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Accurate Beam Prediction Through Characteristic

Basis Function Patterns for the MeerKAT/SKA

Radio Telescope Antenna
A. Young, R. Maaskant, Member, IEEE, M. V. Ivashina, Member, IEEE, D. I. L. de Villiers, Member, IEEE,

and D. B. Davidson, Fellow, IEEE

Abstract—A novel beam expansion method is presented that
requires employing only a few Characteristic Basis Function
Patterns (CBFPs) for the accurate prediction of antenna beam
patterns. The method is applied to a proposed design of the
MeerKAT/SKA radio telescope, whose antenna geometry is sub-
ject to small deformations caused by mechanical or gravitational
forces. The resulting deformed pattern, which is affected in a non-
linear fashion by these deformations is then sampled in a few
directions only after which the interpolatory CBFPs accurately
predict the entire beam shape (beam calibration). The procedure
for generating a set of CBFPs – and determining their expansion
coefficients using a few reference point sources in the sky – is
explained, and the error of the final predicted pattern relative
to the actual pattern is examined. The proposed method shows
excellent beam prediction capabilities, which is an important step
forward towards the development of efficient beam calibration
methods for future imaging antenna systems.

Index Terms—reflector antennas, radio telescopes, character-
istic basis function patterns, beam modeling, calibration.

I. INTRODUCTION

CALIBRATION measurements on cosmic radio sources

or geostationary satellites are often used to predict the

far-field patterns of directive antennas, such as antennas for

ground-based radio and (sub-) millimeter space telescopes.

For these applications, it is very important to determine

the antenna pattern down to the noise floor level in the

measurements [1]–[3]. In practice, however, it is difficult to

achieve this high accuracy due to atmospheric propagation

(i.e. emission, absorption) and instrumental effects. The most

important instrumental effects are: (i) the direction dependent

signal-to-noise-ratio (SNR) for observing the reference source

over the desired region of the measured beam, and; (ii) the
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system instability due to e.g. mechanical deformations of the

antenna structure and/or variation of the receiver gain.

Conventionally used pattern calibration models used in radio

astronomy applications are only accurate down to a few

percent relative to the beam maximum [3]–[6], and reaching

the required levels of accuracy presents a great challenge,

especially given that the pattern models may need to be

estimated repeatedly during the course of an observation in

order to calibrate for the time-varying radiation characteristics

of the antenna [7]. This limits the time practically available for

performing the calibration measurements necessary for beam

model estimation, thus precluding measurement on a direction-

by-direction basis.

Recently, a different class of pattern measurement tech-

niques has been proposed that incorporates a priori informa-

tion about the antenna structure through employing physics-

based beam prediction models, thereby reducing the degrees

of freedom for modeling the pattern significantly [8], [9].

Among these, a novel method has been proposed which

requires employing only a few Characteristic Basis Function

Patterns (CBFPs) for the accurate expansion of the antenna

beam pattern [10]. The expansion coefficients were found by

measuring the antenna array response on a few calibration

sources only. In that specific case, it was shown that the

perturbed array embedded element pattern due to impedance

matching errors could be accurately predicted. This is an

important step forward towards the development of efficient

beam calibration methods for future imaging antenna systems,

such as for the Square Kilometre Array, where fast and

accurate calibration and imaging techniques are considered to

be major research topics [11].

In this paper we propose to employ CBFPs for the first time

for single-beam antenna systems. The objective is to accurately

predict the beam pattern of a proposed design of the offset

Gregorian MeerKAT/SKA Radio Telescope Antenna when this

system is subject to geometrical deformations [12]. In Sec. II

the method of employing CBFPs is described in a general

manner, thereby demonstrating the close resemblance with the

method of weighted residuals. The procedure for generating

the CBFPs that can compensate for pattern errors caused by

geometrical deformations is discussed in Sec. III. Finally, in

Sec. IV, numerical results on the accuracy of the method are

described.
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II. CHARACTERISTIC BASIS FUNCTION PATTERNS

