multiport antenna,Pacc, and the maximum
available power from the source exciting it,Pavs [7]. The
primary target is to derive both of them in terms of the
source voltages. The necessary parameters in the following
derivations are shown in Fig. 1. First, we need to derive an
expression for the accepted power. To this end, let us start by
expressing the incident waves at the input of the microwave
network, ām, in terms of the sources’ normalized voltage
vector,ās. Using the voltage division rule in the fundamental
circuit theorem, we can write

ām = (I+ Γ1)
−1Qm

−1 ās = Ts ās (3)

whereinQm is defined as

Qm =
[

(I+ Γs)(I− Γs)
−1(I− Γ1)(I+ Γ1)

−1 + I
]

(4)

with
Γs = (Zs + Z◦)

−1(Zs − Z◦) (5)

in which Z◦ is an n×n diagonal matrix of the characteristic
impedance of the system. The matrixTs can best be called
the source transmission matrix. Moreover, the reflection co-
efficient matrices at both ends of the microwave network are
obtained by

Γ1 = S11 + S12Sa(I− S22Sa)
−1S21

Γ2 = S22 + S21Γs(I− S11Γs)
−1S12

(6)

Now, by virtue of (3), the input power to the microwave
network, denoted byPm, is achieved by

Pm = ā†mām − b̄†mb̄m = ā†m

(

I− Γ1
†Γ1

)

ām

= ā†s Ts
†
(

I− Γ1
†
Γ1

)

Ts ās

(7)

On the other hand, the incident waves at the antenna ports are
shown to be

āa = (I− S22Sa)
−1S21 ām (8)

Therefore, the accepted power can be written as

Pacc = ā†a

(

I− Sa
†
Sa

)

āa

= ā†s Tt
†
(

I− Sa
†Sa

)

Tt ās

(9)

wherein, by use of (8) and (3), the total transmission coeffi-
cient of the cascaded system,Tt, is defined as

Tt = (I− S22Sa)
−1S21 (I+ Γ1)

−1 Qm
−1 (10)

To achieve the multiport matching efficiency, we also need
to obtain the maximum available power from the source. For
this purpose, we recall that the accepted power in (7) equals
the maximum available power as long asΓ1 = Γs

†. That is

Pavs = Pm

∣

∣

∣

Γ1=Γs
†

= ā†s Tm
†
(

I− ΓsΓs
†
)

Tm ās

(11)

where

Tm =
[

(I+ Γs)(I− Γs)
−1(I− Γs

†) + (I+ Γs
†)
]−1

(12)

Having obtained all the required parameters, now we can
write an expression for the multiport matching efficiency.
For a certain excitation scheme,ās, the multiport matching
efficiency becomes

emp

∣

∣

∣

ās

=
ā†s Tt

†
(

I− Sa
†
Sa

)

Tt ās

ā†s Tm
†
(

I− ΓsΓs
†
)

Tm ās
(13)
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Sm =

[

S11 S12

S21 S22

]

Sant =

[

Sa Sb

Sc Sd

]

Fig. 1. Microwave circuit model of a multiport antenna system connected to a set of sources through an arbitrary microwave network.

with Tt and Tm defined in (10) and (12), respectively. The
definition given above is quite general and can be applied
to any arbitrary excitation scheme,ās. Since the diversity
characterization of multiport antennas in receive mode is our
main concern, the excitation vector of a single non-zero entry
is of particular interest.

As an example, assume we wish to design a matching
network for maximizing the multiport matching efficiency,
emp. For this purpose, the ultimate goal is to simultaneously
achieveΓ1 = Γs

† and Γ2 = Sa
†. Note that, under these

constraints, theS11 andS22 in (6) have to be determined such
that the associated expressions hold.

III. S IMULATION DESCRIPTION

The goal in this section is to describe and motivate different
presumptions in the upcoming simulations upon which we
carry out our study. In the first part, the configurations of two
multiport antennas, which are chosen arbitrarily, are depicted.
In the second subsection, the characteristics of an ideal Butler
network are highlighted. Later, we briefly explain the way we
obtain different desired parameters from the derived formulas
in Section II. A review of the approach used to calculate the
received random signals and the associated metrics finalizes
this section.

