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ABSTRACT

It is well known that a supercritical single-type Bienaymé-Galton-Watson process can be viewed as a decomposable
branching process formed by two subtypes of particles: those having infinite line of descent and those who have finite
number of descendants. In this paper we analyze such a decomposition for the linear-fractional Bienaymé-Galton-
Watson processes with countably many types. We find explicit expressions for the main characteristics of the reproduc-
tion laws for so-called skeleton and doomed particles.
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1. Introduction

The Bienaymé-Galton-Watson (BGW-) process is a basic
model for the stochastic dynamics of the size of a
population formed by independently reproducing partic-
les. It has a long history [1] with its origin dating back to
1837. This paper is devoted to the BGW-processes with
countably many types. One of the founders of the theory
of multi-type branching processes is B. A. Sevastyanov
[2,3].
A single-type BGW-process is a Markov chain

{Z(n)}: with countably many states {0,1,2,---}. The

evolution of the process is described by a probability
generating function

f(s)=§pksk,p1<1, )

where p, stands for the probability that a single particle
produces exactly k offspring. If particles reproduce
independently with the same reproduction law (1), then

the chain {Z(”)}Oc represents consecutive generation
n=0

sizes. In this paper, if not specified otherwise, we assume
that, the branching process stems from a single particle,
z® =1. Due to the reproductive independence it fol-

lows that f(”)(5)=E(sZ(n)) is the n-th iteration of

f(s).
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Since zero is an absorbing state of the BGW-process,
q" = P(Z(") =0) monotonely increases to a limit g

called the extinction probability. The latter is implicitly
determined as a minimal non-negative solution of the
equation

f(x)=x 2

A key characteristic of the BGW-process is the mean
offspring number M = f'(1). In the subcritical
(M <1) and critical (M =1) cases the process is
bound to go extinct q=1, while in the supercritical
case (M >1) we have gq<1. Clearly q=0 if and
only if p,=0.

In the supercritical case the number of descendants of
the progenitor particle is either finite with probability g
or infinite with probability 1—q. Recognizing that the
same is true for any particle appearing in the BGW-
process we can distinguish between skeleton particles
having an infinite line of descent [4] and doomed
particles having a finite line of descent. Graphically we
get a picture of the genealogical tree similar to that given
in Figure 1.

If we disregard the doomed particles, the skeleton
particles form a BGW-process with a transformed repro-
duction law excluding extinction

- f(s(l-q)+q)-
f(5)- 1q)q 9)-a ©
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Figure 1. An example of a BGW-tree up to level n=10.
Solid lines represent the infinite lines of descent and dotted
lines represent the finite lines of descent.

and having the same mean M =M >1. Formula (3) is
usually called the Harris-Sevastyanov transformation. On
the other hand, the doomed particles form another
branching process corresponding to the supercritical
branching process conditioned on extinction. The doom-
ed particles produce only doomed particles according to
another transformation of the reproduction law

f(s)=1(sq)/a,

which is usually called the dual reproduction law and has
mean M = f'(q)<1. The supercritical BGW-process
as a whole can be viewed as a decomposable branching
process with two subtypes of particles [5]. Each skeleton
particle must produce at least one new skeleton particle
and also can give rise to a number of doomed particles.
In Section 2 we describe in detail this decomposition for
the single type supercritical BGW-processes.

In the special case when the reproduction generating
function (1) is linear-fractional many characteristics of
the BGW-process can be computed in an explicit form
[6]. In Section 3 we summarize explicit results concer-
ning decomposition of a supercritical single-type BGW-
processes.