Following the CBFP-method as presented in [13], but herein

applied to a single beam antenna system, we aim to predict

the actual reference beam pattern F ref(Ω) – which may differ

from the ideally expected pattern F expt due to various errors

in the system – through the model Fmod(Ω). To this end,

the complex-valued vector function Fmod is expanded into a

relatively small set of N CBFPs {fn(Ω)}
N
n=1, i.e.,

Fmod(Ω) =
N
∑

n=1

αnfn(Ω) (1)

where {αn} is the set of N unknown CBFP expansion coeffi-

cients. Next, and analogously to the method of weighted resid-

uals, the expansion coefficient vector α = [α1, α2, . . . , αN ]T ,

where T denotes transpose, is chosen such as to minimize

the beam error function ǫ(Ω) = F ref(Ω) − F mod(Ω) over a

desired angular region. This can be done by weighting ǫ to

zero through the – yet to be chosen – M testing functions

{Λm(Ω)}Mm=1, where M ≥ N . Hence,

∫∫

4π

Λm ·
(

F ref − F mod
)

dΩ = 0 (2)

where the symmetric product is used for testing. Substitution

of (1) in (2) leads to the matrix equation

N
∑

n=1

[
∫∫

4π

Λm · fn dΩ

]

αn =

∫∫

4π

Λm · F ref dΩ (3)

for m = 1, 2, . . . ,M . Henceforth, we will assume that

the beam pattern is tested at M discrete directions, i.e., is

measured successively using M known reference point sources

in the sky, so that Λm(Ω) = Ei
mδ(Ω − Ωm), where Ei

m is

the E-field polarization vector radiated by the mth reference

far-field source in the direction of the receiving antenna. The

selection of Dirac distribution functions for testing the pattern

(collocation method) is a logical choice since several relatively

strong far-field point sources1 are readily available as natural

calibrator sources [14]. Accordingly, Eq. (3) reduces to the

matrix equation

Aα = V, (4)

where

Amn = Ei
m · fn(Ωm), Vm = Ei

m · F ref(Ωm). (5)

One can solve for α through the Moore-Penrose pseudoin-

verse, α = (AH
A)−1A

H
V, where the superscript H denotes

the conjugate transpose. Note that the choice of testing through

a symmetric product in (2) is in correspondence with the

reaction concept in electromagnetics, so that the element Vm

in (5) is proportional to the measured antenna output voltage

for the mth source.

1Note that (3) allows us to measure (or test) on sky reference sources that
are spatially distributed as well.

Reference Antenna

Under

Test

Antenna

Ωm

v1(t) v2(t,Ωm)

〈v1(t)v
∗
2
(t,Ωm)〉

N CBFPs

Fig. 1. Rotatable test antenna measuring a reference power point source in the
M different directions {Ωm}Mm=1

. The complex-valued receive voltages are
obtained by correlating the respective output powers with a reference antenna
pointing at the same source. Afterwards, the N CBFP expansion coefficients
are determined for modeling the unknown beam pattern of the antenna under
test.

A. Incoherent Power Point Sources

In most practical cases the reference sources in the sky

are natural incoherent power point sources. In that case, one

instead will measure the real-valued time-averaged antenna

output powers pm = 〈|Vm(t)|2〉, for m = 1, . . . ,M . Accord-

ingly, from (4),

p = diag
(〈

V(t)VH(t)
〉)

= diag
(

AααHAH
)

(6)

where diag(X) takes the diagonal of the square matrix X and

places these elements in a column vector. To the authors’

best knowledge, a closed-form solution to α in (6), given p,

does not exist, so that one has to resort to non-linear equation

solvers [10]. Furthermore, since ααH = αQQHαH , where

Q is a unitary matrix (for example a diagonal matrix with ar-

bitrary phase factors on its diagonal), the solution to α suffers

from a unitary matrix (or phase) ambiguity and is therefore

not unique. Similarly, if in addition the reference sources are

unpolarized, one also has to deal with a polarization ambiguity

in the modeled pattern.

Alternatively, and rather than using a single antenna, one can

directly measure the complex-valued receive voltage vector V

in (4) by correlating the measured antenna output power with

that of a reference antenna as shown in Fig. 1 (cf. also [14],

[15]).

After correlating the output signals, the measured 2 × 2
rank-one covariance matrix R(Ωm) is obtained as

R(Ωm) =

[

〈|v1(t)|
2〉 〈v1(t)v

∗

2(t,Ωm)〉
〈v2(t,Ωm)v∗1(t)〉 〈|v2(t,Ωm)|2〉

]

, (7)

whose dominant eigenvector is composed of the complex

voltage phasors [V1;V2(Ωm)], and has the eigenvalue λmax =
|V1|

2 + |V2|
2. Hence, the element Vm in (5) can be computed

as Vm = V2(Ωm)/V1, where we normalized to V1 in order to

compensate for possible phase and amplitude variations of the

reference source signal.
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Fig. 2. Geometry of the proposed offset Gregorian MeerKAT system with the
domain space of subreflector position errors D shown on an exaggerated scale
for clarity. The vector δ extends from the center of D which is located at the
base of the subreflector (ideal position). The indicated positions δ2, . . . , δ9

were used to construct the secondary CBFPs for set S1. The position error
of the feed (relative to the ideal location Ps) is proportional to that of the
subreflector. Pp indicates the primary focus point.