A. Multiport Antennas under Study

In this study, we arbitrarily choose two different four-port
antennas. Firstly, a case of four parallel equidistant monopoles
(4MP) above a perfect electric conductor (PEC) plane is
investigated. The schematic of this structure is depicted in Fig.
2 in which an arbitrary element separation,d, is chosen. The
resonance frequency of these identical elements in isolation
state is slightly more thanf◦ ≈ 1 GHz (λ◦ ≈ 0.3m).

The second structure under study is four equidistant hori-
zontal parallel dipoles (4HD) ath = 0.15λ◦ height above aPEC
plane. The resonance frequency of these similar dipoles while
isolated is around that of the preceding counterpart structure.
The 4HD radiating elements present higher directivity (e.g.,
around7−9 dBi dependent on the element separation and that
whether the elements are internal or lateral) in comparison
with 4MP.

All simulations are performed using a method of moment
full-wave simulator. Note that, although in these figures the
PEC plane is shown to be finite, it extents to infinity in our
simulations.

d

1

2

3

4

Fig. 2. Four equidistantλ◦/4 monopoles (4MP) above a PEC plane.

d

h
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2

3

4

Fig. 3. Four equidistantλ◦/2 dipoles (4HD) above a PEC plane.

B. Ideal Butler Network

To focus solely on the effects of beam-forming upon the
diversity gain performance, we presume an ideal Butler net-
work throughout this paper. The Butler network is a lossless,
reciprocal and transparent network (i.e., it is matched at both
ends) within the desired bandwidth. Being matched at both
ends means that the submatricesS11 andS22 in Sm (Equation
(2)) are both zero matrices. The S-matrix of this network is
[11]

Sm =

[

0 T

TT 0

]

8×8

(14)
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wherein

T =
1

2









exp (j π
4 ) −1 exp (−j π

4 ) j
1 exp (j π

4 ) j exp (j 3π
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exp (j 3π
4 ) j exp (j π

4 ) 1
j exp (−j π

4 ) −1 exp (j π
4 )









For simplicity, we set the following terminology: In contrast to
the ports at the antenna system, which are called the element
ports, the ports at the input of the cascaded Butler network (at
its left hand side in Fig. 1) are called thebeam ports. Similar
to the element ports, the beam ports are also numbered from
left to right.

C. Total Embedded Efficiencies

Furthermore, to focus on the effects of beam-forming, we
also need to abandon the influence of non-matched source
impedances, i.e., we requireZs = Z◦. In order to calculate the
total embedded efficiency, one has to use a single non-zero
entry excitation vector in (13) rendering the corresponding
multiport matching efficiency. As a reminder, since the struc-
ture is assumed lossless, the multiport matching efficiencies
equal the total embedded element efficiencies. To obtain these
efficiencies at the element ports, it is sufficient to replaceS12

and S21 in (2) by I, and the associatedS11 and S22 by 0,
and consequently substitute the resultant into (13). Aftersome
simplifications, the desired parameters at the element ports
become the diagonal entries in

etot = diag
(

I− Sa
†
Sa

)

(element ports) (15)

In a similar way, the total embedded efficiencies at the beam
ports are achieved. Inserting the corresponding terms given in
(14) into (13) and after some algebra, the required efficiencies
at the beam ports become the diagonal entries in

etot = diag
(

I− Γ1
†
Γ1

)

(beam ports) (16)

where
Γ1 = T Sa TT

Using the above expression, the total embedded efficiencies
of 4MP antenna versus frequency achieved from (15) and (16)
are plotted in Fig. 4. These results belong to the case ofd =

0.2λ◦. Note that at this element separation, the neighboring
elements present a fair amount of coupling, which is the source
of their deviations from those in an isolated state. Although the
efficiencies at the element and beam ports differ significantly,
the arithmetic mean efficiencies in both cases are the same.

D. Spatial Correlation

Recall that we have restricted ourselves to lossless single-
mode radiation structures. This restriction allows us to most
conveniently calculate the spatial correlation in a uniform
multipath environment at the element ports through the input
network parameters [12]. To obtain the corresponding cor-
relations at the beam ports, we use the expressions in [13,
Equations 20 & 31]. One can show that the equations in (15)
and (16) also yield similar results. Note that these correlations
are credible inrich isotropic Rayleigh multipath environments
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Fig. 4. Total embedded efficiencies versus frequency at element ports
and beam ports for four collinear monopoles above a PEC plane.

wherein the termrich shall soon be clarified. In this paper,
we study the square root of received powers’ correlation and
refer to it simply ascorrelation. It is known that the latter
metric approximately equals the absolute value of complex
correlation between the received voltage signals in a rich
Rayleigh multipath environment [14], [15, Chapter 2].