Section 4 presents the BGW-processes with countably
many types. Our focus is on the linear-fractional case
recently studied in [7]. The main results of this paper are
collected in Section 5 and their derivation is given in
Section 6. The remarkable fact that a supercritical
branching process conditioned on extinction is again a
branching process was recently established in [8] in a
very general setting. In general, the transformed repro-
duction laws are characterized in an implicit way and are
difficult to analyse. This paper presents a case where the
properties of the skeleton and doomed particles are very
transparent.
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2. Decomposition of a Supercritical
Single-Type BGW-Process

The BGW-process is a time homogeneous Markov chain
with transition probabilities satisfying

SRS =(1(s))

=0

In the supercritical case with mean M >1 and ex-
tinction probability g <1, using the property

YR =¢,
j=0
we can get another set of transition probabilities putting

P = pMgi-i
A

] ]

The transformed transition probabilities also possess
the branching property

5w =

where f® (s)= fl
so-called dual generating function
R f ©

f(s)= flsa)
q k=

The corresponding dual BGW-process is a subcritical
branching process with offspring mean M = f'(q)<1,
see Figure 2. The dual BGW-process is distributed as the
original supercritical BGW-process conditioned on extin-
ction:

P(z"=j|z® =i,z =0)

"(s))

)(sq)/q is the n-th iteration of the

=p gt k>0

ﬁksk’ P
0

:q*ip(z(w) :O‘Z(”) - J) J(” q- lp() F’SIJ(”)_

f(s f(sq)/
AT g ATV

Po—

>

1 s

7 |

q

Figure 2. Duality between the subcritical and supercritical
cases. Left: a supercritical generating function (1) with two
positive roots (q,1) for the Equation (2). Right: the dual

generating function drawn on a different scale.
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The two parts of the curve on the left panel of Figure 2
represent two transformations of the supercritical branch-
ing process. The lower-left part of the curve, replicated
on the right panel of Figure 2 using a different scale,
gives the generating function of the dual process. The
upper-right of the curve on the left panel corresponds to
the Harris-Sevastyanov transformation (3). The function
(3) is the generating function for the probability dis-

tribution

with the same mean M =M as the original offspring
distribution. It is easy to see that the n-th iteration of

f(s) isgivenby

n f(”)(s(l—q)+q)—q
f()(s)z T4 )

Looking into the future of the system of reproducing
particles we can distinguish between two subtypes of
particles:

o skeleton particles with infinite line of descent (build-
ing the skeleton of the genealogical tree);
o doomed particles having finite line of descent.
These two subtypes form a decomposable two-type

BGW-process {(S(”),D(”))}w with
n=0

s 4 p — 7™

The joint reproduction law for the skeleton particles
has the following generating function

F(s,t)= E(ss(l)tD(l))
f(s(1-q)+tq)- f(tq)
1-q '

A check on the branching property for the decomposed
process is given by

(), p(
E[s5 t7 1
5 () ( {z(°°)>o}]
2V >0|=

E(s t°
P(z<°°>>o)
s, p(n p(M
(st )—E(t 1{zw>}j
- =
£ (s(1-q)+tq)- £t
— (S( q])-+qq) (q)=F(n)(S,t)

The original offspring distribution can be recovered as
a mixture of the joint reproduction laws of the two sub-

types
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£ (s)=(1-a)F" (s,5)+af " (s).

Observe also that the total number of offspring for a
skeleton particle has a distribution given by

f(s)= F(s,s):%;(sq): éﬁksk,
P =(1-09) " (1-9")p,,
Mg

with mean M = M . It follows,

M =M+(M-N) 2
1-q
and we can summarize the relationship among different
offspring means as

M<1<M =M <M.

3. Linear-Fractional Single-Type
BGW-Process

An important example of BGW-processes is the linear-
fractional branching process. Its reproduction law has a
linear-fractional generating function

hs
fs) hO+1+m—ms )
fully characterized by two parameters: the probability
h, = p, of having no offspring, and the mean m of the
geometric number of offspring beyond the first one. Here
h =1-h, stands for the probability of having at least
one offspring. Notice that with h, :17/(1+ m), the ge-

nerating function (4) describes a Geometric (1/(1+m))

distribution with mean m. If h; =0 the generating func-
tion (4) gives a Shifted Geometric (1/(1+m)) distri-
bution with mean m+1. If m=0, we arrive at a
Bernoulli (h,) distribution.