III. CBFP-METHOD APPLIED TO MEERKAT

A. CBFP Generation

The next step is to select a representative set of CBFPs,

whose powerful property is that relatively few of them are

required for the accurate modeling of the beams. We distin-

guish between primary and secondary CBFPs: (i) the primary

CBFP, f1, is a simulated or measured pattern corresponding

to the ideally expected beam pattern, F expt, in the absence of

system errors. This physics-based pattern alone is assumed

to be already very close to the actual (slightly perturbed)

reference pattern F ref; (ii) the secondary higher-order CBFPs,

{fn}
N
n=2, need to be able to compensate for expected beam

errors to be able to accurately predict F ref. The secondary

CBFPs should therefore span the space of beam patterns that

are to be expected when the antenna system is subject to

certain types of errors. That is, the set of secondary CBFPs

correspond to the radiation patterns of a set of possible systems

that are representative of the various expected errors. This

set of pattern basis functions may be determined through

simulation (depending on how accurately the actual system —

with or without errors — can be modeled), or measurement

(depending on how well representative error conditions can be

enforced on the actual system), or a combination of both.

As an example, the set of CBFPs used to model antenna

beams for a reflector system under varying thermal loading

conditions may consist of a simulated pattern of the ideal

antenna geometry (primary CBFP), and a number of measured

patterns obtained at different times of the day (secondary

CBFPs) [5, cf. Fig. 19]. If other types of geometrical errors are

to be modeled as well (e.g. positioning error of the feed and/or

subreflector, ground roughness, etc.), the set of secondary

CBFPs needs to be augmented with basis function patterns

obtained for the corresponding erroneous systems. Since the

relation between geometrical deformations and radiation pat-

TABLE I
ESTIMATED TOLERANCES ON SUBREFLECTOR POSITION IN UNIT

WAVELENGTHS [12].

Direction 580 MHz 1.75 GHz

xa ± 0.0193 ± 0.0583

ya ± 0.0097 ± 0.0292

za ± 0.0387 ± 0.1167

tern shape is generally non-linear, CBFPs obtained from

system configurations containing multiple anticipated errors

may also be required. However, depending on the magnitude

of the expected errors (which are generally relatively small)

the addition of more basis functions may result in a certain

degree of redundancy, and an accurate pattern model may

be achieved without using all the generated CBFPs. At any

rate, a larger number of CBFPs may therefore be required

to address the problem of modeling non-linear beam pattern

variations for the geometrical errors discussed here, as opposed

to e.g. beamformer weight errors which constitute a linear

problem [10]. As an illustrative example of the proposed

method, herein we will consider the case where the beam

errors are a result of geometrical deformations resulting in

displacement of the feed and subreflector only.

Consider the offset Gregorian candidate design for the

MeerKAT antenna in Fig. 2 [16]. The estimated tolerances

on the subreflector position are presented in Table I (for

two different frequencies of operation) and are defined in the

coordinates (xa, ya, za) shown at the base of the support arm

on which the feed and subreflector are mounted. The gain

pattern variations caused by these geometrical variations have

been examined in [12]. The geometrical position error of the

feed and subreflector are proportionally affected since these

components are supported by the same structure. Hence, we

will define the subreflector position error as δ = [δx, δy, δz]
T

,

from which the feed position error is determined as the

ratio of the position of the feed along the support arm to

that of the subreflector. Accordingly, the three-dimensional

Euclidean space D of position errors is defined, whose domain

is bounded by the values listed in Table I. Upon taking K
samples within D, the set of geometrical error vectors {δk}

K
k=1

is obtained2. With the finite set of error vectors thus defined,

the generation of the corresponding set of CBFPs can proceed.

The primary CBFP is chosen as the simulated far field pat-

tern of the error-free antenna geometry, i.e. f1 = F expt(δ1 =
0). Similarly the set of secondary CBFPs is obtained through

simulation and by setting fk = F expt(δk) for k = 2, . . . ,K .