As an example, Fig. 5 illustrates the correlations versus
frequency for the4MP antenna withd = 0.2λ◦. In this figure,
the correlations at the element ports are denoted byρ, whereas
those at the beam ports are shown by̺. In addition to
discrepancies in the total embedded efficiencies as seen before,
the differences between the corresponding correlations atthe
element and beam ports are noticeable.

E. Effective Diversity Gain

In a multiport diversity antenna system used in a multipath
environment, different performance metrics are derived from
random received signals at its ports. In particular, the effective
diversity gain is calculated through the cumulative distribution
function (CDF) of the received random power signals [16].
Therefore, throughout this section, we are concerned aboutthe
simulation of received random power vectors. For this purpose,
we use a classic approach in which a random multipath
is emulated and then the embedded patterns of antennas
are exposed to it. Consequently, the random received power
signals are calculated, which are accordingly used to yield
different metrics such as the effective diversity gain being
henceforth referred to asdiversity gain. The method has been
used in [17] and later generalized and further detailed in [15,
Chapter 4], [5]. Therefore, we avoid detailing it again and refer
the interested readers to these references. Nevertheless,there
are a few points that need to be cleared.

Concerning the angle of arrival (AoA) distribution, since a
moving multiport antenna can have any arbitrary orientation
in space, the effective distribution of AoA canon average
be presumably uniform. The same kind of reasoning is ap-
plied equally to the effective polarization of the incoming
waves. Thus, a uniform multipath environment of balanced
polarization (i.e., isotropic multipath) stands as a generic



IEEE TRANSACTIONS ON ANTENNAS & PROPAGATION, JULY 2012 5

0.8 0.9 1 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

|ρ12|
|ρ13|
|ρ14|
|ρ23|

4MP @ element ports
(d = 0.2λ◦)

C
o

rr
el

at
io

n

frequencyGHz

(a) Correlations at the element ports.
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(b) Correlations at the beam ports.

Fig. 5. Correlations versus frequency for four monopoles above a
PEC plane withd = 0.2λ◦.

Fig. 6. A sample realization in which embedded far field functions of four
monopoles (4MP) above a PEC(d = 0.5λ◦) with a cascaded Butler
network are exposed to80 random incoming waves with uniform
AoA within θ ∈ [0, π/2] andψ ∈ [0, 2π].

representation of the actual multipath scenarios being retained
for all simulations conducted in this paper. More importantly,

the choice of uniform AoA will also nullify the impact ofMEG
variations caused by a cascaded Butler network. This serves
our purpose best in the frame of the current study.

Furthermore, the number of random incoming waves in each
realization indicates therichnessof the multipath environment.
This metric plays a central role in the remainder of this paper.
In Fig. 6, a sample of such a scenario is depicted wherein
80 uncorrelated uniform random waves are incident upon the
embedded patterns of4MP antenna with a cascaded Butler
network. In addition to this, the total number of realizations is
associated with the accuracy of the results. Here, this number
exceeds a million rendering a relative error of less than0.05dB
accordingly to [18, Table 1].

As a final point, note that in parallel with the proposed radi-
ation elements, we also need to expose an arbitrary reference
antenna to the same set of incident waves at each scenario, and
use its received average power for normalization purpose. In
this study, we used an ideal isotropic antenna as the reference.

IV. D IVERSITY PERFORMANCE INRICH MULTIPATH

ENVIRONMENTS

A rich multipath environment is an environment in which
random received signals present a converged joint probability
density function. In arich isotropic Rayleigh environment,
the diversity gain is a complex function of the correlation
and the total embedded element efficiencies at different ports
[18]. Figs. 4 and 5 illustrate the total embedded efficiencies
and correlations versus frequency for4MP antenna with a
specific element separation. Apparently, atf = 1050 MHz the
4MP structure presents an optimum mean radiation efficiency.
Hence, we choosef = 1050 MHz and study both radiation
efficiencies and correlations versus element separation,d. The
results are shown in Figs. 7 and 8, respectively. Once more,
we observe significant differences between the associated
metrics at the two sets of ports. Despite all these considerable
discrepancies, since the rows and columns ofT in (16) are
orthogonal, the eigenvalues of the resultant covariance matrix
is identical to those of (15). This requires the associated
diversity gains be similar at the element and beam ports. In
fact, our simulations verify this requirement. Thus, regardless
of the amount of coupling among the radiation elements, in a
rich isotropic environment, the ultimate diversity performances
at the element and beam ports are the same. This is also
known from measurements in [19]. Nevertheless, in non-rich
multipath environment, the results are in general different
which is the subject of the next section.