Since the iterations of the linear-fractional function are
again linear-fractional, many key characteristics of the
linear-fractional BGW-processes can be computed ex-
plicitly in terms of the parameters (ho, m). For example,
we have M =h (1+m),andif M >1,we get

_ 1+m-M
q:h0(1+m l):T'
The dual reproduction law for (4) is again linear-
fractional
- ~ h,s ~ m
f(5) =Ryt Ry = =y,

1+m-ms m+1

with M =1/M . The Harris-Sevastyanov transformation
in the linear-fractional case corresponds to a shifted
geometric distribution
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z s
f(s)=————— m=m(l-q)=M -1.

() 1+m—ms (1-a)
Interestingly, the joint reproduction law of skeleton

particles

F(s.t) = h, s(1-q)+tq B tq
" 1-g(1+m-m(s(1-q)+tq) 1+m-mtq
= S . 1
1+m-m(s(1-q)+tq) 1+m—rit

S. 1 . Al —
1+m-ms—(m-m)t 1+M -t

has three independent components:

o one particle of type 1 (the infinite lineage);

e a Geometric (1/(1+m)) number of offspring each
choosing independently between the skeleton and
doomed subtypes with probabilities m/m and
(m-m)/m;

e a Geometric (1/(1+r)) number of doomed offspr-
ing.

Observe that even though both marginal distributions

f(s) and f(s) are linear-fractional, the decompo-

sable BGW-process (S(“), D(”)) is not a two-type linear-

fractional BGW-process. The distribution of the total
number of offspring for the skeleton particles is not
linear-fractional

fls)=—> 1
1+m-ms 1+m-ms

and has mean
M=1+m+m=M +(M +1)m.

4. BGW-Processes with Countably Many
Types

A BGW-process with countably many types
Z(n) Z(an)lzgn)a'”)7n = 011121"'

describes demographic changes in a population of par-
ticles with different reproduction laws depending on the
type of a particle ie{1,2,---}. Here z™ is the number
of particles of type i existing at generation n. In the
multi-type setting we use the following vector notation:

X = (%) L= (LL) 8 = (L L),
XY = (%Y1 % Yp, ), X7 =(X1_1,X2_l,~--),
xY :(xlylxzyZ,...)’

we write X', if we need a column version of a vector
X.

Copyright © 2013 SciRes.

A particle of type i may produce random numbers of
particles of different types so that the corresponding joint
reproduction laws are given by the multivariate gene-
rating functions

f,(s)= E(sz(l) z© :ei). (5)
The offspring means
1 0
My =E(2|2 =)

are convenient to summarize in a matrix form

0

M=(My)

For the n-th generation the vector of generating
functions f(”)(s) with components

£ (s)= E(sz(n)‘Z(O) = ei)

are obtained as iterations of f (s) with components (5),
and the matrix of means is given by M". The vector of
extinction probabilities q=(0,,q,,---) has its i-th
component g, defined as the probability of extinction
given that the BGW-process starts from a particle of type
i. The vector q is found as the minimal solution with
non-negative components of equation f (x) = X, which
is a multidimensional version of (2).

From now on we restrict our attention to the positive
recurrent (with respect to the type space) case when there
exists a Perron-Frobenius eigenvalue p for M with
positive eigenvectors u and v such that

VM = pv,Mu' = pu',vu' =v1' =1,
and
p"M" > u'v,n — oo

In the supercritical case, p>1, all g, <1 and we
can speak about the decomposition of a supercritical
BGW-process with countably many types: (S™,D™).
Now each type is decomposed in two subtypes: either
with infinite or finite line of descent. The decomposed
supercritical BGW-process is again a BGW-process with
countably many types whose reproduction law is given
by the expressions

F ()= LD

G

Linear-fractional BGW-processes with countably many
types were studied recently in [7]. In this case the joint
probability generating functions (5) have a restricted
linear-fractional form