Using the so-generated initial set of K CBFPs (primaries +

secondaries), each of which is simulated at a total of NΩ far

field directions, a 2NΩ × K matrix F can be formed (2 far

field components),

F =







F expt(Ωs
1, δ1) · · · F expt(Ωs

1, δK)
...

. . .
...

F expt(Ωs
NΩ

, δ1) · · · F expt(Ωs
NΩ

, δK)






, (8)

2The probablity density function of the displacement error can be used to
obtain a non-uniform sampling grid.
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where Ωs denotes a sampled (simulated) far-field direction.

A linear dependency between the angular sampled version of

the CBFPs (i.e. columns of F) may exist, which renders the

matrix F rank-deficient. The CBFPs can be orthonormalized

and redundant ones be eliminated through the application of

the Singular Value Decomposition (SVD), as is done in the

Characteristic Basis Function Method (CBFM) [17]. In the

present context, we then retain only the first N left-singular

vectors of F as the reduced set of CBFPs, which are the ones

corresponding to singular values whose magnitudes are above

a certain specified threshold relative to the largest singular

value. Furthermore, it is pointed out that several rows of F

can be discarded during the SVD process if the objective of

the CBFPs is to model the beam pattern only over a limited

angular region. Generally, the smaller the angular region,

the lesser the number of retained CBFPs. Afterwards, and if

desired, the corresponding CBFP beam functions outside the

limited angular support can be recovered through using the

first N right-singular vectors as expansion coefficient vectors

for the initial set of CBFPs. This permits modeling the beam

over the entire angular support, while the accuracy is highest

within the limited angular region.

When measured (as opposed to simulated) CBFPs are

employed, e.g. by manually introducing displacement errors

and measuring the corresponding pattern functions, it becomes

practically intractable to generate a large initial set of CBFPs.

Therefore, we also consider the case of generating only

K = 9 initial simulated CBFPs, that is, at the center (primary

CBFP) and corners (secondary CBFPs) of the cuboidal-shaped

subdomain D (cf. Fig. 2).

Hence, the following sets of CBFPs will be considered: (i)

set S1, composed of K = 9 CBFPs (no SVD); (ii) set S2,

composed of K = 9 CBFPs (after SVD on S1); (iii) set

S3, composed of K = 351 CBFPs (after SVD), which is

obtained through regularly sampling the error subdomain D.

The SVD will only be used to orthonormalize the CBFPs, i.e.

no threshold on the singular values is applied to reduce each

set of CBFPs, so that K = N ; instead, the model accuracy is

examined as a function of the number of admitted CBFPs in

decreasing order of importance (for S2 and S3 this is based on

the magnitude of the singular values, while for S1 the ordering

is as indicated in Fig. 2).

B. Selection of Testing Points

The numerical solution accuracy of the expansion coeffi-

cient vector α in (1), and therefore Fmod, depends on the

matrix condition number κ of A in (4). In turn, κ(A) depends

on the total number and positions of the testing points. In the

following, we will choose the total number of testing points

M equal to the total number of employed CBFPs N , and let

the first testing point Ω1 correspond to the on-axis direction

θ = 0. For each additional CBFP included in the model, the

corresponding Ωn to be selected next is chosen such as to

increase κ(A) by the least amount. Furthermore, the points

are limited to a region θ < θmax around the expected beam

maximum where the antenna sensitivity is expected to attain

high values as well. Note that the procedure for generating the
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Fig. 3. Testing points for S1 (’+’) and S2 (’◦’) shown on the ideally expected
normalized gain pattern at 580 MHz. The contour θ = θmax is indicated as a
solid black line.

sets {fn} and {Ωn} needs to be performed only once for the

construction of A in (4), whereas the forcing vector V needs

to be updated at regular time intervals to calibrate the beam

during operation.

Fig. 3 shows the resulting testing points for S1 and S2 at

580 MHz, where the value of θmax = 1.6◦ was selected so

that all testing points are approximately within the 5 dB beam

of the ideally expected pattern. As can be seen, most of the

testing points were found to reside close to or on the boundary

θ = θmax. At 1.75 GHz a value of θmax = 0.5◦ was chosen

(contour plot not shown).

