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ABSTRACT 

It is well known that a supercritical single-type Bienaymé-Galton-Watson process can be viewed as a decomposable 
branching process formed by two subtypes of particles: those having infinite line of descent and those who have finite 
number of descendants. In this paper we analyze such a decomposition for the linear-fractional Bienaymé-Galton- 
Watson processes with countably many types. We find explicit expressions for the main characteristics of the reproduc- 
tion laws for so-called skeleton and doomed particles. 
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1. Introduction 

The Bienaymé-Galton-Watson (BGW-) process is a basic 
model for the stochastic dynamics of the size of a 
population formed by independently reproducing partic- 
les. It has a long history [1] with its origin dating back to 
1837. This paper is devoted to the BGW-processes with 
countably many types. One of the founders of the theory 
of multi-type branching processes is B. A. Sevastyanov 
[2,3]. 

A single-type BGW-process is a Markov chain  
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 with countably many states  . The  
evolution of the process is described by a probability 
generating function 
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where k stands for the probability that a single particle 
produces exactly k offspring. If particles reproduce 
independently with the same reproduction law (1), then  

the chain   represents consecutive generation  
0n

Z


sizes. In this paper, if not specified otherwise, we assume 
that, the branching process stems from a single particle, 

 0 1Z  . Due to the reproductive independence it fol-  

lows that  is the n-th iteration of        nn Zf s E s

 f s . 

Since zero is an absorbing state of the BGW-process, 
    0n nq P Z   monotonely increases to a limit q  

called the extinction probability. The latter is implicitly 
determined as a minimal non-negative solution of the 
equation 

  .f x x                   (2) 

A key characteristic of the BGW-process is the mean 
offspring number  1 .M f   In the subcritical  
 1M   and critical  1

1,q
M   cases the process is 

bound to go extinct   while in the supercritical 
case  1

0.
M

p
 we have  Clearly  if and 

only if 
1.q  0q 

0   
In the supercritical case the number of descendants of 

the progenitor particle is either finite with probability q 
or infinite with probability  Recognizing that the 
same is true for any particle appearing in the BGW- 
process we can distinguish between skeleton particles 
having an infinite line of descent [4] and doomed 
particles having a finite line of descent. Graphically we 
get a picture of the genealogical tree similar to that given 
in Figure 1. 

1 q .

If we disregard the doomed particles, the skeleton 
particles form a BGW-process with a transformed repro- 
duction law excluding extinction 
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Figure 1. An example of a BGW-tree up to level n 10 . 
Solid lines represent the infinite lines of descent and dotted 
lines represent the finite lines of descent. 
 
and having the same mean 1M M  . Formula (3) is 
usually called the Harris-Sevastyanov transformation. On 
the other hand, the doomed particles form another 
branching process corresponding to the supercritical 
branching process conditioned on extinction. The doom- 
ed particles produce only doomed particles according to 
another transformation of the reproduction law  

   ˆ ,f s f sq q  

which is usually called the dual reproduction law and has 
mean  The supercritical BGW-process 
as a whole can be viewed as a decomposable branching 
process with two subtypes of particles [5]. Each skeleton 
particle must produce at least one new skeleton particle 
and also can give rise to a number of doomed particles. 
In Section 2 we describe in detail this decomposition for 
the single type supercritical BGW-processes. 

 ˆ 1.M f q 

In the special case when the reproduction generating 
function (1) is linear-fractional many characteristics of 
the BGW-process can be computed in an explicit form 
[6]. In Section 3 we summarize explicit results concer- 
ning decomposition of a supercritical single-type BGW- 
processes. 

Section 4 presents the BGW-processes with countably 
many types. Our focus is on the linear-fractional case 
recently studied in [7]. The main results of this paper are 
collected in Section 5 and their derivation is given in 
Section 6. The remarkable fact that a supercritical 
branching process conditioned on extinction is again a 
branching process was recently established in [8] in a 
very general setting. In general, the transformed repro- 
duction laws are characterized in an implicit way and are 
difficult to analyse. This paper presents a case where the 
properties of the skeleton and doomed particles are very 
transparent. 