V. A DVANTAGES OF A BUTLER NETWORK IN NON-RICH

MULTIPATH ENVIRONMENTS

Up to now we have concluded that in a rich multipath
environment the presence of a Butler network does not prove
beneficial. However, the performance of the aforementioned
network should also be examined in a non-rich scattering
environment, where the number of random incident waves is
finite.

To this end, and for a fair comparison between performances
at the element and beam ports, we make some presumptions.
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Fig. 7. Total embedded efficiencies versus element separations at
element and beam ports for the 4MP antenna (f = 1050 MHz).
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Fig. 8. Spatial correlations for four monopoles above a PEC plane.

Recall that in a non-rich multipath environment, the joint dis-
tributions of random received signals do not converge. Conver-
gence in joint distribution functions is linked to convergence in
distributions of signals at different ports as well as convergence
in their covariance matrix. To focus on the antenna charac-
terization and alleviate its complexity, we assume that the
distribution of the received signals at different ports is complex
Gaussian. This assumption holds regardless of the number of
incident waves in each realization. Thus, convergence in the
joint distribution function will solely depend on convergence in
the received signals’ covariance matrix. The latter parameter
depends on the shapes of the embedded patterns as well as
the array configuration which are antenna engineers’ concern.
Bear in mind that the aforementioned constraint minimizes
the least number of independent incoming waves yielding a
converged joint distribution for the received signals. If we relax
this restriction, a larger number of incident waves is necessary
to cause convergence. This number is thus dependent not only
on the antenna properties, but also on the distribution of the
incoming waves which is beyond the intended scope.

To perform the simulation, we first choose a certain separa-
tion between the elements and a frequency of operation e.g.,
d = 0.5λ◦ andf = 1050 MHz. The50Ω embedded patterns and
the input parameters are achieved by the method of moment
for both structures under study. It is known that proportional
to the dimension of the Butler network, the directivity of the
embedded patterns increases at the beam ports compared with
those of the element ports [1]. Here, the variable is the number
of incident waves in each realization. As an interesting start,
let us study theCDFs of the simulated received signals by
the 4MP antenna (d = 0.2λ◦) for two different numbers of
incident waves, e.g.,K = 5 andK = 30. Fig 9 illustrates the
results. Since the number of incident waves does not affect the
normalized average received power, under the assumption of
Rayleigh distributed received signals, theCDFs of the signals
at different ports are independent of this number. Furthermore,
due to the symmetry of the structure, the two lateral and
internal ports have similarCDF curves. Nevertheless, theCDF
curve of the maximum ratio combining (MRC) diversity signal
depends on the number of incident waves. While withK = 30

number of incident waves, theCDFs of the diversity signals at
both element and beam ports are almost the same, forK = 5

the CDF of the diversity signal associated with the beam ports
shows better performance compared to that of the element
ports. Fig. 10, shows theMRC diversity gain at the1% CDF
level for this particular case ofd = 0.2λ◦ versus the number of
incident waves in each realization. Similar results associated
with 4HD antennas (d = 0.5λ◦) are shown in Fig. 11.

It is important to stress that the corresponding total embed-
ded efficiencies simulated in this study are independent of the
number of independent incident waves. But, the covariance
matrix of the received signals varies with respect to this
variable. Fig. 12 shows convergence in correlations at element
and beam ports for4HD antennas atd = 0.5λ◦ and f = 1050

MHz. An identical observation can be made for correlations
in 4MP antennas which is neglected here for the sake of
conciseness.

From a diversity performance point of view, in these sim-
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TABLE I
RICHNESS THRESHOLD VERSUS ELEMENT SEPARATION AT−0.5 dB

LEVEL FOR 4HD ANTENNAS (f = 1050 MHZ).