IV. NUMERICAL RESULTS

Fifty simulated reference patterns were analyzed by ran-

domly3 selecting position errors δ of the subreflector (and

correspondingly of the feed) within D. Accordingly, the ith
reference pattern, F ref

i , for i ∈ {1, 2, . . . , 50}, is predicted

through the modeled pattern Fmod
i,j,N by employing N CBFPs,

where N ∈ {1, 2, . . . , 9}, and for the CBFP sets Sj , where

j ∈ {1, 2, 3}. As a result, each of the 50 reference patterns was

modeled in 27 different ways, which enabled us to perform a

detailed comparative analysis. Afterwards, the pertaining pat-

tern error function ǫi,j,N was calculated for each of the cases

and then normalized to the maximum of the corresponding

reference pattern. Two error metrics were considered: the first

error metric ǫavg
j,N was chosen as the average of |ǫi,j,N | over the

angular region where the normalized F ref
i is above the -10 dB

level, and averaged over all i; the second error metric ǫmax
j,N was

chosen as the maximum of |ǫi,j,N | over the angular region

where the normalized F ref
i is above the -30 dB level, and the

worst case selected from all i. The generation of the CBFPs

as well as the error calculations were performed separately at

the two frequency points 580 MHz and 1.75 GHz.

Fig. 4(a) shows the average error metric ǫavg
j,N as a function

of N for the various sets of CBFPs at 580 MHz. The

average error between the actual reference patterns and the

3A uniform probability distribution was assumed for δ within D, which
represents a worst-case scenario for the actual performance of the antenna in
practice.
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Fig. 5. Worst case maximum error in the model pattern F
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CBFPs from S1 (without SVD), S2 (S1 after SVD), and S3 (after SVD).

corresponding ideally expected patterns (when δ = 0) is also

shown in the figure by the black dashed line. Not surprisingly,

a single CBFP from S1 results in an error (≈ 1%) which is

exactly equal to that for the ideal pattern since the primary

CBFP was chosen to be equal to F expt(δ = 0). Similarly, the

primary CBFPs for the sets S2 and S3 (obtained after the SVD)

closely resemble F expt and, consequently, the error for a single

CBFP from these sets is at the same level as for S1 and F expt.

Upon increasing N , the error in the modeled pattern decreases

relatively slowly when employing CBFPs from S1, as opposed

to the CBFPs from S2, whose error reduces much more rapidly

(even for small N ) owing to the orthonormalization of the

CBFPs over the angular region near the beam maximum.

Ultimately, for N = 9, the beam approximation errors for the

sets S1 and S2 are the same, since both sets span the same

space of beam patterns. However, employing CBFPs from set

S3, and for N = 9 the error can be reduced further by about

an order of magnitude. The method is shown to model the

variation in the beam patterns with high accuracy, i.e., even

with CBFPs from S2 alone, the average error can be reduced

to a level of about 10−3% (-100 dB).

The average error computed at 1.75 GHz is shown in

Fig. 4(b) and the results are similar to that for the lower

frequency. However, due to the larger electrical distance of the

mechanical displacements at the higher frequency, the shape

of the reference patterns deteriorate, generally resulting in a

larger error between the reference and the modeled patterns

(as well as between the reference and the ideally expected

patterns). Also, the condition number κ(A) is smaller at the

higher frequency for the same set of CBFPs, which is a

direct consequence of the increased effect of the geometrical

errors on the beam patterns at the higher frequency. However,

although the matrix condition number improved, more CBFPs

may need to be employed to achieve the same accuracy at

higher frequencies. Upon employing all nine CBFPs from

either S1 or S2, the error can be reduced to as little as 10−2%,

and even further by a factor four when employing the same

number of CBFPs from S3.



6

θ
◦

N
o
rm

al
iz

ed
d
ir

ec
ti

v
e

g
ai

n
[d

B
]

F
ref (actual)

F
expt (ideally expected)

F
mod (7 CBFPs)

-6 -4 -2 0 2 4 6

-70

-60

-50

-40

-30

-20

-10

0

(a) Beam pattern @580 MHz (φ = 170.0◦)

θ
◦

N
o
rm

al
iz

ed
d
ir

ec
ti

v
e

g
ai

n
[d

B
]

F
ref (actual)

F
expt (ideally expected)

F
mod (9 CBFPs)

-3 -2 -1 0 1 2 3

-70

-60

-50

-40

-30

-20

-10

0

(b) Beam pattern @1.75 GHz (φ = 157.5◦)
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Fig. 6. Normalized gain patterns at (a) 580 MHz and (b) 1.75 GHz comparing the reference pattern F
ref, modeled pattern F

mod, and the expected pattern
F

expt for the worst case subreflector displacement δ = [7.1,−5.0, 18.5] mm. Normalized error patterns for the modeled and expected patterns for the same
subreflector displacement are also shown in (c) 580 MHz and (d) 1.75 GHz. All patterns are shown in the plane of the reference pattern maximum.