2. Decomposition of a Supercritical 
Single-Type BGW-Process 

The BGW-process is a time homogeneous Markov chain 
with transition probabilities satisfying 
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In the supercritical case with mean  and ex- 
tinction probability 

1M 
1,q   using the property 
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we can get another set of transition probabilities putting 

   ˆ :n n j i
ij ijP P q   

The transformed transition probabilities also possess 
the branching property 
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where        ˆ n nf s f sq q  is the n-th iteration of the 

so-called dual generating function 
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The corresponding dual BGW-process is a subcritical 
branching process with offspring mean  ˆ 1M f q  , 
see Figure 2. The dual BGW-process is distributed as the 
original supercritical BGW-process conditioned on extin- 
ction: 
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Figure 2. Duality between the subcritical and supercritical 
cases. Left: a supercritical generating function (1) with two 
positive roots  ,q 1  for the Equation (2). Right: the dual 

generating function drawn on a different scale. 
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The two parts of the curve on the left panel of Figure 2 
represent two transformations of the supercritical branch- 
ing process. The lower-left part of the curve, replicated 
on the right panel of Figure 2 using a different scale, 
gives the generating function of the dual process. The 
upper-right of the curve on the left panel corresponds to 
the Harris-Sevastyanov transformation (3). The function 
(3) is the generating function for the probability dis- 
tribution 

  1

0 0, 1
ki k

k i
i k

i
p p p q q

k






 
   

 
   

with the same mean M M  as the original offspring 
distribution. It is easy to see that the n-th iteration of 
 f s  is given by 
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Looking into the future of the system of reproducing 
particles we can distinguish between two subtypes of 
particles: 
 skeleton particles with infinite line of descent (build- 

ing the skeleton of the genealogical tree); 
 doomed particles having finite line of descent. 

These two subtypes form a decomposable two-type 

BGW-process     
0
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n
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The joint reproduction law for the skeleton particles 
has the following generating function 
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A check on the branching property for the decomposed 
process is given by 
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The original offspring distribution can be recovered as 
a mixture of the joint reproduction laws of the two sub- 
types 

             ˆ1 ,n nf s q F s s qf   s  

Observe also that the total number of offspring for a 
skeleton particle has a distribution given by 
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with mean 
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. It follows, 
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and we can summarize the relationship among different 
offspring means as 

ˆ 1 .M M M M     

3. Linear-Fractional Single-Type 
BGW-Process 

An important example of BGW-processes is the linear- 
fractional branching process. Its reproduction law has a 
linear-fractional generating function 

  1
0 1

h s
f s h

m ms
 

 
             (4) 

fully characterized by two parameters: the probability 

0 0h p  of having no offspring, and the mean m of the 
geometric number of offspring beyond the first one. Here 

1 01h h   stands for the probability of having at least 
one offspring. Notice that with  0 1 1h  m , the ge-  

nerating function (4) describes a Geometric   1 1 m   

distribution with mean m. If 0  the generating func- 
tion (4) gives a Shifted Geometric 

0h 
 1 1 m   distri- 

bution with mean 1.m   If  we arrive at a 
Bernoulli 

0,m 
 1h  distribution. 

Since the iterations of the linear-fractional function are 
again linear-fractional, many key characteristics of the 
linear-fractional BGW-processes can be computed ex- 
plicitly in terms of the parameters  For example, 
we have 

 0 ,h m.
 1 1M h m  , and if 1M  , we get 

 1
0

1
1 .

m M
q h m

m
  

    

The dual reproduction law for (4) is again linear- 
fractional 
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with ˆ = 1M M . The Harris-Sevastyanov transformation 
in the linear-fractional case corresponds to a shifted 
geometric distribution 
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Interestingly, the joint reproduction law of skeleton 
particles 
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has three independent components: 
 one particle of type 1 (the infinite lineage); 
 a Geometric   1 1 m  number of offspring each 

choosing independently between the skeleton and 
doomed subtypes with probabilities m m  and 
 m m m  ; 

 a Geometric   ˆ1 1 m  number of doomed offspr- 
ing. 

Observe that even though both marginal distributions 
 f s  and  f̂ s  are linear-fractional, the decompo-  

sable BGW-process  is not a two-type linear- 

fractional BGW-process. The distribution of the total 
number of offspring for the skeleton particles is not 
linear-fractional 
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and has mean 

 ˆ ˆ1 1 .M m m M M m       

4. BGW-Processes with Countably Many 
Types 

A BGW-process with countably many types 

      1 2, , , 0,1,2,n n nZ Z n Z    

describes demographic changes in a population of par- 
ticles with different reproduction laws depending on the 
type of a particle . Here 1,2,i   n

iZ  is the number 
of particles of type i  existing at generation n. In the 
multi-type setting we use the following vector notation: 
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we write  if we need a column version of a vector 
. 

t ,x
x

A particle of type i may produce random numbers of 
particles of different types so that the corresponding joint 
reproduction laws are given by the multivariate gene- 
rating functions 

      1 0 .i if E Zs s Z e            (5) 

The offspring means 

    1 0
ij j iM E Z Z e  

are convenient to summarize in a matrix form  

 
, 1ij i j
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M . 