Richness Threshold (waves)

Element separation Element ports Beam ports

0.05λ◦ 15 13
0.10λ◦ 19 6
0.15λ◦ 26 7
0.20λ◦ 25 10
0.25λ◦ 27 13
0.30λ◦ 32 13
0.40λ◦ 31 7

ulations the optimum diversity gain cannot be realized unless
the covariance matrix of the received signals converges. This
occurs when the number of incident waves exceeds a threshold.
As the number of the incident wave increases beyond this
threshold, no extra diversity gain can be achieved. In our
preliminary work, we referred to this novel performance metric
as therichness threshold[5]. If the distribution of the incoming
waves is complex Gaussian, richness threshold becomes a
unique measure rendering some information about the overall
performance of a multiport diversity antenna system. As a
criterion, the less the richness threshold, the better the diversity
system performance.

In order to quantify the enhancement caused by the Butler
network, we study the richness threshold. For this purpose let
us choose the threshold as the number of independent incident
waves by which the diversity gain exceeds−0.5 dB level from
its asymptotic (or converged) value. Fig. 13 illustrates this
metric versus element separation for4MP antenna atf = 1050

MHz. There is no doubt that the Butler network reduces the
richness threshold considerably. Based on this figure, the best
performance belongs to the cases ofd = 0.4λ◦ − 0.5λ◦ where
only four independent incident waves are sufficient for the
antenna to realize90% of its optimum performance. For the
sake of comparison, similar results for4HD antenna are sum-
marized in Table I. Regardless of the element separation andin
the absence of a Butler network, apparently the4HD antenna
requires more number of independent waves to represent an
effective diversity antenna.

In general, the significance of richness threshold may be
understood more when one recalls that in a typical multipath
environment, the frequently reported number of incoming
waves at an outdoor receiving antenna is five or six [20], [21],
[22]. A number of20 incoming waves in an indoor scattering
environment seems also presumably acceptable [23]. But, for
numerous available multiport antennas, this number of incident
waves is insufficient to realize the best diversity performance.
Therefore, in practice, most of the multiport antennas are
working below their richness threshold and thus cannot realize
their optimum performance.

VI. CONCLUSION

This paper provides a general - yet compact - expression for
calculation of multiport matching efficiencies in the presence
of a microwave network. In a lossless structure, the multiport
matching efficiencies equal the corresponding total embedded
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Fig. 9. CDFs of the received signals and diversity signals for four
monopoles above a PEC plane.K is the number of incident waves
andSNR◦ is the average received power by the reference antenna.
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Fig. 10. MRC Effective diversity gain at the1% CDF level versus the
number of incident waves for the two antennas under test withd = 0.2λ◦.

efficiencies. These efficiencies are used for normalizationof
the embedded pattern in the presence of an arbitrary cascaded
network. The main purpose of this paper is to investigate the
impacts of a cascaded Butler network in a diversity antenna
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system. Limiting ourselves to lossless structures in a uniform
multipath environment, for four monopoles above aPECplane,

we present a study of correlation and total embedded element
efficiencies both in the presence and absence of a cascaded
Butler network. The results show considerable differences
between the aforementioned metrics. Nevertheless, in a rich
isotropic multipath, regardless of the frequency of operation
and the amount of coupling between different elements, we
have an identical diversity performance at both element and
beam ports. In contrast, in a non-rich multipath environment,
which represents actual scenarios better, the two proposed
multiport antennas show a reduced performance. The dete-
riorated performance in the non-rich multipath is linked with
the convergence in covariance matrix of the received signals
at different ports. We show by numerical simulation that under
this circumstance the cascaded Butler network to the antenna
system proves beneficial. To quantify the advantage of the
cascaded Butler network, we study the richness threshold at
the element and beam ports, which is a novel performance
metric. In general, the lower the richness threshold, the better
the antenna’s overall diversity performance. In this regard,
the cascaded Butler network decreases the richness threshold
and is thus quite advantageous in most practical environments
wherein the typical number of incident waves is less than
twenty. We emphasize that the results presented in this paper is
under presumption of received signals of Rayleigh distribution,
regardless of the number of incident waves. A further study is
required to reveal the impact of a cascaded Butler network
upon convergence in distribution of the random received
signals.
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