The maximum error ǫmax
j,N is shown in Fig. 5(a) and (b), at the

lower and higher frequencies, respectively, and as a function

of N for the different sets of CBFPs. The worst case error

between the ideally expected and actual reference pattern is

shown to range from about 5% at 580 MHz up to 20% at

1.75 GHz. The importance of improving the conditioning of

(4) through the application of the SVD is emphasized by the

difference in the results for S1 and S2. Whereas the worst

case error decreases nearly monotonically for S2 with every

additionally employed CBFP, the reduction in error for using

CBFPs from S1 is significantly slower. Moreover, the results at

1.75 GHz show that the error in the S1 model pattern may even

be larger than the error in the expected (uncalibrated) pattern

as is evidenced by the error for N = 5. As before, the use

of basis functions from S3 is seen to improve the error in the

model pattern by approximately a factor five at the lower and

a factor two at the higher frequency, respectively, for N = 9.

Fig. 6(a) and (b) show the reference and CBFP-modeled

patterns for the geometrical error resulting in the largest max-

imum error in the ideally expected pattern at each of the two

frequencies. The modeled patterns are produced using CBFPs

from set S2, with N = 7 at the lower, and N = 9 at the upper

frequency. For comparison, the ideally expected patterns (no

displacement error) at each of the frequencies are also shown,

and the actual reference beam pattern at the lower frequency

is seen to suffer mainly from a small pointing error, whereas

at the higher frequency this error is substantially larger and

the sidelobes are also affected significantly. By employing

seven CBFPs from S2, the lower frequency modeled pattern

is visually indistinguishable from the reference pattern, and at

the higher frequency the difference between these two patterns

is only visible from around the -30 dB level. The beam error

functions (normalized to the maximum of F ref) corresponding

to these modeled patterns are shown in Fig. 6(c) and (d), along

with the beam error functions (also normalized) for the ideally

expected patterns. These error patterns show that the model

error is reduced to an extremely low level in the main beam

area (over the angular region θ < θmax), and even over the

sidelobe region the error in the model pattern is still well

below -40 dB (1%).

Finally, the effect of θmax on the error in F mod was examined

for the worst case geometrical error at 1.75 GHz by increasing

the angular region over which the CBFPs are orthonormalized

from θmax = 0.5◦ (≈ 5 dB level of F expt) to θmax = 1.0◦ (≈
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Fig. 7. Normalized error patterns for worst case geometrical error at
1.75 GHz shown over an angular region θ ≤ 2◦. Comparison between (left)
θmax = 0.5◦ and (right) θmax = 1.0◦ .

20 dB level of F expt). The normalized error patterns resulting

for these two cases are shown in Fig. 7, where increasing the

angular region is seen to reduce the error in an average sense

over a similarly larger region at the price of an increase in

error inside the region θ < θmax. The testing points for best

conditioning of (4) in either case were mostly arranged on or

near θ = θmax, as can be seen from the deep nulls in the error

function where point matching is performed.

V. CONCLUSIONS AND RECOMMENDATIONS

The extent to which the sensitivity offered by future radio

telescopes can be utilized is dependent on the accuracy with

which the antenna beam pattern can be estimated using the

least number of calibration measurements. In this contribution

a beam estimation procedure based on the Characteristic

Basis Function Pattern method [10] is proposed to address

this requirement for single beam antennas, and provides a

radiation pattern model that can be used to accurately account

for instrumental direction-dependent effects during calibration

and imaging [6]. Specifically, the method is demonstrated to

compensate for certain mechanical deformations that are to

be expected in an offset Gregorian antenna, in which case

presented simulation results show a reduction in the maximum

beam model error of a non-calibrated system from 15% down

to a value less than 0.2%. This level of accuracy is achieved

by employing only nine CBFPs to model the actual perturbed

beam pattern, and therefore requires as little as nine calibration

measurements, indicating that the estimation method is also

time-efficient.

The application of the CBFP method to compensate for

various other types of system errors, the polarization ambi-

guity that arises when calibrating on unpolarized sources, and

experimental demonstration on an actual antenna system using

measured CBFPs, are subjects of ongoing research.
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