AM



356 S. SAGITOV, A. SHAIMERDENOVA

fi(s)=h U (6)
ilS)="p+ :
1+m—mzjzlgjsj
The defining parameters of this branching process
formatriplet (H,g,m), where H =(hij):c]_:1 isa

sub-stochastic matrix, g :(gl,gz,m) is a proper pro-
bability distribution, and m is a positive constant. The
free term in (6) is defined as

=1_Zhﬂ"
j=1
The denominators in (6) are necessarily independent of
the mother type to ensure that the iterations are also
linear-fractional. This is a major restriction of the multi-
type linear-fractional BGW-process excluding for exam-
ple decomposable branching processes.
It is shown in [7] that in the linear-fractional case the
Perron-Frobenius eigenvalue p , if exists, is the unique
positive solution of the equation

m> pgH"1' =1. )
k=1
In the positive recurrent case, when the next sum is
finite
B=my kpHgH T, (8)
k=1

the Perron-Frobenius eigenvectors (v, u) can be norma-
lized in such a way that vu' =v1'=1. They are com-

puted as
u'=(1+m) Y pH L, ©)
k=1
gH*. 10
1+mZp g (10)

In the supercritical positive recurrent case with p >1
and S <o the extinction probabilities are given by

q=1-(p-1)(1+m)" pu. (11)
Observe that gu' _irm and
mg

gqt =1+m——p. (]_2)
m

The total offspring number for a type i particle has
mean

M, = (1=h,)(L+m). (13)

5. Main Results

In this section, we summarize explicit formulae that we
were able to obtain for the decomposition of the super-

Copyright © 2013 SciRes.

critical linear-fractional BGW-processes with countably
many types. The derivation of these results is given in the
next section.

Consider the positive recurrent supercritical case with
p>1 and S <oo. We demonstrate that the dual repro-
duction laws are again linear-fractional

ZJllJJ

fi(s)=hgy+ , (14)
+m-mY. " s,
with
~ VA h.q.
hiO :h’ hij :”_qjv (15)
q; Gp
n,’\]::I.-i-m—p A gjqjm (16)
p TV 1+im-p

It turns out that the following remarkably simple for-
mulae hold for the key characteristics of the dual branch-
ing process

p=p A7)
p== 1,/1 mZ;gH 1 (18)

For the Perron-Frobenius eigenvectors we obtain the
following expressions

(=pB"ug" = (g -1)(1+m)(x-1)",  (19)

> (gH")a. (20)

We show that the Harris-Sevastyanov transformation
results in multivariate shifted geometric distributions

F(s)= 2-1111

i(s)= ; (21)
l+m-my " §s,

where

- 1-q;

h; :1___(hij +mg; (g —hy)), (22)

N o m

M=p=10,=— 70 g;(1-a;). (23)
Moreover, we demonstrate that

p=p, =", (24)

p-1

and G=1,
=M

Theorem 5.1 Consider a linear-fractional BGW-pro-

( {H +mp’1Hq‘g}k)(1—q). (25)
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cess characterized by a triplet (H,g,m). Assume it is
supercritical and positively recurrent over the state
space, thatis p>1 and S <. Its dual BGW-process
and its skeleton are also linear-fractional BGW- process-
es with the transformed parameter triplets EH,@,rﬁ)
and H,g,m? with components given by Equations
(15), (16), (22) and (23).

The joint offspring generating function for a skeleton
particle of type i has the form

* h (26)
t
Ny
1+ m-—mgt
where
h, = h; - mg;q;hy, _
" hy+mg; (g —ho) ™ hy+mg; (g —hy)

Similarly to the single-type case, we can distinguish in
(26) three components but now with dependence:
e a “reborn” skeleton particle of type i may change its
type to j with probability h; ;
e independent of i and j a multivariate geometric
number of offspring of both subtypes;
o a linear-fractional number of doomed offspring with
the fate of the first offspring being dependent on
ij).
T(he t?)tal number of offspring of a skeleton particle of
type i has generating function f,(s)=F (sl,s1) of the
next form

f(s)=r———[l-a + o |,
1+m-ms 1+m-ms

where ¢, =f—_l(qi —h,) must belong to the interval

(0,1). The corresponding mean offspring number is
larger than that given by (13):