For the n-th generation the vector of generating 
functions    nf s  with components 
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are obtained as iterations of  with components (5), 
and the matrix of means is given by  The vector of 
extinction probabilities 1 2  has its i-th 
component i  defined as the probability of extinction 
given that the BGW-process starts from a particle of type 
i. The vector  is found as the minimal solution with 
non-negative components of equation 
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q q
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q
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is a multidimensional version of (2). 
From now on we restrict our attention to the positive 

recurrent (with respect to the type space) case when there 
exists a Perron-Frobenius eigenvalue   for  with 
positive eigenvectors  and  such that 
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In the supercritical case, 1  , all  and we 
can speak about the decomposition of a supercritical 
BGW-process with countably many types: . 
Now each type is decomposed in two subtypes: either 
with infinite or finite line of descent. The decomposed 
supercritical BGW-process is again a BGW-process with 
countably many types whose reproduction law is given 
by the expressions 

1iq 
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Linear-fractional BGW-processes with countably many 
types were studied recently in [7]. In this case the joint 
probability generating functions (5) have a restricted 
linear-fractional form 
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The defining parameters of this branching process  

form a triplet  , , mH g , where  
, 1ij i j

h



H  is a  

sub-stochastic matrix,  1 2, ,g gg   is a proper pro- 
bability distribution, and m is a positive constant. The 
free term in (6) is defined as 
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The denominators in (6) are necessarily independent of 
the mother type to ensure that the iterations are also 
linear-fractional. This is a major restriction of the multi- 
type linear-fractional BGW-process excluding for exam- 
ple decomposable branching processes. 

It is shown in [7] that in the linear-fractional case the 
Perron-Frobenius eigenvalue  , if exists, is the unique 
positive solution of the equation 
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the Perron-Frobenius eigenvectors  can be norma- 
lized in such a way that 
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In the supercritical positive recurrent case with 1   
and     the extinction probabilities are given by 
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The total offspring number for a type i particle has 
mean 

  01 1i i .M h m               (13) 

5. Main Results 

In this section, we summarize explicit formulae that we 
were able to obtain for the decomposition of the super- 

critical linear-fractional BGW-processes with countably 
many types. The derivation of these results is given in the 
next section. 

Consider the positive recurrent supercritical case with 
1   and    . We demonstrate that the dual repro- 

duction laws are again linear-fractional 
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It turns out that the following remarkably simple for- 
mulae hold for the key characteristics of the dual branch- 
ing process 
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For the Perron-Frobenius eigenvectors we obtain the 
following expressions 
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We show that the Harris-Sevastyanov transformation 
results in multivariate shifted geometric distributions 
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Theorem 5.1 Consider a linear-fractional BGW-pro- 
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cess characterized by a triplet  Assume it is 
supercritical and positively recurrent over the state 
space, that is 

 , , .mH g 

1   and    . Its dual BGW-process 
and its skeleton are also linear-fractional BGW- process- 
es with the transformed parameter triplets  ˆ ˆ ˆ, , mH g  
and  with components given by Equations 
(15), (16), (22) and (23). 
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The joint offspring generating function for a skeleton 
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Similarly to the single-type case, we can distinguish in 
(26) three components but now with dependence: 
 a “reborn” skeleton particle of type i may change its 

type to j with probability h ; ij

 independent of i and j a multivariate geometric 
number of offspring of both subtypes; 

 a linear-fractional number of doomed offspring with 
the fate of the first offspring being dependent on 
 ,i j . 

The total number of offspring of a skeleton particle of 
type i has generating function    ,i if s F s s 1 1  of the 
next form 
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larger than that given by (13): 

 

    
 

0
0

ˆ1 1

1
1 .

1

i i

i i
i i

i

M m m

q h
M m h

q






   

  
    




 

6. Proof of Theorem 5.1 

In this section we derive the formulae stated in Section 5. 
Proof of (14). From 
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The first requirement follows from (12). The second is 
obtained from 
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Proof of (17). In view of Equation (7) determining the 
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to obtain 
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Proof of (19) and (20). From (15) we derive 
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Replacing the last numerator by 
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and the relation (26) follows. 
Proof of (21) and (24). Putting  in (26) we 

arrive at (21). Notice that according to definition (22) 
and relations (12), (27) we have 
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