M, =1+m+g (1+1)
(P‘l)(Qi_hio)J
=M. +(1 h, +~— 2% 1)
|+( +m)[ |0+ ,D(l—qi)
6. Proof of Theorem 5.1

In this section we derive the formulae stated in Section 5.
Proof of (14). From

(o= 20t

2 NS0, /0
1+m—mZ“°j°:lgjsjqj

G g

it is straightforward to obtain Equation (14) with Equa-
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tions (15) and (16). We have to verify that §1' =1 and

he=1-3h,.

)

The first requirement follows from (12). The second is
obtained from

Hg' = p(H1' -1'+q") @7)
which is proved next. We have (relation (6) in [7])
H=M-—""Mi'g
1+m

and therefore M1' =(1+m)H1', which is (13). Using
the last two equalities and (11) we find first

1 p-1
Hq'=——M1' - p(1' -q' )+ Z—M1'
f 1+m p( b ) 1+m
and then obtain (27).
Proof of (17). In view of Equation (7) determining the
Perron-Frobenius eigenvalue for a linear-fractional BGW-
process, to show (17) it is enough to verify that

My p"gH "1 =1,
n=1

Observe that according to Equation (15)

R m
H =——x«——(gH")a. 28
g (1+m_p)pk(g )a (28)
It follows,
ght=—1 _gH"q', (29)
(I+m-p)p

so that we have to check that

mY gH"q' = p. (30)
n=1

Turning to Equation (27) we find
H'g'=p(H"1'-H"" '+ H"q")  (31)
yielding
(p—l)ni_lH“qt - p(1'-0"). 32)
This and Equation (12) entail Equation (30).

Proof of (18). Starting from a counterpart of Equation
(8) we find using Equation (29)

B = nﬁin[)’”@] "' = mp’li ngH"q".
n=1

n=1
Rewrite Equation (31) as
nH"g' = p(nH"1' = (n-1)H" 1" +(n-1)H"'q")

+pH n—l(q[ —l[)
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to obtain
S nHﬂ t_ p & Hn 1t_ t
nZ:; I p—lnz::? ( q)
Thus
- m & n u-1
=— H"(1'-q')="——.
B p_an:Og (1'-a') =

Proof of (19) and (20). From (15) we derive
|:||’11t =<ant)q—l.
This and a counterpart of (9)

RV Waalil)

in view of (32) brings (19)
- (m)(p-D(& a

- (B
:(q‘l—l)(l+m)(u—1)_

On the other hand, a counterpart of (10) together with
(28) yields

n

V=—23 p*gH* H*
Y 1+rﬁk:0p g 1+m2g o
Proof of (26). We have
f.(s(1-q)+tq)- f,(tq)
- ZT:1hiJSJ( ) Z] 1hu j
1+m—m2f19k5k (1_Qk)_mzk:19kthk
_ zj =11 J
1+m—mzk:19k k Ak
It follows,
f(s(1-q)+tq)- f,(tq)
_ Zl =1 J( )
1+m-my " §,5 —(m-m)> " §t,
* ht
+ U] JqJ

(1+ m-— mz(::lgksk —(m-m)>"" 4.t )
m> 9 (1-a)
p(Lem-my, 6t,)
Replacing the last numerator by
mz; 9;8; (1—q1 )l; Pyt O
= =

and dividing the whole expression by 1-q, we get

Copyright © 2013 SciRes.

: ( q)(l q)"
Fi(s.t)= ,Zl gs' —(m—m)at'
{h Mg, qZklh.kt]
1+ m-mgt'

and the relation (26) follows.

Proof of (21) and (24). Putting t=1 in (26) we
arrive at (21). Notice that according to definition (22)
and relations (12), (27) we have

g1' =1, H1' =1".

Since p s the unique positive solution of
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